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IS THE LUNA STRATIFICATION INTRINSIC?

by Jochen KUTTLER & Zinovy REICHSTEIN (*)

Abstract. — Let G → GL(V ) be a representation of a reductive linear alge-
braic group G on a finite-dimensional vector space V , defined over an algebraically
closed field of characteristic zero. The categorical quotient X = V // G carries a
natural stratification, due to D. Luna. This paper addresses the following questions:

(i) Is the Luna stratification of X intrinsic? That is, does every automorphism
of V // G map each stratum to another stratum?

(ii) Are the individual Luna strata in X intrinsic? That is, does every automor-
phism of V // G map each stratum to itself?

In general, the Luna stratification is not intrinsic. Nevertheless, we give positive
answers to questions (i) and (ii) for interesting families of representations.

Résumé. — Soit G→ GL(V ) une représentation d’un groupe algébrique réduc-
tif G, définie sur un corps algébraiquement clos de caractéristique zéro. D’après D.
Luna, le quotient catégorique X = V // G comporte une stratification naturelle.
L’article présente les deux questions suivantes :

(i) La stratification de X est-elle intrinsèque ? Plus précisément, l’image d’une
strate par un automorphisme de X quelconque est-elle avec strate ?

(ii) Les strates individuelles de X, sont-elles intrinsèques ? C’est-à-dire, est-il
vrai que toute strate est invariante par tous les automorphismes de X ?

D’une manière générale, la stratification de Luna n’est pas intrinsèque. Néan-
moins, pour des familles de représentations intéressantes les questions (i) et (ii) ont
des réponses positives.

1. Introduction

Throughout this paper k will be an algebraically closed field of char-
acteristic zero, G → GL(V ) will be a representation of a reductive linear
algebraic group G on a finite-dimensional vector space V defined over k,

Keywords: Categorical quotient, Luna stratification, matrix invariant, representation
type.
Math. classification: 14R20, 14L30, 14B05.
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Z. Reichstein was partially supported by an NSERC research grant.



690 Jochen KUTTLER & Zinovy REICHSTEIN

and π : V → X = V // G will denote the categorical quotient map for the
G-action on V . For the definition and a discussion of the properties of the
categorical quotient in this setting, see, e.g., [16], [19] or [8].

There is a natural stratification on X, due to D. Luna; we shall refer
to it as the Luna stratification. Recall that for every p ∈ X the fiber
π−1(p) has a unique closed orbit. Choose a point vp in this orbit. Then the
stabilizer subgroup Stab(vp) is reductive, and its conjugacy class in G is
independent of the choice of vp. This subgroup determines the stratum of
p. More precisely, the Luna stratum associated to the conjugacy class (H)
of a reductive subgroup H ⊆ G is defined as

X(H) = {p ∈ X |Stab(vp) ∈ (H)} .

There are only finitely many Luna strata and each stratum is a locally
closed non-singular subvariety of X. The strata are naturally partially or-
dered as follows: S � T if S is contained in T . This partial ordering has a
unique maximal element X(H), called the principal stratum. The subgroup
H associated to the principal stratum is called the principal stabilizer (it
is defined up to conjugacy). Moreover, if we set

V 〈H〉 = {v ∈ V | G · v is closed and Stab(v) = H}

then π restricts to a principal NG(H)/H-bundle V 〈H〉 → X(H). For proofs
of these assertions see [19, Section 6.9] or [27, Section I.5].

The Luna stratification provides a systematic approach to the problem
of describing the G-orbits in V ; it also plays an important role in the study
of the geometry and (if k = C) the topology of the categorical quotient
X = V // G. In this paper we shall address the following questions.

Question 1.1. — (i) Is the Luna stratification of X intrinsic? In other
words, is it true that for every automorphism σ : X → X and every re-
ductive subgroup H ⊂ G there is a reductive subgroup H ′ ⊂ G such that
σ(X(H)) = X(H′)?

(ii) Are the Luna strata in X intrinsic? Here we say that X(H) is intrinsic
if σ(X(H)) = X(H) for every automorphism σ : X → X.

In general, the Luna stratification is not intrinsic. Indeed, there are many
examples, where V // G is an affine space (cf. e.g., [19, Section 8]) and
the automorphism group of an affine space is highly transitive, so that
points in the same stratum can be taken by an automorphism to points in
different strata. Moreover, even in those cases where the Luna stratification
is intrinsic, the individual strata may not be. The purpose of this paper is
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LUNA STRATIFICATION 691

to show that one can nevertheless give positive answers to Question 1.1 in
many interesting situations.

The first natural case to consider is the one where G is a finite group. Re-
call that a non-trivial g ∈ GL(V ) is called a pseudo-reflection if g has finite
order and fixes (pointwise) a hyperplane in V . If G → GL(V ) is a repre-
sentation and G is generated by elements that act as pseudo-reflections on
V then by a theorem of Chevalley and Shephard-Todd, V // G is an affine
space. As we remarked above, in this case the Luna stratification cannot
be intrinsic. To avoid this situation, assume that G contains no pseudo-
reflections. In particular, this condition is automatically satisfied for repre-
sentations G → SL(V ) ⊂ GL(V ). In this case the proof of [20, Theorem 2]
can be modified to show that every automorphism of X = V // G lifts to
an automorphism of V . From this one easily deduces that if G → GL(V ) is
such a finite-dimensional representation of a finite group G then the Luna
stratification on V // G is always intrinsic, and moreover, every stratum
is intrinsic under mild additional assumptions on the representation (but
not always). For details we refer the reader to [9, Section 2]. (See also
Proposition 3.6 for related results on finite group actions.)

The main focus of this paper will be on representations V of (possibly
infinite) reductive groups G. The following theorem gives a positive answer
to Question 1.1(i) for three families of such representations.

Theorem 1.2. — Let G → GL(W ) be a finite-dimensional linear rep-
resentation of a reductive algebraic group G and V = W r, where

(a) r > 2 dim(W ), or

(b) G preserves a nondegenerate quadratic form on W and r > dim(W )+
1, or

(c) W = g is the adjoint representation of G and r > 3.

Then the Luna stratification in V // G is intrinsic. Moreover, every Luna
stratum S in V // G is precisely the smooth locus of its closure S.

Note that in the setting of reductive groups there is no direct analogue
of the Chevalley-Shephard-Todd theorem and we do not know under what
circumstances an automorphism σ : V // G → V // G can be lifted to V ;
see [9, Remark 2.8]. Our proof of the fact that the Luna stratification in
V // G is intrinsic under the assumptions of Theorem 1.2 relies on a different
(indirect) approach based on studying the singularities of the Luna strata;
see Section 3.

TOME 58 (2008), FASCICULE 2



692 Jochen KUTTLER & Zinovy REICHSTEIN

Theorem 1.2 concerns representations V of G of a particular form, namely
V is assumed to be the rth power of another representation W for suffi-
ciently large r. This is clearly stronger than assuming that G contains no
pseudo-reflections. To motivate this condition we remark that a general
(and somewhat vague) principle in invariant theory says that replacing a
G-variety Z by a power Zr often “improves” the properties of the underly-
ing action, assuming r is sufficiently large. For two unrelated recent results
along these lines see [12, Corollary, p. 1606] and [18]. Theorem 1.2 may be
viewed as yet another manifestation of this principle.

Our second main result gives a positive answer to Question 1.1(ii) in the
following situation. Consider the natural GLn-action on the space V = Mr

n

of r-tuples of n×n-matrices by simultaneous conjugation. The variety X =
Mr

n // GLn has been extensively studied in the context of both invariant and
PI theories; an overview of this research area can be found in [6], [21] or [5].
In [22, 23] the second author constructed a large family of automorphisms
of X = V // PGLn (for r > n + 1). Every automorphism in that family
preserves the Luna strata, so it is natural to conjecture that the same
should be true for every automorphism of X. The following result proves
this conjecture for any r > 3.

Theorem 1.3. — Suppose r > 3. Then every Luna stratum in X =
Mr

n // GLn is intrinsic.

Note that Theorem 1.3 fails if r = 1 or (n, r) = (2, 2); see Remark 8.3.
The fact that the principal Luna stratum in X = Mr

n // GLn is intrinsic
is an immediate consequence of a theorem of Le Bruyn and Procesi [10,
Theorem II.3.4], which says that it is precisely the smooth locus of X. This
result motivated Theorems 1.2 and 1.3 and served as a starting point of
their proofs.

2. Actions of reductive groups

In this preliminary section we collect several well-known definitions and
results about actions of reductive groups on affine varieties.

