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THE LERAY MEASURE OF NODAL SETS FOR
RANDOM EIGENFUNCTIONS ON THE TORUS

by Ferenc ORAVECZ, Zeév RUDNICK & Igor WIGMAN

Abstract. — We study nodal sets for typical eigenfunctions of the Laplacian
on the standard torus in d > 2 dimensions. Making use of the multiplicities in
the spectrum of the Laplacian, we put a Gaussian measure on the eigenspaces and
use it to average over the eigenspace. We consider a sequence of eigenvalues with
growing multiplicity N →∞.

The quantity that we study is the Leray, or microcanonical, measure of the nodal
set. We show that the expected value of the Leray measure of an eigenfunction is
constant, equal to 1/

√
2π. Our main result is that the variance of Leray measure

is asymptotically 1/4πN , as N →∞, at least in dimensions d = 2 and d > 5

Résumé. — Nous étudions les ensembles nodaux des fonctions propres du La-
placien sur le tore standard de dimension d > 2. En utilisant la multiplicité du
spectre du Laplacien et en introduisant une mesure gaussienne sur l’espace propre,
nous nous servons de cette dernière afin d’évaluer des moyennes dans l’espace. Nous
considérons une suite de valeurs propres ayant une multiplicité croissante N →∞.

La quantité que nous étudions est la mesure de Leray (mesure microcanonique).
Nous montrons que la moyenne de la mesure de Leray pour une fonction propre est
constante et qu’elle vaut 1/

√
2π. Notre résultat principal précise que la variance

de la mesure de Leray est asymptotiquement 1/4πN lorsque N → ∞ pour d = 2
et d > 5.

1. Introduction

1.1. Background

The nodal set of a function is the set of points where the function van-
ishes. In this paper we study the nodal sets of eigenfunctions of the Lapla-
cian ∆ =

∑d
j=1

∂2

∂x2
j

on the (standard) flat torus Rd/Zd, d > 2.

Keywords: Nodal sets, Leray measure, eigenfunctions of the Laplacian, trigonometric
polynomials.
Math. classification: 35P20.
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Of course we have the simple eigenfunctions such as cos(2π(mx+ny)) or
sin(2πmx) sin(2πny) with corresponding Laplace eigenvalue 4π2(m2 +n2),
for which the nodal set have a very simple structure. However, on the
standard torus such eigenfunctions are atypical, because the eigenvalues
on the torus always have multiplicities. The dimension N = N (E) of an
eigenspace corresponding to eigenvalue 4π2E is the number of integer vec-
tors λ ∈ Zd so that |λ|2 = E. In dimension d > 5 this grows as E → ∞
roughly as E

d
2−1 but has more erratic behaviour for small d, particularly

for d = 2.
We wish to study the nodal sets of typical eigenfunctions. For this we

consider a random eigenfunction on the torus, that is a random linear
combination

f(x) =
1√
2N

∑
λ∈Zd:|λ|2=E

bλ cos 2πi〈λ, x〉 − cλ sin 2πi〈λ, x〉

with bλ, cλ ∼ N(0, 1) real Gaussians of zero mean and variance 1 which are
independent save for the relations b−λ = bλ, c−λ = −cλ.

We denote by E(•) the expected value of the quantity • in this ensemble.
For instance, the expected amplitude of f is E(|f(x)|2) = 1.

1.2. Leray measure

The fundamental quantity that we study here is the Leray measure, or
microcanonical measure, of the nodal set of a function f in our ensemble.
This is defined as (see [10, Chapter III], [16, §3.3])

(1.1) L(f) := lim
ε→0

1
2ε

meas{x ∈ T : |f(x)| < ε}.

and in fact we can define a measure on the nodal set by

lim
ε→0

1
2ε

∫
x:|f(x)|<ε

φ(x)dx

which in statistical mechanics is the microcanonical ensemble. This measure
also appears in number theory as the “singular integral” in the Hardy-
Littlewood method and elsewhere, see e.g. [7, 4]. We may formally write

L(f) =
∫

Td

δ(f(x))dx .

As is well known, the limit (1.1) exists when ∇f 6= 0 on the nodal set, in
which case

L(f) =
∫
{x:f(x)=0}

dσ(x)
|∇f(x)|

where dσ is the Riemannian hypersurface measure on the nodal set (see § 4).

ANNALES DE L’INSTITUT FOURIER
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1.3. Results

The expected value of L(f) turns out to be constant (Theorem 4.1):

E(L) =
1√
2π

.

To compare, the expected volume (or hypersurface measure) of the nodal
set of f in our ensemble is Id

√
E for some constant Id depending only on

the dimension [18].
Our main result concerns the variance of L(f) as N →∞:

Theorem 1.1. — In dimensions d = 2 and d > 5, as N →∞,

Var(L(f)) ∼ 1
4πN

.

We refer to [18] for estimates on the variance of the volume of the nodal
sets.

Concerning remainder terms, in dimension d = 2 we show that
Var(L(f)) = 1/4πN+O(1/N 2). In dimension d > 3, we prove Var(L(f)) =
1/4πN + O(E

d−3
2 +ε/N 2), for all ε > 0. Thus whenever N > E

d−3
2 +δ for

some δ > 0 (which is always valid in dimension d > 5), then we get an
asymptotic. In dimensions d = 3, 4 we are only able to show that the
variance is bounded by O(1/N ), though we believe that the conclusion of
Theorem 1.1 holds in those cases as well.

It is somewhat surprising that the result depends only on the dimension
of the eigenspace and not on the way the frequencies λ are distributed.
In dimension d > 5, the directions λ/|λ| of the frequencies are uniformly
distributed on the sphere Sd−1 [17]. However, in two dimensions this need
not be the case (though it holds for most values of E, see [8, 12, 9]). For
instance there is an infinite sequence of eigenvalues where the dimension of
the eigenspace goes to infinity but the set of directions λ/|λ| ∈ S1 tends to
an average of four equally spaced point masses [6].

1.4. Related work

The study of nodal lines of random waves goes back to Longuet-Higgins
[13, 14] who computed various statistics of nodal lines for Gaussian random
waves in connection with the analysis of ocean waves. Berry [2] suggested to
model highly excited quantum states for classically chaotic systems by using
various random wave models, and also computed fluctuations of various
quantities in these models (see e.g. [3]). See also Zelditch [20]. The idea of

TOME 58 (2008), FASCICULE 1
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averaging over a single eigenspace in the presence of multiplicities appears
in Bérard [1] who computed the expected surface measure of the nodal set
for eigenfunctions of the Laplacian on spheres. Neuheisel [15] also worked
on the sphere and studied the statistics of Leray measure. He gave an upper
bound for the variance, which we believe is not sharp.

1.5. About the proof of Theorem 1.1

We compute the second moment E(L2) by means of Gaussian integration
as an integral over the torus

E(L2) =
1
2π

∫
Td

dx√
1− u(x)2

where
u(x) := E(f(x+ y)f(y)) =

1
N

∑
|λ|2=E

cos 2π〈λ, x〉

is the two-point function of our random process (which is translation in-
variant). This formula shows that one should single out points x ∈ Td

where |u(x)| is close to 1 (clearly |u(x)| 6 1). We will show (see section
6.3) that the total contribution to the integral near such (suitably defined)
“singular” points is bounded by O(

∫
Td u(x)4dx).

Outside of these “singular” points, we may expand in a Taylor series
(1 − u2)−1/2 = 1 + 1

2u
2 + O(u4). The constant term 1 corresponds to the

square of the expectation and thus we will get

Var(L) =
1
4π

∫
Td

u(x)2dx+O

(∫
Td

u(x)4dx
)
.

The second moment of u is immediately seen to equal
∫

Td u(x)2dx =
1/N , and it is easily seen that the fourth moment of u is at most 1/N .
Thus we get an upper bound Var(L) = O(1/N ) (in any dimension d > 2).
To obtain Theorem 1.1 one needs to show that the fourth moment of u is
negligible relative to 1/N . In dimension d = 2 we have

∫
Td u(x)4dx� 1/N 2

by a geometric argument due to Zygmund [21]. In dimension d > 3, we can
show that

(1.2)
∫

Td

u(x)4dx�ε
E

d−3
2 +ε

N 2
, ∀ε > 0

which in dimension d > 5 suffices because N ≈ E
d
2−1 and so we get a

bound of 1/NE1/2−ε.

ANNALES DE L’INSTITUT FOURIER
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Alternatively, note that u(x) is itself an eigenfunction of the Laplacian
and we want a bound on its L4-norm relative to its L2-norm. In dimension
d > 5 a bound (valid for any Riemannian manifold) due to Sogge [19]
suffices here. A stronger bound for the torus, due to Bourgain [5], will
improve (1.2) for d > 7.

