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ON THE FEFFERMAN-PHONG INEQUALITY

by Abdesslam BOULKHEMAIR

Abstract. — We show that the number of derivatives of a non negative 2-order
symbol needed to establish the classical Fefferman-Phong inequality is bounded by
n
2

+4+ε improving thus the bound 2n+4+ε obtained recently by N. Lerner and Y.
Morimoto. In the case of symbols of type S0

0,0, we show that this number is bounded
by n + 4 + ε; more precisely, for a non negative symbol a, the Fefferman-Phong
inequality holds if ∂α

x ∂β
ξ

a(x, ξ) are bounded for, roughly, 4 6 |α|+ |β| 6 n + 4 + ε.
To obtain such results and others, we first prove an abstract result which says that
the Fefferman-Phong inequality for a non negative symbol a holds whenever all
fourth partial derivatives of a are in an algebra A of bounded functions on the
phase space, which satisfies essentially two assumptions : A is, roughly, translation
invariant and the operators associated to symbols in A are bounded in L2.

Résumé. — Nous montrons que le nombre de dérivées d’un symbole non néga-
tif d’ordre 2, nécessaire pour établir l’inégalité classique de Fefferman-Phong est
majoré par n

2
+4+ε améliorant ainsi la borne 2n+4+ε obtenue récemment par N.

Lerner et Y. Morimoto. Dans le cas des symboles de type S0
0,0, nous montrons que

ce nombre est majoré par n+4+ ε; plus précisément, pour un symbole non négatif
a, on a l’inégalité de Fefferman-Phong si les ∂α

x ∂β
ξ

a(x, ξ) sont bornées en gros pour
4 6 |α|+ |β| 6 n + 4 + ε. Pour obtenir ces résultats et d’autres, nous commençons
par établir un résultat abstrait qui dit que l’inégalité de Fefferman-Phong pour
un symbole non négatif a a lieu pourvu que les dérivées partielles d’ordre 4 de a
soient dans une algèbre A de fonctions bornées sur l’espace des phases, qui vérifie
essentiellement deux conditions : A est, en gros, invariante par translation et les
opérateurs associés aux symboles de A sont bornés dans L2.

1. Introduction

The classical Fefferman-Phong inequality, [6], states that, if a is a non
negative symbol on Rn × Rn satisfying, for all multi-indices α and β,

|∂α
x ∂

β
ξ a(x, ξ)| 6 Cα,β〈ξ〉2−|β|,

Keywords: Fefferman-Phong inequality, Gårding inequality, symbol, Sm
%,δ, pseudodiffer-

ential operator, Weyl quantization, Wick quantization, semi-boundedness, L2 bound-
edness, algebra of symbols, uniformly local Sobolev space, Hölder space, semi-classical,
Weyl-Hörmander class.
Math. classification: 35Axx, 35Sxx, 47G30, 58J40.



1094 Abdesslam BOULKHEMAIR

there exists a constant C > 0 such that, for all u ∈ S(Rn),

(1.1) Re(a(x,D)u|u)L2 + C||u||L2 > 0,

where a(x,D) is the standard quantization of the symbol a, that is the
pseudodifferential operator defined by

a(x,D)u(x) =
∫

Rn

e2πixξa(x, ξ)û(ξ)dξ,

û being the Fourier transform of u. Thus, it is a great improvement of both
the classical and the sharp Gårding inequality. Using the Weyl quantization

Opw(a)u(x) =
∫

R2n

e2πi(x−y)ξa(x+y
2 , ξ)u(y)dydξ,

the inequality is also equivalent to saying that there exists a constant C > 0
such that

(1.2) Opw(a) + C > 0.

An alternate and recent version of the Fefferman-Phong inequality due
to J. M. Bony, [1], says that inequalities (1.1) and (1.2) hold if a is a non
negative symbol such that

∂α
x ∂

β
ξ a(x, ξ) are bounded for |α|+ |β| > 4,

which is a remarkable result since it indicates that only the boundedness
of derivatives of order larger than or equal to 4 is relevant.

In this paper, we are interested in estimating the number of derivatives
of the symbol a needed to obtain the Fefferman-Phong inequality. In [8]
(see also the short version [9]), N. Lerner and Y. Morimoto proved that
this number is bounded by 4 + 2n+ ε with an arbitrary ε > 0, n being the
dimension of the base space. Actually, they established the following more
precise result :

Inequalities (1.1) and (1.2) hold if a is a non negative symbol such that

∂α
x ∂

β
ξ a ∈ A0(R2n) for |α|+ |β| = 4,

where A0(R2n) is the Wiener type algebra of symbols studied by J. Sjös-
trand in [10].

Recall that one way to define the algebra A0(Rd) is as the set of functions
that can be written as the sum of a series like∑

k∈Zd

uk(x)eixk,

ANNALES DE L’INSTITUT FOURIER



FEFFERMAN-PHONG INEQUALITY 1095

where the functions uk are bounded, with spectrum in a fixed compact set
and ∑

k∈Zd

||uk||L∞ <∞ .

Note that the definition of A0 does not use derivatives. However, in terms
of regularity, for a general function on Rd to be in A0(Rd), it must have
d+1 bounded derivatives, and this fact is optimal, see [3]. Hence, the result
of Lerner-Morimoto.

In this paper, we take back the argument of Lerner-Morimoto and ap-
ply more or less known results on L2 boundedness of pseudodifferential
operators to obtain mainly that

For a non negative symbol a, inequalities (1.1) and (1.2) hold

if ∂α
x ∂

β
ξ a

(4) are bounded or locally uniformly square integrable for |α|+
|β| 6 n+ 1,

or, if |∂α
x ∂

β
ξ a(x, ξ)| 6 Cα,β〈ξ〉2−|β|, for |α|+ |β| 6

[n
2

]
+ 5,

or, if |∂α
x ∂

β
ξ a

(4)(x, ξ)| 6 Cα,β〈ξ〉−|β|, for |α| + |β| 6
[n
2

]
+ 1, which is

equivalent to the more explicit estimates :

For |α|+ |β| 6
[n
2

]
+ 5, |∂α

x ∂
β
ξ a(x, ξ)| 6 Cα,β〈ξ〉4−|α|−|β| if |α| < 4,

and |∂α
x ∂

β
ξ a(x, ξ)| 6 Cα,β〈ξ〉−|β|, if |α| > 4.

Here, a(4) stands for the tensor of fourth order derivatives of a. In fact, we
shall also use fractional derivatives in such a way that we finally obtain that
the number of derivatives of the symbol a needed to obtain the Fefferman-
Phong inequality is bounded by 4 + n+ ε (resp. 4 + n

2 + ε), where ε > 0 is
arbitrary.

The paper begins with an abstract result. Indeed, we remark that the
method of proof of Lerner-Morimoto works if one replaces the algebra A0 by
any subalgebra of L∞ satisfying few assumptions. See Section 2. Then, we
indicate some more or less natural algebras that satisfy the assumptions
of Section 2 and prove L2 boundedness for pseudodifferential operators
associated to these algebras in the t-quantization. In the fourth section, we
state the result that gives the best bounds for the number of derivatives of
the symbol needed to obtain the Fefferman-Phong inequality. We conclude
by stating the Fefferman-Phong inequalities in the semi-classical setting.

