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SYSTOLIC INVARIANTS OF GROUPS AND
2-COMPLEXES VIA GRUSHKO DECOMPOSITION

by Yuli B. RUDYAK & Stéphane SABOURAU (*)

Abstract. — We prove a finiteness result for the systolic area of groups.
Namely, we show that there are only finitely many possible unfree factors of fun-
damental groups of 2-complexes whose systolic area is uniformly bounded. We also
show that the number of freely indecomposable such groups grows at least expo-
nentially with the bound on the systolic area. Furthermore, we prove a uniform
systolic inequality for all 2-complexes with unfree fundamental group that improves
the previously known bounds in this dimension.

Résumé. — Nous prouvons un résultat de finitude pour l’aire systolique des
groupes. Précisément, nous montrons qu’il n’existe qu’un nombre fini de facteurs
non-libres dans les groupes fondamentaux des 2-complexes d’aire systolique uni-
formément bornée. Nous montrons aussi que le nombre de tels groupes librement
indécomposables croît au moins exponentiellement avec la borne sur l’aire systo-
lique. De plus, nous prouvons une inégalité systolique uniforme pour tous les 2-
complexes de groupe fondamental non-libre qui améliore les bornes précédemment
connues dans cette dimension.

1. Introduction

Throughout the article the word “complex” means “finite simplicial com-
plex”, unless something else is said explicitly.

Consider a piecewise smooth metric G on a 2-complex X. The systole
of G, denoted sysπ1(G), is defined as the least length of a noncontractible
loop in X. We define the systolic ratio of G as

(1.1) SR(G) =
sysπ1(G)2

area(G)
,

Keywords: Systole, systolic area, systolic ratio, 2-complex, Grushko decomposition.
Math. classification: 53C23, 20E06.
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and the systolic ratio of X as

(1.2) SR(X) = sup
G

SR(G),

where the supremum is taken over the space of all the piecewise flat met-
rics G on X. Note that taking the supremum over the space of all piecewise
smooth metrics on X would yield the same value, cf. [1], [6, §3].

We also define the systolic ratio of a finitely presentable group G as

(1.3) SR(G) = sup
X

SR(X),

where the supremum is taken over all finite 2-complexes X with fundamen-
tal group isomorphic to G. It is also convenient to introduce the systolic
area σ(G) of G, cf. [12, p. 337], by setting

σ(G) = SR(G)−1.

Similarly, we define the systolic area of a 2-complex X and of a piecewise flat
metric G on X as σ(X) = SR(X)−1 and σ(G) = SR(G)−1, respectively. For
instance, the systolic area of the wedge of p circles is zero. Thus, σ(Fp) = 0
where Fp is the free group of rank p.

A group is said to be unfree if it is not free.
In this article, we study the systolic ratio of groups, or equivalently the

systolic ratio of 2-complexes. Before stating our results, let us review what
was previously known on the subject.

M. Gromov [11, 6.7.A] (note a misprint in the exponent) showed that
every 2-complex X with unfree fundamental group satisfies the systolic
inequality

(1.4) SR(X) 6 104.

Contrary to the case of surfaces, where a (better) systolic inequality can
be derived by simple techniques [13, 4.5 3

4+
], the proof of inequality (1.4)

depends on the advanced filling techniques of [11].
Recently, in collaboration with M. Katz, we improved the bound (1.4)

using “elementary” techniques and characterized the 2-complexes satisfying
a systolic inequality, cf. [17]. Specifically, we showed that every 2-complex X

with unfree fundamental group satisfies

(1.5) SR(X) 6 12.

Furthermore, we proved that 2-complexes with unfree fundamental groups
are the only 2-complexes satisfying a systolic inequality, i.e., for which the
systolic ratio is finite, cf. [17].
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GRUSHKO MEETS SYSTOLE 779

If one restricts oneself to surfaces, numerous systolic inequalities are
available. These inequalities fall into two categories. The best estimates for
surfaces of low Euler characteristic can be found in [23, 11, 4, 13, 19, 20, 3].
Near-optimal asymptotic bounds for the systolic ratio of surfaces of large
genus have been established in [11, 2, 18, 24] and [7, 21].

We refer to the expository texts [12, 13, 8, 16] and the reference therein
for an account on higher-dimensional systolic inequalities and other related
curvature-free inequalities.

In order to state our main results, we need to recall Grushko decomposi-
tion in group theory. By Grushko’s theorem [25, 22], every finitely generated
group G has a decomposition as a free product of subgroups

(1.6) G = Fp ∗H1 ∗ · · · ∗Hq

such that Fp is free of rank p, while every Hi is nontrivial, non isomorphic
to Z and freely indecomposable. Furthermore, given another decomposition
of this sort, say G = Fr ∗ H ′

1 ∗ · · · ∗ H ′
s, one necessarily has r = p, s = q

and, after reordering, H ′
i is conjugate to Hi. We will refer to the number p

in decomposition (1.6) as the Grushko free index of G.
Thus, every finitely generated group G of Grushko free index p can be

decomposed as

(1.7) G = Fp ∗HG,

where Fp is free of rank p and HG is of zero Grushko free index. The
subgroup HG is unique up to isomorphism. Its isomorphism class is called
the unfree factor of (the isomorphism class of) G.

The Grushko free index of a complex is defined as the Grushko free index
of its fundamental group.

In [12, p. 337], M. Gromov asks how large is the set of isomorphism
classes of groups with systolic area bounded by a given constant.

Our main result deals with this question. Specifically, we obtain the fol-
lowing finiteness result.

Theorem 1.1. — Let C > 0. The isomorphism classes of the unfree
factors Hi of the finitely presentable groups G with σ(G) < C lie in a finite
set with at most

AC3

elements, where A is an explicit universal constant.

Clearly, we have σ(G1∗G2) 6 σ(G1)+σ(G2) for every finitely presentable
groups G1 and G2 (by taking the wedge of the corresponding complexes).
In particular, the inequality σ(Fp ∗G) 6 σ(G) holds for every p. Thus, the

TOME 58 (2008), FASCICULE 3



780 Yuli B. RUDYAK & Stéphane SABOURAU

Grushko free index of a group with bounded systolic area can be arbitrarily
large, which explains why we considered only the unfree factors in the
previous theorem.

