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DOUBLING CONDITIONS FOR HARMONIC
MEASURE IN JOHN DOMAINS

by Hiroaki AIKAWA & Kentaro HIRATA (*)

Dedicated to Professor Yoshihiro Mizuta on the occasion of his 60th birthday

Abstract. — We introduce new classes of domains, i.e., semi-uniform domains
and inner semi-uniform domains. Both of them are intermediate between the class
of John domains and the class of uniform domains. Under the capacity density
condition, we show that the harmonic measure of a John domain D satisfies certain
doubling conditions if and only if D is a semi-uniform domain or an inner semi-
uniform domain.

Résumé. — Nous introduisons des classes nouvelles de domaines, domaines
semi-uniformes et domaines intérieurs semi-uniformes. Elles sont intermédiaires
entre la classe des domaines de John et la classe des domaines uniformes. Sous la
condition de densité de capacité, nous prouvons que la mesure harmonique d’un
domaine D de John satisfait certaines conditions de doublement si et seulement si
D est un domaine semi-uniforme ou un domaine intérieur semi-uniforme.

1. Introduction

Let D be a bounded domain in Rn with n > 2, δD(x) = dist(x, ∂D)
and x0 ∈ D. Let us recall some nonsmooth domains. By the symbol A, we
denote an absolute positive constant whose value is unimportant and may
change from line to line. If necessary, we use A0, A1, . . . , to specify them.
We shall say that two positive functions f1 and f2 are comparable, written
f1 ≈ f2, if and only if there exists a constant A > 1 such that A−1f1 6

Keywords: John domain, semi-uniform domain, inner semi-uniform domain, harmonic
measure, doubling condition, capacity density condition.
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f2 6 Af1. The constant A will be called the constant of comparison. We
write B(x,R) and S(x,R) for the open ball and the sphere of center at x

and radius R, respectively.
We say that D is a John domain with John constant cJ > 0 and John

center x0 ∈ D if each x ∈ D can be joined to x0 by a rectifiable curve
γ ⊂ D such that

(1.1) δD(y) > cJ`(γ(x, y)) for all y ∈ γ,

where γ(x, y) and `(γ(x, y)) stand for the subarc of γ connecting x and
y and its length, respectively. In general, 0 < cJ < 1. We say that D is
a uniform domain if there exists a constant A > 1 such that each pair
of points x, y ∈ D can be joined by a rectifiable curve γ ⊂ D such that
`(γ) 6 A|x− y| and

(1.2) min{`(γ(x, z)), `(γ(z, y))} 6 AδD(z) for all z ∈ γ.

We call this curve γ a cigar curve connecting x and y. See [11, 12, 15]. If
the complement of a uniform domain D satisfies the corkscrew condition,
then D becomes an NTA domain ([13]). Observe that connectivity of a
uniform domain can be extended from x, y ∈ D to x, y ∈ D. We introduce
the following class of domains.

Definition 1.1. — We say that D is a semi-uniform domain if every
pair of points x ∈ D and y ∈ ∂D can be joined by a rectifiable curve γ

such that γ \ {y} ⊂ D, `(γ) 6 A|x− y| and (1.2) holds.

A Denjoy domain is a typical semi-uniform domain which is not neces-
sarily uniform. The relationships among above domains are summarized
as

(1.3) NTA $ Uniform $ Semi-uniform $ John.

Let ω(x,E,U) be the harmonic measure of the set E in an open set
U evaluated at x. Jerison-Kenig [13] proved that harmonic measure of an
NTA domain D satisfies the strong doubling condition: there is a constant
A0 > 2 such that
(1.4)
ω(x,B(ξ, 2R)∩ ∂D, D) 6 Aω(x,B(ξ,R)∩ ∂D, D) for x ∈ D \B(ξ,A0R),

where ξ ∈ ∂D and R > 0 small, say R 6 RSD. If (1.4) holds only for some
fixed point x = x0, we say that the harmonic measure of D satisfies the
doubling condition. Obviously the strong doubling condition implies the
doubling condition. Moreover, they showed that a bounded planar simply
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DOUBLING CONDITIONS FOR HARMONIC MEASURE 431

connected domain D is an NTA domain if and only if the harmonic mea-
sures both for D and D

c
satisfy the doubling condition ([13, Theorem 2.7]).

Kim and Langmeyer [14] gave the one-sided analogue; a bounded planar
Jordan domain is a John domain if and only if the harmonic measure only
for D satisfies the doubling condition. Their argument is based on complex
analysis as well.