2.1. The Luna Slice Theorem

Let G → GL(V ) be a linear representation of a reductive group G and
v ∈ V be a point with a closed G-orbit. Then by Matsushima’s theorem,
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LUNA STRATIFICATION 693

the stabilizer H = Stab(v) is a reductive subgroup of G. Consequently, the
H-subrepresentation Tv(G · v) of the natural representation of H on the
tangent space Tv(V ) has an H-invariant complement. We shall refer to this
H-representation as the slice representation and denote it by Slice(v, V ).
The Luna Slice Theorem asserts that the horizontal maps in the natural
diagram

Slice(v, V ) ∗H G

��

// V

π

��
Slice(v, V ) // H // V // G

are étale over v and π(v), respectively. In addition the above diagram be-
comes cartesian after a base change over a neighborhood of π(v). For an
arbitrary smooth affine G-variety the same is true if Slice(v, V ) is replaced
by a suitable H-invariant étale neighborhood of the origin in an H-invariant
normal space to Tv(Gv). For details, see [13] or [19, Section 6].

2.2. Stability

Definition 2.1. — Let G be a reductive group and V be an affine
G-variety. A point v ∈ V is called

stable if its orbit G · v is closed in V and

properly stable if v is stable and StabG(v) is finite.

We shall say that the representation V is

stable if a point v ∈ V in general position is stable,

properly stable if a point v ∈ V in general position is properly stable,

generically free if a point v ∈ V in general position has trivial stabilizer.

As an immediate corollary to Luna’s Slice Theorem we obtain the fol-
lowing:

Lemma 2.2. — Let G be a reductive group, G → GL(V ) be a linear
representation, and v ∈ V , H = Stab(v) ⊂ G be as above. Then

(a) the G-representation on V is stable if and only if the H-representation
on Slice(v, V ) is stable,

(b) the G representation on V is generically free if and only if the H-
representation on Slice(v, V ) is generically free. �

TOME 58 (2008), FASCICULE 2



694 Jochen KUTTLER & Zinovy REICHSTEIN

Note that “generically free” is not the same thing as “having trivial
principal stabilizer”. The reason is that when we talk about the principal
stabilizer, we are only interested in Stab(v), where v is a stable point. For
example, the natural action of the multiplicative group Gm on V = A1 is
generically free, but the principal stabilizer is all of Gm, because the only
stable point in A1 is the origin. The precise relationship between these
notions is spelled out in the following lemma.

Lemma 2.3. — Let V be a linear representation of a reductive group G

and π : V → V // G be the categorical quotient map.
(a) If π(v) ∈ (V // G)({e}) then v is a properly stable point in V .
(b) The following conditions are equivalent:
• V has trivial principal stabilizer,
• V is generically free and properly stable,
• V is generically free and stable.

Proof. — (a) Let x = π(v) ∈ (V // G)({e}). We claim that π−1(x) is a
single G-orbit in V . Indeed, let C = G · v0 be the unique closed orbit in
π−1(x). Then C is contained in the closure of every orbit in π−1(x). On the
other hand, by our assumption Stab(v0) = {e}; hence, dim(C) = dim(G),
and C cannot be contained in the closure of any other G-orbit. This shows
that C = π−1(x). Thus every point in π−1(x) is stable (and hence, properly
stable). This proves part (a). Part (b) is an immediate consequence of
part (a). �

2.3. The Hilbert-Mumford criterion

Consider a linear Gm-representation on a vector space V . Any such rep-
resentation can be diagonalized. That is, there is a basis e1, . . . , en of V , so
that t ∈ Gm acts on V by t · ei 7→ tdiei.

In the sequel we shall use the following variant of the Hilbert-Mumford
criterion; see [16, Section 2.1].

Theorem 2.4. — Consider a linear representation of a reductive group
G on a vector space V . Then

(a) v ∈ V is properly stable for the action of G if and only if it is properly
stable for the action of every 1-dimensional subtorus Gm ↪→ G.

(b) In the above notations, v = c1e1 + · · ·+ cnen ∈ V is properly stable
for the action of Gm if and only if there exist i, j ∈ {1, . . . , n} such that
di < 0, dj > 0 and ci, cj 6= 0. �
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LUNA STRATIFICATION 695

We give several simple applications of this theorem below.

Corollary 2.5. — Suppose G is a reductive group, G → GL(V ) is
a linear representation, πG : V → V // G is the categorical quotient map,
v ∈ V , and πG(v) ∈ (V // G)({e}).

(a) If H ⊂ G is a reductive subgroup and πH : V → V // H is the categori-
cal quotient map for the induced H-action on V then πH(v) ∈ (V // H)({e}).

(b) If f : V ′ → V is a G-equivariant linear map, π′ : V ′ → V ′ // G is the
categorical quotient, and f(v′) = v, then π′(v′) ∈ (V ′ // G)({e}).

Proof. — Recall that, by definition, πG(v) ∈ V // G({e}) if and only if (i)
StabG(v) = {e} and (ii) v is properly stable for the G-action on V .

(a) We need to show that (i) and (ii) remain valid if G is replaced by
H. In case of (i) this is obvious, and in case of (ii), this follows from the
Hilbert-Mumford criterion, since every 1-parameter subgroup of H is also
a 1-parameter subgroup of G.

(b) Again, we need to check that StabG(v′) = {e} and v′ is properly
stable for the G-action on V ′. The former is obvious, and the latter follows
from the Hilbert-Mumford criterion. �

2.4. Reductive groups whose connected component is central

Let H be a reductive group whose connected component H0 is central. In
particular, H0 is abelian and hence, a torus. Note that this class of groups
includes both tori and all finite groups (in the latter case H0 = {1}).

Lemma 2.6. — Let H be a reductive group whose connected component
H0 is central and ρ : H → GL(W ) be a linear representation. Then

(a) Stab(w) = Ker(ρ) for w ∈ W in general position.
(b) Suppose H has trivial principal stabilizer in W s for some s > 1. Then

H has trivial principal stabilizer in W .

Proof. — (a) By [25, Theorem A] the H-action on W has a stabilizer
in general position. That is, there is a subgroup S ⊂ H and an open
subset U ⊂ W such that Stab(u) is conjugate to S for any u ∈ U . Clearly,
Ker(ρ) ⊂ S; we only need to prove the opposite inequality.

Since H0 is central in H, S has only finitely many conjugates; denote
them by S = S1, . . . , Sm. Then U is contained in the union of finitely many
linear subspaces

U ⊂ WS1 ∪ · · · ∪WSm .

TOME 58 (2008), FASCICULE 2



696 Jochen KUTTLER & Zinovy REICHSTEIN

Since U is irreducible, we see that U is contained in one of them, say,
U ⊂ WS . Then V = WS , i.e., S ⊂ Ker(ρ), as claimed.

(b) Let ρs be the (diagonal) representation of H on W s. Clearly Ker(ρ) =
Ker(ρs) = {e}. Part (a) now tells us that since ρs is generically free, so is ρ.

By Lemma 2.3 it now suffices to check that the H-action ρ on W is
properly stable. Let Gm ↪→ H be a 1-dimensional subtorus. Diagonalize it
in the basis e1, . . . , en of W , so that it acts via

t : ei → tdiei .

Note that if we diagonalize the Gm-action on W s then the same expo-
nents d1, . . . , dn will appear but each will be repeated s times. Thus by
Theorem 2.4,

W s is properly stable ⇐⇒ di > 0 and dj < 0 for some i, j ∈ {1, . . . , n}
m

W is properly stable,

and the lemma follows. �

Remark 2.7. — Note that both parts of Lemma 2.6 fail if we only assume
that H0 is a torus (but do not assume that it is central in H). For example,
both parts fail for the natural action of the orthogonal group G = O2(k) =
Gm o Z/2Z on W = k2; cf. [24, Example 2.5].

2.5. Multiple representations

Lemma 2.8. — Let G be a reductive group and G → GL(W ) be a linear
representation. Suppose that for some r > 1 an r-tuple w = (w1, . . . , wr)
is chosen so that G · w is closed in W r and that wd+1, . . . , wr are linear
combinations of w1, . . . , wd for some 1 6 d 6 r. Set H = Stab(w) and
v = (w1, . . . , wd) ∈ W d. Then

(a) StabG(v) = H.

(b) W r has a G-subrepresentation W0 such that w ∈ W0 and the nat-
ural projection p : W r → W d onto the first d components restricts to an
isomorphism between W0 and W d.

(c) v has a closed orbit in W d.

(d) Slice(w,W r) ' Slice(v,W d) ⊕ W r−d, where ' denotes equivalence
of H-representations.

ANNALES DE L’INSTITUT FOURIER



LUNA STRATIFICATION 697

Proof. — (a) is obvious. To prove (b), suppose wj =
∑d

i=1 αijwj for
j = d + 1, . . . , r. Then

W0 = {(z1, . . . , zr) | zj =
d∑

i=1

αijzj for j = d + 1, . . . , r }.

has the desired properties. (c) follows from (b), since G · v is the image of
G · w under p.