Question 1.2. — Given an unfree finitely presentable group G, does
the relation σ(G ∗ Z) = σ(G) hold?

On the other hand, using a result of I. Kapovich and P. Schupp [15], it
is not difficult to show that the number of isomorphism classes of freely
indecomposable groups G with σ(G) < C grows at least exponentially
with C. Specifically, we have the following.

Theorem 1.3. — Let C > 0. The number of isomorphism classes of
freely indecomposable finitely presentable groups G with σ(G) < C is at
least 2C for C large enough.

Thus, by providing a lower and an upper bound on the number of iso-
morphism classes of groups with systolic area bounded by a given constant,
Theorem 1.1 and Theorem 1.3 address to some extend M. Gromov’s ques-
tion [12, p. 337].

While proving Theorem 1.1, we improve the systolic inequalities (1.4)
and (1.5).

Theorem 1.4. — Every unfree finitely presentable group satisfies the
inequality

(1.8) SR(G) 6
16
π

.

Question 1.5. — Does every 2-complex with unfree fundamental group
satisfy Pu’s inequality for RP2? Equivalently, is the optimal constant in
(1.8) equal to π

2 ? This is known to be true for nonsimply connected closed
surfaces from the combination of the systolic inequalities in [23] and [11,
5.2.B].

The article is organized as follows. In Section 2, we recall some topological
preliminaries. In Section 3, we investigate the geometry of pointed systoles
and establish a lower bound on the area of “small” balls on 2-complexes
with zero Grushko free index. This yields a systolic inequality. The existence
of “almost extremal regular” metrics is established in Section 4. Section 5
contains some combinatorial results: we count the number of fundamental
groups of complexes with some prescribed properties. Using these results,
we derive two finiteness results about the fundamental groups of certain 2-
complexes in Section 6. In Section 7, we relate the systolic ratio of a group
to the systolic ratio of the free product of this group with Z. In Section 8,

ANNALES DE L’INSTITUT FOURIER
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we combine all the results from the previous sections to prove our main
theorems. In the last section, we obtain an exponential lower bound on the
number of freely indecomposable groups with bounded systolic area.

Acknowledgment. The authors are very much indebted to Misha Katz
for numerous exchanges during the preparation of this article and would
like to thank Ilya Kapovich for useful comments.

2. Topological preliminaries

A proof of the following result, derived easily from the Seifert–van Kam-
pen Theorem, can be found in [17].

Lemma 2.1. — Let (X, A) be a CW -pair with X and A connected. If the
inclusion j : A → X induces the zero homomorphism j∗ : π1(A) → π1(X)
of fundamental groups, then the quotient map q : X → X/A induces an
isomorphism of fundamental groups.

Let X be a finite connected complex and let f : X → R be a function
on X. Let

[f 6 r] := {x ∈ X
∣∣ f(x) 6 r} and [f > r] := {x ∈ X

∣∣ f(x) > r}

denote the sublevel and superlevel sets of f , respectively.

Definition 2.2. — Suppose that a single path-connected component
of the superlevel set [f > r] contains k path-connected components of the
level set f−1(r). Then we will say that the k path-connected components
coalesce forward.

We will need the following result (we refer to [17] for a more complete
statement and a more detailed proof).

Lemma 2.3. — Assume that the pairs ([f > r], f−1(r)) and (X, [f 6 r])
are homeomorphic to CW -pair. Suppose that the set [f 6 r] is connected
and that two connected components of f−1(r) coalesce forward. If the in-
clusion

[f 6 r] ⊂ X

of the sublevel set [f 6 r] induces the zero homomorphism of fundamental
groups, then the Grushko free index of X is positive.

Proof. — Let Y = [f > r]/ ∼ where x ∼ y if and only if x, y belong to
the same component of f−1(r). The images ai of the components of f−1(r)

TOME 58 (2008), FASCICULE 3



782 Yuli B. RUDYAK & Stéphane SABOURAU

under the quotient map [f > r] → Y form a finite set A ⊂ Y . By as-
sumption, two points of A are joined by an arc in [f > r]. Therefore, the
space Y ∪CA, obtained by gluing an abstract cone over A to Y , is homotopy
equivalent to the wedge of S1 with another space Z. Hence,

X/[f 6 r] = Y/A ' Y ∪ CA ' S1 ∨ Z.

Thus, by the Seifert–van Kampen Theorem, the Grushko free index of
π1(X/[f 6 r]) is positive. Since the inclusion [f 6 r] ⊂ X induces the
zero homomorphism of fundamental groups, we conclude that the group
π1(X/[f 6 r]) is isomorphic to π1(X) by Lemma 2.1. �

We will also need the following technical result.

Proposition 2.4. — A level set of the distance function f from a point
in a piecewise flat 2-complex X is a finite graph. In particular, the trian-
gulation of X can be refined in such a way that the sets [f 6 r], f−1(r)
and [f > r] become CW -subspaces of X.

Furthermore, the function `(r) = length f−1(r) is piecewise continuous.

Proposition 2.4 is a consequence of standard results in real algebraic
geometry, cf. [5]. Indeed, note that X can be embedded into some RN

as a semialgebraic set and that the distance function f is a continuous
semialgebraic function on X. Thus, the level curve f−1(r) is a semialgebraic
subset of X and, therefore, a finite graph, cf. [5, §9.2]. A more precise
description of the level curves of f appears in [17].

The second part of the proposition also follows from [5, §9.3].

3. Complexes of zero Grushko free index

The results of this section will be used repeatedly in the sequel. These
results also appear in [17]. We duplicate them here for the reader’s conve-
nience.

Definition 3.1. — Let X be a complex equipped with a piecewise
smooth metric. A shortest noncontractible loop of X based at x ∈ X is
called a pointed systolic loop at x. Its length, denoted by sysπ1(X, x), is
called the pointed systole at x.