We are grateful to P. Bolley and N. Lerner for motivating discussions on
the subject.
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Some notations
“Cst ” will always stand for some positive constant which may change

from one inequality to the other.
||.||E denotes the norm in the space E.
L(E) is the space of bounded operators in E.
(u|v) is the scalar product in L2.
û = F(u) is the Fourier transform of u.
For a function a(x, η), F1(a)(ξ, η) and F2(a)(x, y) denote the Fourier

transforms of x 7→ a(x, η) and η 7→ a(x, η) respectively.
Sometimes, ∂α

1 ∂
β
2 a is used for ∂α

x ∂
β
ξ a(x, ξ).

τk is the translation operator : τku(x) = u(x− k).
If x ∈ Rn, 〈x〉 =

√
1 + x2.

[x] denotes the integral part of the real number x.
[α, β] stands for the compact interval {x ∈ R;α 6 x 6 β}.
λ ∼ µ means that λ

µ and µ
λ are bounded.

Hs(Rd), s ∈ R, is the usual L2 Sobolev space.
Bs(Rd), s ∈ N ∪ {∞}, is the space of bounded functions in Rd with

bounded derivatives up to the order s. For positive non integral s, Bs(Rd)
is the usual Hölder space.

2. An abstract result

Let A be a subalgebra of L∞(R2n) satisfying the following properties :

(H1) ∃ C0 > 0,∃m > 0,∀Y ∈ R2n,∀b ∈ A, ||τY b||A 6 C0〈Y 〉m||b||A.

(H2) The map b 7→ Opw(b) is bounded from A to L(L2(Rn)).

We have then the following :

Theorem 2.1. — There exists a constant C > 0 such that, for any non
negative function a on R2n such that a(4) ∈ A(R2n), we have

(2.1) Opw(a) + C||a(4)||A > 0,

that is, Opw(a) is semi-bounded.

The proof follows the same lines as that of [8]. So, we shall be brief and
refer to that paper for more details.

Lemma 2.2. — For any function a defined on R2n and such that a(4) ∈
A(R2n), we have

Opw(a) = Opwick(a− 1
8π

∆a) + Opw(r),

ANNALES DE L’INSTITUT FOURIER



FEFFERMAN-PHONG INEQUALITY 1097

where r ∈ A(R2n) is such that ||r||A 6 C||a(4)||A, C being a constant inde-
pendent of a, and ∆a =

∑2n
j=1 ∂

2
j a.

Recall that Opwick(a), the Wick quantization of a, is the pseudodiffer-
ential operator whose Weyl symbol is

(2.2) b(X) =
∫
a(X + Y )2ne−2πY 2

dY.

Proof. — If b is given by (2.2), using Taylor formula, we can write

b(X) = a(X) +
1
8π

∆a+
1
6

∫∫ 1

0

(1− t)3 a(4)(X + tY ) Y 4e−2πY 2
2ndtdY.

Another application of Taylor formula allows us to write the Weyl symbol
of Opwick(∆a) as

θ(X) = ∆a(X) +
∫∫ 1

0

(1− t) (∆a)′′(X + tY ) Y 2e−2πY 2
2ndtdY.

Thus, the Weyl symbol of Opwick(a− 1
8π ∆a) is equal to b− 1

8π θ = a−r
where

r(X) = −1
6

∫∫ 1

0

(1− t)3 a(4)(X + tY ) Y 4e−2πY 2
2ndtdY

+
1
8π

∫∫ 1

0

(1− t) (∆a)′′(X + tY ) Y 2e−2πY 2
2ndtdY,

that is,

r(X) =
∫∫ 1

0

a(4)(X + tY ) P (t, Y )e−2πY 2
dtdY,

where P (t, Y ) is a polynomial in (t, Y ). Now, by the assumption (H1) on
A, we get

||r||A 6 C0||a(4)||A
∫∫ 1

0

〈Y 〉m|P (t, Y )|e−2πY 2
dtdY = C||a(4)||A.

�

It follows from the above lemma and assumption (H2) onA that Theorem
1 is a consequence of the following result of [8] which is independent of the
algebra A.

Proposition 2.3. — There exists a constant C > 0 such that for any
nonnegative function a defined on R2n and such that a(4) ∈ L∞(R2n), we
have

Opwick(a− 1
8π

∆a) + C||a(4)||L∞ > 0.

TOME 58 (2008), FASCICULE 4
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The proof of this proposition relies on the Wick pseudodifferential calcu-
lus and on a precise result on the decomposition of nonnegative functions
as sums of squares. We refer to [8].

This achieves the proof of Theorem 2.1.

Remark 2.4. — It follows from the proof of Lemma 1 that the (H2)
assumption can be replaced by the following more general one :

(H1)′ ∃C0 > 0,∃δ < 2π,∀Y ∈ R2n,∀b ∈ A, ||τY b||A 6 C0 eδY 2 ||b||A.

We turn now to the Fefferman-Phong inequality in the standard quanti-
zation case. To be able to deduce it from the Weyl quantization case, we
have to strengthen the assumption (H2). We shall use

(H2)′: The map a 7→ Opt(a) is bounded from A to L(L2(Rn)) for all
t ∈ [0, 1] and its norm is uniformly bounded with respect to
t ∈ [0, 1].

Recall that Opt(a) is the pseudodifferential operator defined by

Opt(a)u(x) =
∫

R2n

e2πi(x−y)ξa((1− t)x+ ty, ξ)u(y)dydξ, u ∈ S(Rn),

so that, Op1/2 = Opw and Op0 is the standard quantization. Recall also
that Opt(a) = Op0(J ta) where J t = e2πitDxDξ , t ∈ R.

Theorem 2.5. — Assume that A satisfies (H1) and (H2)′. There exists
a constant C > 0 such that, for any non negative function a on R2n such
that a(4) ∈ A(R2n), we have

(2.3) Re(a(x,D)u|u)L2 + C ||a(4)||A ||u||2L2 > 0, u ∈ S(Rn).

Proof. — We are concerned with the semi-boundedness of the operator
A = [a(x,D)+a(x,D)?]/2. We can write 2A = Opw(J−1/2a+J1/2a). Now,
by Taylor formula, we have

J−1/2a = a− πiDxDξa− π2

∫ 1

0

(1− t)e−πitDxDξ(DxDξ)2adt

and

J1/2a = a+ πiDxDξa− π2

∫ 1

0

(1− t)eπitDxDξ(DxDξ)2adt.

Since a is real, we get

J−1/2a+ J1/2a = 2a− π2

∫ 1

0

(1− t)(J−t/2 + J t/2)(DxDξ)2a dt.

ANNALES DE L’INSTITUT FOURIER
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Hence,
(2.4)

A = Opw(a)−R where R =
π2

2

∫ 1

0

(1−t)(Op(1−t)/2(b)+Op(1+t)/2(b))dt

and b = (DxDξ)2a. Since b ∈ A, it follows from assumption (H2)′ that R
is bounded in L2(Rn) with an operator norm bounded by C ||a(4)||A and
therefore the result follows from Theorem 1. �

3. On algebras of symbols and boundedness of operators

We present here some more or less known algebras of symbols which give
rise to L2-bounded pseudodifferential operators and to which we are going
to apply the results of the preceding section.