(d) Since H is reductive, W0 has an H-invariant complement W1 in W r,
so that W r = W0 ⊕ W1. Since W0 ' W d, we conclude that W1 ' W r−d

(as an H-representation). The desired conclusion now follows from the fact
that p is an isomorphism between W0 and W d. �

Corollary 2.9. — Let G be a reductive group and G → GL(W ) be a
linear representation of dimension n. Then

(a) The following are equivalent: (i) W r is stable for some r > n, (ii) Wn

is stable, and (iii) W s is stable for every s > n.

(b) The following are equivalent: (i) W r is generically free for some r > n,
(ii) Wn is generically free, and (iii) W s is generically free for every s > n.

(c) The following are equivalent: (i) W r has trivial principal stabilizer
for some r > n, (ii) Wn has trivial principal stabilizer, and (iii) W s has
trivial principal stabilizer for every s > n.

Proof. — Suppose r > n . Then for w = (w1, . . . , wr) ∈ W r in general
position, w1, . . . , wn span W . Keeping this in mind, we see that

(a) the implication (i) ⇒ (ii) follows from Lemma 2.8(c) (with d = n)
and the implication (ii) ⇒ (iii) follows from Lemma 2.8(b) (again, with
d = n). (iii) ⇒ (i) is obvious.

(b) follows from Lemma 2.8(a). (c) follows from (a) and (b); see
Lemma 2.3(b). �

3. Proof of Theorem 1.2: the overall strategy

Let G be a reductive algebraic group acting on a smooth affine variety
Y and π : Y → X = Y // G be the categorical quotient map for this action.
We will say that H is a stabilizer subgroup for Y (or simply a stabilizer
subgroup, if the reference to Y is clear from the context), if H = Stab(y)
for some stable point y ∈ Y . Clearly H is a stabilizer subgroup if and only
if the Luna stratum X(H) associated to its conjugacy class is non-empty.

TOME 58 (2008), FASCICULE 2



698 Jochen KUTTLER & Zinovy REICHSTEIN

We will say that a Luna stratum S is singular along its boundary if the
singular locus of its closure S is precisely S \S. The following lemma is the
starting point for our proof of Theorem 1.2.

Lemma 3.1. — Suppose every Luna stratum in X = Y // G is singular
along its boundary. Then the Luna stratification in X is intrinsic.

Proof. — Let σ be an automorphism of X and S be a Luna stratum in
X. We will show that σ takes S to another Luna stratum S′ by descending
induction with respect to the natural partial order on the (finite) set of
Luna strata in X.

By our assumption the principal Luna stratum X0 is precisely the smooth
locus of X; thus σ(X0) = X0. Now suppose σ(S) is another Luna stratum
S′. Then σ takes the smooth locus of S \ S to the smooth locus of S′ \
S′. The irreducible components of the smooth locus of S \ S are, by our
assumption, precisely the Luna strata T which immediately precede S in
the partial order. The automorphism σ takes these strata to the irreducible
components of the smooth locus of S′ \ S′, which are the Luna strata T ′

immediately preceding S′. Thus σ takes every Luna stratum T immediately
preceding S, into another Luna stratum T ′. The induction step is now
complete. �

Definition 3.2. — We shall call a family Λ of finite-dimensional linear
representations G → GL(V ) of reductive (but not necessarily connected)
algebraic groups acceptable if it satisfies the following two conditions.

(i) If G → GL(V ) is in Λ then for every stabilizer subgroup H in G, the
induced representation NG(H) → GL(V H) is again in Λ.

(ii) For every representation G → GL(V ) in Λ, the principal stratum in
V // G is singular along its boundary.

Proposition 3.3. — Suppose a linear representation G → GL(V ) be-
longs to an acceptable family. Then every Luna stratum in X = V // G is
singular along its boundary. In particular, the Luna stratification in X is
intrinsic.

Proof. — The second assertion follows from the first by Lemma 3.1.
Hence, we only need to show that every Luna stratum in X is singular
along its boundary. Let π : V → V // G = X be the categorical quotient
map, H be a stabilizer subgroup for the G-action on V , and S = X(H) be
a Luna stratum. Choose p ∈ S \S, say, p ∈ X(K), where K is a (reductive)
stabilizer subgroup and H ( K. Our goal is to show that S is singular at p.

ANNALES DE L’INSTITUT FOURIER



LUNA STRATIFICATION 699

We will argue by contradiction. Assume, to the contrary, that S is smooth
at p.

Let N = NG(H) be the normalizer of H in G and write the surjective
map π|V H : V H → S as a composition

V H

πN

��
π

��

V H // N

n

��
S,

where πN is the categorical quotient map for the N -action on V H . Here n

is the normalization map for S; cf. e.g., [19, Theorem 6.16].
Let v ∈ V H be an N -stable point with stabilizer K such that π(v) = p

and let q = πN (v). (Note that by Luna’s criterion, v is N -stable if and only
if it is G-stable; see [19, Theorem 6.17].) Recall that we are assuming that
the G-representation on V belongs to an acceptable family Λ. Consequently,
the N -representation on V H also belongs to Λ, and thus the smooth locus
of V H // N is precisely the principal stratum for the N -action on V H . In
other words, if q does not lie in the principal stratum in V H // N then q is a
singular point of V H // N . Since n is the normalization map and n(q) = p,
this implies that p is a singular point of S, a contradiction.

We may thus assume that q lies in the principal stratum U of V H // N .
Since we are assuming that p is a smooth point of S, the normalization
map n is an isomorphism between Zariski open neighborhoods of p and q.

We claim that the action of N/H on V H is properly stable and generi-
cally free. By our assumption on H, V H contains a G-stable point v with
stabilizer H. By Luna’s criterion (see [19, Theorem 6.17]) v is stable (and
hence, properly stable) for the N/H-action on V H . Since N/H-properly
stable points form an open subset of V H , we conclude that the N/H-
action on V H is properly stable. Moreover, v has a G-invariant Zariski
open neighborhood V0 ⊂ V such that StabG(v0) is conjugate to a subgroup
of H for any v0 ∈ V0; see, e.g., [19, Theorem 6.3]. Intersecting V0 with V H ,
we see that StabG(v0) = H for v0 ∈ V H in general position. This proves
the claim.

The claim implies that π−1
N (U) → U is a principal N/H-bundle and

consequently, the differential dπv maps Tv(V H) surjectively onto Tp(S).
We will now show that this is impossible. Indeed, since the quotient map

TOME 58 (2008), FASCICULE 2
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π : V → X is K-equivariant (where K acts trivially on X) and v is fixed
by K, the differential dπv : Tv(V ) → Tp(X) is a K-equivariant linear map
(where K acts trivially on Tp(X)). Consequently, dπv sends every non-
trivial irreducible K-subrepresentation of Tv(V ) to 0. Since V is smooth,
we have (Tv(V ))K = Tv(V K) and therefore dπv maps Tv(V K) onto Tp(S).
On the other hand, since π(V K) = X(K), we conclude that

(3.1) Tp(X(K)) ⊃ Tp(S) .

Now recall that we are assuming that p is a smooth point of S. Moreover,
since p ∈ X(K), it is also a smooth point of X(K). Thus (3.1) implies
dim X(K) > dim S, contradicting the fact that X(K) lies in S \ S. �

We now record a corollary of the above argument for future reference.

Corollary 3.4. — Suppose G is a reductive group and G → GL(V ) is
a linear representation with principal isotropy H. Let N = NG(H). Then
the natural map

V H // N

n

��
V // G

is an isomorphism, which identifies the principal Luna stratum in V H // N

with the principal Luna stratum in V // G.

Proof. — The fact that n is an isomorphism is proved in [14, Corollary
4.4].

To show that n identifies the principal strata in V H // N and V // G, let
π : V → V // G and πN : V H → V // N be the categorical quotient maps.
Choose p ∈ V H // N and set q = n(p). Let v ∈ V H be a point in the
(unique) closed N -orbit in π−1

N (p). By Luna’s criterion, the G-orbit of v is
also closed; see [19, Theorem 6.17]. Our goal is to show that

StabG(v) = H ⇐⇒ StabN (v) = H .

The ⇒ direction is obvious, so suppose StabN (v) = H (i.e., p lies in the
principal stratum in V H // N), and let StabG(v) = K. We want to show
that K = H. Assume the contrary: H ( K. Since p lies in the principal
stratum in V H // N , dπN maps Tv(V H) surjectively to Tp(V H // N). Since
n is an isomorphism and π = n ◦ πN (on V H), we see that dπv maps
Tv(V H) surjectively onto Tv(V // G). On the other hand, in the proof of
Proposition 3.3 we showed that this is impossible if H ( K. �
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Remark 3.5. — Our proof of Theorem 1.2 will be based on showing that
each of the families of representations in parts (a), (b) and (c) is acceptable,
i.e., satisfies conditions (i) and (ii) of Definition 3.2; the desired conclusion
will then follow from Lemma 3.1 and Proposition 3.3.