1.6. Acknowledgements

We thank Misha Sodin for several helpful discussions. This work was
supported by the Israel Science Foundation (grant No. 925/06). In addition,
I.W. was partly supported by SFB 701: Spectral Structures and Topological
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2. Random eigenfunctions on the torus

2.1. The basic setup

We wish to consider eigenfunctions of the Laplacian on the standard flat
torus:

∆ψ + 4π2Eψ = 0 .

These can be written as linear combinations of the basic exponentials
e2πi〈λ,x〉, with λ ∈ Zd, |λ|2 = E. The dimension N of the correspond-
ing eigenspace is simply the number of ways of expressing E as a sum of
d integer squares. For d > 5 this grows roughly as Ed/2−1 as E → ∞.
For d 6 4 the dimension of the eigenspace need not grow with E. In the
extreme case d = 2, N is given in terms of the prime decomposition of
E as follows: If E = 2α

∏
j p

βj

j

∏
k q

2γk

k where pj ≡ 1 mod 4 and qk ≡ 3
mod 4 are odd primes, α, βj , γk > are integers, then N = 4

∏
j(βj + 1),

and otherwise E is not a sum of two squares and N = 0. On average (over
integers which are sums of two squares) the dimension is const ·

√
logE.

For some of our initial work, throughout sections § 4, 5 we will work in
greater generality and instead of eigenspaces we will consider linear spaces
E = E(Λ) spanned by certain sets of exponentials e2πi〈λ,x〉 with λ ∈ Λ ⊂ Zd.
We take into account the reflection symmetries of the torus by assuming
that the frequency set Λ is invariant under the group of signed permutations
Wd = {±1}d × Sd, consisting of coordinate permutations and sign-change
of any coordinate, e.g. (λ1, λ2) 7→ (−λ1, λ2) (for d = 2). We say that a

TOME 58 (2008), FASCICULE 1
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non-empty subset Λ ⊂ Zd is “symmetric” if it is invariant under Wd, that
is invariant under permutations of the coordinates and changing sign of
each coordinate, and that 0 /∈ Λ.

The dimension N = dim E is the number of the frequencies in Λ. Since
Λ is symmetric and does not contain 0, N is even. We write Λ/± to denote
representatives of the equivalence class of Λ under λ 7→ −λ.

Lemma 2.1. — Any set Λ satisfying the symmetry conditions (i.e. in-
variant w.r.t. coordinate permutations and sign changes), spans Rd.

Proof. — Otherwise we have a nontrivial linear relation

(2.1)
d∑

l=1

ciλi = 0,

valid for all λ ∈ Λ. Since Λ is invariant under permutations, we may as-
sume λ1 6= 0. Substituting λ and λ′ = (−λ′1, λ2, . . . , λd) and subtracting
the equations we obtain 2λ1c1 = 0, which implies c1 = 0. Repeating the
argument for all ci, we get a contradiction. �

As a consequence of this lemma, we see that the set LΛ of integer linear
combinations of elements of Λ ⊆ Zd is a sublattice of full rank, and hence
its dual

L∗Λ = {v ∈ Rd : 〈λ, v〉 ∈ Z,∀λ ∈ Λ}
is also a lattice in Rd (containing Zd).

2.2. A non-degeneracy condition

Assume that the set of frequencies Λ, which is assumed to be “symmet-
ric”, further satisfies the following “non-degeneracy” condition:

(2.2) ∃λ ∈ Λ with λ1 6= ±λ2 and λ1, λ2 6= 0 .

By the symmetry of the set Λ, condition (2.2) is equivalent to requiring
that for every i 6= j, there is λ ∈ Λ with λi 6= ±λj and λi, λj 6= 0.

In the case of eigenfunctions of the Laplacian, where Λ = {λ ∈ Zd :
|λ|2 = E}, the non-degeneracy condition (2.2) holds as soon as N = #Λ
is sufficiently large, in fact if N > 3d. This is because any λ where there
are no distinct indices i 6= j with λi, λj 6= 0, λi 6= ±λj must be in the
Wd-orbit of a vector of the form λ(j, r) = (r, r, . . . , r, 0, . . . , 0) with the first
j coordinates equal to r > 0 and the remaining d− j coordinates equal to
zero, and E = jr2 (so r is determined uniquely by E and 0 6 j 6 d). The
number of elements in the Wd-orbit of λ(j, r) is

(
d
j

)
2j and summing over

all 0 6 j 6 d gives at most 3d possibilities.

ANNALES DE L’INSTITUT FOURIER
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2.3. Gaussian ensembles

For any symmetric set of frequencies Λ ⊂ Zd, we define an ensemble of
Gaussian random functions f ∈ E by

(2.3) f(x) =
1√
2N

∑
λ∈Λ

bλ cos 2πi〈λ, x〉 − cλ sin 2πi〈λ, x〉

with bλ, cλ ∼ N(0, 1) real Gaussians of zero mean and variance 1 which
are independent save for the relations b−λ = bλ, c−λ = −cλ. Thus we can
rewrite

f(x) =

√
2
N

∑
λ∈Λ/±

bλ cos 2πi〈λ, x〉 − cλ sin 2πi〈λ, x〉

where now only independent random variables appear.
Alternatively, we may identify E ∼= RN by taking coordinates Z =

(bλ, cλ)λ∈Λ/± and putting the Gaussian probability measure

dµN (Z) =
1

(2π)N/2

∏
λ∈Λ/±

e−(b2λ+c2
λ)/2dbλdcλ .

We define a set B by

B = {w ∈ Rd : 〈λ,w〉 ∈ Z ∀λ ∈ Λ or 〈λ,w〉 ∈ 1
2

+ Z ∀λ ∈ Λ} .

Then clearly 1
2L

∗
Λ ⊆ B ⊆ L∗Λ and so the projection of B on the torus

Td = Rd/Zd is finite. Note that if x− y ∈ B, then for all f ∈ E ,

f(y) = ±f(x), and ∇f(y) = ±∇f(y) .

For a = (a1, a2) ∈ R2, let

Pa
x,y = {f ∈ E : f(x) = a1, f(y) = a2} .

If x − y /∈ B then this is an affine hyperplane of codimension two in E . If
x − y ∈ B then this is either empty or a hyperplane of codimension one
in E .

We define the two-point function of our ensemble as

u(x, y) = E(f(x)f(y)) .

A simple computation shows that u(x, y) depends only on the difference
x− y, in fact u(x, y) = u(x− y) where

u(z) =
1
N
∑
λ∈Λ

cos 2π〈λ, z〉 .

Lemma 2.2. — u(x) = ±1 if and only if x ∈ B.

TOME 58 (2008), FASCICULE 1
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Proof. — If x ∈ B then cos 2π〈λ, x〉 are all equal, to either +1 or −1 and
hence u(x) = ±1. On the other hand, since | cos 2π〈λ, x〉| 6 1, if u(x) = ±1
then all the cosines cos 2π〈λ, x〉 have the same value, which is either +1 or
−1, and this forces either 〈λ, x〉 ∈ Z for all λ ∈ Λ, or 〈λ, x〉 ∈ 1

2 + Z for all
λ ∈ Λ, that is x ∈ B. �

2.4. The singular set

We define the set of singular functions to be

Sing := {f ∈ E : ∃x ∈ Td, f(x) = 0 and (∇f)(x) = ~0}.

Lemma 2.3. — The set Sing has codimension at least 1 in E .

Proof. — Define
ψ : Td × E → Rd × R

(x, f) 7→ (∇f(x), f(x)),

Denoting π2 : Td × RN → RN the projection to the second factor, we
have

Sing = π2(ψ−1({0} × {0})).
We prove that the Jacobian of ψ has maximal rank everywhere, and there-
fore ψ−1({0}×{0}) is a smooth manifold of codimension d+1. It will then
follow that Sing ⊂ RN has codimension > 1.

The (d+ 1)× (d+N ) Jacobian matrix is

Dψ(x) =

∗ −2π
√

2
NA(x)

∗
√

2
NB(x)

 ,

where A(x) is a d×N matrix defined by

A(x) =
(

(sin 2π〈λ, x〉~λ, cos 2π〈λ, x〉~λ)
)

λ∈Λ/±
,

and B(x) is a 1×N matrix defined by

B(x) =
(

(cos 2π〈λ, x〉, − sin 2π〈λ, x〉)
)

λ∈Λ/±
.

Thus we want the (d+ 1)×N matrix
(
A

B

)
to have rank d+ 1. However,

ordering the vectors ~λ(j) ∈ Λ/±, it is a product of(
~0 ~λ(1) ~0 ~λ(2) . . .

1 0 1 0 . . .

)
,

ANNALES DE L’INSTITUT FOURIER
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which is of rank d+ 1 by lemma 2.1 and

cos 2π〈λ(1), x〉 − sin 2π〈λ(1), x〉 0 0 . . .

sin 2π〈λ(1), x〉 cos 2π〈λ(1), x〉 0 0 . . .