3.1. Uniformly local Sobolev algebras

If E is a Banach space of functions or distributions on Rd (for example,
containing D(Rd), to avoid trivial cases), we shall denote by Eul the set of
functions or distributions u which are locally uniformly in E, that is, the
set of u such that u τyχ is in E uniformly in y ∈ Rd for some χ ∈ D(Rd)
with non zero integral. The space Eul is then naturally normed by ||u||Eul

=
supy∈R2n ||u τyχ||E .

We shall apply this procedure to the usual Sobolev space Hs(R2n) as
well as to its anisotropic analogues Hs,s′(Rn×Rn) and Hσ(R2n), s, s′ ∈ R,
σ = (σ1, . . . , σ2n) ∈ R2n. Recall that these are also Hilbert spaces and are
defined by :

− u ∈ Hs,s′(Rn × Rn) iff u is a tempered distribution such that the
integral ∫

Rn×Rn

∣∣∣〈ξ〉s〈ξ′〉s′ û(ξ, ξ′)∣∣∣2dξdξ′
is finite.

− u ∈ Hσ(R2n) iff u is a tempered distribution such that the integral∫
R2n

∣∣∣ 2n∏
i=1

〈ξi〉σi û(ξ)
∣∣∣2dξ

is finite.

TOME 58 (2008), FASCICULE 4
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We shall consider the spaces Hs
ul(R2n) for s > n, Hs,s′

ul (Rn × Rn) for
s > n

2 , s′ > n
2 , and Hσ

ul(R2n) for σi >
1
2 , 1 6 i 6 2n. These are Banach

subalgebras of L∞(R2n) and we have the inclusions

Hs
ul(R2n) ⊂ H

s
2 , s

2
ul (Rn × Rn) ⊂ H

( s
2n ,..., s

2n )

ul (R2n)

with continuous injections, of course.
Clearly, these algebras satisfy trivially the assumption (H1). They also

satisfy assumption (H2)′, although this is much less trivial. In fact, we
are going to show that, if a ∈ Hσ

ul(R2n), σi >
1
2 , 1 6 i 6 2n, then, for

all t ∈ R, Opt(a) is bounded in L2(Rn) and its operator norm can be
estimated by C(1 + t2)N ||a||Hσ

ul
. Using dyadic decompositions with respect

to each variable, this is equivalent to the following :

Theorem 3.1. — There exist positive constants C and M such that,
for any a ∈ L∞(R2n) with supp(â) ⊂

∏2n
i=1[−Ri, Ri], Ri > 1, 1 6 i 6 2n,

and any t ∈ R, the following inequality holds :

||Opt(a)||L(L2) 6 C(1 + t2)M (R1R2 . . . R2n)
1
2 ||a||L2

ul
.

Proof. — In fact, the cases t = 0 and t = 1
2 are proved in [2] and [4]

respectively. Unfortunately, we have not been able to deduce this theorem
from these cases (is it possible ?). However, the proof is very similar to that
of Theorem 2.1 in [4] since it consists roughly in replacing the “ 1

2” by t (or
by 1 − t) and then to supervise the dependence on t of the estimates. So,
we shall be brief and refer to [4] for missing details.

Note also that, in this paper, we only need the case 0 6 t 6 1. However,
for t ∈ R, the proof is the same and this more general case may be useful
elsewhere.

We have to study

I = (Opt(a)v|u), u, v ∈ S(Rn),

and we can assume that a ∈ S(R2n). The first step is to write
(3.1)

I =
∫
F2(a)(x, y) v(x+ (1− t)y)u(x− ty) dxdy

=
∫
χ(x)F2(a)(x+ k, y) v(x+ (1− t)y + k)u(x− ty + k) dxdydk,

where χ ∈ S(Rn) and
∫
χ(x)dx = 1. Next, introducing the weight ω(x) =∏n

i=1〈xi〉si , si > 1, 1 6 i 6 n, and applying Cauchy-Schwarz and Peetre

ANNALES DE L’INSTITUT FOURIER



FEFFERMAN-PHONG INEQUALITY 1101

inequalities, we obtain

(3.2) |I| 6 Cst 〈t〉s

sup
k∈Rn

(∫ ∣∣∣χ(x)ω(x)ω(y)F2(a)(x+ k, y)
∣∣∣2dxdy) 1

2

||u||L2 ||v||L2 ,

where s = s1 + ...+sn and the constant does not depend on (u, v, a, t). The
〈t〉s appears when one applies Peetre inequality.

The second step in the proof consists in improving the last estimate.
Note that we have not used yet the spectral property of a. We can write

I =
∫
F2(aR)(Rx, y) vR(x+ (1− t)y)uR(x− ty) dxdy,

where we have set

aR(x, η) = a(x,R−1
1 η1, . . . , R

−1
n ηn), uR(x) = (R1 . . . Rn)

1
2 u(Rx)

and vR(x) = (R1 . . . Rn)
1
2 v(Rx), Rx = (R1x1, . . . , Rnxn), and we have

applied some obvious changes of variables. Now, applying the estimate
(3.2) to (Opt[aR(Rx, η)])vR|uR) (with si = 2) and using the fact that the
support of y 7→ F2(aR)(x, y) is contained in [−1, 1]n, we obtain

(3.3) |I| 6 Cst 〈t〉2n(R1 . . . Rn)
1
2

sup
k∈Rn

(∫ ∣∣∣χ(x)ω(x) a(Rx+ k, η)
∣∣∣2dxdη) 1

2

||u||L2 ||v||L2 ,

where ω(x) =
∏n

i=1〈xi〉2 and χ ∈ S(Rn),
∫
χ(x)dx = 1.

For the third and last step in the proof of Theorem 3, we write
(3.4)

I =
∫
F1(b)(ξ, η) V̂ (η − tξ) Û(η + (1− t)ξ) dξdη,

=
∫
ψ(η)F1(b)(ξ, η + `) V̂ (η − tξ + `) Û(η + (1− t)ξ + `) dξdηd`

where b(x, η) = a(R−1x,Rη), U(x) = u(R−1x)/
√
R1 . . . Rn , V (x) =

v(R−1x) /
√
R1 . . . Rn R−1x = (R−1

1 x1, . . . , R
−1
n xn) and ψ ∈ S(Rn),∫

ψ(η)dη = 1. Next, by mutiplying and dividing, we introduce in the last
integral the weight (with s ∈ 2N)

〈η + (1− t)ξ〉s 〈η − tξ〉s =
∑

|α|,|β|62s

cα,β(t) ξα ηβ ,

and obtain the expression

I =
∑

|α|,|β|62s

cα,β(t)
∫ (

Opt(bα,β,`)V`|U`

)
d`,

TOME 58 (2008), FASCICULE 4
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where bα,β,`(x, η) = Dα
x b(x, η+`)ψ(η)ηβ , Û`(ξ) = 〈ξ〉−sÛ(ξ+`), V̂`(η) =

〈η〉−sV̂ (η + `) and, of course, the cα,β(t) are polynomial in t of degree
|α| 6 2s.