To illustrate this strategy, we will apply it to the following simple ex-
ample. We will say that a linear representation G → GL(V ) has the codi-
mension 2 property if dim(V A)− dim(V B) 6= 1 for every pair of subgroups
A / B 6 G (here A is normal in B).

Proposition 3.6. — Let Λ be the family of representations φ : G →
GL(V ), where G is finite and φ has the codimension 2 property. Then Λ is
acceptable. In particular, if φ ∈ Λ then

(a) every Luna stratum in V // G is singular along its boundary, and

(b) the Luna stratification in V // G is intrinsic.

Proof. — The family Λ clearly satisfies condition (i) of Definition 3.2.
To check condition (ii), choose a representation G → GL(V ) in Λ. Let
X = V // G be the categorical quotient and π : V → X be the quotient
map. Choose v ∈ V and set H = StabG(v). Our goal is to show that if
H 6= {e} then X is singular at π(v). Assume the contrary. Then by the
Luna Slice Theorem, Tv(V ) // H is smooth at the origin. Since Tv(V ) and
V are isomorphic as H-modules, V // H is also smooth at the origin. By
the Chevalley-Shephard-Todd theorem, this implies that H is generated
by pseudo-reflections. In particular, since H 6= {e}, H contains a pseudo-
reflection h. Setting A = {e} and B = 〈h〉, we see that the codimension 2
property fails: V B has codimension 1 in V A = V . This contradiction shows
that V // G is singular at π(v). Thus Λ is an acceptable family. Assertions
(a) and (b) now follow from Proposition 3.3. �

Note that Proposition 3.6(b) is a special case of [9, Theorem 1.1].

Example 3.7. — Every symplectic representation of a finite group has
the codimension 2 property.

Indeed, since every symplectic representation is even-dimensional, the
assertion of Example 3.7 is an immediate consequence of the following
elementary lemma. This lemma will be used again in the sequel.

Lemma 3.8. — Let G → GL(W ) be a linear representation, leaving
invariant a non-degenerate bilinear form b on W . Then for any reductive
subgroup H of G the restriction of b to WH is again non-degenerate.
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Proof. — Let a ∈ WH and suppose that the linear form la : w 7→ b(a,w)
is identically zero on WH . Since H is reductive, W = WH ⊕W1⊕· · ·⊕Wr,
where each Wi is a non-trivial irreducible H-subrepresentation of W . By
Schur’s lemma, la is identically zero on every Wi. Hence, la is identically
zero on all of W . Since b is non-degenerate on W , this is only possible if
a = 0. �

4. Non-coregular representations

The main difficulty in implementing the strategy outlined in Remark 3.5
is in checking condition (ii) of Definition 3.2. That is, given a linear repre-
sentation G → GL(V ) of a reductive group G on a vector space V and a sta-
ble point v ∈ V , we want to show that V // G is singular at π(v). The Luna
Slice Theorem reduces this problem to checking that Slice(v, V ) // H is sin-
gular at πH(0), where H = Stab(v), and πH : Slice(v, V ) → Slice(v, V ) // H

is the categorical quotient map. In other words, we are reduced to a problem
of the same type, where v = 0 and G = H.

Linear representations G → GL(V ) with the property that V // G is
smooth at π(0) are called coregular. Here G is assumed to be reductive
and π is the categorical quotient map V → V // G. It is easy to see (cf.,
e.g., [19, Proposition 4.11]) that V // G is smooth at π(0) if and only if
V // G is smooth everywhere if and only if V // G is isomorphic to an affine
space Ad for some d > 1. Coregular representations have been extensively
studied; for a survey of this topic and further references, see [19, Section 8].
Thus in order to implement the strategy for proving Theorem 1.2 outlined
in Remark 3.5 we need a large family of representations that are known
not to be coregular. The purpose of this section is to prove Proposition 4.1
below, which exhibits such a family.

Proposition 4.1. — Let G be a reductive group and V1, V2 be linear
representations of G, such that V1 has trivial principal stabilizer and V2 is
not fixed pointed (see Definition 4.2 below). Then V1×V2 is not coregular.
That is, (V1 × V2) // G is singular.

We begin with preliminary results about fixed pointed representations,
which will be used in the proof and in subsequent applications of Proposi-
tion 4.1.

4.1. Fixed pointed representations

Definition 4.2. — Following Bass and Haboush [2], we will say that a
linear representation G → GL(V ) of a reductive group G is fixed pointed if
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the natural G-equivariant projection π : V → V G is the categorical quotient
for the G-action on V . Note that the projection π is sometimes called the
Reynolds operator; cf., e.g., [19, Section 3.4].

Recall that the null cone of a representation V , denoted NC(V ), is the
subvariety of V cut out by all homogeneous invariants of positive degree.

Lemma 4.3. — Let G be a reductive group and ρ : G → GL(V ) be a
linear representation. Then the following conditions are equivalent:

(a) ρ is fixed pointed.

(b) The null cone NC(V ) is (scheme-theoretically) a vector space.

(c) The null cone NC(V ) is (scheme-theoretically) smooth.

If (a), (b) and (c) hold then V = NC(V )⊕ V G.

Proof. — (a) ⇒ (b). Let π : V → V // G be the categorical quotient map.
If ρ is fixed pointed then π is a linear projection, so clearly NC(V ) = π−1(0)
is a vector space and V = NC(V )⊕ V G.

(b) ⇒ (c) is obvious, since a vector space is smooth.
(c) ⇒ (a). Assume that NC(V ) is scheme-theoretically smooth. Since G

is reductive, we may write V = V G ⊕ W for some G-invariant subspace
W . Then clearly WG = (0), NC(W ) = NC(V ) and V // G = V G ×W // G,
where the quotient map πV sends (v, w) ∈ V = V G ⊕W to (v, πW (w)) ∈
V G ×W // G.

Thus, after replacing V by W , we may assume without loss of generality
that V G = (0). Our goal is then to show that V is fixed pointed, which, in
this case, means that V // G is a single point, or equivalently,

NC(V ) = V .

Indeed, assume the contrary. Then NC(V ) is cut out by the equations
f = 0, as f ranges over the homogeneous elements of k[V ]G.

Note that no nonzero homogeneous element f ∈ k[V ]G can be of degree
1. Indeed, if there were a non-zero G-invariant linear function f : V → k

then V would contain a copy of the trivial representation, contradicting
V G = (0). We thus conclude that NC(V ) is a subscheme of V cut out by
a (possibly empty) collection of homogeneous polynomials of degree > 2.
In particular, the tangent space to NC(V ) at 0 coincides with all of T0(V ).
Since we are assuming that NC(V ) is (scheme-theoretically) smooth, this
is only possible if NC(V ) = V . �

In the sequel we will primarily be interested in representations that are
not fixed pointed. Two examples are given below.
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Example 4.4. — No nontrivial stable representation G → GL(V ) can
be fixed pointed. Indeed, in a fixed-pointed representation, the only stable
points are those in V G.

Example 4.5. — A non-trivial orthogonal representation H → Oφ(L)
of a reductive group H on a vector space L (preserving a non-degenerate
quadratic form φ) is not fixed pointed.

Proof. — Assume the contrary. Then

(4.1) L = NC(L)⊕ LH

where NC(L) is the null-cone of L. Lemma 3.8 tells us that φ restricts to a
non-degenerate quadratic form on LH . Hence,

L = (LH)⊥ ⊕ LH .

Now observe that LH has a unique H-invariant complement in L (namely,
the direct sum of all non-trivial H-subrepresentations in L). We thus con-
clude that NC(L) = (LH)⊥. Since φ is non-degenerate on L and LH , it
is also non-degenerate on (LH)⊥. Note that since the H-action on L is
non-trivial, LH 6= L and thus NC(L) = (LH)⊥ 6= (0). In particular, the
H-invariant regular function L → k given by x → φ(x, x) is not constant on
(LH)⊥. On the other hand, every H-invariant regular function on NC(L)
has to be constant. This contradiction shows that L is not fixed pointed. �

4.2. Proof of Proposition 4.1

Set V = V1 × V2. Assume the contrary: V // G is smooth, i.e.. is iso-
morphic to an affine space Ad. Let π : V → V // G, π1 : V1 → V1 // G, and
π2 : V2 → V2 // G be the categorical quotient maps. We will denote the
projection V → Vi by pi and the induced morphism V // G → Vi // G by
pi.

Let T = Gm×Gm be a two-dimensional torus acting on V = V1×V2 by

(s, t) : (v1, v2) → (sv2, tv2) .