Balogh-Volberg [6, 7] showed a doubling condition similar to (1.4) in a
planar uniformly John domain, or inner uniform domain (see Definition 1.4
below and the remarks before it). They also pointed out that there is a
planar inner uniform domain for which (1.4) fails to hold. Indeed, let D be
the complement of the line segments [−1, 1] and Lθ = {te−iθ : 0 6 t 6 1}
with 0 < θ < π/2. Let B1 = B(te−iθ, ct) and B2 = B(te−iθ, 2ct), where
1
2 sin θ < c < sin θ. Since B1 ∩ [−1, 1] = ∅ and B2 ∩ [−1, 1] 6= ∅, we have
ω(x0, B1 ∩ ∂D, D) ≈ tπ/(π−θ) and ω(x0, B2 ∩ ∂D, D) ≈ t as t → 0. Hence
ω(x0, B2 ∩ ∂D, D)/ω(x0, B1 ∩ ∂D, D) →∞. See Figure 1.1.

B1

B2

Figure 1.1. Harmonic measure fails to satisfy the doubling condition.

In this paper, we characterize John domains whose harmonic measure
satisfies (1.4), the strong doubling condition. There is a John domain with
polar boundary whose harmonic measure vanishes. For such domains any
doubling conditions for harmonic measure is hopeless. To avoid such patho-
logical domains, we assume the capacity density condition (abbreviated to
CDC). See Section 3 for its definition. If n = 2, then the CDC coincides
with the uniform perfectness of the boundary. Our main result is as follows.

Theorem 1.2. — Let D be a John domain with John constant cJ and
suppose the CDC holds. Then the following are equivalent:

(1) D is a semi-uniform domain.

TOME 58 (2008), FASCICULE 2



432 Hiroaki AIKAWA & Kentaro HIRATA

(2) The harmonic measure of D satisfies the strong doubling condition,
i.e., (1.4) holds whenever ξ ∈ ∂D and R > 0 is small.

(3) For each α > 1/cJ , there exist constants A > 1 and τ > 0 depending
only on D and α such that

(1.5) ω(x, ∂D ∩B(ξ,R), D) >
1
A

(
R

R + |x− ξ|

)τ

for |x− ξ| < αδD(x),

whenever ξ ∈ ∂D and R > 0 is small.

Remark 1.3. — The constant 1/cJ is a threshold; if α is less than cJ ,
then {x ∈ D : |x− ξ| < αδD(x)} may be an empty set.

Next, we state a version of Theorem 1.2 with respect to the inner diam-
eter metric ρD(x, y) defined by

ρD(x, y) = inf{diam(γ) : γ is a curve connecting x and y in D},

where diam(γ) denotes the diameter of γ. If we replace diam(γ) by `(γ)
in the above definition, then we obtain the inner length distance λD(x, y).
Obviously |x − y| 6 ρD(x, y) 6 λD(x, y). It turns out, however, that ρD

and λD are comparable for a John domain (Väisälä [16, Theorem 3.4]).
We say that D is an inner uniform domain or uniformly John domain if
there exists a constant A > 1 such that every pair of points x, y ∈ D

can be connected by a curve γ ⊂ D with `(γ) 6 AρD(x, y) and (1.2). See
Balogh-Volberg [6, 7] and Bonk-Heinonen-Koskela [9]; actually, the latter
use λD(x, y) instead of ρD(x, y) in the definition. However, ρD and λD

are equivalent as noted above. For a John domain D, we can consider the
completion D∗ with respect to ρD ([4, Proposition 2.1]). Then ∂∗D = D∗\D
is the ideal boundary of D with respect to ρD. Observe that connectivity
of an inner uniform domain can be extended from x, y ∈ D to x, y ∈ D∗.
See [4, Lemma 2.1].

Definition 1.4. — We say that D is an inner semi-uniform domain if
every pair of points x ∈ D and y ∈ ∂∗D can be joined by a rectifiable curve
γ such that γ \ {y} ⊂ D, `(γ) 6 AρD(x, y) and (1.2) holds.

Let ξ∗ ∈ ∂∗D. Then there are a point ξ ∈ ∂D and a sequence {xj} ⊂ D

converging to ξ with respect to the Euclidean metric as well as converging
to ξ∗ with respect to ρD. We say that ξ∗ lies over ξ and define the projection
π from D∗ to D by π(ξ∗) = ξ for ξ∗ ∈ ∂∗D and π|D = id |D. Let Bρ(ξ,R)
be the connected component of B(ξ,R) ∩ D from which ξ∗ is accessible.
We observe that Bρ(ξ,R) plays a role of a ball with center at ξ∗ in the
completion D∗ ([4, Lemma 2.2]). Let ∆ρ(ξ∗, R) = {x∗ ∈ ∂∗D : ρD(x∗, ξ∗) <
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DOUBLING CONDITIONS FOR HARMONIC MEASURE 433

R}. This is a surface ball with respect to ρD. Consider a version of (1.4)
with respect to ρD: there is a constant A0 > 2 such that
(1.6)

ω(x,∆ρ(ξ∗, 2R), D) 6 Aω(x,∆ρ(ξ∗, R), D) for x ∈ D \Bρ(ξ∗, A0R),

where ξ∗ ∈ ∂∗D and R > 0 small. We have the following.