Now, it remains to remark that the support of b̂α,β,` is contained in

[−1, 1]n ×
n∏

i=1

[−1−RiRn+i, 1 +RiRn+i]

(if supp(ψ̂) ⊂ B(0, 1)) and then to apply the estimate (3.3) to
(Opt(bα,β,`)V`|U`). This yields the estimate of Theorem 3 with M = n+ s

(and s is an even integer greater than n
2 ) since∫

||U`||L2 ||V`||L2d` 6
( ∫

||U`||2L2d`
)1/2( ∫

||V`||2L2d`
)1/2

= Cst ||U ||L2 ||V ||L2 = Cst ||u||L2 ||v||L2 .

�

3.2. Hölder type algebras

A well known algebra of bounded functions in R2n which also satisfies
(H1) and (H2)′ is the Hölder algebra Bs(R2n) for s > n. Here, to be
simple, when s ∈ N, this will be the Sobolev space W s,∞ and not the
Zygmund class even if many of our statements hold with the latter. One can
obtain somewhat more general algebras by considering Hölder anisotropic
regularity in the same spirit as in the case of the uniformly local Sobolev
spaces. The more general one is defined by means of a 2n-dyadic partition
of unity in R2n, 1 =

∑
j∈N2n ϕj , where ϕj(ζ) = ϕj1(ζ1) . . . ϕjn(ζ2n),

j = (j1, . . . , j2n), based on a dyadic partition of unity in R, 1 =
∑

k∈N ϕk,
(for example, ϕ0 ∈ D(R), ϕ1 ∈ D(R \ 0), ϕk+1(t) = ϕk( t

2 ), t ∈ R, k > 1).
If σ ∈ (R∗

+)2n, we have, by definition,

u ∈ Bσ(R2n) if and only if u ∈ L∞(R2n) and (2jσ||ϕj(D)u||L∞)j∈N2n

is bounded,

where jσ = j1σ1 + · · ·+ j2nσ2n. One can define similarly Bs,s′(Rn ×Rn),
s > 0, s′ > 0, if one wants to take derivatives only in the directions of the
subspaces Rn×{0} or {0}×Rn, by using a dyadic partition of unity in Rn×
Rn which is a tensor product of standard dyadic partitions of unity in Rn.

These spaces have natural normed structures and, in fact, are Banach al-
gebras of bounded continuous functions. Note also the following inclusions,
for s > 0, which are similar to those with the uniformly local Sobolev
spaces,

(3.5) Bs(R2n) ⊂ B
s
2 , s

2 (Rn × Rn) ⊂ B( s
2n ,..., s

2n )(R2n),
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and that the associated injections are continuous. The fact that Bs(R2n),
for s > n, Bs,s′(Rn × Rn), for s, s′ > n

2 , and Bσ(R2n), for σi > 1
2 ,

1 6 i 6 2n, satisfy the (H2)′ assumption is a consequence of Theorem
3 and the above inclusions. The fact that they satisfy (H1) is trivial and
holds with arbitrary exponents.

3.3. S0
1,0 type algebras

Another algebra which will be important for us is defined as follows.
The idea is that of an S0

1,0 type algebra with a limited regularity. To any
reasonable Banach space E of functions in R2n, one can associate the space
denoted by Sm

1,0E, m ∈ R, and defined as the set of functions a : Rn×Rn →
C such that

(i) a(x, ξ)χ(ξ) is in E, for all χ ∈ D(Rn).

(ii) {λ−ma(x, λξ)χ(ξ);λ > 1} is a bounded subset of E, for all
χ ∈ D(Rn \ 0).

The reason for such a definition is that when E is formally the space
B∞(R2n), we obtain in fact the usual Hörmander space Sm

1,0.
The space Sm

1,0E is at least a normed space since it can be equipped with
the norm

||a(x, ξ)ϕ(ξ)||E + sup{2−jm||a(x, 2jξ)ϕ0(ξ)||E ; j ∈ N},

where ϕ ∈ D(Rn) and ϕ0 ∈ D(Rn \ 0) are such that they define a dyadic
partition of unity in Rn :

(3.6) ϕ(ξ) +
∑
j>0

ϕ0(2−jξ) = 1.

Here, we are essentially interested by the cases where E is one of the Ba-
nach algebras defined in the preceding subsection. In these cases, we obtain
spaces Sm

1,0E which are Banach spaces and, when m = 0, even Banach al-
gebras, as one can check easily. The fact that these Banach algebras satisfy
the (H1) assumption is not completely trivial and we state it as

Proposition 3.2. — There exist constants C > 0 and M > 0 such
that, for any (y, η) ∈ R2n and any a ∈ S0

1,0E, τ(y,η)a is in ∈ S0
1,0E and

||τ(y,η)a||S0
1,0E 6 C 〈η〉M ||a||S0

1,0E .

Here, E stands for one of the three algebras of the preceding subsection :
Bs(R2n), Bs,s′(Rn × Rn) or Bσ(R2n), with s, s′ > 0, σ ∈ (R∗

+)2n.
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Proof. — We shall treat the case of E = Bσ(R2n), the others being
similar.

Let a ∈ E and χ ∈ D(Rn). We can write, using the dyadic partition of
unity (3.6),

a(x− y, ξ − η)χ(ξ) =

= a(x− y, ξ − η)ϕ(ξ − η)χ(ξ) +
∑
j>0

a(x− y, ξ − η)ϕ0(2−j(ξ − η))χ(ξ)

= τ(y,η)(aϕ)(x, ξ)χ(ξ) +
∑
j>0

τ(y,η)[aj(x, 2−jξ)]χ(ξ)

where we have set aj(x, ξ) = a(x, 2jξ)ϕ0(ξ). By definition, aϕ ∈ E and (aj)
is a bounded sequence of E. It follows from the translation invariance of E,
from the lemma below and from the fact that the sum above has a number
of non vanishing terms which is finite and does not depend on (y, η), that
χτ(y,η)a ∈ E and ||χτ(y,η)a||E 6 Cst ||a||S0

1,0E . Note that we also used the
fact that E is an algebra.

Lemma 3.3. — Given σ ∈ (R∗
+)d, there exists a constant C > 0 such

that, for any h ∈ (R∗
+)d and any u ∈ Bσ(Rd), the function x 7→ u(hx) =

u(h1x1, ..., hdxd) is in Bσ(Rd) and

||u(hx)||Bσ 6 C h̃σ||u||Bσ ,

where h̃σ = h̃σ1
1 ...h̃σd

d , h̃i = max{1, hi}, i ∈ {1, ..., d}.