This action commutes with the G-action on V and hence descends to
V // G. Clearly the T -fixed point π(0, 0) lies in the closure of every other
T -orbit in V // G ' Ad. Thus by [2, Corollary 10.6], the T -action on V // G

is isomorphic to a linear action. That is, we may assume that V // G is a
vector space with a linear action of T . This identifies V1 // G and V2 // G
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with the T -invariant linear subspaces (V // G){1}×Gm and (V // G)Gm×{1}

of V // G respectively. In particular, Vi // G is smooth for i = 1, 2. Moreover,

p1(v) = lim
t→0

(1, t) · v

and
p2(v) = lim

s→0
(s, 1) · v

are T -equivariant linear projections V // G → V1 // G and V // G → V2 // G

respectively and

p = (p1, p2) : V // G → (V1 // G)× (V2 // G)

is a smooth map.
Consider the commutative diagram

V

π

��

V1 × V2

π1×π2

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~

V // G

p

��
V1 // G× V2 // G

Choose a stable point v1 ∈ V1 such that π1(v1) lies in the principal stra-
tum of V1 // G (V1 has a dense open subset consisting of such points; cf.
Lemma 2.3) and let x = (π1(v1), π2(0)) ∈ V1 // G × V2 // G. The (scheme-
theoretic) preimage of x under the map π1 × π2 is clearly G · v1 ×NC(V2),
where NC(V2) is the null cone in V2. Since we are assuming that the G-
action on V2 is not fixed pointed, NC(V2) is singular; cf. Lemma 4.3. Thus

(π1 × π2)−1(x) is singular.

On the other hand, as we saw above, the map p is smooth. The map π

is smooth over the principal Luna stratum in V // G. By Corollary 2.5(b),
every point in p−1(x) lies in the principal stratum of V // G. Hence, the
composition map π1×π2 = pπ : V → V1 // G×V2 // G is smooth over some
Zariski open neighborhood of x. Consequently,

(π1 × π2)−1(x) is smooth.

This contradiction shows that V // G cannot be smooth, thus completing
the proof of Proposition 4.1. �

Corollary 4.6. — Suppose V1, V2 and V3 are three linear representa-
tions of a reductive group G, where V1 has trivial principal stabilizer, V2 is
not fixed pointed, and V3 is arbitrary. Then V1 ⊕ V2 ⊕ V3 is not coregular.
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Proof. — The G-representation V ′
1 = V1 ⊕ V3 has trivial principal stabi-

lizer; see Corollary 2.5(a). Now apply Proposition 4.1 to V ′
1 ⊕ V2. �

5. Proof of Theorem 1.2(a) and (b)

We will follow the strategy outlined in Remark 3.5 by exhibiting accept-
able families Λa and Λb which include the representations in parts (a) and
(b) of Theorem 1.2, respectively.

Elements of Λa are representations of the form V = W r, where r >
2 dim(W ) and G → GL(W ) is a representation of a reductive group G.

Elements of Λb are representations of the form V = W r, where r >
dim(W ) + 1 and G → O(W ) is an orthogonal representation of a reductive
group G. That is, G preserves some non-degenerate quadratic form on W .

In view of Proposition 3.3 it suffices to show that Λa and Λb are accept-
able families. We begin by checking condition (i) of Definition 3.2.

(a) Suppose V = W r is in Λa. Then V H = (WH)r is again in Λa, because
r > 2 dim(W ) > 2 dim(WH).

(b) Suppose V = W r, where W is an orthogonal representation of G and
r > dim(W ) + 1. Once again, V H = (WH)r, where r > dim(W ) + 1 >
dim(WH) + 1. Moreover, in view of Lemma 3.8 the NG(H)-representation
on WH is orthogonal. Thus V H belongs to Λb, as claimed.

It remains to show that Λa and Λb satisfy condition (ii) of Definition 3.2.
That is, given a representation V = W r in Λa or Λb, we want to show that
X = V // G is singular at every point x away from the principal stratum.
We begin with two reductions.

First we claim that V may be assumed, without loss of generality, to
have trivial principal stabilizer. Indeed, suppose the principal stabilizer in
V is H ⊂ G. Set N = NG(H) and N = N/H. Then by Corollary 3.4

V H // N V H // N

n

��
X

is an isomorphism which takes the principal stratum in V H // N to the
principal stratum in X. Thus it suffices to prove that V H // N is singular
away from its principal stratum. As we just showed, the representation
N → GL(V H) lies in Λa in part (a) and in Λb in part (b). Hence, so
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does N → GL(V H). Since the latter representation has trivial principal
stabilizer, this proves the claim.

From now on, we will assume that the principal stabilizer subgroup of
G in V = W r (but not necessarily in W ) is {e}. Suppose x is represented
by an element w = (w1, . . . , wr) ∈ W r whose G-orbit is closed. Let H =
StabG(w). Note that since x does not lie in the principal stratum in V // G,
H 6= {e}. After permuting the components of W r if necessary, we may
assume that wn+1, . . . , wr are linear combinations of w1, . . . , wn.

Recall that by the Luna Slice Theorem (W r // G, x) is étale isomorphic
to

(Slice(w,W r) // H,π(0)) ;

cf., e.g., [19, Section 6]. Thus it suffices to prove that Slice(w,W r) // H is
singular, i.e., that the H-representation on Slice(w,W r) is not coregular.

Let v = (w1, . . . , wn) ∈ Wn. By Lemma 2.8 Stab(v) = H, G · v is closed
in Wn, and

Slice(w,W r) ' Slice(v,Wn)⊕W r−n .

Recall that we are assuming that the G-action (and hence, the H-action) on
W r has trivial principal stabilizer; cf. Corollary 2.5(a). Since r > n (both
in part (a) and in part (b)), Corollary 2.9(c) tells us that the H-action on
Wn also has trivial principal stabilizer. By Lemma 2.2 this implies that the
H-action on Slice(v,Wn) has trivial principal stabilizer as well.

We will now consider the families Λa and Λb separately.

(a) Suppose V is in Λa. Recall that we are assuming r > 2n, i.e. r −
n > n. Thus by Corollary 2.9(c) W r−n also has trivial principal stabilizer.
Consequently, it is not fixed pointed; cf. Example 4.4. By Proposition 4.1
the H-representation

Slice(w,W r) ' Slice(v,Wn)︸ ︷︷ ︸
trivial principal stabilizer

⊕ W r−n︸ ︷︷ ︸
not fixed pointed

is not coregular.

(b) Since G preserves the non-degenerate quadratic form q ⊕ · · · ⊕ q

(r − n times) on W r−n and r > n + 1, Example 4.5 tells us that the H-
representation on W r−n is not fixed pointed. Proposition 4.1 now tells us
that the H-representation

Slice(w,W r) ' Slice(v,Wn)︸ ︷︷ ︸
trivial principal stabilizer

⊕ W r−n︸ ︷︷ ︸
not fixed pointed

is not coregular. �
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6. Proof of Theorem 1.2(c)

Once again, we will follow the strategy outlined in Remark 3.5, by defin-
ing a suitable family Λc of representations of reductive groups and then
checking that Λc is acceptable. In the context of Theorem 1.2(c) the natu-
ral candidate for Λc is the family of representations of the form W r, where
W = Lie(G) is the adjoint representation for some reductive group G.
Unfortunately, this family is not acceptable, because it does not satisfy
condition (i) of Definition 3.2. To make the argument go through, we need
to consider a slightly larger family which we now proceed to define.

Definition 6.1. — Let G be a reductive group. We will say that a
linear representation ρ : G → GL(W ) is almost adjoint if Ker(ρ) contains
a normal closed subgroup K of G such that W is isomorphic to the Lie
algebra of G/K and ρ can be written as a composition

(6.1) ρ : G → G/K
AdG/K→ GL(W ) ,

where G → G/K is the natural quotient map and AdG/K is the adjoint
representation. Note that the groups G, K or G/K are assumed to be
reductive but not necessarily connected.

We are now ready to define Λc. Fix an integer r > 3 and let Λc be the fam-
ily of representations of the form W r, where G → GL(W ) is almost adjoint.
Following the strategy of Remark 3.5, in order to prove Theorem 1.2(c), it
suffices to check that Λc is an acceptable family.

We begin by checking condition (i) of Definition 3.2. Suppose ρ : G →
GL(W ) is an almost adjoint representation, with K / G as in (6.1) and
H ⊂ G is a stabilizer subgroup. Since (W r)H = (WH)r, it suffices to show
that the natural representation of the normalizer N = NG(H) on WH is
again almost adjoint.

Note that H contains K; since N/K = NG/K(H/K), we may, after
replacing G by G/K, assume without loss of generality that K = {e}, i.e.,
W = Lie(G) is the Lie algebra of G and ρ is the adjoint representation.