0 0 cos 2π〈λ(2), x〉 − sin 2π〈λ(2), x〉 . . .

0 0 sin 2π〈λ(2), x〉 cos 2π〈λ(2), x〉 . . .
. . .


which is nonsingular. This immediately implies the result. �

The following is an immediate

Corollary 2.4. — The set Sing has measure zero in E .

3. The Leray measure

We continue with our previous setting, that is Λ ⊂ Zd is a symmetric,
non-degenerate set of frequencies. We wish to define the Leray measure
L(f) for f ∈ E by the limit

L(f) = lim
ε→0

1
2ε

meas{x : |f(x)| < ε} .

It is well known that the limit exists for any nonsingular f (see [10, Chapter
III], [16, §3.3]), and that in fact

L(f) =
∫
{x:f(x)=0}

dσ(x)
|∇f(x)|

where dσ(x) is the induced hypersurface measure.
We will need to know more refined information about the approach to

the limit in the definition. For ε > 0, set

Lε(f) :=
1
2ε

meas{x : |f(x)| < ε} ,

so that L(f) = limε→0 Lε(f).
For α > 0, β > 0 let

E(α, β) = {f ∈ E : |f(x)| 6 α⇒ |∇f(x)| > β} .

The sets E(α, β) are open, and have the monotonicity property

α1 > α2 ⇒ E(α1, β) ⊆ E(α2, β)

and
β1 > β2 ⇒ E(α, β1) ⊆ E(α, β2) .

TOME 58 (2008), FASCICULE 1
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Moreover, for any sequence αn, βn → 0 we have

E \ Sing =
⋃
n

E(αn, βn) .

Lemma 3.1. — For f ∈ E(α, β) and 0 < ε < α, we have

Lε(f) <
d3/2

β
2
√
Emax

where
Emax = max{|λ|2 : λ ∈ Λ} .

We will first treat the one variable (d = 1) case and state it as a separate
lemma (cf [11, Lemma 2]):

Lemma 3.2. — Let g(t) be a trigonometric polynomial of degree at most
M so that there are α > 0, β > 0 such that |g′(t)| > β whenever |g(t)| < α.
Then for all 0 < ε < α we have

1
2ε

meas{t : |g(t)| < ε} < 2M
β

.

Proof. — Decompose the open set {t : |g(t)| < ε} as a disjoint union of
open intervals (ak, bk) (with ak < bk) and such that on each such interval,
g′ has constant sign, that is either g′ > β or g′ < −β. We will show that
the length bk − ak of each such interval is at most 2ε/β and that there are
at most 2M such intervals.

Suppose that on (ak, bk), g′ > β; then g is increasing, and g(ak) = −ε,
g(bk) = +ε. Then the length of the interval is

bk − ak =
∫ bk

ak

g′(t)
g′(t)

dt <
1
β

∫ bk

ak

g′(t)dt

=
g(bk)− g(ak)

β
=

2ε
β
.

Likewise, if g′ < −β on (ak, bk) then g(ak) = +ε, g(bk) = −ε, and

bk − ak =
∫ bk

ak

−g′(t)
−g′(t)

dt <
1
β

∫ bk

ak

−g′(t)dt

=
g(ak)− g(bk)

β
=

2ε
β

as required.
In both cases, each interval has an endpoint where g(t) = +ε, and hence

the number of such intervals is bounded by the number of solutions of
g(t) = +ε which is at most 2M since g is a trigonometric polynomial of
degree at most M . �

ANNALES DE L’INSTITUT FOURIER
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We now prove Lemma 3.1 by reduction to the case d = 1:

Proof. — Decompose the set {x : |f(x)| < ε} as a union ∪d
j=1Wj where

Wj = {y : |f(y)| < ε, | ∂f
∂xj

(y)| > | ∂f
∂xk

(y)| ∀k 6= j}

and it suffices to show that

meas(Wj) < 2ε

√
d

β
4
√
Emax .

For simplicity we fix j = 1. On W1, we have

| ∂f
∂x1

(y)| > β√
d

since |f(y)| < ε < α implies (recall f ∈ E(α, β))

β2 < |∇f(y)|2 =
d∑

k=1

| ∂f
∂xk

(y)|2 6 d| ∂f
∂x1

(y)|2 .

For y ∈ Td−1 set

I(y) = {t ∈ T1 : (t, y) ∈W1}

which is a subset of T1. Then slice-integration gives

meas(W1) =
∫

Td−1
meas(I(y))dy

and so it suffices to show

meas(I(y)) < 2ε

√
d

β
4
√
Emax .

Now on I(y), the one-variable trigonometric polynomial g(t) := f(t, y)
satisfies |g(t)| = |f(t, y)| < ε, and

|g′(t)| = | ∂f
∂x1

(t, y)| > β√
d
.

Moreover g(t) is of degree at most
√
Emax because

f(t, y) =
∑
λ∈Λ

aλe(λ1t+
d∑

j=2

λjyj)

and for all frequencies in the sum we have λ2
1 6 |λ|2 6 Emax. Thus by

Lemma 3.2 we find that meas(I(y)) < 2ε
√

d
β 2

√
Emax as required. �

TOME 58 (2008), FASCICULE 1
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4. The expected value of L

In this section, we give a formula for the expected value of L(f):

Theorem 4.1. — Suppose that Λ is symmetric and satisfies the nonde-
generacy condition (2.2). Then the Leray measure L(f) is integrable (with
respect to the Gaussian measure), and

(4.1) E(L) =
1√
2π
.

4.1. A formal treatment

To compute the expectation of L(f), we formally write it as

L(f) =
∫

Td

δ(f(x))dx

and hence formally

E(L(f)) = E(
∫

Td

δ(f(x))dx) =
∫

Td

E(δ(f(x))dx

Now for each fixed x ∈ Td, the random variable f(x) is a sum of Gaussians
hence is itself a Gaussian whose mean is zero and variance is computed to
be unity. Hence the expected value E(δ(f(x)) should be

E(δ(f(x)) =
∫ ∞

−∞
δ(a)e−a2/2 da√

2π
=

1√
2π

which gives the result E(L) = 1/
√

2π. Justifying this simple manipulation
in a rigorous fashion turns out to be rather tedious will be done below,
with some parts relegated to an appendix.

4.2. A rigorous proof

The Leray measure L(f) is defined outside of the singular set, which
has measure zero in E , in fact forms a closed subset of codimension >
1 (Lemma 2.3). We compute the expectation of the nodal measure L as
follows: We consider the increasing sequence of open subsets E( 1

n ,
1
n ), n =

1, 2, . . . , whose union is the set of nonsingular elements E\Sing. We choose
subsets Hn ⊂ E( 1

n ,
1
n ) which are (finite) unions of disjoint open balls, so

that ⋃
n

Hn = E\Sing
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and in fact the Hn exhaust almost all nonsingular f ’s, in the sense that
µ(Hn) → 1. (This is possible by Vitali’s covering theorem). We will show
that the limit

E(L) = lim
n

∫
Hn

L(f)dµ(f)

exists and equals 1/
√

2π.
By definition, ∫

Hn

L(f)dµ(f) =
∫

Hn

lim
ε→0

Lε(f)dµ(f)

where

Lε(f) :=
1
2ε

∫
Td

χ(
f(x)
ε

)dx .

By Lemma 3.1, on Hn, Lε(f) 6 cn is bounded uniformly for all ε < 1
n .

Thus by the dominated convergence theorem we can exchange limits:∫
Hn

lim
ε→0

Lε(f)dµ(f) = lim
ε→0

∫
Hn

Lε(f)dµ(f) .

On the integral, we use Fubini’s theorem to change the order of integration∫
Hn

Lε(f)dµ(f) =
∫

Td

(
1
2ε

∫
Hn

χ(
f(x)
ε

)dµ(f)

)
dx .

For the inner integral, we note that for each x, f(x) is a Gaussian random
variable of mean zero and variance E(f(x)2) = 1 and hence setting

Pa
x = {f ∈ E : f(x) = a}

which is an affine hyperplane of E of codimension one, we have

1
2ε

∫
Hn

χ(
f(x)
ε

)dµ(f) =
1
2ε

∫
|a|<ε

µa
x(Pa

x ∩Hn)e−a2/2 da√
2π

where µa
x is the induced Gaussian probability measure on the hyperplane

Pa
x . Thus∫

Hn

L(f)dµ(f) = lim
ε→0

∫
Td

1
2ε

∫
|a|<ε

µa
x(Pa

x ∩Hn)e−a2/2 da√
2π
dx .

Now the function
µa

x(Pa
x ∩Hn)

is bounded by µa
x(Pa

x) = 1 and is continuous in both a and in x because we
chose Hn to be a disjoint union of balls, and the volume of the intersection
of a hyperplane with this kind of nice set is a continuous function of the
hyperplane (since this is true for a ball). Hence we may move the limit
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ε→ 0 inside the integral over Td, and find, by the fundamental theorem of
calculus, that

lim
ε→0

1
2ε

∫
|a|<ε

µa
x(Pa

x ∩Hn)e−a2/2 da√
2π

=
1√
2π
µ0

x(P0
x ∩Hn) .