The proof of this lemma is easy and is left to the reader.
Assume now that χ ∈ D(Rn \ 0) and let λ > 1. As before, write

(3.7)
a(x− y, λξ − η)χ(ξ) =

= a(x− y, λξ − η)ϕ(ξ − λ−1η)χ(ξ) +
∑
j>0

a(x− y, λξ − η)ϕ0

(2−j(ξ − λ−1η))χ(ξ)

= a(x− y, λξ − η)ϕ(ξ − λ−1η)χ(ξ) +
∑
j>0

τ(y,λ−1η)[aλ,j(x, 2−jξ)]χ(ξ)

where aλ,j(x, ξ) = a(x, 2jλξ)ϕ0(ξ). The number of non vanishing terms
in the last sum is finite and does not depend on (y, η, λ), and, clearly,
we can estimate that sum in the E norm as before by Cst ||a||S0

1,0E . It
remains to treat the first term in (3.7). On the support of this term, we
have |ξ− λ−1η| 6 1 and γ1 6 |ξ| 6 γ2 with some positive constants γ1 and
γ2, so that, λ−1|η| 6 1 + γ2. Now, if λ−1|η| is small enough, for example,
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λ−1|η| 6 γ1/2, then, we also have |ξ−λ−1η| > γ1/2, so that we can replace
ϕ by some ϕ̃ ∈ D(Rn \ 0) and we can then estimate the term

a(x− y, λξ − η)ϕ̃(ξ − λ−1η)χ(ξ)

as before. Finally, we are left with the term a(x−y, λξ−η)ϕ(ξ−λ−1η)χ(ξ)
under the condition that λ ∼ |η|. We can now write it as (τ(y,η)aλ)(x, λξ)χ(ξ)
with aλ(x, ξ) = a(x, ξ)ϕ(ξ/λ), and then, apply Lemma 3.3 and the trans-
lation invariance of E to obtain

||(τ(y,η)aλ)(x, λξ)χ(ξ)||E 6 Cst λ|σ
′|||aλ||E

where |σ′| = σn+1 + ...+ σ2n. The last thing we do is to restrict ourselves
to λ = 2k, to rewrite aλ and then to estimate it as follows

aλ(x, ξ) = a(x, ξ)ϕ(ξ) +
k−1∑
j=0

a(x, ξ)ϕ0(2−jξ),

||aλ||E 6 Cst k||a||S0
1,0E 6 Cst lnλ ||a||S0

1,0E 6 Cst ln〈η〉 ||a||S0
1,0E .

Hence,
||(τ(y,η))aλ(x, λξ)χ(ξ)||E 6 Cst 〈η〉|σ

′| ln〈η〉 ||a||S0
1,0E .

This finishes the proof of the proposition. �

Concerning the L2 boundedness of operators associated with symbols in
S0

1,0E, one can prove the following result :

Theorem 3.4. — Let E stands for Bs(R2n) with s > n
2 , or Bs,s′(Rn ×

Rn) with s > 0, s′ > n
2 , or Bσ(R2n) with σi > 0 if 1 6 i 6 n, and σi >

1
2 if

n + 1 6 i 6 2n. There exist positive constants C and M (M > 2n works)
such that, for any function a ∈ S0

1,0E and any t ∈ R, the operator Opt(a)
is bounded in L2(Rn) with an operator norm estimated by C 〈t〉M ||a||S0

1,0E .

Proof. — In view of the inclusions (3.5), it is sufficient to treat the case
of E = Bσ(R2n).

We follow ideas of [5], [2] and [4]. Unfortunately, the theorem is not a
consequence of the results obtained in these papers.

Let a ∈ S0
1,0E. Since the usual regularized functions of a are bounded in

S0
1,0E by a constant times ||a||S0

1,0E , we can assume that a ∈ S(R2n). Write

a(x, η) = a(x, η)ϕ(η) +
∑
k>0

a(x, η)ϕ0(2−kη),

where ϕ(η)+
∑

k>0 ϕ0(2−kη) = 1 is a standard dyadic partition of unity in
Rn. In order to treat the terms of this decomposition, we need the following
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Lemma 3.5. — Let K be a compact set in Rn. Then, there exists a
constant CK > 0 such that, for any a ∈ S(R2n) with supp(η 7→ a(x, η)) ⊂
K and for any t ∈ R,

||Opt(a)||L(L2) 6 CK 〈t〉2n||a||E .

To prove the lemma, write the 2n-dyadic decomposition of a, a =
∑

j∈N2n

aj ,

and apply (3.3) to each aj . We get

||Opt(aj)||L(L2) 6 C 〈t〉2n2
|j′|
2 sup

z∈Rn

(∫ ∣∣∣χ0(x)ω(x) aj(2j′x+ z, η)
∣∣∣2dxdη) 1

2

,

where j′ = (jn+1, ..., j2n), 2j′x = (2jn+1x1, . . . , 2j2nxn), ω(x) =
∏n

i=1〈xi〉2
and χ0 ∈ S(Rn) with

∫
χ0(x)dx = 1. Now, it follows from the fact that

a(x, η) has a compact support in η that each aj(x, η) is rapidly decreasing
in η and that, for all α ∈ Nn,

||ηαaj(x, η)||L∞ 6 Cα2−jσ||a||E .

Hence, ∫ ∣∣∣χ0(x)ω(x) aj(2j′x+ z, η)
∣∣∣2dxdη 6 Cst 2−2jσ||a||2E ,

so that,

||Opt(a)||L(L2) 6 Cst 〈t〉2n
∑

j

2
|j′|
2 −jσ||a||E = CK 〈t〉2n||a||E ,

which proves the lemma.
Of course, Lemma 3.5 applies to the term a(x, η)ϕ(η). Now, let us con-

sider the terms a(x, η)ϕ0(2−kη) = ak(x, 2−kη), k > 0, where we have
set ak(x, η) = a(x, 2kη)ϕ0(η). By definition of S0

1,0E, the sequence (ak) is
bounded in E. Write ak = bk + rk where bk is given by

bk(x, η) = 2kn

∫
χ(2ky) ak(x− y, η) dy .

with χ ∈ S(Rn) , χ̂ = 1 near 0, and supp(χ̂) is small enough (for exam-
ple, χ̂(ξ) = χ̂1(ξ/ε) with supp(χ̂1) in the unit ball and ε small enough).
Clearly, (bk) is also a bounded sequence in E and ||bk||E 6 ||χ||L1 ||ak||E =
||χ1||L1 ||ak||E , since E is translation invariant.

Set b(x, η) =
∑

k bk(x, 2−kη) and let us estimate I = (Opt(b)v|u) for
u, v ∈ S(Rn). We have

I =
∑

k

∫
F1(bk)(ξ, 2−kη) v̂(η − tξ) û(η + (1− t)ξ) dξdη.
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Since |η| ∼ 2k and |ξ| 6 ε2k on the support of integration, with a small
enough ε, we also have |η − tξ| ∼ |η + (1 − t)ξ| ∼ |η| ∼ 2k. Here, α ∼ β

means that the ratio α
β has (positive) upper and lower bounds. Note that

ε depends on t (in fact, ε ∼ 1
〈t〉 ). However, one can choose bounds on

2−k|η − tξ| and 2−k|η + (1 − t)ξ| that do not. Therefore, we can take a
ψ ∈ D(Rn \ 0) such that we can write

I =
∑

k

(
Opt(bk(x, 2−kη))ψ(2−kD)v

∣∣∣ψ(2−kD)u
)
;

so that,

|I| 6
∑

k

||Opt(bk(x, 2−kη))||L(L2)||ψ(2−kD)v||L2 ||ψ(2−kD)u||L2

6 Cst sup
k
||Opt(bk(x, 2−kη))||L(L2)||v||L2 ||u||L2

= Cst sup
k
||Opt(bk(2−kx, η))||L(L2)||v||L2 ||u||L2

To obtain the last equality, we have applied the following lemma whose
proof is easy and left out :

Lemma 3.6. — For any a ∈ S ′(Rn × Rn), t ∈ R and λ > 0, Opt(a) is
bounded in L2(Rn) if and only if Opt(a(x/λ, λη)) is, and we have

||Opt(a(x/λ, λη))||L(L2) = ||Opt(a)||L(L2).