Theorem 1.5. — Let D be a John domain with John constant cJ and
suppose the CDC holds. Then the following are equivalent:

(1) D is an inner semi-uniform domain.
(2) (1.6) holds whenever ξ∗ ∈ ∂∗D and R > 0 is small.
(3) For each α > 1/cJ , there exist constants A > 1 and τ > 0 depending

only on D and α such that

ω(x,∆ρ(ξ∗, R), D) >
1
A

(
R

R + ρD(x, ξ∗)

)τ

for ρD(x, ξ∗) < αδD(x),

whenever ξ∗ ∈ ∂∗D and R > 0 is small.

By definition, a semi-uniform domain is an inner semi-uniform domain.
The domain in Figure 1.1 is an inner semi-uniform domain and satisfies
(1.6). Thus (1.3) is refined as follows:

$
Inner uniform $

NTA $ Uniform Inner semi-uniform $ John.
$

Semi-uniform $

There is no direct relationship between the class of inner uniform domains
and the class of semi-uniform domains. Theorem 1.5 and the above im-
plications yield that (1.4) is a property stronger than (1.6). This is not
straightforward from their definitions.

The plan of the present paper is as follows: In Section 2, some preliminary
notions such as the quasihyperbolic metric and local reference points will
be recalled. The relationship between the Green function and the harmonic
measure will be extensively studied in Section 3. Theorem 1.2 will be proved
in Section 4 based on the results in Section 3. Theorem 1.5 can be proved
almost in the same manner. Necessary lemmas will be stated in the last
section.

Acknowledgments. The authors thank the referee for useful comments.
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434 Hiroaki AIKAWA & Kentaro HIRATA

2. Preliminaries

We define the quasihyperbolic metric kD(x, y) by

kD(x, y) = inf
γ

∫
γ

ds(z)
δD(z)

,

where the infimum is taken over all rectifiable curves γ connecting x to y

in D. We observe that the shortest length of the Harnack chain connecting
x and y is comparable to kD(x, y) + 1. Therefore, the Harnack inequality
yields that there is a constant A > 1 depending only on n such that

(2.1) exp(−A(kD(x, y) + 1)) 6
h(x)
h(y)

6 exp(A(kD(x, y) + 1))

for every positive harmonic function h on D. We say that D satisfies a
quasihyperbolic boundary condition if

(2.2) kD(x, x0) 6 A log
δD(x0)
δD(x)

+ A for all x ∈ D.

It is easy to see that a John domain satisfies the quasihyperbolic bound-
ary condition (see [10, Lemma 3.11]). We have more precise estimate ([3,
Proposition 2.1]).

Lemma A. — Let D be a John domain with John constant cJ . Then
there exist a positive integer N and constants RD > 0 and A > 1 depending
only on D with the following property: for every ξ ∈ ∂D and 0 < R < RD

there are N points yR
1 , . . . , yR

N ∈ D∩S(ξ,R) such that A−1R 6 δD(yR
i ) 6 R

for i = 1, . . . , N and

min
i=1,...,N

{kDR
(x, yR

i )} 6 A log
R

δD(x)
+ A for x ∈ D ∩B(ξ,R/2),

where DR = D ∩ B(ξ, 8R). Moreover, every x ∈ D ∩ B(ξ,R/2) can be
connected to some yR

i by a curve γ ⊂ DR with `(γ(x, z)) 6 AδD(z) for all
z ∈ γ.

If the conclusion of the above lemma holds, then we say that ξ has a
system of local reference points yR

1 , . . . , yR
N of order N . We remark that the

order N depends only on the John domain D.

3. Green function and harmonic measure

We begin by recalling the capacity density condition (abbreviated to
CDC).

ANNALES DE L’INSTITUT FOURIER
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Definition 3.1. — By Cap we denote the logarithmic capacity if n = 2,
and the Newtonian capacity if n > 3. We say that the CDC holds if there
exist constants A > 0 and RD > 0 such that

Cap(B(ξ,R) \D) >

{
AR if n = 2,

ARn−2 if n > 3,

whenever ξ ∈ ∂D and 0 < R < RD.