Thus we find that∫
Hn

L(f)dµ(f) =
1√
2π

∫
Td

µ0
x(P0

x ∩Hn)dx .

Now the functions
gn(x) := µ0

x(P0
x ∩Hn)

are continuous in x, and are bounded: gn(x) 6 µ0
x(P0

x) = 1 and moreover
for each x their limit is

lim
n→∞

gn(x) = µ0
x(P0

x) = 1

because by Proposition A.1 the singular set has measure zero in P0
x for each

x and the Hn exhaust all the nonsingular elements up to measure zero.
Thus we may in taking the limit n→∞ move the limit under the integral

to get

lim
n

∫
Hn

L(f)dµ(f) = lim
n

1√
2π

∫
Td

gn(x)dx

=
1√
2π

∫
Td

lim
n
gn(x)dx =

1√
2π

as required. �

5. A formula for the variance of L

In this section we give a formula for the variance of L(f) in terms of the
two-point function

u(x, y) = E(f(x)f(y)) =
1
N
∑
λ∈Λ

cos 2π〈λ, z〉 .

The main result of this section is

Theorem 5.1. — Let d > 2. For any symmetric set of frequencies Λ ⊂
Zd satisfying the non-degeneracy condition (2.2), the second moment of L
is given by

E(L2) =
1
2π

∫
Td

dz√
1− u(z)2

.

ANNALES DE L’INSTITUT FOURIER



LERAY MEASURE FOR NODAL SETS OF EIGENFUNCTIONS ON THE TORUS313

Thus the variance of L is

Var(L) =
1
2π

∫
Td

dz√
1− u(z)2

− 1
2π

.

5.1. A formal derivation

It is simple to formally derive Theorem 5.1: Writing L(f) =
∫

Td δ(f(x))dx
we have

E(L2) = E
(∫

Td

∫
Td

δ(f(x))δ(f(y))dxdy
)

=
∫

Td

∫
Td

E
(
δ(f(x))δ(f(y))

)
dxdy .

Now replace the vector (f(x), f(y)) by a Gaussian vector a = (a1, a2) with
covariance matrix

(5.1)

(
E(f(x)2) E(f(x)f(y))

E(f(y)f(x)) E(f(y)2)

)
=

(
1 u(x− y)

u(y − x) 1

)
= Σ(x−y)

whose determinant is det Σ(x− y) = 1− u(x− y)2. Thus

E(δ(f(x))δ(f(y))) =
∫∫

R2
δ(a1)δ(a2)

e−
1
2 aΣ−1aT

√
det Σ

da1da2

2π

=
1
2π

1√
1− u(x− y)2

.

This gives

E(L2) =
1
2π

∫
Td

∫
Td

1√
1− u(x− y)2

dxdy =
1
2π

∫
Td

1√
1− u(z)2

dz

as claimed. The rigorous proof of this formula takes up the rest of the
section.

5.2. Integrability of the kernel

Lemma 5.2. — Let Λ ⊂ Rd be invariant under permutations and coor-
dinate sign changes. Then∑

λ∈Λ

〈λ, ξ〉2 =
1
d

∑
λ∈Λ

||λ||2 · ||ξ||2
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Proof. — We write the quadratic form in the LHS as

Q(ξ) =
∑
λ∈Λ

〈λ, ξ〉2 =
d∑

i,j=1

aijξiξj

where
aij =

∑
λ∈Λ

λiλj .

If i 6= j use the symmetry under the sign change of the i-th coordinate
to change variables and deduce that aij = 0. For i = j we find

aii =
∑
λ∈Λ

λ2
i

and the latter sum is independent of i since Λ is symmetric under permu-
tations; hence we may average the RHS over i to find

aii =
1
d

d∑
i=1

∑
λ∈Λ

λ2
i =

1
d

∑
λ∈Λ

||λ||2

as required. �

Lemma 5.3. — For d > 1, the kernel 1/
√

det Σ(z) = 1/
√

1− u(z)2 is
integrable on Td.

Proof. — We need to check near the zeros of det Σ(z), that is at points
where u(z) = ±1. By Lemma 2.2 this implies that z lies in the finite set
B/Zd. At such points z0, all the cosines cos 2π〈λ, z0〉 have the same value,
which is either +1 or −1, and expanding in a small neighbourhood we have

cos 2π〈λ, z〉 ∼ ±(1− 1
2
〈λ, z − z0〉2) .

Thus

det Σ(z) = 1− u(z)2 ∼ 1
2N

∑
λ∈Λ

〈λ, z − z0〉2 .

By Lemma 5.2, we thus have

det Σ(z) ∼ 1
2d

(
1
N
∑
λ∈Λ

|λ|2
)
|z − z0|2

and therefore
1√

det Σ(z)
∼ const.

1
|z − z0|

near z0, which is integrable if (and only if) d > 1. �
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5.3. Proof of Theorem 5.1

We have ∫
Hn

L(f)2dµ(f) =
∫

Hn

lim
ε1,ε2→0

Lε1(f)Lε2(f)dµ(f) .

By Lemma 3.1 and the dominated convergence theorem, we may take the
limit outside the integral sign and get∫

Hn

L(f)2dµ(f) = lim
ε1,ε2→0

∫
Hn

1
4ε1ε2

∫∫
Td×Td

χ(
f(x)
ε1

)χ(
f(y)
ε2

)dxdydµ(f)

which by Fubini’s theorem and the change of variable y = x+ z, equals

lim
ε1,ε2→0

∫∫
Td×Td

(
1

4ε1ε2

∫
Hn

χ(
f(x)
ε1

)χ(
f(x+ z)

ε2
)dµ(f)

)
dxdz .

5.3.1. Excising the singular set

Fix ε1, ε2 > 0 and let S(ε1, ε2) ⊂ Td be a subset of measure at most
(ε1ε2)2 surrounding the finitely many points of B/Zd. Then using χ 6 1 we
have∫

Td

∫
S(ε1,ε2)

(
1

4ε1ε2

∫
Hn

χ(
f(x)
ε1

)χ(
f(x+ z)

ε2
)dµ(f)

)
dxdz

6
measS(ε1, ε2)

4ε1ε2
< ε1ε2

and hence the in the limit ε1, ε2 → 0 this gives zero contribution. Thus∫
Hn

L(f)2dµ(f)

= lim
ε1,ε2→0

∫
Td

∫
Td\S(ε1,ε2)

(
1

4ε1ε2

∫
Hn

χ(
f(x)
ε1

)χ(
f(x+ z)

ε2
)dµ(f)

)
dxdy .

5.3.2. Gaussian integration

For fixed ε1, ε2 > 0 we evaluate the inner integral as in the formal deriva-
tion of § 5.1 by replacing the vector (f(x), f(y)) by a Gaussian vector
(a1, a2) ∈ R2 with covariance matrix Σ(z) given in (5.1). For x− y /∈ B/Zd

and a = (a1, a2) ∈ R2, set

Pa
x,y = {f ∈ E : f(x) = a1, f(y) = a2} ,
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which is an affine subspace of codimension two. Let µa
x,y be the induced

Gaussian probability measure on Pa
x,y. Then for z = x− y /∈ B/Zd,

1
4ε1ε2

∫
Hn

χ

(
f(x)
ε1

)
χ

(
f(x+ z)

ε2

)
dµ(f) =

1√
det Σ(z)

1
4ε1ε2

∫∫
|a1|<ε1,|a2|<ε2

e−
1
2 aΣ−1(z)aT

µa
x,x+z(Pa

x,x+z∩Hn)
da1da2

2π
.

Thus we find∫
Hn

L(f)2dµ(f) = lim
ε1,ε2→0

∫
Td

∫
Td\S(ε1,ε2)

Kn(x, x+ z; ε1, ε2)dxdz

where

Kn(x, x+ z; ε1, ε2) =

1√
det Σ(z)

1
4ε1ε2

∫∫
|a1|<ε1,|a2|<ε2

e−
1
2 aΣ−1(z)aT

µa
x,x+z(Pa

x,x+z∩Hn)
da1da2

2π
.

5.3.3. Excising more points

Fix δ > 0, and for ε1, ε2 sufficiently small fix a set D ⊂ Td so that

(1) S(ε1, ε2) ⊂ D

(2) D contains the measure zero set of z = x − y for which Proposi-
tion B.1 fails to hold.

(3)
∫

D

dz√
det Σ(z)

< δ.