As usual, given x ∈ X and r ∈ R, we denote by B(x, r) the ball of radius
r centered at x, B(x, r) = {a ∈ X

∣∣ dist(x, a) 6 r}.

Proposition 3.2. — If r < 1
2 sysπ1(X, x) then the inclusion B(x, r) ⊂

X induces the zero homomorphism of fundamental groups.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Suppose the contrary. Consider all the loops of B(x, r) based
at x that are noncontractible in X. Let γ ⊂ B(x, r) be the shortest of
these loops. We have L = length(γ) > sysπ1(X, x). Let a be the point of γ

that divides γ into two arcs γ1 and γ2 of the same length L/2. Consider
a shortest geodesic path c, of length d = d(x, a) < r, that joins x to a.
Since at least one of the curves γ1 ∪ c− or c ∪ γ2 is noncontractible, we
conclude that d + L/2 > L, i.e., d > L/2 (here c− denotes the path c with
the opposite orientation). Thus

sysπ1(X, x) > 2r > 2d > L > sysπ1(X, x).

That is a contradiction. �

The following lemma describes the structure of a pointed systolic loop.

Lemma 3.3. — Let X be a complex equipped with a piecewise flat met-
ric. Let γ be a pointed systolic loop at x ∈ X of length L = sysπ1(X, x).

(i) The loop γ is formed of two distance-minimizing arcs, starting at p

and ending at a common endpoint, of length L/2.
(ii) Any point of self-intersection of the loop γ is no further than 1

2

(sysπ1(X, x)− sysπ1(X)) from x.

Proof. — Consider the arc length parameterization γ(s) of the loop γ

with γ(0) = γ(L) = x. Let y = γ (L/2) ∈ X be the “midpoint” of γ. Then
y splits γ into a pair of paths of the same length L/2, joining x to y. By
Proposition 3.2, if y were contained in the open ball B(x, L/2), the loop γ

would be contractible. This proves item (i).
If x′ is a self-intersection point of γ, the loop γ decomposes into two

loops γ1 and γ2 based at x′, with x ∈ γ1. Since the loop γ1 is shorter
than the pointed systolic loop γ at x, it must be contractible. Hence γ2 is
noncontractible, so that

length(γ2) > sysπ1(X).

Therefore,

length(γ1) = L− length(γ2) 6 sysπ1(X, x)− sysπ1(X),

proving item (ii). �

The following proposition provides a lower bound for the length of level
curves in a 2-complex.

Proposition 3.4. — Let X be a piecewise flat 2-complex. Fix x ∈ X.
Let r be a real number satisfying

sysπ1(X, x)− sysπ1(X) < 2r < sysπ1(X, x).

TOME 58 (2008), FASCICULE 3



784 Yuli B. RUDYAK & Stéphane SABOURAU

Consider the curve S = {a ∈ X
∣∣ dist(x, a) = r}. Let γ be a pointed

systolic loop at x. If γ intersects exactly one connected component of S,
then

(3.1) lengthS > 2r − (sysπ1(X, x)− sysπ1(X)) .

Proof. — By Lemma 3.3, the loop γ is formed of two distance-minimizing
arcs which do not meet at distance r from x. Thus, the loop γ intersects S

at exactly two points. Let γ′ = γ ∩B be the subarc of γ lying in B.
If γ meets exactly one connected component of S, there exists an embed-

ded arc α ⊂ S connecting the endpoints of γ′. By Proposition 3.2, every
loop based at x and lying in B(x, r) is contractible in X. Hence γ′ and α

are homotopic, and the loop α ∪ (γ \ γ′) is homotopic to γ. Hence,

(3.2) length(α) + length(γ)− length(γ′) > sysπ1(X).

Meanwhile, length(γ) = sysπ1(X, x) and length(γ′) = 2r, proving the lower
bound (3.1), since length(S) > length(α). �

The following result provides a lower bound on the area of “small” balls
of 2-complexes with zero Grushko free index, cf. Section 1.

Theorem 3.5. — Let X be a piecewise flat 2-complex with zero Grush-
ko free index. Fix x ∈ X. For every real number R such that

(3.3) sysπ1(X, x)− sysπ1(X) 6 2R 6 sysπ1(X, x),

the area of the ball B(x,R) of radius R centered at x satisfies

(3.4) area B(x,R) >
(
R− 1

2 (sysπ1(X, x)− sysπ1(X))
)2

.

In particular, we have
SR(X) 6 4.

Remark 3.6. — The example of a piecewise flat 2-complex X with a
circle of length the systole of X attached to it shows that the assumption
on the fundamental group of the complex cannot be dropped.

Proof of Theorem 3.5. — Let L = sysπ1(X, x). Let r be a real number
satisfying L− sysπ1(X) 6 2r 6 L. Denote by S = S(x, r) and B = B(x, r),
respectively, the level curve and the ball of radius r centered at x. Let γ

be a pointed systolic loop at x.
If γ intersects two connected components of S, then by Lemma 3.3, there

exists an arc of γ lying in X \ Int(B), which joins these two components
of S. That is, the components coalesce forward. Thus, by Lemma 2.3 and
Proposition 3.2, the complex X has a positive Grushko free index, which
is excluded.

ANNALES DE L’INSTITUT FOURIER
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Therefore, the loop γ meets a single connected component of S. Now,
Proposition 3.4 implies that

(3.5) lengthS(r) > 2r − (sysπ1(X, x)− sysπ1(X)) .

Let ε = sysπ1(X, x)−sysπ1(X). Using the coarea formula, cf. [10, 3.2.11],
[6, 13.4], as in [6, Theorem 5.3.1], [14] and [11, 5.1.B], we obtain

area B(x,R) >
∫ R

ε
2

lengthS(r) dr

>
∫ R

ε
2

(2r − ε) dr

>
(
R− ε

2

)2

for every R satisfying (3.3).
Now, if we choose x ∈ X such that a systolic loop passes through x, then

sysπ1(X, x) = sysπ1(X). In this case, setting R = 1
2 sysπ1(X, x), we obtain

area(X) > 1
4 sysπ1(X)2, as required. �

4. Existence of ε-regular metrics

Definition 4.1. — A metric on a complex X is said to be ε-regular if
sysπ1(X, x) < (1 + ε) sysπ1(X) for every x in X.