In this situation WH = Lie(G)H is a reductive Lie algebra. In fact, it is
the Lie algebra of Z = ZG(H), the centralizer of H in G. Note that both
N and Z are reductive; cf. [14, Lemma 1.1]. We claim that the natural
representation

ρ : N → GL(Lie(Z))

is almost adjoint. Indeed, let (H,H) be the commutator subgroup of H.
Since H acts trivially on Lie(Z), N0 = Z0H0 (cf. e.g., [14, p. 488]), and
(H,H) ∩ Z is finite, we see that Lie(Z) is also the Lie algebra of N =
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N/(H,H) and ρ descends to the adjoint action of N on its Lie algebra.
This proves the claim. Condition (i) is now established.

To check condition (ii) of Definition 3.2, we will need the following lemma.

Lemma 6.2. — Let G be a reductive (but not necessarily connected)
group, with Lie algebra W and let G → GL(W ) be the adjoint representa-
tion. Then

(a) the G-action on W s is stable for any s > 1,

(b) the action of ρ(G) = G/ZG(G0) on W s has trivial principal stabilizer
for any s > 2.

Parts (a) and (b) may be viewed as a variants of [26, Theorem 6.1]
and [26, Theorem 4.1], respectively.

Proof. — (a) Since R = Rad(G) acts trivially on W , the G-action on W s

descends to an action of its semisimple quotient G/R. Thus, by a theorem of
Popov [17] (cf. also [19, p. 236]) it suffices to show that StabG/R(w1, . . . , ws)
is reductive for (w1, . . . , ws) ∈ W s in general position. Clearly
StabG0/R(w1, . . . , ws) is reductive if and only if StabG0(w1, . . . , ws) is re-
ductive. On the other hand, StabG0(w1, . . . , ws) is contained in StabG0(w1),
which is a maximal torus of G0, assuming w1 ∈ W is in general position.
Since any algebraic subgroup of a torus is reductive, this completes the
proof of part (a).

(b) By part (a) the G-action on W s is stable; hence, we only need to check
that the ρ(G)-action on W s is generically free. We may assume without loss
of generality that s = 2.

Choose w1, w2 ∈ W in general position and suppose g ∈ StabG(w1, w2).
We want to show that g ∈ ZG(G0) or equivalently that AdG(g) = id on W .

Recall that a Lie subalgebra W ′ of W is called algebraic if W ′ is the Lie
algebra of a closed subgroup G′ of G. In particular, the subalgebra W 〈g〉

of fixed points of AdG(g) in W is algebraic, because it is the Lie algebra of
ZG0(〈g〉). On the other hand, by [26, Lemma 3.3(b)], the only algebraic Lie
subalgebra containing w1, w2 ∈ W is W itself (provided that w1, w2 ∈ W

are in general position). Thus W 〈g〉 = W . Equivalently, AdG(g) = id on
W , and part (b) follows. �

We are now ready to prove that the family of representations Λc defined
at the beginning of this subsection, satisfies condition (ii) of Definition 3.2.
More precisely, we want to show that if ρ : G → GL(W ) is an almost adjoint
representation and r > 3 then W r // G is singular away from its principal
stratum.
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Suppose K / G is as in Definition 6.1. After replacing G by G/K (this
doesn’t change the quotient W r // G or the Luna strata in it), we may
assume that W = Lie(G) and ρ is the adjoint representation. It now suffices
to prove the following lemma.

Lemma 6.3. — Let G be a reductive (but not necessarily connected)
group, W be the Lie algebra of G and G → GL(W ) be the adjoint rep-
resentation. Then W r // G is singular away from its principal stratum for
any r > 3.

Proof. — Let π be the quotient map W r → W r // G, x ∈ W r // G be
a point away from the principal stratum and v ∈ W r be a point with
closed G-orbit, such that x = π(v). Our goal is to show that W r // G

is not smooth at x. As in the proof of Theorem 1.2(a) and (b) in the
previous section, we shall do this by showing that the slice representation
of H = StabG(v) on Slice(v,W r) is not coregular. Our strategy will be to
express this representation as a direct sum of three H-representations,

Slice(v,W r) = V1 ⊕ V2 ⊕ V3 ,

where V1 has trivial principal stabilizer and V2 is not fixed pointed, then
appeal to Corollary 4.6.

Since we are assuming that x does not lie in the principal stratum,
H = StabG(v) 6= {e}. As an H-representation, the tangent space Tv(G · v)
is isomorphic to W/ Lie(H) (recall that here W = Lie(G)). Thus the com-
plement Slice(v,W r) to Tv(G · v) in W r can be written as

W r−1 ⊕ Lie(H)⊕ S

for some linear representation S of H. By Lemma 6.2(b), the principal
stabilizer for the ρ(G)-action on W ⊕W is trivial. Hence, the same is true
of the H-action on W ⊕W , since ρ(H) is a reductive subgroup of ρ(G); see
Corollary 2.5(a). We will now consider two cases.

Case 1. H acts non-trivially on Lie(H). By Lemma 6.2(a), the H-
action on Lie(H) is stable. Since we are assuming that this action is non-
trivial, it is not fixed pointed; see Example 4.4. By Corollary 4.6, the H-
representation

Slice(v,W r) = W r−1︸ ︷︷ ︸
trivial principal stabilizer

⊕ Lie(H)︸ ︷︷ ︸
not fixed pointed

⊕ S

is not coregular, as desired. (Recall that we are assuming throughout that
r > 3.)
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Case 2. H acts trivially on Lie(H). Since H is reductive this is only
possible if H0 is a central torus in H. By Lemma 6.2(b) the G-action (and
hence, the H-action) on W 2 has trivial principal stabilizer. Lemma 2.6 now
tells us that the H-action on W also has trivial principal stabilizer. Since
H 6= {e}, no such action can be fixed pointed. Thus by Corollary 4.6

Slice(v,W r) = W︸︷︷︸
trivial principal stabilizer

⊕ W︸︷︷︸
not fixed pointed

⊕ (W r−3⊕Lie(H)⊕S)

is not coregular. �

The above lemma shows that the family Λc satisfies condition (ii) of
Definition 3.2. Thus Λc is an acceptable family. The proof of Theorem 1.2(c)
is now complete. �

Remark 6.4. — Lemma 6.3 may be viewed as a variant of a result of
Richardson [26, Theorem 8.1], which asserts that Lie(G)r // G is singular
away from its principal stratum for any r > 2, if G is connected, semisimple
and has no factors of rank 1. These assumptions cannot be made in our
setting, because even if we make them for G, they may not remain valid for
the quotient of NG(H) which comes up at the next step in the induction
process. For this reason we were not able to appeal to [26, Theorem 8.1]
directly. However, our proof of Lemma 6.3 is very much in the same spirit.

7. Representation types

Consider the action of the general linear group GLn on the variety

Vl,n,r = Alr ×Mr
n

given by

g · (a1, . . . , al, A1, . . . , Ar) 7→ (a1, . . . , al, gA1g
−1, . . . , gArg

−1)

for any a1, . . . , al ∈ k and any A1, . . . , Ar ∈ Mn. Let Xl,n,r be the quotient
variety Vl,n,r // GLn. Our goal in the next two sections will be to prove
Theorem 1.3 in the following slightly more general from.

Theorem 7.1. — Suppose r > 3. Then every Luna stratum in Xl,n,r =
Vl,n,r // GLn is intrinsic.

Of course, the case where l = 0 is of greatest interest to us; in this case
Theorem 7.1 reduces to Theorem 1.3. For l > 1 the variety Xl,n,r is only
marginally more complicated than X0,n,r. Indeed, since GLn acts trivially
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on Alr, Xl,n,r is isomorphic to Alr × X0,n,r, and every Luna stratum in
Xl,n,r is of the form

(7.1) S = Alr × S0 ,

where S0 is a Luna stratum in X0,n,r. We allow l > 1 in the statement of
Theorem 7.1 to facilitate the induction step (on n) in the proof.

The Luna stratification in Xl,n,r, has a natural combinatorial interpreta-
tion, which we will now recall, in preparation for the proof of Theorem 7.1
in the next section. Let v = (a1, . . . , al, A1, . . . , Ar) ∈ Vl,n,r be a point in
the unique closed GLn-orbit in the fiber over x ∈ Xl,n,r. Here each ai ∈ k

and each Aj ∈ Mr. We will view an r-tuple (A1, . . . , Ar) ∈ Mr
n of n × n-

matrices as an n-dimensional representation

ρ : k{x1, . . . , xr} → Mn

of the free associative algebra k{x1, . . . , xr} on r generators, sending xi to
Ai. By a theorem of Artin [1, (12.6)], the orbit of v is closed in Mr

n if and
only if ρ is semisimple. (Strictly speaking, Artin’s theorem only covers the
case where l = 0; but since Vl,n,r = Alr × V0,n,r and GLn acts trivially on
Alr, the general case is an immediate consequence.) If ρ can be written as
ρe1
1 ⊕ · · · ⊕ ρes

s , where

ρi : k{x1, . . . , xr} → Mdi

is an irreducible di-dimensional representation, we will say that the repre-
sentation type of x is

(7.2) τ = [(d1, e1), . . . , (dr, er)] .