Then we can bound

Kn(x, x+ z; ε1, ε2) 6
1

2π
√

det Σ(z)

by using e−
1
2 aΣ−1(z)aT

6 1 and µa
x,x+z(Pa

x,x+z ∩Hn) 6 µa
x,x+z(Pa

x,x+z) = 1.
Thus∫

Hn

L(f)2dµ(f) = lim
ε1,ε2→0

∫
Td

∫
Td\D

Kn(x, x+ z; ε1, ε2)dxdz +O(δ) ,

with the implied constant in O(δ) independent of n.
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5.3.4. A switch of limit and integration

Since Kn is dominated by 1/
√

detΣ(z), which is integrable by Lemma 5.3,
we may use the dominated convergence theorem to switch the limit
ε1, ε2 → 0 and the integral to get∫

Hn

L(f)2dµ(f) =
∫

Td

∫
Td\D

lim
ε1,ε2→0

Kn(x, x+ z; ε1, ε2) dxdz +O(δ) .

where the implied constant is independent of n.

5.3.5. Taking the limit ε1, ε2 → 0

The function

(x, z, a) 7→ e−
1
2 aΣ−1(z)aT

µa
x,x+z(Pa

x,x+z ∩Hn)

is continuous on Td×Td\D×R2 by construction of Hn to have continuous
intersection with hyperplanes of fixed dimension. Thus for z /∈ D, we may
use the fundamental theorem of calculus to get

lim
ε1,ε2→0

1
4ε1ε2

∫∫
|a1|<ε1,|a2|<ε2

e−
1
2 aΣ−1(z)aT

µa
x,x+z(Pa

x,x+z ∩Hn)da1da2

= µ0
x,x+z(P0

x,x+z ∩Hn) .

Therefore for z /∈ D,

lim
ε1,ε2→0

Kn(x, x+ z; ε1, ε2) =
µ0

x,x+z(P0
x,x+z ∩Hn)

2π
√

det Σ(z)
.

This gives∫
Hn

L(f)2dµ(f) =
∫

Td

∫
Td\D

µ0
x,x+z(P0

x,x+z ∩Hn)

2π
√

det Σ(z)
dxdz +O(δ) .

5.3.6. The limit n→∞

Taking now the limit n → ∞, and using continuity of µ0
x,x+z(P0

x,x+z ∩
Hn) on Td × Td\D (which is is due to the construction of Hn) and using
Proposition B.1 to guarantee that for z /∈ D, the intersection of P0

x,x+z

with the singular set has measure zero in P0
x,x+z, we find

lim
n→∞

µ0
x,x+z(P0

x,x+z ∩Hn) = µ0
x,x+z(P0

x,x+z) = 1

and thus

lim
n→∞

∫
Hn

L(f)2dµ(f) =
∫

Td\D

dz

2π
√

det Σ(z)
+O(δ) .
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Since δ > 0 is arbitrary and 1/
√

det Σ(z) is integrable on Td, we finally
conclude that

E(L2) = lim
n→∞

∫
Hn

L(f)2dµ(f) =
1
2π

∫
Td

dz√
det Σ(z)

.

This concludes the proof of Theorem 5.1. �

6. The asymptotics of the variance

In the previous section we showed that the second moment of the Leray
measure for the ensemble of trigonometric polynomials associated to any
symmetric set of frequencies is given by

(6.1) E(L2) =
1
2π

∫
Td

dx√
1− u2(x)

where u(x) = 1
N
∑

λ∈Λ

cos 2π〈λ, x〉 is the two-point function of the process.

From now on, we specialize to the case that

Λ = {λ ∈ Zd : |λ|2 = E} .

In this section we show:

Proposition 6.1. — The second moment of L(f) is given by

E(L2) =
1
2π

+
1

4πN
+O

(∫
Td

u(x)4dx
)
.

In section § 7 we will see that for d = 2 and d > 5, the fourth moment
of u is negligible relative to 1/N and hence we will obtain

Var(L) ∼ 1
4πN

as N →∞, which is Theorem 1.1.
We now set about the proof of Proposition 6.1.

6.1. Singular points

Definition 6.2. — A point x ∈ Td is a positive singular point if there
is a set of frequencies Λx ⊂ Λ with density |Λx|

|Λ| > 1 − 1
4d for which

cos 2π〈λ, x〉 > 3/4 for all λ ∈ Λx. Similarly we define a negative singu-
lar point to be a point x where there is a set Λ̃x ⊂ Λ of density > 1 − 1

4d

for which cos 2π〈λ, x〉 < −3/4 for all λ ∈ Λ̃x.
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An example is the origin, where cos 2π〈λ, 0〉 = 1.
Let M ≈

√
E be a large integer(1) . We decompose the unit cube (the

torus) as a disjoint union (with boundary overlaps) of Md closed cubes I~k
of side length 1/M centered at ~k/M , ~k ∈ Zd.

Definition 6.3. — A cube I~k is a positive (resp. negative) singular
cube if it contains a positive (resp. negative) singular point.

Lemma 6.4. — For a positive (respectively, negative) singular cube I,
there is a subset of frequencies ΛI ⊂ Λ with with density |ΛI |

|Λ| > 1− 1
4d for

which cos 2π〈λ, y〉 > 1/2 (respectively, cos 2π〈λ, y〉 < −1/2) for all y ∈ I

and all λ ∈ ΛI .

Proof. — Let x ∈ Λ be a positive singular point, and let ΛI = Λx be the
set of frequencies for which cos 2π〈λ, x〉 > 3/4. It suffices to show that if
|y − x| � 1/M then cos 2π〈λ, y〉 > 1/2 for all λ ∈ Λx.

By the mean value theorem and Cauchy-Schwartz,

| cos 2π〈λ, y〉 − cos 2π〈λ, x〉| = |〈−2π sin 2π〈λ, ξ〉λ, x− y〉|

6 2π|λ||x− y| �
√
E

M

and hence if M �
√
E (all implied constants are absolute, depending only

on the dimension d) and cos 2π〈λ, x〉 > 3/4 then

cos 2π〈λ, y〉 > cos 2π〈λ, x〉 − | cos 2π〈λ, y〉 − cos 2π〈λ, x〉| > 3
4
− 1

4
=

1
2

as required. The case of negative singular cubes is analogous. �

As Lemma 6.4 shows, singular cubes cannot be both positive and nega-
tive.

Let B be the union of all singular cubes. Since the volume of each cube
is 1/Md, the number of such cubes is Md meas(B).

Lemma 6.5. — i) If x /∈ B then |u(x)| < 1− 1
16d .

ii) If x ∈ B then |u(x)| > 1
2 −

3
8d > 1

16 .
iii) meas(B) 6 164

∫
Td u(x)4dx.

Proof. — i) If x /∈ B, then x is neither a positive nor a negative singular
point, hence there are subsets Λ′,Λ′′ ⊂ Λ each of density > 1

4d for which

(1) It suffices to take M = b16π
√

d
√

Ec.
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cos 2π〈λ, x〉 6 3
4 for all λ ∈ Λ′ and cos 2π〈λ, x〉 > − 3

4 for all λ ∈ Λ′′. Hence

u(x) =
1
N
∑
λ∈Λ′

cos 2π〈λ, x〉+
1
N
∑
λ/∈Λ′

cos 2π〈λ, x〉

6
3
4
|Λ′|
N

+
N − |Λ′|

N

= 1− 1
4
|Λ′|
N

< 1− 1
16d

.

Likewise, using Λ′′ instead of Λ′, we also have u(x) > −1+ 1
16d and hence

|u(x)| < 1− 1
16d .

ii) Suppose x ∈ B lies in a positive singular cube. Then by Lemma 6.4
there is Λ′ ⊂ Λ, with |Λ′|

|Λ| > 1− 1
4d , such that cos 2π〈λ, x〉 > 1

2 for all λ ∈ Λ′.
Hence

u(x) =
1
N
∑
λ∈Λ′

cos 2π〈λ, x〉+
1
N
∑
λ/∈Λ′

cos 2π〈λ, x〉

>
1
N
∑
λ∈Λ′

1
2

+
1
N
∑
λ/∈Λ′

(−1)

=
1
2
|Λ′|
N

− N − |Λ′|
N

=
3
2
|Λ′|
N

− 1

>
3
2
(1− 1

4d
)− 1 =

1
2
− 3

8d
>

1
16

.

Thus u(x) > 1
2 −

3
8d > 1

16 . Likewise if x lies in a negative singular cube we
will find that u(x) < − 1

16 and hence for all x ∈ B we have |u(x)| > 1
16 .

iii) follows from (ii) by a Chebyshev type inequality. �

We separately compute the contributions IB , IBc , of the singular set B
and its complement Bc to (6.1).