Lemma 4.2. — Let X be a 2-complex with unfree fundamental group.
Given a metric G on X and ε > 0, there exists an ε-regular piecewise flat
metric Gε on X with a systolic ratio as good as for G, i.e., SR(Gε) > SR(G).

Proof. — We argue as in [11, 5.6.C ′′]. Choose ε′ > 0 such that ε′ <

min{ε, 1}. Fix r′ = 1
2ε′ sysπ1(G) and r > 0, with r < r′. Subdividing X if

necessary, we can assume that the diameter of the simplices of X is less
than r′ − r. The approximating ball B′(x, r) is defined as the union of all
simplices of X intersecting B(x, r). By construction, B′(x, r) is a path con-
nected subcomplex of X which contains B(x, r) and is contained in B(x, r′).
In particular, the inclusion B′ ⊂ X induces the trivial homomorphism of
fundamental groups.

Assume that the metric G0 = G on X0 = X is not already ε′-regular.
There exists a point x0 of X0 such that

(4.1) sysπ1(X0, x0) > (1 + ε′) sysπ1(X0).

Consider the space
X1 = X0/B′

0

TOME 58 (2008), FASCICULE 3



786 Yuli B. RUDYAK & Stéphane SABOURAU

obtained by collapsing the approximating ball B′
0 := B′(x0, r). Denote

by G1 the length structure induced by G0 on X1. Let p0 : X0 −→ X1 be
the (non-expanding) canonical projection. By Lemma 2.1, the projection p0

induces an isomorphism of fundamental groups. Consider a systolic loop γ

of G1. Clearly, lengthG1
(γ) 6 sysπ1(G0).

If γ does not pass through the point p0(B′
0), then the preimage of γ

under p0 is a noncontractible loop of the same length as γ. Therefore,
sysπ1(G1) = sysπ1(G0).

Otherwise, γ is a loop based at the point p0(B′
0). It is possible to con-

struct a (noncontractible) loop γ on X0 passing through x0 with

lengthG0
(γ) 6 lengthG1

(γ) + 2r′,

whose image under p0 agrees with γ. From (4.1), we deduce that

lengthG1
(γ) > lengthG0

(γ)− 2r′ > (1 + ε′) sysπ1(G0)− 2r′ = sysπ1(G0).

Thus, the systole of G1 is the same as the systole of G0 and its area (or
Hausdorff measure) is at most the area of G0. Hence, SR(G1) > SR(G0).

If G1 is not ε′-regular, we apply the same process to G1. By induction,
we construct:

• a sequence of points xi ∈ Xi with

sysπ1(Xi, xi) > (1 + ε′) sysπ1(Xi),

• a sequence of approximating balls B′
i := B′(xi, r) in Xi,

• a sequence of spaces Xi+1 obtained from Xi by collapsing B′
i into

a point (with π1(Xi+1) ' π1(Xi)),
• a sequence of metrics Gi+1 induced by Gi on Xi+1,
• a sequence of canonical projections pi : Xi −→ Xi+1.

This process stops when we obtain an ε′-regular metric (with a systolic
ratio as good as the one of G).

Now we show that this process really stops. Let Bi
1, . . . , B

i
Ni

be a maximal
system of disjoint balls of radius r/3 in Xi. Since pi−1 is non-expanding, the
preimage p−1

i−1(B
i
k) of Bi

k contains a ball of radius r/3 in Xi−1. Furthermore,
the preimage p−1

i−1(xi) of xi contains a ball Bi−1 of radius r in Xi−1. Thus,
two balls of radius r/3 lie in the preimage of xi under pi−1. It is then
possible to construct a system of Ni +1 disjoint disks of radius r/3 in Xi−1.
Thus, Ni−1 > Ni + 1 where Ni is the maximal number of disjoint balls of
radius r/3 in Xi. Therefore, the process stops after N steps with N 6 N0.

Let π = pN−1 ◦· · ·◦p0 be the projection from X to XN . Denote by ∆ the
set formed of the points of XN whose preimage under π is a singleton, i.e.,

∆ = {y ∈ XN | cardπ−1(y) = 1}.

ANNALES DE L’INSTITUT FOURIER
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By construction, the set XN \∆ has at most N points, which will be called
the singularities of XN .

Let Gt be the length structure on X induced by e−tϕG, where t > 0
and ϕ(x) = distG(π−1(∆), x) for x ∈ X. Clearly, area(Gt) 6 area(G) and
sysπ1(Gt) > sysπ1(XN ) = sysπ1(G). Therefore, SR(Gt) > SR(G).

It suffices to prove that Gt is ε-regular for t large enough. Since XN

is ε′-regular, this follows, in turn, from the Claim 4.3 below.
Strictly speaking, the metrics Gt are not piecewise flat but we can ap-

proximate them by piecewise flat metrics as in [1] (see also [6, §3]) to obtain
the desired conclusion.

Claim 4.3. — The family {sysπ1(Gt, x)} converges to sysπ1(XN , π(x))
uniformly in x as t goes to infinity.

Clearly, for every x in X and t > 0, we have

(4.2) sysπ1(XN , π(x)) 6 sysπ1(Gt, x).

Fix δ > 0. Take a pointed systolic loop γ ⊂ XN at some fixed point y

of XN and let γ pass through k(y) singularities of XN . Given z ∈ XN at
distance at most R = δ/5 from y, the loop [z, y] ∪ γ ∪ [y, z] based at z,
where [a, b] represents a segment joining a to b, is freely homotopic to γ

and passes through at most k(y) + 2N singularities. Moreover, its length
is at most sysπ1(XN , y) + 2R 6 sysπ1(XN , z) + 4R since sysπ1(XN , ·) is
2-Lipschitz.

Let k = maxi k(yi) + 2N where the yi’s are the centers of a maximal
system of disjoint balls of radius R/2 in XN . It is possible to construct
for every z in XN a noncontractible loop γz based at z passing through at
most k singularities of length at most sysπ1(XN , z) + 4R.