The square brackets [ ] are meant to indicate that τ is an unordered
collection of pairs (di, ei); permuting these pairs does not change the repre-
sentation type. Note also that di, ei > 1 for every i = 1, . . . , s. Following Le
Bruyn and Procesi [10], we shall denote the set of representation types (7.2)
with d1e1 + · · ·+ dses = n by RTn. If τ = [(d1, e1), . . . , (ds, es)] ∈ RTn and
µ = [(d′1, e

′
1), . . . , (d

′
s′ , e′s′)] ∈ RTn′ then we will sometimes denote the rep-

resentation type

[(d1, e1), . . . , (ds, es), (d′1, e
′
1), . . . , (d

′
s′ , e′s′)] ∈ RTn+n′

by [τ, µ].
The Luna strata in Xl,n,r = (Alr×Mr

n) // GLn are in a 1-1 correspondence
with RTn; cf., e.g., [10, Section 2]. If x ∈ Xl,n,r has representation type τ ,
as in (7.2), then the associated stabilizer subgroup

(7.3) Hτ = StabG(v) ' GLe1 × · · · ×GLes ,
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embedded into GLn as follows. Write

kn = V1 ⊗W1 ⊕ · · · ⊕ Vs ⊗Ws ,

where dim(Vi) = di and dim(Wi) = ei and let GLei act on Wi. Then
Hτ = GLe1 × · · · ×GLes

is embedded in GLn via

(g1, . . . , gs) 7→ (Id1 ⊗ g1 ⊕ · · · ⊕ Ids ⊗ gs) .

where Id denotes the d×d identity matrix; cf. [10, Section 2]. For notational
convenience we shall denote the Luna strata in Xl,n,r = Mr

n // GLn by Xτ
n,r,

rather than X
(Hτ )
n,r . Note that if τ = [(d1, e1), . . . , (ds, es)] ∈ RTn then

(7.4) dim Xτ
l,n,r = (r − 1)(d2

1 + · · ·+ d2
s) + s + lr

for any r > 2; cf. [10, p. 158].

Definition 7.2. — An elementary refinement of

τ = [(d1, e1), . . . , (ds, es)] ∈ RTn

consists in either

(1) replacing one of the pairs (di, ei) by two pairs, (ai, ei) and (bi, ei),
where ai, bi > 1 and ai + bi = di

or

(2) replacing two pairs (di, ei) and (dj , ej), with di = dj , by the single
pair (di, ei + ej).

Given two representation types τ and τ ′, we will say that τ ′ ≺ τ if τ ′ can
be obtained from τ by a sequence of elementary refinements. This defines
a partial order � on RTn.

Note that while operations (1) and (2) are defined in purely combinatorial
terms, they are, informally speaking, designed to reflect the two ways a
representation

ρ = ρe1
1 ⊕ · · · ⊕ ρes

s : k{x1, . . . , xr} → Mn

can “degenerate”. Here ρ1, . . . , ρs are distinct irreducible representations of
dimensions d1, . . . , ds respectively. In case (1), one of the representations ρi

“degenerates” into a direct sum of irreducible subrepresentations of degree
ai and bi (each with multiplicity ei). In case (2) we “degenerate” ρ by mak-
ing ρi and ρj isomorphic (of course, this is only possible if their dimensions
di and dj are the same). The following lemma gives this a precise meaning.

Lemma 7.3. — Xµ
l,n,r lies in the closure of Xτ

l,n,r if and only if µ � τ .
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Proof. — In view of (7.1), we may assume l = 0. In this case Lemma 7.3
is proved in [10, Theorem II.1.1]. �

Remark 7.4. — Note that Vl,n,r = W r, where W = Al × Mn is the
Lie algebra of G = (GL1)l × GLn. The (GL1)l-factor acts trivially on W

(via the adjoint action), so we may drop it without changing the quotient
W r // G or the Luna strata in it. Theorem 1.2(c) now tells us that the
Luna stratification in Xl,n,r = Vl,n,r // GLn = W r // G is intrinsic (provided
r > 3). Thus an automorphism σ of Xl,n,r induces an automorphism σ∗ of
the set RTn of Luna strata in Xl,n,r given by σ∗(τ) = ν if σ(Xτ ) = Xν . By
Lemma 7.3 σ∗ respects the partial order � on RTn. Theorem 7.1 asserts
that σ∗ is always trivial. In some cases this can be deduced from the fact
that the partially ordered set (RTn,�) has no non-trivial automorphisms.
For example, the partially ordered sets RTn, for n = 1, 2 and 3, pictured
below have no non-trivial automorphisms.

RT1

[(1, 1)]

RT2

[(2, 1)]

[(1, 1), (1, 1)]

[(1, 2)]

RT3

[(3, 1)]

[(2, 1), (1, 1)]

[(1, 1), (1, 1), (1, 1)]

[(1, 2), (2, 1)]

[(1, 3)]

This proves Theorem 7.1 for n 6 3.

Note however, that for larger n the partially ordered set (RTn,�) does
have non-trivial automorphisms. For example, a quick look at RT4 (pic-
tured on p. 156 in [10]), shows that the permutation α of RT4 interchanging

τ = [(1, 1), (1, 1), (1, 1), (1, 1)] and ν = [(2, 1), (1, 2)]

ANNALES DE L’INSTITUT FOURIER



LUNA STRATIFICATION 715

and fixing every other element, does, indeed, respect the partial order on
RT4. For this reason we cannot hope to prove Theorem 7.1 by purely combi-
natorial arguments, without taking into account the geometry of the strata
Xτ

l,n,r. Nevertheless, the following combinatorial proposition will play a key
role in the proof of Theorem 7.1 in the next section.

Proposition 7.5. — (a) Let α be an automorphism of RTn (as a par-
tially ordered set). If α([(1, 1), µ]) = [(1, 1), µ] for every µ ∈ RTn−1 then
α = id.

(b) Let l > 0, n > 1 and r > 3. Suppose we know that Luna strata of the
form X

[(1,1),µ]
l,n,r are intrinsic in Xl,n,r for any µ ∈ RTn−1. Then every Luna

stratum in Xl,n,r is intrinsic.

Proof. — Part (b) is an immediate consequence of part (a) and Re-
mark 7.4; we shall thus concentrate on proving part (a). Given a represen-
tation type τ = [(d1, e1), . . . , (ds, es)], let m(τ) denote the minimal value
of di + ei, as i ranges from 1 to s. Note that since di, ei > 1 for each i, we
have m(τ) > 2. We will now show that α(τ) = τ by induction on m(τ). By
our assumption this is the case if m(τ) = 2, since in this case di = ei = 1
for some i.

For the induction step, assume that m(τ) = m > 3 and α(ν) = ν for
every ν ∈ RTn with m(ν) < m. After renumbering the pairs (di, ei), we
may assume that d1 + e1 = m. Suppose

(7.5) α(τ) = τ ′ = [(d′1, e
′
1), . . . , (d

′
t, e

′
t)] .

Our goal is to show that τ = τ ′. We will consider two cases, where d1 > 2
and e1 > 2 separately. Since we are assuming that d1 + e1 = m > 3, these
two cases cover every possibility.

Case 1: d1 > 2. Let

τ0 = [(1, e1), (d1 − 1, e1), (d2, e2), . . . , (ds, es)] .

Since m(τ0) = e1 + 1 < d1 + e1 = m, the induction assumption tells us
that α(τ0) = τ0. Now observe that τ0 immediately precedes τ in the partial
order on RTn, i.e., τ0 is obtained from τ by a single elementary refinement;
see Definition 7.2. Consequently, τ0 can also be obtained from τ ′ by a single
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elementary refinement. Schematically,

τ

  A
A

A
A

α

$$
τ ′

}}|
|

|
|

τ0 ,

where the broken arrows denote elementary refinements. Now observe that

(d′i, e
′
i) 6= (1, e1) or (d1 − 1, e1) ∀ i = 1, . . . , s .

Indeed, otherwise we would have m(τ ′) < m and thus α(τ ′) = τ ′ by the
induction assumption. Combining this with (7.5), we obtain α(τ) = τ ′ =
α(τ ′). Since α is a permutation of RTn, we conclude that τ = τ ′, which is
impossible, since m(τ ′) < m = m(τ).

To sum up, τ0 “contains” two pairs, (1, e1) and (d1 − 1, e1), that are not
“present” in τ ′. It now follows from Definition 7.2 that the only possible
elementary refinement taking τ ′ to τ0 is of type (1), consisting of ”splitting
up” (d1, e1) into (d1 − 1, e1) and (1, e1). That is, τ ′ = [(d1, e1), µ] = τ , as
claimed.