Now, it remains to apply Lemma 3.5 in conjunction with Lemma 3.3 to
obtain

|I| 6 Cst 〈t〉2n sup
k
||bk||E ||v||L2 ||u||L2 6 C 〈t〉2n sup

k
||ak||E ||v||L2 ||u||L2 ,

so that, since u, v ∈ S(Rn) are arbitrary, ||Opt(b)||L(L2) 6 C 〈t〉2n supk ||ak||E .
We turn now to the study of r(x, η) =

∑
k rk(x, 2−kη). We need here to

use the space F = Bσ′(R2n) with 0 < σ′i < σi for 1 6 i 6 n, and σ′i = σi for
n+1 6 i 6 2n. Applying as above Lemma 3.3, Lemma 3.5 and Lemma 3.6,
we can write

||Opt(rk(x, 2−kη))||L(L2) 6 Cst 〈t〉2n||rk||F .

It suffices now to show that ||rk||F 6 δk||rk||E with (δk) ∈ `1 to finish
the proof of the theorem. Write the 2n-dyadic decomposition of rk, rk =∑

j∈N2n rk,j . On the support of F1(rk,j)(ξ, η), we have

|ξi| ∼ 2ji , 1 6 i 6 n, and |ξ| > ε2k.
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This implies that there exists (a rather large) k0 ∈ N (more precisely, one
can check that 2k0 ∼ 1

ε ) such that

rk,j = 0 if ji < k − k0,∀i ∈ {1, ..., n}.

Therefore, given j ∈ N2n such that rk,j 6= 0, there exists i ∈ {1, ..., n} such
that ji > k − k0, which allows us to estimate ||rk,j ||L∞ as follows :

2jσ′ ||rk,j ||L∞ = 2−j(σ−σ′)2jσ||rk,j ||L∞ 6 2−ji(σi−σ′i)||rk||E ,

so that,

||rk||F 6 2−(k−k0)τ ||rk||E 6 Cst ε−τ2−kτ ||rk||E 6 Cst 〈t〉τ2−kτ ||rk||E ,

where τ = min{σi − σ′i; 1 6 i 6 n}. Hence,

||Opt(r)||L(L2) 6 Cst 〈t〉2n+τ sup
k
||rk||E 6 Cst 〈t〉2n+τ sup

k
||ak||E .

This achieves the proof of the theorem. �

The conclusion of this subsection is that, if E is one of the algebras
Bs(R2n) with s > n

2 , Bs,s′(Rn × Rn) with s > 0, s′ > n
2 , or Bσ(R2n) with

σi > 0 if 1 6 i 6 n, and σi >
1
2 if n+ 1 6 i 6 2n, then, the algebras S0

1,0E

satisfy (H1) and (H2)′.

4. Estimates on the needed number of derivatives

In view of the results of the preceding sections, we can state the following
theorem which gives bounds on the number of derivatives needed for the
Fefferman-Phong inequality to hold.

Theorem 4.1. — Let a be a non negative function defined on Rn×Rn.
Then, the Fefferman-Phong inequalities (1.1) and (1.2) hold if a satisfies
one of the following conditions, with a constant C that depends linearly on
the norm of a in the considered space :

(i) ∂α
1 ∂

β
2 a is in L∞(R2n) or L2

ul(R2n) for 4 6 |α|+ |β| 6 n+ 5.

(ii) For |α| + |β| = 4, ∂α
1 ∂

β
2 a is in Bn+ε(R2n) or Hn+ε

ul (R2n), ε > 0, or
in one of the other algebras of subsections 3.1 and 3.2.

(iii) For |α| + |β| = 4, ∂α
1 ∂

β
2 a is in S0

1,0E where E is B
n
2 +ε(R2n) or

Bε, n
2 +ε(Rn × Rn) or Bσ(R2n) with σ = (ε, ..., ε; 1

2 + ε, ..., 1
2 + ε), ε

being an arbitrary positive number (see subsection 3.3).

(iv) |∂α
x ∂

β
ξ a(x, ξ)| 6 Cα,β〈ξ〉2−|β| for |α|+ |β| 6 [n

2 ] + 5.

(v) a ∈ S2
1,0E with E = B

n
2 +4+ε(R2n).

ANNALES DE L’INSTITUT FOURIER



FEFFERMAN-PHONG INEQUALITY 1109

(vi) For |α|+ |β| 6 4, ∂α
1 ∂

β
2 a is in S2−|β|

1,0 E where E is Bε, n
2 +ε(Rn×Rn)

or Bσ(R2n) with σ = (ε, ..., ε; 1
2 + ε, ..., 1

2 + ε), ε being an arbitrary
positive number (see subsection 3.3).

Proof. — Parts (i), (ii) and (iii) are consequences of Theorem 2.1 and
Theorem 2.5 since all the considered algebras satisfy the assumptions (H1)
and (H2)′.

Here, we shall prove (v) and (vi), (iv) being a consequence of (v). The
proof is an adaptation of that of Corollary 1.3.2 (i) of [8], and we refer
to that paper for missing details. Let E stands for either B

n
2 +4+ε(R2n),

Bε, n
2 +ε(Rn × Rn) or Bσ(R2n) with σ = (ε, ..., ε; 1

2 + ε, ..., 1
2 + ε).

First, let us treat the case of Weyl quantization. If ϕ(ξ)+
∑
k>0

ϕ0(2−kξ) =

1 is a dyadic partition of unity in Rn, we can write

Opw(a) = Opw(aϕ) +
∑
j>0

Opw[aj(x, 2−jξ)],

where aj(x, ξ) = a(x, 2jξ)ϕ0(ξ). Since aϕ is in S0
1,0E, it follows from

Theorem 3.4 that Opw(aϕ) is bounded in L2(Rn). So, let us consider
Ij = (Opw[aj(x, 2−jξ)]v|v), j > 0, v ∈ S(Rn). By performing a simple
change of variables in the integral defining Ij , we can write

Ij = (Opw(bj)vj |vj),

where bj(x, ξ) = aj(2−j/2(x, ξ)) and vj(x) = v(2−j/2x)2−jn/4. It follows
from the assumptions that, for |α|+ |β| = 4, the functions ∂α

1 ∂
β
2 bj(x, ξ) =

2−2j∂α
1 ∂

β
2 aj(2−j/2(x, ξ)) are bounded in E. This is not sufficient a priori

for our goal. However, since they are supported in the annuli c12j/2 6 |ξ| 6
c22j/2, they are in fact bounded in S0

1,0E. Indeed, if χ ∈ D(Rn \ 0) and
λ > 1, we have λ ∼ 2j/2 on the support of the functions ∂α

1 ∂
β
2 bj(x, λξ)χ(ξ);

so that, applying Lemma 4 yields

||∂α
1 ∂

β
2 bj(x, λξ)χ(ξ)||E 6 Cst sup

j>0
2−2j ||∂α

1 ∂
β
2 aj ||E

6 Cst
∑
β′6β

sup
j>0

2(|β′|−2)j ||(∂α
1 ∂

β−β′

2 a)(x, 2jξ) ∂β′ϕ0(ξ)||E .