The preimages Ui under π : X → XN of the singularities of XN are path-
connected. Choose t large enough so that every pair of points in Ui can be
joined by an arc of Ui of Gt-length less than some fixed η > 0 with η < R/k.
Fix x ∈ X. Consider the loop γ = γz of XN based at z = π(x) previously
defined. There exists a noncontractible loop γ ⊂ X based at x of length

lengthGt
(γ) 6 lengthXN

(γ) + kη

whose image under π agrees with γ. Therefore,

sysπ1(Gt, x) 6 sysπ1(XN , π(x)) + 4R + R.

Hence,

(4.3) sysπ1(Gt, x) 6 sysπ1(XN , π(x)) + δ.

TOME 58 (2008), FASCICULE 3
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Since sysπ1(Gt′ , x) 6 sysπ1(Gt, x) for every t′ > t, the inequalities (4.2) and
(4.3) lead to the desired claim.

This concludes the proof of the lemma. �

5. Counting fundamental groups

Let X be a complex endowed with a piecewise flat metric, Consider a
finite covering {Bi} of X by open balls of radius R = 1

6 sysπ1(X). Denote
by N the nerve of this covering.

Lemma 5.1. — The fundamental groups of X and N are isomorphic.

Proof. — Recall that, by definition, the vertices pi of N are identified
with the balls Bi. Furthermore, k +1 vertices pi0 , . . . , pik

form a k-simplex
of N if and only if Bi0 ∩· · ·∩Bik

6= ∅. Given x and y in X, fix a minimizing
path (not necessarily unique), denoted by [x, y], from x to y.

We denote by N i the i-skeleton of N . Define a map f : N 1 −→ X as
follows. The map f sends the vertices pi to the centers xi of the balls Bi

and the edges [pi, pj ] to the segments [xi, xj ] (previously chosen). By con-
struction, the distance between two centers xi and xj corresponding to a
pair of adjacent vertices is less than 2R. Thus, the map f sends the bound-
ary of each 2-simplex of N to loops of length less than 6R = sysπ1(X). By
definition of the systole, these loops are contractible in X. Therefore, the
map f extends to a map F : N 2 −→ X.

Choose a center xα(0) of some of the balls Bi. We claim that the ho-
momorphism F∗ : π1(N 2, pα(0)) −→ π1(X, xα(0)) is an isomorphism. Since
the nerve N and its 2-skeleton N 2 have the same fundamental group, we
conclude that π1(X) and π1(N ) are isomorphic.

We prove the surjectivity of F∗ only. The injectivity can be proved in a
similar way, we leave it to the reader.

Given a piecewise smooth path γ : I −→ X, γ(0) = γ(1) = xα(0), we
construct the following path γ : I −→ N 1, γ(0) = γ(1) = pα(0) such that
the loop F (γ) is homotopic to γ. Fix a subdivision t0 = 0 < t1 < · · · <

tm < tm+1 = 1 of I such that γ([tk, tk+1]) is contained in some Bα(k) and
the length of γ|[tk,tk+1] is less than 1

3 for k = 0, . . . ,m. The map γ takes
the segment [tk, tk+1] to the edge [pα(k), pα(k+1)] of N . By construction, we
have γ(tk) = pα(k) and F (γ(tk)) = xα(k). Therefore, the image of γ under
F is a piecewise linear loop which agrees with the union

m⋃
k=0

[xα(k), xα(k+1)]
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where the segments [xα(k), xα(k+1)] are previously fixed.
Consider the following loops of X

ck = γ([tk, tk+1]) ∪ [γ(tk+1), xα(k+1)] ∪ [xα(k+1), xα(k)] ∪ [xα(k), γ(tk)]

where [xα(k+1), xα(k)] agrees with F ◦ γ([tk, tk+1]). The length of ck is

length(ck) <
1
3

sysπ1(X) + R + 2R + R = sysπ1(X).

Hence, the loop ck is contractible. Therefore, the loops γ and F ◦ γ are
homotopic, and thus the homomorphism F∗ is surjective. �

Definition 5.2. — The isomorphism classes of the fundamental groups
of the finite 2-complexes with at most n vertices form a finite set Γ(n). We
define Γ′(n) as the union of Γ(n) and the set formed of the unfree factors
of the elements of Γ(n).

Corollary 5.3. — Suppose that the covering {Bi} of X in Lemma 5.1
consists of m elements. Then π1(X) ∈ Γ(m).

Proof. — This follows from Lemma 5.1, since the nerve of the covering
has m vertices. �

Now we estimate the numbers Γ(n) and Γ′(n).

Lemma 5.4. — Up to isomorphism, the number of 2-dimensional sim-
plicial complexes having n vertices is at most

(5.1) 2
(n−1)n(n+1)

6 < 2n3
.

In particular, the sets Γ(n) and Γ′(n) contain less than 2n3
elements.

Proof. — The maximal number of edges in a simplicial complex with n

vertices is equal to the cardinality of {(i, j) | 1 6 i < j 6 n}, which
is n(n−1)

2 . Similarly, the maximal number of triangles in a simplicial com-
plex with n vertices is equal to the cardinality of {(i, j, k) | 1 6 i < j <

k 6 n}, which is n(n−1)(n−2)
6 . Thus, the number of isomorphism classes

of 1-dimensional simplicial complexes having n vertices is at most

(5.2) 2
n(n−1)

2 .

Therefore, the number of 2-dimensional simplicial complexes whose 1-ske-
leton agrees with one of these 1-dimensional simplicial complexes is at most

(5.3) 2
n(n−1)(n−2)

6 .

The product of (5.2) and (5.3) yields an upper bound on the number of iso-
morphism classes of 2-dimensional simplicial complexes having n vertices.
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Note that Γ′(n) has at most twice as many elements as Γ(n). The second
part of the lemma follows then from the first part. �

6. Two systolic finiteness results

Proposition 6.1. — Let X be a 2-complex equipped with a piece-
wise flat metric. Suppose that the area of every ball B(R) of radius R =
1
12 sysπ1(X) in X is at least α sysπ1(X)2, i.e.,

(6.1) area B(R) > α sysπ1(X)2.