It is well known that the CDC is equivalent to the uniformly ∆-regularity
([5]). Hence there is a positive constant β such that if ξ ∈ ∂D and 0 < r < R

are small, then

(3.1) sup
D∩B(ξ,r)

ω(·, D ∩ S(ξ,R), D ∩B(ξ,R)) 6 A(r/R)β ,

so that there is a constant A1 > 1 such that

inf
D∩B(ξ,R/A1)

ω(·, ∂D ∩B(ξ,R), D)(3.2)

> inf
D∩B(ξ,R/A1)

ω(·, ∂D ∩B(ξ,R), D ∩B(ξ,R)) >
1
2
.

Lemma 3.2. — Let G(x, y) be the Green function for D with the CDC.
Suppose δD(y) = R > 0 is small. Then

(3.3) G(x, y) ≈ R2−n for x ∈ S(y, R/2).

Moreover, there is a positive constant β such that

(3.4) G(x, y) 6 AR2−n
(δD(x)

R

)β

for x ∈ D \B(y, R/2).

Proof. — If n > 3, then the first assertion is obvious. The planar case
will be given in Lemma 3.4. For the proof of (3.4) we may assume that
δD(x) < R/4. Let x∗ ∈ ∂D be a point such that |x∗ − x| = δD(x) < R/4.
Then |x∗−y| > δD(y) = R. Hence B(x∗, R/2)∩B(y, R/2) = ∅, so that the
maximum principle and (3.3) yield

G(x, y) 6 AR2−nω(x, S(y, R/2), D \B(y, R/2))

6 AR2−nω(x,D ∩ S(x∗, R/2), D ∩B(x∗, R/2)).

Hence we have (3.4) from (3.1). �

Lemma 3.3. — Let G(x, y) be the Green function for D with the CDC.
Suppose δD(y) = R > 0 is small and G(x, y) > A2R

2−n. Then there is a
curve γ connecting x and y in D such that `(γ) 6 AR and δD(z) > R/A

for all z ∈ γ, where A depends only on D and A2.

TOME 58 (2008), FASCICULE 2



436 Hiroaki AIKAWA & Kentaro HIRATA

Proof. — Observe from the maximum principle that Ω = {z ∈ D :
G(z, y) > A2R

2−n} is a connected open set. If n > 3, then G(z, y) 6
|z − y|2−n, so that diam Ω 6 AR. The planar case will be given in Lemma
3.4. Let γ be a curve connecting x and y in Ω. Lemma 3.2 says that

A2R
2−n < G(z, y) 6 AR2−n

(δD(z)
R

)β

for z ∈ Ω \B(y, δD(y)/2).

Hence δD(z) > R/A for all z ∈ γ. Since diam γ 6 diam Ω 6 AR, taking a
polygonal curve, we can modify γ so that γ ⊂ D, `(γ) 6 AR and δD(z) >
R/A for all z ∈ γ. The proof is complete. �

Lemma 3.4. — Let n = 2 and let G(x, y) be the Green function for
D with the CDC. Suppose δD(y) = R > 0 is small. Then the following
statements hold:

(1) G(x, y) ≈ 1 for x ∈ S(y, R/2).
(2) Let Ω = {z ∈ D : G(z, y) > A2}. Then diam Ω 6 AR.

Proof. — (1) Let M0 = supS(y,R/2) G(·, y). By the maximum principle
G(·, y) 6 M0 on D \ B(y, R/2). Let y∗ ∈ ∂D be a point such that |y∗ −
y| = δD(y) = R. By (3.1) we find a positive constant ε1 < 1/4 such
that G(·, y) 6 M0/2 on D ∩ B(y∗, 2ε1R). Let y′ be the point in yy∗ with
|y′ − y∗| = ε1R. Then G(·, y) 6 M0/2 on B(y′, ε1R). Cover the sphere
S(y, (1− ε1)R) with finitely many balls with the same radii ε1R. We may
assume that B(y′, ε1R) appears in the covering, consecutive balls have an
intersection with volume comparable to (ε1R)n, and the number of balls is
bounded by a constant depending only on ε1 and the dimension n. Applying
the mean value property of G(·, y), we can conclude G(·, y) 6 (1 − c)M0

on S(y, (1 − ε1)R), and hence on D \ B(y, (1 − ε1)R) with 0 < c < 1
independent of R and y (see [2, Proof of Lemma 2]). Let GB be the Green
function for B = B(y, (1− ε1)R). Then

GB(x, y) = G(x, y)− R̂
D\B
G(·,y)(x) > G(x, y)− (1− c)M0 for x ∈ B,

where R̂
D\B
G(·,y) is the regularized reduced function of G(·, y) relative to D\B

in D. Take the supremum over S(y, R/2) to obtain

A > M0 − (1− c)M0 = cM0.