Case 2: e1 > 2. The argument here is very similar (or more precisely,
“dual”; in the sense of Remark 7.6) to the argument in Case 1. Let

τ1 = [(d1, 1), (d1, e1 − 1), (d2, e2), . . . , (ds, es)] .

Since m(τ1) = d1 +1 < d1 +e1 = m, the induction assumption tells us that
α(τ1) = τ1. The relationship between τ , τ ′ and τ1 is shown in the following
diagram

τ1

  A
A

A
A

���
�

�
�

τ

α

:: τ
′ ,

where the broken arrows denote elementary refinements. Once again, we
see that τ1 “contains” two pairs, (d1, 1) and (d1, e1−1) both of which “dis-
appear” after we perform an elementary refinement (and obtain τ ′). This is
only possible if the elementary refinement taking τ1 to τ ′ is of type (2) (cf.
Definition 7.2) and consists of replacing (d1, 1) and (d1, e1 − 1) by (d1, e1).
This shows that τ = τ ′, thus completing the proof of Proposition 7.5. �
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Remark 7.6. — The two elementary refinement operations of Defini-
tion 7.2 are dual to each other in the following sense. Given a representation
type

τ = [(d1, e1), . . . , (ds, es)]

let τ = [(e1, d1), . . . , (es, ds)]. Then α is obtained from β by an elemen-
tary refinement of type (1) (respectively, of type (2)) if and only if β is
obtained from α by an elementary refinement of type (2) (respectively, of
type (1)). Consequently, the map τ 7→ τ is an isomorphism between the
partially ordered sets (RTn,�) and (RTn,�). The statement and the proof
of Proposition 7.5 are invariant with respect to this map (in particular, Case
2 is dual to Case 1).

8. Proof of Theorem 1.3

In this section we will prove Theorem 7.1. This will immediately yield
Theorem 1.3 (for l = 0). We will continue to use the notations introduced
in the previous section; in particular, Vl,n,r stands for Alr ×Mn and Xl,n,r

denotes the categorical quotient Vl,n,r // GLn.
We will argue by induction on n. The base cases, n = 1 and 2, are proved

in Remark 7.4. (Theorem 7.1 is also proved there for n = 3 but we shall
not need that here.) For the induction step assume n > 3 and σ is an auto-
morphism of Xl,n,r. Recall that σ maps each stratum in Xl,n,r to another
stratum; cf. Remark 7.4. In particular, σ preserves the maximal (princi-
pal) stratum X

[(n,1)]
l,n,r (which is the unique stratum of maximal dimension)

and permutes the ”submaximal” strata X
[(d,1),(n−d,1)]
l,n,r , 1 6 d 6 n

2 , among
themselves. By the dimension formula (7.4),

dim X [(d,1),(n−d,1)] = rl + 2 + (r − 1)(d2 + (n− d)2)

= rl + 2 + 2(r − 1)((d− n

2
)2 +

n2

4
) .

Thus the submaximal strata X
[(d,1),(n−d,1)]
l,n,r have different dimensions for

different values of d between 1 and n
2 . Hence, σ preserves each one of them.

Of particular interest to us is the submaximal stratum X
[(1,1),(n−1,1)]
l,n,r .

Since σ preserves this stratum, it preserves its closure X
[(1,1),(n−1,1)]
l,n,r and

thus lifts to an automorphism σ̃ of the normalization of X
[(1,1),(n−1,1)]
l,n,r . The

rest of the argument will proceed as follows. We will identify the normaliza-
tion of X

[(1,1),(n−1,1)]
l,n,r with Xl+1,n−1,r and relate Luna strata in Xl+1,n−1,r
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and Xl,n,r via the normalization map. By the induction assumption σ̃ pre-
serves every Luna stratum in Xl+1,n−1,r; using the normalization map we
will be able to conclude that σ preserves certain Luna strata in Xl,n,r.
Proposition 7.5 will then tell us that, in fact, σ preserves every Luna stra-
tum in Xl,n,r, thus completing the proof.

We now proceed to fill in the details of this outline. First we will explic-
itly describe the normalization map for X

[(1,1),(n−1,1)]
l,n,r . The stabilizer Hτ

corresponding to τ = [(1, 1), (n− 1, 1)] consists of diagonal n× n matrices
of the form

diag(a, b, . . . , b︸ ︷︷ ︸
n− 1 times

) ,

where a, b ∈ k∗; cf. (7.3). The natural projection

V Hτ

l,n,r // NG(Hτ ) → Xτ
l,n,r

is the normalization map for Xτ
l,n,r; cf. [19, Theorem 6.16]. Here

V Hτ

l,n,r = Alr ×Mr
1 ×Mr

n−1 = A(l+1)r ×Mr
n−1 = Vl+1,n−1,r

and

(8.1) NG(Hτ ) = GL1×GLn−1 ,

where GL1 acts trivially on A(l+1)r × Mr
n−1 and GLn−1 acts on the sec-

ond factor by simultaneous conjugation. Since GL1 acts trivially, we may
replace GL1×GLn−1 by GLn−1 without changing the categorical quotient
or the Luna strata in it. That is, the normalization V Hτ

l,n,r // NG(Hτ ) of

X
[(1,1),(n−1,1)]
l,n,r is (canonically) isomorphic to Vl+1,n−1,r // GLn−1 =

Xl+1,n−1,r.
The following lemma gives a summary of this construction. Here, as

before, we identify an r-tuple A = (A1, . . . , Ar) of n×n-matrices with the n-
dimensional representation ρA : k{x1, . . . , xr} → Mn of the free associative
k-algebra k{x1, . . . , xn}, taking xi to Ai.

Lemma 8.1. — Suppose n > 3 and r > 2 and let f : Vl+1,n−1,r → Vl,n,r

be the morphism given by

f : (t1, . . . , t(l+1)r, ρ) 7→ (t1, . . . , tlr, ρt ⊕ ρ)) ,

where t = (tlr+1, tlr+2, . . . , t(l+1)r) ∈ Mr
1. Then

(a) f descends to the normalization map

f : Xl+1,n−1,r → X
[(1,1),(n−1,1)]
l,n,r ,

where Xl,n,r = Vl,n,r // GLn.
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(b) f maps Xµ
l+1,n−1,r onto X

[(1,1),µ]
l,n,r for every µ ∈ RTn−1.

Proof. — Part (a) follows from the discussion before the statement of
the lemma. To prove part (b), observe that every semisimple representation
k{x1, . . . , xr} → Mn of type [(1, 1), µ] can be written in the form ρ0 ⊕ ρ,
where ρ is an n − 1-dimensional representation of type µ and ρ0 is a 1-
dimensional representation (of type (1, 1)). This shows that the image of
Xµ

l+1,n−1,r contains X
[(1,1),µ]
l,n,r . Since

dim Xµ
l+1,n−1,r = dim X

[(1,1),µ]
l,n,r ,

see (7.4), and f is a finite map (in particular, f takes closed sets to closed
sets), part (b) follows. �

Remark 8.2. — Lemma 8.1 uses, in a crucial way, the assumption that
n > 3. If n = 2 then (8.1) fails; instead we have NG(Hτ ) = (GL1×GL1)>/

S2, and the entire argument falls apart.

We are now ready to finish the proof of Theorem 7.1. Restricting σ to
the closure of the stratum X

[(1,1),(n−1,1)]
l,n,r and lifting it to an automorphism

σ̃ of the normalization, we obtain the following commutative diagram:

Xl+1,n−1,r
σ̃ //

f

��

Xl+1,n−1,r

f

��

X
[(1,1),(n−1,1)]
l,n,r

σ // X [(1,1),(n−1,1)]
l,n,r .

By our induction assumption σ̃ preserves every Luna stratum Xµ
l+1,n−1,r in

Xl+1,n−1,r. Hence, by Lemma 8.1(b), σ preserves the closure of every Luna
stratum in Xl,n,r of the form X

[(1,1),µ]
l,n,r . Since X

[(1,1),µ]
l,n,r is the unique stratum

of maximal dimension in its closure, we conclude that σ preserves X
[(1,1),µ]
l,n,r

for every µ ∈ RTn−1. By Propostion 7.5(b), we conclude that σ preserves
every Luna stratum in Xl,n,r. This concludes the proof of Theorem 7.1 and
thus of Theorem 1.3. �

Remark 8.3. — Theorem 1.3 fails if (a) r = 1 or (b) (n, r) = (2, 2),
because in this case the ring of invariants R = k[Mr

n]GLn is a polynomial
ring or equivalently, X = Mr

n // GLn is an affine space. In case (a) R is
freely generated by the coefficients of the characteristic polynomial of A ∈
Mn, viewed as GLn-invariant polynomials M1

n → k and in case (b) by the
five GL2-invariants M2

n → k given by (A1, A2) 7→ tr(A1), tr(A2), det(A1),
det(A2), and det(A1 + A2), respectively; cf. [7, VIII, Section 136].
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