If σ(X) < C, then the isomorphism class of the fundamental group of X

lies in the finite set Γ(C/α).

Proof. — Consider a maximal system of disjoint open balls B(xi, R) in X

of radius R = 1
12 sysπ1(X) with centers xi, i = 1, . . . ,m. By the assumption,

(6.2) area B(xi, R) > α sysπ1(X)2.

Therefore, this system admits at most area(X)
α sysπ1(X)2 balls. Thus,

(6.3) m 6 C/α.

The open balls Bi of radius 2R = 1
6 sysπ1(X) centered at xi form a covering

of X. From Corollary 5.3, the fundamental group of X lies in Γ(m) ⊂
Γ(C/α). �

Theorem 6.2. — Given C > 0, there are finitely many isomorphism
classes of finitely presented groups G of zero Grushko free index such that
σ(G) < C.

More precisely, the isomorphism class of every finitely presented group G

with zero Grushko free index and σ(G) < C lies in the finite set Γ(144 C),
which has at most

KC3
,

elements. Here, K is an explicit universal constant.

Remark 6.3. — The remark following Theorem 1.1 also shows that the
assumption that G has zero Grushko free index cannot be dropped in The-
orem 6.2.

Proof of Theorem 6.2. — Consider a finitely presentable group G of zero
Grushko free index and such that σ(G) < C. There exist a 2-complex X

with fundamental group isomorphic to G and a piecewise flat metric G
on X such that σ(G) < C. Let 0 < ε < 1

12 . Fix a 2ε-regular piecewise flat
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metric on X with a better systolic ratio than the one of G, cf. Lemma 4.2.
By Theorem 3.5,

(6.4) area B(R) >

(
1
12

− ε

)2

sysπ1(X)2

for all balls B(R) of radius R = 1
12 sysπ1(X). Since σ(X) < C, we deduce

from Proposition 6.1 that the isomorphism class of the fundamental group
of X lies in the finite set

Γ
(

C

( 1
12 − ε)2

)
= Γ

(
144 C

(1− 12ε)2

)
for every ε > 0 small enough. Thus, the isomorphism class of G lies
in Γ(144 C).

By Lemma 5.4, this set has at most

(2126
)C3

elements. Hence the result. �

Example 6.4. — It follows from Theorem 6.2 that the systolic ratio of
the cyclic groups Z/nZ of order n goes to zero as n →∞, i.e.,

lim
n→∞

SR(Z/nZ) = 0.

It would be interesting, however, to evaluate the value SR(Z/nZ).

7. Systolic area comparison

Let G be an unfree finitely presentable group with G = Fp ∗ H where
Fp is free of rank p and H is of zero Grushko free index. Fix δ ∈ (0, 1

12 )
(close to zero) and λ > 1

π (close to 1
π ). Choose ε < δ (close to zero) such

that 0 < ε < 4(λ− 1
π )(δ−ε)2. From Lemma 4.2, there exists a 2-complex X

with fundamental group isomorphic to G and a 2ε-regular piecewise flat
metric G on X such that

(7.1) σ(G) 6 σ(G) + ε.

We normalize the metric G on X so that its systole is equal to 1.
Denote by B(x, r) and S(x, r) the ball and the sphere of radius r < 1

2

centered at some point x of X. Note that

(7.2) δ > ε >
1
2

(sysπ1(X, x)− sysπ1(X))

for every x ∈ X.
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Lemma 7.1. — Suppose that there exist x0 ∈ X and r0 ∈ (δ, 1
2 ) such

that

(7.3) area B > λ (lengthS)2

where B = B(x0, r0) and S = S(x0, r0). Then, the Grushko free index p

of G is positive, and

(7.4) σ(G) > σ(Fp−1 ∗H)− ε.

Proof. — First, we prove that p > 0. We let f(x) = dist(x0, x) and show
that two path-connected components of S = f−1(r0) coalesce forward, cf.
Definition 2.2 and Lemma 2.3. Denote by X the 2-complex obtained from X

by attaching cones Ci over each connected component Si of S, 1 6 i 6 m.
By Proposition 3.2, the connected components Si are contractible in X.
Therefore, the fundamental groups of X and X are isomorphic, i.e.,

(7.5) π1(X) ' π1(X).

Fix a segment [x0, xi] joining x0 to Si in B. There exists a tree T in the
union of the [x0, xi] containing x0 with endpoints xi.

Let X̂ := (X \ IntB) ∪ T and B̂ := B ∪ (∪iCi). Notice that X̂ is (path)
connected. Indeed, every point x ∈ X \ IntB can be connected to some Si

by a path in X \ IntB (every path from x0 to x intersects S), while every
point of each component Si can be connected to x0 by a path in Si∪T ⊂ X̂.
By the results of Section 2, the triad (X; X̂, B̂) is a CW -triad. Since every
loop in B̂ can be deformed into a loop in B, the inclusion B̂ ⊂ X induces
a trivial homomorphism of fundamental groups because of Proposition 3.2.
Furthermore, the space X̂ ∩ B̂ = T ∪ (∪Ci) is simply connected. Since X =
X̂∪B̂, we deduce from Seifert–van Kampen theorem that the inclusion X̂ ⊂
X induces an isomorphism of fundamental groups. Thus, the relation (7.5)
leads to

(7.6) π1(X̂) ' π1(X) ' G.

We endow each cone Ci over Si with the round metric described in the
appendix. By Appendix A, the area of Ci is equal to 1

π (lengthSi)2. Since
the sum of the lengths of the Si’s is equal to the length of S, the total area
of ∪iCi is at most 1

π (lengthS)2. The tree T is endowed with its standard
metric, i.e., the length of each of its edges is equal to 1. The metrics on X \
B, ∪iCi and T induce a metric, noted Ĝ, on the union X̂ = (X \ B) ∪
(∪iCi) ∪ T .

By construction, one has

(7.7) sysπ1(X̂) > sysπ1(X) = 1.
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Furthermore, we have

(7.8) area X̂ 6 area X − area B +
1
π

(lengthS)2.