Thus (1) follows, since G(x, y) > GB(y,R)(x, y) = log 2 for x ∈ S(y, R/2).
(2) For the proof it is sufficient to show the following claim: there is a

positive constant λ such that if δD(y) 6 2|x− y| small, then

(3.5) G(x, y) 6 A
( δD(y)
|x− y|

)λ

.
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Let |x−y| = L be sufficiently small. The first named author ([2, Lemma 1])
showed the uniform perfectness of ∂D. Hence we find a constant b > 2 and
an increasing sequence δD(y) = R = R1 < R2 < · · · < Rk−1 < L 6 Rk

such that S(y, Rj) ∩ ∂D 6= ∅ and that 2 6 Rj/Rj−1 6 b for j = 1, . . . , k.
Here R0 = δD(y)/2. Let u = G(·, y) in D and let u = 0 in Rn \D. Then u is
a nonnegative subharmonic function in Rn \ {y}. We employ an argument
similar to (1). Cover the sphere S(y, Rj) with finitely many balls with
the same radii ε1Rj . We find y′′ ∈ S(y, Rj) ∩ ∂D. We may assume that
B(y′′, ε1Rj) appears in the covering, consecutive balls have an intersection
with volume comparable to (ε1Rj)n, and the number of balls is bounded by
a constant depending only on ε1 and the dimension n. Moreover, observe
that these balls lie outside B(y, Rj−1). Applying the mean value property
of u, we obtain

Mj = sup
Rn\B(y,Rj)

u = sup
S(y,Rj)

u 6 (1− c)Mj−1 6 (1− c)jM0

for j = 1, 2, . . . , k. Since L 6 Rk 6 bkR0, it follows that

Mk 6 exp(k log(1− c) + log M0)

6 exp
(

log M0 +
log(1− c)

log b
log

L

R0

)
= M0

( R

2L

)λ

with λ = − log(1− c)/ log b. Thus (3.5) follows. �

In the sequel, N stands for the number of local reference points in
Lemma A. We note that N depends only on a John domain D.

Lemma 3.5. — Let D be a John domain with the CDC. Let ξ ∈ ∂D

have a system of local reference points yR
1 , . . . , yR

N ∈ D ∩ S(ξ,R) of order
N for 0 < R < RD. Then
(3.6)

Rn−2
N∑

i=1

G(x, yR
i ) 6 Aω(x, ∂D ∩B(ξ, 2A1R), D) for x ∈ D \B(ξ, 2R),

where A depends only on D and A1 is the constant in (3.2).

Proof. — The maximum principle and (3.3) give

Rn−2
N∑

i=1

G(x, yR
i ) ≈ 1 for x ∈

⋃
i

S(yR
i , δD(yR

i )/2).

Since
⋃

i S(yR
i , δD(yR

i )/2) ⊂ D ∩B(ξ, 2R), it follows from (3.2) that

ω(x, ∂D ∩B(ξ, 2A1R), D) ≈ 1 for x ∈
⋃
i

S(yR
i , δD(yR

i )/2).

The maximum principle completes the proof. �

TOME 58 (2008), FASCICULE 2



438 Hiroaki AIKAWA & Kentaro HIRATA

The following is an estimate opposite to Lemma 3.5.

Lemma 3.6. — Let D be a John domain. Let ξ ∈ ∂D have a system of
local reference points yR

1 , . . . , yR
N ∈ D∩S(ξ,R) of order N for 0 < R < RD.

Then
(3.7)

ω(x, ∂D ∩B(ξ,R/8), D) 6 ARn−2
N∑

i=1

G(x, yR
i ) for x ∈ D \B(ξ,R/4),

where A depends only on D.

Proof. — For 0 < r < δD(x0)/2 let U(r) = {x ∈ D : δD(x) < r}. Then
each point x ∈ U(r) can be connected to x0 by a curve such that (1.1)
holds. Hence, B(x,A3r) \ U(r) includes a ball with radius r, provided A3

is large. This implies that

ω(x,U(r) ∩ S(x,A3r), U(r) ∩B(x,A3r)) 6 1− ε0 for x ∈ U(r)

with 0 < ε0 < 1 depending only on A3 and the dimension. Let R > r and
repeat this argument with the maximum principle. Then

(3.8) ω(x,U(r)∩S(x,R), U(r)∩B(x,R)) 6 A exp
(
−A′R

r

)
for x ∈ U(r)

for some A′ > 0. See [1, Lemma 1] for details.
Let 0 < R < RD. For each x ∈ D ∩ B(ξ,R/2) there is a local reference

point y(x) ∈ {yR
1 , . . . , yR

N} such that

kD(x, y(x)) 6 A log
R

δD(x)
+ A

by Lemma A. Let y′(x) ∈ S(y(x), δD(y(x))/2). Observe that

kD\{y(x)}(x, y′(x)) 6 A log(R/δD(x)) + A.