It follows from this and from the fact that bj is non negative (we use a
non negative ϕ0, of course) that the Fefferman-Phong inequality holds for
Opw(bj). However, this is not sufficient to conclude since we have to sum
constants and the vj are only bounded with respect to j. So, consider
the operator Bj = Opw(ψj)Opw(bj)Opw(ψj) where ψj(ξ) = ψ0(2−j/2ξ),
ψ0 ∈ D(Rn \ 0) and ψ0 = 1 in a (large enough) neighborhood of supp(ϕ0).
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One can write, using the Weyl pseudodifferential calculus,

Bj = Opw(bjψ2
j ) +Rj = Opw(bj) +Rj ,

with some remainder operator Rj . The reason for introducing the operator
Bj is that ∑

j

(Bjvj |vj) =
∑

j

(
Opw(bj)ψj(D)vj

∣∣∣ψj(D)vj

)
>

∑
j

−Cst ||ψj(D)vj ||2L2 =
∑

j

−Cst ||ψ0(2−jD)v||2L2 > −Cst ||v||2L2 ,

and it is thus sufficient to prove that Rj is bounded in L2(Rn) and that
(||Rj ||L(L2))j is a summable sequence. It follows from the Weyl calculus that
Rj = Opw(rj) where rj is given by the following expression (see [8]) :

rj(x, ξ) =
2n

8π2

∑
|α|=2

1
α!∫∫∫ 1

0

(1− t) e−4πyη ∂α
η [ψj(ξ + η)ψj(ξ − η)] ∂α

1 bj(x+ ty, ξ) dydηdt.

Clearly, on the support of rj(x, ξ), we have |ξ| ∼ 2j/2. Moreover, since the
function ψj(ξ+ η)ψj(ξ− η) is differentiated, we also have |η| ∼ 2j/2 on the
support of integration. Setting ψ̃0(ξ, η) = ψ0(ξ + η)ψ0(ξ − η), we see that
rj(x, ξ) is a finite combination of the integrals

2−2j

∫∫∫ 1

0

(1− t) e−4πyη ∂α
2 ψ̃0[2−j/2(ξ, η)] ∂α

1 aj [2−j/2(x+ ty, ξ)] dydηdt,

or, after some integrations by parts whose gains are some negative powers
of 2j , of the integrals

rj,α(x, ξ) = 2−4j

∫∫∫ 1

0

(1− t) e−4πyη |2−j/2η|−2 ∂α
2 ψ̃0[2−j/2(ξ, η)]

∆1∂
α
1 aj [2−j/2(x+ ty, ξ)] dydηdt.

Now, the fact that ||Opw(rj,α)||L(L2) = ||Opw[rj,α(2−j/2x, 2j/2ξ)]||L(L2),
(see Lemma 3.6), suggests that we consider

rj,α(2−j/2x, 2j/2ξ) =

= 2−4j

∫∫∫ 1

0

(1− t) e−4πyη |η|−2∂α
2 ψ̃0(ξ, η)∆1∂

α
1 aj

(2−jx+ 2−jty, ξ) dydηdt

= 2−4j

∫∫∫ 1

0

(1− t) e−4πyη 〈4πy〉−2n〈Dη〉2n[|η|−2∂α
2 ψ̃0(ξ, η)]∆1∂

α
1 aj

(2−jx+ 2−jty, ξ) dydηdt,
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where we have performed the change of variables (y, η) 7→ (2−j/2y, 2j/2η)
and, then, integrations by parts. Hence, using the fact that E is an algebra
which is translation invariant and Lemma 3.3, we obtain that
rj,α(2−j/2x, 2j/2ξ) is in E and that

||rj,α(2−j/2x, 2j/2ξ)||E 6 Cst 2−4j ||∆1∂
α
1 aj(2−jx, ξ)||E

6 Cst 2−4j ||∆1∂
α
1 aj ||E ,

and, consequently,

||rj(2−j/2x, 2j/2ξ)||E 6 Cst 2−4j ||a(4)
j ||E 6 Cst 2−2j sup

k>0
2−2k||a(4)

k ||E .

It remains to note that rj(2−j/2x, 2j/2ξ) has a support in ξ which is con-
tained in fixed compact set and then to apply Lemma 3.5. The result is
that

||Rj ||L(L2) = ||Opw[rj(2−j/2x, 2j/2ξ)]||L(L2) 6 Cst 2−2j sup
k>0

2−2k||a(4)
k ||E ,

and this achieves the proof of the Fefferman-Phong inequality in the Weyl
quantization case.

The case of the standard quantization can be seen to be a consequence
of Weyl quantization case. In fact, if A = [a(x,D) + a(x,D)?]/2, it follows
from (2.4) that we can write

A = Opw(a)−R where R =
π2

2

∫ 1

0

(1−t)(Op(1−t)/2(b)+Op(1+t)/2(b))dt

and b = (DxDξ)2a.

Clearly, b ∈ S0
1,0E and applying Theorem 3.4 yields the fact that R is

a bounded operator in L2(Rn) and that its operator norm is estimated
by Cst ||b||S0

1,0E . This establishes the Fefferman-Phong inequality in the
standard quantization case and, at the same time, completes the proof of
Theorem 4.1. �

5. Semi-classical estimates

One can also prove semi-classical Fefferman-Phong inequalities using an
abstract setting. However, here, the algebra A has to satisfy the following
additional assumption :
(H 3) ∃C1 > 0,∀h ∈ [0, 1],∀b ∈ A, ||b(hX)||A 6 C1||b||A.

The following results are consequences of those of section 2.
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Corollary 5.1. — Assume that A satisfies the assumptions (H1), (H2)
(resp. (H2)′) and (H3).

(i) There exists a positive constant C such that, for any non negative
function a on R2n such that a(4) ∈ A(R2n), and for any h ∈ [0, 1],
we have

Opw[a(x, hξ)] + C h2 ||a(4)||A > 0,

(resp. Re(a(x, hD)u|u)L2 + C h2 ||a(4)||A ||u||2L2 > 0, u ∈ S(Rn)).

(ii) There exists a positive constant C such that, for any non nega-
tive function ah(x, ξ) on R2n, h ∈]0, 1], such that the functions
(∂α

1 ∂
β
2 ah)(x, ξ/h)h−|β| are bounded in A for |α|+ |β| = 4, we have

∀h ∈]0, 1], Opw(ah) + CM h2 > 0,

(resp. Re(ah(x,D)u|u)L2 + CM h2 ||u||2L2 > 0, u ∈ S(Rn)),

whereM= sup{||(∂α
1 ∂

β
2 ah)(x, ξ/h)h−|β|||A ; 0 <h6 1, |α|+ |β| = 4}.