The inequality (7.3) leads to

(7.9) area X̂ 6 area X −
(

λ− 1
π

)
(lengthS)2.

Hence, σ(Ĝ) 6 σ(G) 6 σ(G)+ε. Here, the first inequality holds since λ > 1
π

while the second one follows from (7.1).
Since σ(G) 6 area(X̂) and area(X) 6 σ(G) + ε, we also obtain

(7.10)
(

λ− 1
π

)
(lengthS)2 < ε.

Since ε < 4(λ− 1
π )(δ − ε)2 and δ 6 r0, we deduce that

(7.11) lengthS < 2(δ − ε) 6 2r0 − 2ε.

Now, by Lemma 3.3 and Proposition 3.4, every pointed systolic loop
γ ⊂ X at x0 intersects exactly two path-connected components of S, say S1

and S2 (recall that r0 > δ > 1
2 (sysπ1(X, x)− sysπ1(X)), cf. (7.2)). Since γ

contains an arc of X \ Int(B) joining S1 to S2, cf. Lemma 3.3, we con-
clude that two path-connected components of S coalesce forward. Thus, by
Proposition 3.2 and Lemma 2.3, G has a positive Grushko free index.

Now, the points x1 and x2, which are joined by a path in X \ IntB, are
also joined to x0 by a unique geodesic arc in the tree T . Identify the unique
edge of the tree T which contains x1 with the segment [0, 1]. Set Y :=
X̂ \ I ⊂ X̂, where I = ( 1

3 , 2
3 ). Since X̂ is connected and the endpoints

of I are joined by a path in X̂ \ I, we conclude that Y is connected.
Furthermore, the space X̂, obtained by gluing back the interval I to Y ,
is homotopy equivalent to Y ∨ S1. In particular,

(7.12) G ' π1(X̂) ' π1(Y ) ∗ Z.

By uniqueness (up to isomorphism) of the Grushko decomposition G '
Fp ∗H, we obtain

(7.13) π1(Y ) ' Fp−1 ∗H.

Furthermore, σ(Y ) 6 σ(Ĝ) 6 σ(G) + ε. In particular, we deduce that
σ(Fp−1 ∗H) 6 σ(G) + ε, which concludes the proof of Lemma 7.1. �

Proposition 7.2. — With the previous notation,
(i) either the Grushko free index p of G is positive, and

(7.14) σ(G) > σ(Fp−1 ∗H)− ε,
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(ii) or

(7.15) area B(x, r) >
1
4λ

(r − δ)2

for every x ∈ X and every r ∈ (δ, 1
2 ).

Proof. — By Lemma 7.1, we can assume that

(7.16) area B(x, r) 6 λ (lengthS(x, r))2

for every x ∈ X and r ∈ (δ, 1
2 ), otherwise the claim (i) holds. Now, if a(r)

and `(r) represent the area of B(x, r) and the length of S(x, r), respectively,
then the claim (ii) follows from Lemma 7.3 below along with the coarea
formula. �

Lemma 7.3. — Assume that, for all r ∈ (δ, 1
2 ), we have

(7.17) a(r) :=
∫ r

0

`(s) ds 6 λ `(r)2.

Then, for every r ∈ (δ, 1
2 ), we have

(7.18) a(r) >
1
4λ

(r − δ)2.

Proof. — The function `(r) is a piecewise continuous positive function
by Proposition 2.4. So, the function a(r) is continuously differentiable for
all but finitely many r in (δ, 1

2 ). Furthermore, a′(r) = `(r) for all but finitely
many r in (δ, 1

2 ). By assumption, we have

a(r) 6 λ a′(r)2

for all but finitely many r ∈ (δ, 1
2 ). That is,(√

a(r)
)′

=
a′(r)

2
√

a(r)
>

1
2
√

λ
.

Integrating this inequality from δ to r, we get√
a(r) >

1
2
√

λ
(r − δ).

Hence, for every r ∈ (δ, 1
2 ), we obtain

a(r) >
1
4λ

(r − δ)2.

�
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8. Main results

In this section, we extend previous results for groups of zero Grushko free
index to arbitrary finitely presentable groups. More precisely, we establish
a uniform bound on the systolic ratio of unfree finitely presented groups
and a finiteness result for the unfree part of a group with systolic ratio
bounded away from zero.

Theorem 8.1. — Every unfree finitely presentable group G satisfies

(8.1) SR(G) 6
16
π

.

Remark 8.2. — The upper bound by 16
π on the systolic ratio in (8.1) is

not as good as the upper bound by 4 obtained in Theorem 3.5 in the zero
Grushko free index case.

Proof of Theorem 8.1. — Let us prove the inequality (8.1) by induction
on the Grushko free index of G. To start the induction, consider a finitely
presentable group G of zero Grushko free index. Then, by Theorem 3.5,

σ(G) >
1
4

>
π

16
.

Now, assume that the inequality (8.1) holds for all finitely presented
groups whose Grushko free index is less than p. Consider a finitely pre-
sentable group G with positive Grushko free index p. The group G decom-
poses as G = Fp ∗H where Fp is free of rank p and H is of zero Grushko
free index. We will use the notation of Section 7.

If the inequality (7.15) holds for all x ∈ X and r ∈ (δ, 1
2 ), then

(8.2) σ(G) = area X >
1
4λ

(
1
2
− δ

)2

.

That is,

(8.3) σ(G) >
1
4λ

(
1
2
− δ

)2

− ε.

Note that the right-hand term goes to π
16 as δ → 0, λ → 1

π and ε → 0.
Thus, σ(G) > π

16 , i.e., the inequality (8.1) holds.
Therefore, we can assume that the inequality (7.14) holds, i.e.,

σ(G) > σ(Fp−1 ∗H)− ε.

By induction on p, we obtain

(8.4) σ(G) >
π

16
− ε.

This implies the inequality (8.1) as ε → 0. �
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Theorem 8.3. — Let G be a finitely presentable group. If σ(G) < C

for some C > 0, then the isomorphism class of the unfree factor of G lies
in the finite set Γ′

(
576 C

π

)
.