6.2. The contribution of Bc

This will be the main term. For x /∈ B, since |u(x)| is bounded away
from 1, we may use the Taylor expansion

1√
1− u(x)2

= 1 +
1
2
u(x)2 +O(u(x)4)

(the implied constant independent of Λ!) to find

IBc =
1
2π

∫
Bc

dx√
1− u(x)2

=
1
2π

∫
Bc

(
1 +

1
2
u(x)2 +O(u(x)4)

)
dx

=
1
2π

+
1
4π

∫
Td

u(x)2dx+O(meas(B)) +O(
∫

Td

u(x)4dx)
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on using |u(x)| 6 1; then since
∫

Td u(x)2dx = 1
N and meas(B) �

∫
Td u

4 by
Lemma 6.5(iii), we find

(6.2) IBc =
1
2π

+
1

4πN
+O

(∫
Td

u4

)
.

6.3. The contribution of the singular set B

To estimate IB , we will show that each integral over a single singular
cube contributes O(1/Md−1

√
E). Since the number of singular cubes is

Md meas(B), we will find that the total contribution of IB is bounded by

(6.3) IB � meas(B)
M√
E
≈ meas(B) �

∫
Td

u4

because we assume that M ≈
√
E. Together with (6.2), this will prove

Proposition 6.1.

6.4. A bound for the Hessian of u on a cube

The Hessian of u is H = ( ∂2u
∂xi∂xj

). We will need to know:

Lemma 6.6. — The Hessian of u at any point in a positive singular cube
is negative definite and satisfies

ξTHξ 6 −π
2E

2d
||ξ||2 .

Likewise for a negative singular cube the Hessian is positive definite and
satisfies ξTHξ > π2E

2d ||ξ||
2.

Proof. — The Hessian Hλ of cos 2π〈λ, x〉 is given by

(Hλ)i,j = −(2π)2 cos 2π〈λ, x〉λiλj = −(2π)2 cos 2π〈λ, x〉(λλT )i,j

(if we think of λ as a column vector) for which

ξTHλξ = − cos 2π〈λ, x〉〈λ, 2πξ〉2 .

Let Λ′ ⊂ Λ be a set of frequencies of density > 1 − 1
4d so that for all x

in the singular cube, and all λ ∈ Λ′, we have cos 2π〈λ, x〉 > 1/2. Then for
λ ∈ Λ′ (the weak inequality is introduced to cover the case that 〈λ, ξ〉 = 0)

ξTHλξ 6 −1
2
〈λ, 2πξ〉2 .
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For the remaining λ /∈ Λ′, we use − cos 2π〈λ, x〉 6 1 to get ξTHλξ 6
〈λ, 2πξ〉2. Hence the Hessian H of u at x satisfies

ξTHξ =
1
N
∑
λ∈Λ

ξTHλξ

6 −1
2

1
N
∑
λ∈Λ′

〈λ, 2πξ〉2 +
1
N
∑
λ/∈Λ′

〈λ, 2πξ〉2

= −1
2

1
N

∑
all λ

〈λ, 2πξ〉2 +
3
2

1
N
∑
λ/∈Λ′

〈λ, 2πξ〉2

for all ξ. By Lemma 5.2 we have

−1
2

1
N

∑
all λ

〈λ, 2πξ〉2 = −2π2E

d
||ξ||2 .

For the sum over λ /∈ Λ′, use Cauchy-Schwartz to write

〈λ, 2πξ〉2 6 4π2E||ξ||2

and the sum over these λ /∈ Λ′ is hence bounded by

3
2
N − |Λ′|

N
4π2E||ξ||2 6

3π2

2d
E||ξ||2

(since |Λ′|
N > 1− 1

4d ). Thus we find

ξTHξ 6 −π
2

2d
E||ξ||2

as required. �

6.5. The contribution of a singular cube

To find the contribution to the integral of each singular cube Ik, assume
the cube contains a positive singular point.

Pick a point x0 ∈ Ik for which u(x0) is maximal in Ik. Now use the
Taylor expansion around x0 with remainder

u(x) = u(x0) +∇u(x0) · (x− x0) +R2(x)

where the remainder R2(x) can be given in terms of the Hessian H of u as

R2(x) =
1
2
(x− x0)TH(z)(x− x0)

ANNALES DE L’INSTITUT FOURIER



LERAY MEASURE FOR NODAL SETS OF EIGENFUNCTIONS ON THE TORUS323

where z is some point on the line segment between x0 and x. Since the
cube is convex, z also belongs to the singular cube. Thus by Lemma 6.6,
we have

R2(x) 6 −π
2E

4d
||x− x0||2 .

The directional derivative at x0 of u in the direction of any other point
in the cube is nonpositive (since the function is decreasing as we go from
x0 to nearby points in the cube) and hence

∇u(x0) · (x− x0) 6 0

for all points x in the cube, as this quantity is a positive multiple of the
directional derivative of u at x0 in the direction of the line joining x0 to x.
Thus

u(x) = u(x0) +∇u(x0) · (x− x0) +
1
2
(x− x0)TH(z)(x− x0)

6 1 + 0− π2E

4d
||x− x0||2 .

Therefore
1− u2 � E||x− x0||2

amd hence the integral over a positive singular cube is bounded by∫
||x−x0||�1/M

dx√
E||x− x0||2

� 1√
E

∫ 1/M

0

rd−1dr

r
≈ 1√

EMd−1
.

The case of a negative singular cube is analogous; instead of using a
maximum of u in the cube we take x0 to be a minimum of u in the cube
and show that u(x) > −1 + π2E

4d ||x− x0||2.
Thus we have proved (6.3) and hence are done with the proof of Propo-

sition 6.1.

7. Bounding the fourth moment of the two-point function

In this section we bound the fourth moment of the two-point function

u(x) =
1
N
∑
λ∈Λ

e2πi〈λ,x〉 .

Note that∫
Td

u(x)4dx =
1
N 4

#{λ1, λ2, λ3, λ4 : λ1 + λ2 = λ3 + λ4} .

The number of solutions of the equation

(7.1) λ1 + λ2 = λ3 + λ4, λi ∈ Λ
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is at most N 3 since fixing three of the variables determines the fourth one.
Thus

(7.2)
∫
u4dx 6

1
N

.

This bound used no special property of the set of frequencies Λ. For the
set ΛE = {λ : |λ|2 = E} we can do much better.

Proposition 7.1. — i) In dimension d = 2, we have∫
u4 � 1

N 2
.

ii) In dimension d > 3,∫
Td

u(x)4dx�ε
E

d−3
2 +ε

N 2

for all ε > 0.

To prove the proposition, we need to bound the number of solutions
of (7.1). A simple geometric argument pointed out by Zygmund [21] shows
that in dimension d = 2, the only solutions of (7.1) are “diagonal” solutions,
that is λ1 = λ3, or λ1 + λ2 = 0 = λ3 + λ4 etcetera. This gives the required
bound in two dimensions.

For higher dimensions, we want to show that the number of solutions of
(7.1) is � N 2E

d−3
2 +ε. Fix λ3, λ4. If λ3 +λ4 = 0 then λ1 +λ2 = 0 and there

are N 2 such pairs. So we may ignore them and assume that ν := λ3+λ4 6= 0
and then we wish to show that there are at most E

d−3
2 +ε choices of of λ1, λ2

with λ1 + λ2 = ν given. Since λ2 = ν − λ1 is determined by λ1, we thus
need to show:

Lemma 7.2. — Let d > 3 and 0 6= ν ∈ Zd. Then the number of λ ∈ Zd

with

(7.3) |λ|2 = E = |ν − λ|2

is at most c(ε)E
d−3
2 +ε for all ε > 0 with c(ε) > 0 independent of ν.

Proof. — To see this, rewrite the equations as

|λ|2 = E, 2〈λ, ν〉 = |ν|2

or
d∑

j=1

x2
j = E, 2

d∑
j=1

νjxj = |ν|2 .
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Fix the last d − 3 coordinates x4, . . . , xd (there are at most E
d−3
2 such

choices) and lets count the number of solutions of the resulting system of
equations

(7.4) x2
1 + x2

2 + x2
3 = R, ν1x1 + ν2x2 + ν3x3 = S

where R 6 E and |νi|, |S| � E. The number of solutions of (7.3) is thus
bounded by E

d−3
2 times the number of solutions of equations such as (7.4).

So it suffices to show that the number of solutions of (7.4) is at most c(ε)Eε

uniformly in ν.
Solving the linear equation for x3 and substituting in the quadratic equa-

tion gives an inhomogeneous quadratic equation

ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f = 0

where all coefficients are integers which are at most polynomial in E and the
homogeneous quadratic part is positive definite. Then one may complete
the square and change variables to get an equation

x2 +Dy2 = k

where D > 0, and D, k are polynomial in E. Thus the number of solutions
of (7.4) is bounded by the number rD(k) of representations of an integer k
by the quadratic form x2 +Dy2.

Now we claim that rD(k) is at most

(7.5) rD(k) 6 6τ(k)

where τ(k) is the number of divisors of k. Since τ(k) � kε, ∀ε > 0, this will
imply that the number of solutions to (7.4) is at most c(ε)Eε uniformly in
ν and conclude the proof of the lemma.