Letting u(x) = Rn−2
∑N

i=1 G(x, yR
i ), we obtain from (2.1) and (3.3) that

u(x) > A
(δD(x)

R

)λ

for x ∈ D ∩B(ξ,R/2)

with some λ > 0 depending only on D.
Now let us employ a modified version of the box argument (cf. [8] and

[1, Lemma 2]). Let Dj = {x ∈ D : exp(−2j+1) 6 u(x) < exp(−2j)} and
Uj = {x ∈ D : u(x) < exp(−2j)}. Then we see that

(3.9) Uj ∩B(ξ,R/2) ⊂
{

x ∈ D : δD(x) < AR exp
(
− 2j

λ

)}
.
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DOUBLING CONDITIONS FOR HARMONIC MEASURE 439

Define sequences Rj , rj and ρj by R0 = 3R/8, r0 = R/8 and

ρj =
3

4π2

R

j2
, Rj =

3
8
R−

j∑
k=1

ρk, rj =
R

8
+

j∑
k=1

ρk

for j > 1. We observe

(3.10)
R

8
= r0 < r1 < · · · < R

4
< · · · < R1 < R0 =

3
8
R.

Let A(ξ, r, R) = B(ξ,R)\B(ξ, r) be the annulus with center at ξ and radii r

and R. Since Rj−1−Rj = rj−rj−1 = ρj , it follows that if x ∈ A(ξ, rj , Rj),
then B(x, ρj) ⊂ A(ξ, rj−1, Rj−1). See Figure 3.1.

Dj

Dj

Dj

Dj r0

r1

R0

R1

R
4

∂D

∂D

ξ

Figure 3.1. A box argument for annuli.

The maximum principle, (3.8) and (3.9) give

ω(x,Uj ∩ ∂A(ξ, rj−1, Rj−1), Uj ∩A(ξ, rj−1, Rj−1))

6 ω(x,Uj ∩ S(x, ρj), Uj ∩B(x, ρj)) 6 A exp
(
−Aj−2 exp

(2j

λ

))
(3.11)

for x ∈ Uj ∩A(ξ, rj , Rj). Let ω0 = ω(·, ∂D ∩B(ξ,R/8), D) and put

dj =


sup

x∈Dj∩A(ξ,rj ,Rj)

ω0(x)
u(x)

if Dj ∩A(ξ, rj , Rj) 6= ∅,

0 if Dj ∩A(ξ, rj , Rj) = ∅.
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By (3.10) it is sufficient to show that dj is bounded by a constant indepen-
dent of R and j. Apply the maximum principle to Uj ∩A(ξ, rj−1, Rj−1) to
obtain

ω0(x) 6 ω(x,Uj ∩ ∂A(ξ, rj−1, Rj−1), Uj ∩A(ξ, rj−1, Rj−1)) + dj−1u(x).

Divide the both sides by u(x) and take the supremum over Dj∩A(ξ, rj , Rj).
Then (3.11) yields

dj 6 A exp
(
2j+1 −Aj−2 exp(2j/λ)

)
+ dj−1.

Since
∑

j exp
(
2j+1 −Aj−2 exp(2j/λ)

)
< ∞, we obtain supj>0 dj < ∞.

Thus (3.7) follows from the maximum principle. �

4. Proof of Theorem 1.2

Proof of Theorem 1.2. — (1) =⇒ (2). Suppose first D is a semi-uniform
domain. Let ξ ∈ ∂D and let R > 0 be sufficiently small. Then by Lemma 3.6
and scaling we find a system of local reference points y1, . . . , yN ∈ D ∩
S(ξ, 16R) such that

ω(x, ∂D ∩B(ξ, 2R), D) 6 ARn−2
N∑

i=1

G(x, yi) for x ∈ D \B(ξ, 4R).

Let {y∗1 , . . . , y∗N} ⊂ D ∩ S(ξ,R/2A1) be a system of local reference points.
Lemma 3.5 implies that

Rn−2
N∑

i=1

G(x, y∗i ) 6 Aω(x, ∂D ∩B(ξ,R), D) for x ∈ D \B(ξ,R/A1).

By the semi-uniformity, each yi is connected to ξ by a cigar curve γi. Let
y′i ∈ γi∩S(ξ,R/4A1). Observe kD(y′i, y

∗
j ) 6 A for some j. Since kD(yi, y

∗
j ) 6

kD(yi, y
′
i) + kD(y′i, y

∗
j ) 6 A and yi, y

∗
j , y′i ∈ D ∩B(ξ, 16R), it follows that

G(x, yi) ≈ G(x, y∗j ) for x ∈ D \B(ξ, 32R),

so that

ω(x, ∂D ∩B(ξ, 2R), D) 6 Aω(x, ∂D ∩B(ξ,R), D) for x ∈ D \B(ξ, 32R).