In particular, the number of isomorphism classes of the unfree factors of
the finitely presentable groups G such that σ(G) < C is at most

(8.5) AC3
,

where A is an explicit universal constant.

Proof of Theorem 8.3. — We prove the result by induction on the
Grushko free index of G. Theorem 6.2 shows that the isomorphism class of
every finitely presented group H of zero Grushko free index with σ(H) < C

lies in Γ(144 C) ⊂ Γ′( 576 C
π ).

Now, let G be a finitely presentable group of positive Grushko free in-
dex p, that is G = Fp ∗H where H has zero Grushko free index. Suppose
that σ(G) < C. We will use the notation of Section 7. Note that we can
always assume that σ(G) < C for G as in (7.1).

If the inequality (7.15) holds for all x ∈ X and r ∈ (δ, 1
2 ), then the

inequality (6.1) holds for α = 1
4λ ( 1

12 − δ)2. Hence, by Proposition 6.1, the
isomorphism class of the group G lies in the finite set Γ(C/α), which is
contained in

Γ
(

576 C

π

)
⊂ Γ′

(
576 C

π

)
if δ is close enough to 0 and λ is close enough to 1

π . In particular, this shows
that the isomorphism class of the group H lies in Γ′

(
576 C

π

)
.

So, we can assume that the inequality (7.14) holds. Since σ(G) < C, we
obtain

σ(Fp−1 ∗H) < C + ε.

By induction on p, we derive that the isomorphism class of H lies in
Γ′

(
576 (C+ε)

π

)
for all ε > 0. Thus, the isomorphism class of H lies in

Γ′
(

576 C
π

)
.

Finally, by Lemma 5.4, we can take A = 2( 576
π )3

in (8.5). �

We have the following Corollary that generalizes Example 6.4.

Corollary 8.4. — Let G1, . . . , Gn, . . . be a sequence of pairwise non-
isomorphic groups of bounded Grushko free index. Then

lim
n→∞

SR(Gn) = 0.

Proof. — This follows from Theorem 8.3 since, given ε > 0, there are
only finite number of n’s with SR(Gn) < ε. �
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Example 8.5. — Let Gn be the free product of n unfree finitely pre-
sentable groups. As in Corollary 8.4, we obtain from Theorem 8.3 that the
systolic ratio of the sequence {Gn} tends to zero as n →∞, cf. [12, p. 337].

9. Counting freely indecomposable groups

In this section, using a result of I. Kapovich and P. Schupp [15], we show
that the number of isomorphism classes of freely indecomposable groups
grows at least exponentially with a bound on their systolic area.

Theorem 9.1. — There exists C0 > 0 such that for every C > C0 the
number of isomorphism classes of freely indecomposable finitely presentable
groups G with σ(G) < C is at least 2C .

Proof. — A relation R on two letters a and b defines a two-generator one-
relator group G = 〈a, b | R 〉. Denote by k the length of the relation R with
respect to the alphabet formed of the two letters a and b. The group G can
be described as the fundamental group of a 2-complex X = XR, where X is
obtained from a polygon (disk) D with k edges that are identified according
to the word R.

We can equip X with a round metric G for which D is a metric disk
of constant curvature 1

4 with radius π, perimeter 2πk and a conical sin-
gularity of angle kπ at its center. This metric G can be written in polar
coordinate (r, θ) on D as

G = dr2 + sin2(r/2) dθ2, 0 < r 6 π, θ ∈ R/2πkZ.

By construction, the area of (X,G) is equal to 8πk and its systole is equal
to 2π. Hence,

σ(G) 6 σ(X,G) =
2k

π
.

Since there are at least 2k isomorphism classes of two-generator one-relator
groups with defining relation of length k for k large enough, cf. [15, The-
orem B], we obtain the desired bound after showing that most of these
groups are freely indecomposable.

Let H be a freely decomposable two-generator one-relator group. By
Grushko’s theorem, the group H decomposes as H = H1 ∗H2, where Hi '
Z/piZ. From [9], we have p1 + p2 6 k + 2, where k is the length of the
defining relation of H. Thus, the number of isomorphism classes of such
groups H is at most polynomial in k. Hence the conclusion. �
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Appendix A. A round metric

Consider the upper hemisphere H of the radius r,

H := {(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 = r2, z > 0}.

We equip H with the sphere metric distH . Let K = {(x, y, z) ∈ H
∣∣ z = 0}

and p = (0, 0, r) ∈ H. Given a point q ∈ H, q 6= p, consider the geodesic arc
of length πr/2 that starts at p, passes through q and ends at some point x =
x(q) ∈ K. We define t = t(q) as the length of the geodesic segment joining p

and q. Clearly, q determines and is uniquely determined by x and t. Thus,
every point of H can be described as a pair (x, t) where x ∈ K and t ∈
[0, π r/2]. Here, (x, 0) = p for all x.

We define a function f : [0, πr]× [0, πr/2]2 → R by setting

(A.1) f(R, t1, t2) = distH((x1, t1), (x2, t2))

where (xi, ti) ∈ H, i = 1, 2 are such that distK(x1, x2) = R. Clearly, the
function f is well-defined.

Now, let S be a finite metric graph of total length L and set r = L/π.
Consider the cone C = (S × [0, π r/2])/(S × {0}). Every point of C can
be written as (x, t) where x ∈ S and t ∈ [0, πr/2]. We denote by v the
vertex (x, 0) of the cone. We equip C with a piecewise smooth metric by
setting

distC((x1, t1), (x2, t2)) = f(distS(x1, x2), t1, t2)

where f is the function defined in (A.1). It is clear that distC is a met-
ric since distH is, and it is piecewise smooth since distS is. Clearly, the
inclusion S ⊂ C is an isometry.

Furthermore, the region (e× [0, πr/2])/(e×{0}) of C, where e is an edge
of S, is isometric to a sector of the hemisphere H of angle 1

r length(e). Thus,
the area of this region is equal to r length(e). We immediately deduce the
following result.

Proposition A.1. — The area of the cone C is given by

area(C) = rL = L2/π.
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