The uniform estimate (7.5) follows from factorization into prime ideals in
the ring of integers of the imaginary quadratic extension Q(

√
−D): Indeed,

rD(k) is at most the number ρ(k) of ideals of norm k, times the number
of units of the field, which is at most 6. Now the Dirichlet series ζD(s) :=∑

k>1 ρ(k)/k
s is the Dedekind zeta function of the field Q(

√
−D), and

by class-field theory there is a factorization ζD(s) = ζ(s)L(s, χ) where
ζ(s) is the Riemann zeta function, and L(s, χ) is the Dirichlet L-function
associated to the quadratic character χ attached to Q(

√
−D). Thus ρ(k) =∑

m|k χ(m) and therefore ρ(k) is bounded by the number τ(k) of divisors
of k. Thus rD(k) 6 6τ(k). �

Remark 7.3. — For higher dimensions, one can improve on the trivial
bound (7.2) by noting that u(x) is itself an eigenfunction of the Laplacian
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with eigenvalue 4π2E, and then appealing to the general results of Sogge
[19] on Lp-norms of eigenfunctions. We recall these: Let

Md,p(E) = sup
∆f+4π2Ef=0

||f ||p
||f ||2

.

Then for p 6 4 we have (using |u| 6 1) that
∫
u4 6 ||u||pp and hence∫

Td

u4(x)dx�p

(
Md,p(E)√

N

)p

.

Sogge showed that for eigenfunctions of the Laplacian on any smooth
compact Riemannian manifold, and for for p = pd := 2(d+ 1)/(d− 1), one
has Md,p(E) � E1/2pd . Since pd 6 4 for d > 3, we have∫

Td

u4(x)dx� E1/2

N pd/2
.

In dimension d > 5 we have N ≈ E
d
2−1 and hence we find∫

Td

u4(x)dx� 1
N 1+α(d)

, α(d) =
2

d− 1
− 1
d− 2

which improves on (7.2) whenever d > 3 since α(d) > 0 for d > 3.
For the torus in dimension d > 4, Bourgain [5] showed that for p > 2(d+1)

d−3 ,

Md,p(E) � E
d−2
4 − d

2p +ε,∀ε > 0

which improves on Proposition 7.1 in dimension d > 7 (when we may take
p = 4).

Appendix A. The intersection of the singular set with
codimension one hyperplanes

We consider the hyperplane

Pa
x = {f ∈ E : f(x) = a}

and show that the set of singular functions in Pa
x has measure zero. Assume

that the set of frequencies Λ, which is assumed to be “symmetric”, further
satisfies the non-degeneracy condition (2.2), that is:

(A.1) ∃λ ∈ Λ with λ1 6= ±λ2 and λ1, λ2 6= 0 .

By the symmetry of the set Λ, condition (A.1) is equivalent to requiring
that for every i 6= j, there is λ ∈ Λ with λi 6= ±λj and λi, λj 6= 0.
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Proposition A.1. — Assume that Λ is symmetric and satisfies the non-
degeneracy condition (A.1). Then for all x ∈ Td, and all a, the intersection
Pa

x ∩ Sing has measure zero in Pa
x .

In order to prove Proposition A.1, we will need some lemmas.
Let LΛ ⊂ Zd be the lattice spanned by Λ. By Lemma 2.1, it is a sublattice

of full rank, hence its dual L∗Λ is still a lattice in E . In § 2.3 we defined the
set B by

B = {w ∈ Rd : 〈λ,w〉 ∈ Z ∀λ ∈ Λ or 〈λ,w〉 ∈ 1
2

+ Z ∀λ ∈ Λ} .

Let
Bx := {y ∈ Td : x− y ∈ B} .

Note that if y ∈ Bx then for all f ∈ E , f(x) = ±f(y) and ∇f(x) = ±∇f(y).

Lemma A.2. — Suppose that Λ is symmetric and satisfies the nonde-
generacy condition (A.1). If w /∈ B then there are no nonzero solutions
(~c, b′, b′′) ∈ Rd × R× R, satisfying

〈~c, λ〉 = b′′ sin 2π〈w, λ〉(A.2)

b′ = b′′ cos 2π〈w, λ〉(A.3)

for all λ ∈ Λ.

Proof. — If b′′ = 0 then b′ = 0 and since Λ spans Rd by Lemma 2.1, we
find ~c = 0. Otherwise, from (A.3) we find that ∀λ ∈ Λ

(A.4) sin 2π〈w, λ〉 = ±
√

1− (
b′

b′′
)2

(necessarily |b′| 6 |b′′|). Set

γ =
√

(b′′)2 − (b′)2 .

We will show that ~c = ~0, which implies that sin 2π〈w, λ〉 = 0 for all
λ ∈ Λ, and thus cos 2π〈w, λ〉 = ±1; by (A.3), cos 2π〈w, λ〉 is constant and
so is either +1 for all λ ∈ Λ or equals −1 for all λ ∈ Λ, hence we will find
that w ∈ B, contradicting our assumption.

Fix j = 1, . . . , d and we wish to see cj = 0; by symmetry we may take
j = 1. Find λ ∈ Λ satisfying condition (A.1). Next, replacing λ by −λ if
necessary, we may assume that

〈~c, λ〉 = +γ

that is

(A.5) λ1c1 +
∑
i 6=1

ciλi = +γ .
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Let λ̂ = (−λ1, λ2, . . . ) ∈ Λ be the result of changing the sign of the first
coordinate of λ. Then 〈λ̂,~c〉 = ±γ, that is

(A.6) − λ1c1 +
∑
i 6=1

ciλi = ±γ .

If the sign is +, we compare (A.6) with (A.5) to deduce that

c1λ1 = 0

and since λ1 6= 0 we find that c1 = 0.
Otherwise, if the sign in (A.6) is −, we compare with (A.5) to find

(A.7) c1λ1 = +γ .

Repeating the above argument with λ replaced by (λ2, λ1, . . . ) ∈ Λ (that
is we switch the first and second coordinates), we find that either c1 = 0
or else

(A.8) c1λ2 = +γ

and together with (A.7) we find that

c1λ2 = +γ = c1λ1 .

Since λ2 6= λ1 we find again that c1 = 0. �

Lemma A.3. — Suppose that Λ is symmetric and satisfies the nonde-
generacy condition (A.1). Then for every x ∈ Td, the map Ψx given by

Ψx : (Td\Bx)× E → Rd × R× R
(y, f) 7→ (∇f(y), f(y), f(x))

(A.9)

is a submersion.

Proof. — We wish to show that the derivative Dy,fΨx : Rd×RN → Rd+2

at the point (y, f) has rank d + 2. For this it suffices to show that the
(d+ 2)×N matrix ∂Ψx

∂f has rank d+ 2. Now

∂Ψx

∂f
=

⊕
λ∈Λ/±

√
2
N


−2π sin 2π〈λ, y〉~λ −2π cos 2π〈λ, y〉~λ

cos 2π〈λ, y〉 − sin 2π〈λ, y〉

cos 2π〈λ, x〉 − sin 2π〈λ, x〉

 .

Post-multiplying it by the (block-diagonal) invertible matrix⊕
λ∈Λ/±

√
N
2

(
− sin 2π〈λ, y〉 cos 2π〈λ, y〉

− cos 2π〈λ, y〉 − sin 2π〈λ, y〉

)
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gives the (d+ 2)×N matrix

⊕
λ∈Λ/±


2π~λ ~0

0 1

sin 2π〈λ, x− y〉 cos 2π〈λ, x− y〉

 .

Thus we want to show that the rank of this matrix is d+ 2.
For this it suffices to show that the rows are linearly independent, that

is there is no non-trivial solution (~c, b′, b′′) ∈ Rd+2 to the system

〈~c, λ〉 = b′′ sin 2π〈x− y, λ〉
b′ = b′′ cos 2π〈x− y, λ〉

which by Lemma A.2 this has no solutions if x−y /∈ B, that is if y /∈ Bx. �

Proof of Proposition A.1. — We will partition Pa
x ∩ Sing into two sets:

The set Singin
x of those f for which all singular points of the nodal set of f

lie in Bx (here necessarily a = 0), and the set Singout
x of those f for which

there is a singular point of the nodal set outside Bx. We will show that
each has measure zero.

We first show that Singin
x has measure zero. We will in fact see that

it is a linear subspace of codimension d in P0
x. Note that if y ∈ Bx then

f(y) = ±f(x) and ∇f(y) = ±∇f(x) and so

Singin
x = {f ∈ E : f(x) = 0, ∇f(x) = ~0} .

Thus Singin
x are the solutions to the linear system of equations

f(x) = 0, ∇f(x) = 0 .