Hence (1.4) follows with A0 = 32.
(2) =⇒ (3). Suppose ξ ∈ ∂D and R > 0 is small and |x− ξ| < αδD(x).

It is easy to see from (3.2) that (1.5) holds for |x − ξ| 6 R/A1. Now let
r = |x − ξ| > R/A1. Suppose first A0r > RSD with RSD for (1.4). Take
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y ∈ D ∩ S(ξ,R/A1) with δD(y) > R/A. Then kD(x, y) 6 A log(1/R) + A,
so that (2.1) and (3.2) give

ω(x, ∂D ∩B(ξ,R), D) >
1
A

Rτω(y, ∂D ∩B(ξ,R), D) >
1

2A
Rτ

with some τ > 0 depending only on D and α. Since R+ |x− ξ| > RSD/A0,
we obtain (1.5). Suppose next A0r 6 RSD. We find a local reference point
yi ∈ D ∩ S(ξ,A0A1r) such that

(4.1) kD(x, yi) 6 A(D,α).

Note that R < A1r. Applying (1.4) with yi in please of x repeatedly, we
obtain

ω(yi, ∂D ∩B(ξ,A1r), D) 6 A
( r

R

)τ

ω(yi, ∂D ∩B(ξ,R), D),

where A and τ depend only on A1 and the doubling constant. Therefore
(2.1) and (4.1) give

ω(x, ∂D ∩B(ξ,A1r), D) 6 A
( r

R

)τ

ω(x, ∂D ∩B(ξ,R), D).

Since ω(x, ∂D ∩B(ξ,A1r), D) > 1/2 by (3.2), we obtain (1.5) as(R

r

)τ

>
( R

R + |x− ξ|

)τ

.

(3) =⇒ (1). Let x ∈ D and ξ ∈ ∂D. We may assume that |x − ξ| = R

is small. Then by Lemma A and scaling we find a system of local reference
points yR

1 , . . . , yR
N ∈ D∩S(ξ,R) and y2R

1 , . . . , y2R
N ∈ D∩S(ξ, 2R). We claim

that every y2R
i can be connected to some yR

j by a curve γ with `(γ) 6 AR

and δD(z) > R/A for all z ∈ γ. By (3) and Lemma 3.6,

1
A

6 ω(y2R
i , ∂D ∩B(ξ,R/8), D) 6 ARn−2

N∑
j=1

G(y2R
i , yR

j ).

Hence there is yR
j such that G(y2R

i , yR
j ) > AR2−n. Lemma 3.3 gives a curve

γ connecting y2R
i to yR

j in D such that `(γ) 6 AR and δD(z) > R/A for
all z ∈ γ. Thus the claim follows.

Now the proof is easy. By Lemma A we find a point y2R
i which can be

connected to x by a cigar curve with length bounded by AR. The claim
gives a point yR

j which can be connected to y2R
i by a cigar curve with length

bounded by AR. See Figure 4.1.
Repeat the claim again. We find a point y

R/2
k which can be connected to

yR
j by a cigar curve with length bounded by AR/2. Thus we can construct

a cigar curve connecting points as follows:

x → y2R
i → yR

j → y
R/2
k → · · · → ξ.
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y2R
i

yR
j

∂D

ξ

x

Figure 4.1. A cigar curve connecting x to ξ.

The length of the curve is bounded by AR. Thus D is a semi-uniform
domain. �

5. Proof of Theorem 1.5

Replacing Lemmas A, 3.5 and 3.6 by the following three lemmas, we
can prove Theorem 1.5 almost in the same way as for Theorem 1.2. The
details are left to the reader. Recall π is the natural projection from D∗

to D. Let ξ∗ ∈ ∂∗D, ξ = π(ξ∗) and Sρ(ξ∗, R) = {x ∈ D : ρD(x, ξ∗) = R}.
Observe that Sρ(ξ∗, R) ⊂ S(ξ,R), that Bρ(ξ∗, R) is the connected compo-
nent of B(ξ,R) ∩D from which ξ∗ is accessible, and that the boundary of
Bρ(ξ∗, R) is included in Sρ(ξ∗, R) ∪ ∂D. The following lemma corresponds
to Lemma A.