(iii) There exists a positive constant C such that, for any non nega-
tive function ah(x, ξ) on R2n, h ∈]0, 1], such that the functions
(∂α

1 ∂
β
2 ah)(xh1/2, ξh−1/2)h−|β| are bounded in A for |α| + |β| = 4,

we have

∀h ∈]0, 1], Opw(ah) + CM h2 > 0,

(resp. Re(ah(x,D)u|u)L2 + CM h2 ||u||2L2 > 0, u ∈ S(Rn)),

where M = sup{||(∂α
1 ∂

β
2 ah)(xh1/2, ξh−1/2)h−|β|||A ; 0 < h 6 1,

|α|+ |β| = 4}.

Proof. — One can check easily, using the (H3) assumption, that (iii)
implies (ii) which implies (i). The proof of (iii) is formally the same as
that of [8]. In fact, one has just to replace the Wiener-Sjöstrand algebra A0

by the algebra A and, of course, to apply Theorem 2.1 (resp. Theorem 2.5).
So, we refer to [8]. �

Taking, for example, A = Bn+1(R2n), we obtain the following

Corollary 5.2. — There exists a positive constant C such that, for
any non negative function ah on R2n, h ∈]0, 1], such that

|∂α
1 ∂

β
2 ah(x, ξ)| 6 Cα,β h

|β| for h ∈]0, 1] and 4 6 |α|+ |β| 6 n+ 5,

we have
∀h ∈]0, 1], Opw(ah) + CM h2 > 0,

(resp. Re(ah(x,D)u|u)L2 + CM h2 ||u||2L2 > 0, u ∈ S(Rn)),

where M = sup{Cα,β ; 4 6 |α|+ |β| 6 n+ 5}.
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Proof. — It is easily seen that ah satisfies the conditions of Corollary
1(iii). Moreover, the algebra Bn+1(R2n) satisfies the assumptions (H1),
(H2)′ and (H3). �

6. Remarks and further results

1. A natural question that can be raised is whether these upper bounds
on the number of derivatives needed for the Fefferman-Phong inequality
to hold are optimal. In fact, this is not quite clear for us. However, we
can at least say that the bounds n+ ε and n

2 + ε concerning the number of
derivatives needed for the L2 boundedness of the involved pseudodifferential
operators are optimal. See [5], [2], [4]. Furthermore, the “4” number of
derivatives is reputed “to be optimal”, and it would be a great achievement
if one can reduce it. Roughly, one can say that the bounds are optimal with
respect to the method of proof.

2. By using the same ideas, one can estimate the number of derivatives
needed for the sharp Gårding inequality to hold. The usual argument for
proving this inequality is simpler of course than that needed to establish
the Fefferman-Phong inequality, and even works for systems, that is, for
matrices of symbols and operators. For example, if a is some function on
the phase space such that a′′ ∈ L∞, one can write Opwick(a) = Opw(a) +
Opw(r) where

r(X) = 2n

∫
R2n

∫ 1

0

(1− t)a′′(X + tY )Y 2e−2πY 2
dtdY.

See [8]. Clearly, if a is non negative, a′′ ∈ A and A is a subalgebra of L∞

satisfying the assumptions (H1) and (H2), it follows from the positivity of
the Wick quantization that Opw(a) + C||a(4)||A > 0. Of course, the same
is true for the standard quantization if A satisfies (H1) and (H2)′. Here,
one can even show that (H2)′ is not necessary and that it is enough to
assume instead that a 7→ a(x,D) is bounded from A to L(L2(Rn)). Taking
back the arguments developped in the preceding sections, one can prove,
for example, that for a non negative symbol a on R2n, we have

Opw(a) + C > 0,

and Re(a(x,D)u|u)L2 + C||u||L2 > 0, u ∈ S(Rn)),

if ∂α
1 ∂

β
2 a

′′ are bounded or locally uniformly in L2 for |α|+ |β| 6 n+ 1
or |α|, |β| 6

[n
2

]
+ 1,

or, 〈ξ〉|β|−1∂α
1 ∂

β
2 a(x, ξ) are bounded for |α|+ |β| 6

[n
2

]
+ 3.
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3. The Fefferman-Phong inequalities (that is, Theorem 2.1 and Theorem
2.5) also hold when A = S0

%,%E where 0 < % < 1 and E is one of the
spaces Bs(R2n) with s > n, Bs,s′(Rn×Rn) with s > n

2 , s
′ > n

2 , or Bσ(R2n)
with σi >

1
2 , 1 6 i 6 2n, (or even the spaces obtained when B is replaced

by Hul). Here, the space Sm
%,%E, m ∈ R, is defined as the set of functions

a : Rn × Rn → C such that

(i) a(x, ξ)χ(ξ) is in E, for all χ ∈ D(Rn).

(ii) {λ−ma(λ−%x, λ%ξ)χ(λ%−1ξ);λ > 1} is a bounded subset of E, for
all χ ∈ D(Rn \ 0).

In fact, one can apply the same argument as that used above to check
that the algebra A = S0

%,%E satisfies the assumption (H1). The fact that A
satisfies (H2) is already proven in [4]. The same property is proven in [2] in
the case of the standard quantization. Now, the case of the t-quantization
can be handled similarly by the same methods. One obtains, for example,
that the Fefferman-Phong inequalities (1.1) and (1.2) hold for the non
negative function a on the phase space if it satisfies the estimates

|∂α
x ∂

β
ξ a

(4)(x, ξ)| 6 Cα,β〈ξ〉%(|α|−|β|) for |α|, |β| 6
[n
2

]
+ 1.

Such inequalities with symbols in the classes S0
%,%E are to be compared

with similar ones obtained by J.-M. Bony, [1], and D. Tataru, [11], under
more or less different assumptions. However, those authors do not consider
the limited regularity of the symbols as we do.

4. In the case of symbols of type (1,0), D. Tataru proved in [11] the sharp
Gårding and the Fefferman-Phong inequalities with a limited regularity in
the x variables by means of the FBI transform. He used 2 derivatives for
the first one and 4 for the other one but did not limit the regularity with
respect to the frequency variables. These are to be compared with Theorem
5 (vi) above which says that the Fefferman-Phong inequality holds if one
uses 4 derivatives in (x, ξ) plus “ε” derivative in x and n

2 + ε derivatives in
ξ. It is likely that, by doing a paradifferential decomposition of the symbol
as did Tataru, one can remove the “ε” in the case of the x regularity.

5. Consider the class SN (1, g) of Hörmander with order weight m = 1, a
slowly varying and temperate metric g which also satisfies the uncertainty
principle g 6 gσ, and with limited regularity N ∈ N. Then, it is known that
A = SN (1, g) is an algebra of bounded functions and, that, if N is large
enough, it satisfies the (H2) assumption. See Hörmander’s book, [7], chapter
18. Unfortunately, we do not know whether the (H1) (or (H1)′) assumption
is satisfied by this algebra. We only know that this is so if g satisfies what
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we call the “naive” temperance property : gX 6 Cst gY 〈X − Y 〉M , X,Y ∈
R2n, with some M . Such a property is, for example, satisfied by the usual
Sm

%,δ classes. Thus, we obtain another case of application of Theorem 2.1
although here we are not able to give some information on the number N .
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