Lemma 5.1. — Let D be a John domain with John constant cJ . Then
there exist a positive integer M and constants RD > 0 and A > 1 depending
only on D with the following property: for every ξ∗ ∈ ∂∗D and 0 < R < RD
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there are M points yR
1 , . . . , yR

M ∈ Sρ(ξ∗, R) such that A−1R 6 δD(yR
i ) 6 R

for i = 1, . . . ,M and

min
i=1,...,M

{kBρ(ξ∗,8R)(x, yR
i )} 6 A log

R

δD(x)
+ A for x ∈ Bρ(ξ∗, R/2).

Moreover, every x ∈ Bρ(ξ∗, R/2) can be connected to some yR
i by a curve

γ ⊂ Bρ(ξ∗, 8R) with `(γ(x, z)) 6 AδD(z) for all z ∈ γ.

Proof. — We prove the lemma with RD = δD(x0). Take x ∈ Bρ(ξ∗, R/2).
By definition there is a rectifiable curve γ starting from x and terminating
at x0 such that (1.1) holds. Then the first hit y(x) of Sρ(ξ∗, R) along γ sat-
isfies 2−1cJR 6 δD(y(x)) 6 R and kBρ(ξ∗,8R)(x, y(x)) 6 A log(R/δD(x)).
We associate y(x) with x, although it may not be unique.

Consider, in general, the family of balls B(y, 4−1cJR) with y ∈ Sρ(ξ∗, R).
These balls are included in B(ξ, (4−1cJ + 1)R), so that at most N(cJ , n)
balls among them can be mutually disjoint. Hence we find M points x1, . . . ,

xM ∈ Bρ(ξ∗, R/2) with M 6 N(cJ , n) such that {B(yR
1 , 4−1cJR), . . . ,

B(yR
M , 4−1cJR)} is maximal, where yR

j = y(xj) ∈ Sρ(ξ∗, R) is the point
associated with xj as above. This means that if x ∈ Bρ(ξ∗, R/2), then
B(y(x), 4−1cJR) intersects some of B(yR

1 , 4−1cJR), . . . , B(yR
M , 4−1cJR), say

B(yR
i , 4−1cJR). Since B(y(x), 4−1cJR) ∩ B(yR

i , 4−1cJR) 6= ∅ and B(y(x),
2−1cJR)∪B(yR

i , 2−1cJR) ⊂ Bρ(ξ∗, 8R), it follows that kBρ(ξ∗,8R)(y(x), yi)
6 A′. Hence

kBρ(ξ∗,8R)(x, yi) 6 kBρ(ξ∗,8R)(x, y(x)) + kBρ(ξ∗,8R)(y(x), yi)

6 A log
R

δD(x)
+ A′.

Repeating some points, say y1 = y(x1), if necessary, we may assume that
this property holds with M independent of R and M 6 N(cJ , n). �

If the conclusion of the above lemma holds, then we say that ξ∗ ∈ ∂∗D

has a system of inner local reference points yR
1 , . . . , yR

M of order M . We
emphasize that inner local reference points yR

1 , . . . , yR
M lie on Sρ(ξ∗, R) and

that M 6 N in general. The following two lemmas replace Lemmas 3.5 and
3.6.

Lemma 5.2. — Let D be a John domain with the CDC. Let ξ∗ ∈ ∂∗D

have a system of inner local reference points yR
1 , . . . , yR

M ∈ Sρ(ξ∗, R) of
order M . Then

Rn−2
M∑
i=1

G(x, yR
i ) 6 Aω(x,∆ρ(ξ∗, 2A1R), D) for x ∈ D \Bρ(ξ∗, 2R),

where A depends only on D.
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Proof. — The maximum principle and (3.3) give

Rn−2
M∑
i=1

G(x, yR
i ) ≈ 1 for x ∈

⋃
i

S(yR
i , δD(yR

i )/2).

Since
⋃

i S(yR
i , δD(yR

i )/2) ⊂ Bρ(ξ∗, 2R) ⊂ B(ξ, 2R), it follows from (3.2)
that for x ∈

⋃
i S(yR

i , δD(yR
i )/2)

ω(x,∆ρ(ξ∗, 2A1R), D) > ω(x, ∂D ∩B(ξ, 2A1R), D ∩B(ξ, 2A1R)) >
1
2
.

The maximum principle completes the proof. �

Lemma 5.3. — Let D be a John domain. Let ξ∗ ∈ ∂∗D have a system
of inner local reference points yR

1 , . . . , yR
M ∈ Sρ(ξ∗, R) of order M . Then

ω(x,∆ρ(ξ∗, R/8), D) 6 ARn−2
M∑
i=1

G(x, yR
i ) for x ∈ D \Bρ(ξ∗, R/4),

where A depends only on D.

Proof. — The proof is the same as the proof of Lemma 3.6. It is rather
lengthy and the details are left to the reader. �
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