The (d+ 1)× |Λ| matrix of this system is⊕
λ∈Λ/±

(
−2π sin 2π〈λ, x〉~λ −2π cos 2π〈λ, x〉~λ

cos 2π〈λ, x〉 − sin 2π〈λ, x〉

)
which as we have seen in the proof of Lemma 2.3 has rank d+ 1, and thus
Singin

x ⊂ P0
x has codimension d in P0

x.
We now turn to Singout

x . Let πE : Td × E → E be the projection on the
second factor; then by the definition (A.9) of Ψx,

πE(Ψ−1
x (~0, 0, a)) = Singout

x .

Lemma A.3 shows, in particular, that (~0, 0, a) is a regular value of Ψx,
so that Ψ−1

x (~0, 0, a) is a submanifold of Td × E of codimension d+ 2, that
is Ψ−1

x (~0, 0, a) ⊂ Td × Pa
x has dimension |Λ| − 2. Therefore Singout

x =
πE(Ψ−1

x (~0, 0, a)) ⊂ Pa
x has dimension at most |Λ| − 2 in the (|Λ| − 1)-

dimensional space Pa
x and hence has measure zero. �
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Appendix B. The intersection of the singular set with
codimension two hyperplanes

For a = (a1, a2) ∈ R2, let

Pa
x,y = {f ∈ E : f(x) = a1, f(y) = a2} .

If x − y /∈ B then this is an affine hyperplane of codimension two in E . If
x− y ∈ B then this is either empty or a hyperplane of codimension one in
E .

Proposition B.1. — For d > 2, for any symmetric set of frequencies
Λ satisfying the non-degeneracy condition (A.1), there is a set of measure
zero S = SΛ ⊂ Td so that for x − y 6= S, the intersection Pa

x,y ∩ Sing has
measure zero in Pa

x,y.

The proof of Proposition B.1 follows along the lines of Proposition A.1,
proving that the codimension is > 1. We will need a lemma about the
nonexistence of solutions to certain systems of equations:

Lemma B.2. — Let d > 2. Then for any symmetric set of frequencies
Λ satisfying the non-degeneracy condition (A.1), there is a set S ⊂ Td of
measure zero so that if x− y /∈ S then there do not exist z ∈ Td, numbers
b1, b2 6= 0 and b3 and ~c ∈ Rd, which satisfy

(B.1) b3 + i〈~c, λ〉 = b1e
2πi〈λ, x−z〉 + b2e

2πi〈λ, y−z〉

for every λ ∈ Λ.

Proof. — We choose λ ∈ Λ satisfying condition (A.1), that is λ1, λ2 6= 0
and λ1 6= ±λ2. Taking the norm-square of (B.1), we have

b23 + 〈~c, λ〉2 = b21 + b22 + 2b1b2 cos 2π〈λ, x− y〉 .

Now repeat this with λ replaced by

λε := (ε1λ1, ε2λ2, . . . , εdλd)

and sum the resulting equalities over all ε ∈ {±1}d, each weighted by

χ1,2(ε) = ε1ε2 .

This gives∑
ε∈{±1}d

χ1,2(ε)
(
b23 + 〈~c, λε〉2

)
=

∑
ε∈{±1}d

χ1,2(ε)
(
b21 + b22 + 2b1b2 cos 2π〈λε, x− y〉

)
.
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Now use ∑
ε∈{±1}d

χ1,2(ε) = 0

to get ∑
ε∈{±1}d

χ1,2(ε)〈~c, λε〉2 = 2b1b2
∑

ε∈{±1}d

χ1,2(ε) cos 2π〈λε, x− y〉 .

Expand

〈~c, λε〉2 =
d∑

j,k=1

λjλkcjckεjεk

and use ∑
ε∈{±1}d

χ1,2(ε)εjεk =

{
2d, (j, k) = (1, 2) or (2, 1)

0 otherwise

to get ∑
ε∈{±1}d

χ1,2(ε)〈~c, λε〉2 = 2d+1c1c2λ1λ2 .

Thus we find

(B.2) 2d+1c1c2λ1λ2 = 2b1b2
∑

ε∈{±1}d

χ1,2(ε) cos 2π〈λε, x− y〉 .

We repeat the argument with λ replaced by

λ̃ = (λ2, λ1, λ3, . . . , λd)

that is we have permuted the first and second coordinates of λ. Then we
get

(B.3) 2d+1c1c2λ2λ1 = 2b1b2
∑

ε∈{±1}d

χ1,2(ε) cos 2π〈λ̃ε, x− y〉 .

Comparing (B.2) with (B.3) and dividing by 2b1b2 (which is nonzero by
assumption), we get

(B.4)
∑

ε∈{±1}d

χ1,2(ε) cos 2π〈λε, x− y〉 =
∑

ε∈{±1}d

χ1,2(ε) cos 2π〈λ̃ε, x− y〉 .

Writing

cos 2π〈λε, x− y〉 =
exp 2πi〈λε, x− y〉+ exp 2πi〈λ−ε, x− y〉

2
and noting that χ1,2(−ε) = χ1,2(ε) = ε1ε2, we may rewrite (B.4) as

(B.5)
∑

ε∈{±1}d

ε1ε2 exp 2πi〈λε, x− y〉 =
∑

ε∈{±1}d

ε1ε2 exp 2πi〈λ̃ε, x− y〉 .

TOME 58 (2008), FASCICULE 1



332 Ferenc ORAVECZ, Zeév RUDNICK & Igor WIGMAN

If we use the identity∑
ε3,...,εd=±1

exp 2πi
d∑

j=3

εjλj(xj − yj) = 2d−2
d∏

j=3

cos 2πλj(xj − yj)

and some simple trigonometric identities, then (B.5) becomes

2d−1 sin 2πλ1(x1 − y1) sin 2πλ2(x2 − y2)
d∏

j=3

cos 2πλj(xj − yj)

= 2d−1 sin 2πλ2(x1 − y1) sin 2πλ1(x2 − y2)
d∏

j=3

cos 2πλj(xj − yj) .

This forces either

sin 2πλ1(x1 − y1) sin 2πλ2(x2 − y2) = sin 2πλ2(x1 − y1) sin 2πλ1(x2 − y2) ,

which is a measure zero condition on x−y since we assume that λ1, λ2 6= 0
and λ1 6= ±λ2, or else d > 3 and there is some j 6= 1, 2 with λj 6= 0 for
which cos 2πλj(xj − yj) = 0, which is again a measure zero condition on
x− y. �

As before, we denote by Bx = x+ B. For x, y ∈ Td, x− y /∈ B, consider
the map

Ψx,y : Td\(Bx ∪ By)× E → Rd+3

(z, f) 7→ (∇f(z), f(z), f(x), f(y))
(B.6)

Lemma B.3. — Suppose that Λ is symmetric and satisfies the non-
degeneracy condition (A.1). Then there is a set S = SΛ ⊂ Td of measure
zero so that if x− y /∈ S, then Ψx,y is a submersion.

Proof. — We wish to show that the derivative Dz,fΨx,y : Rd × RN →
Rd+3 at the point (z, f) has rank d+3. For this it suffices to show that the
(d+ 3)×N matrix ∂Ψx,y

∂f has rank d+ 3. Now

∂Ψx,y

∂f
=

⊕
λ∈Λ/±

√
2
N


−2π sin 2π〈λ, z〉~λ −2π cos 2π〈λ, z〉~λ

cos 2π〈λ, z〉 − sin 2π〈λ, z〉
cos 2π〈λ, x〉 − sin 2π〈λ, x〉
cos 2π〈λ, y〉 − sin 2π〈λ, y〉

 .

Post-multiplying it by the (block-diagonal) invertible matrix⊕
λ∈Λ/±

√
N
2

(
− sin 2π〈λ, z〉 cos 2π〈λ, z〉
− cos 2π〈λ, z〉 − sin 2π〈λ, z〉

)
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gives the (d+ 3)×N matrix

⊕
λ∈Λ/±


2π~λ ~0
0 1

sin 2π〈λ, x− z〉 cos 2π〈λ, x− z〉
sin 2π〈λ, y − z〉 cos 2π〈λ, y − z〉

 .

Thus we want to show that the rank of this matrix is d+3, that is that the
rows are linearly independent, i.e. that is there is no non-trivial solution
(~c, b1, b2, b3) ∈ Rd+3 so that

〈~c, λ〉 = b1 sin 2π〈λ, x− z〉+ b2 sin 2π〈λ, y − z〉
b3 = b1 cos 2π〈λ, x− z〉+ b2 cos 2π〈λ, y − z〉,

for all λ ∈ Λ. We may write the system in a complex form as

b3 + i〈~c, λ〉 = b1e
2πi〈λ, x−z〉 + b2e

2πi〈λ, y−z〉.

If either of b1, b2 is zero, we are in the same situation as in Lemma A.2
and so we deduce that either x − z ∈ B or y − z ∈ B∗, contradicting our
assumption that z /∈ Bx ∪ By. If both b1, b2 6= 0, then Lemma B.2 implies
the result of Proposition B.1. �

Proof of Proposition B.1: Given the measure zero set S of Lemma B.2,
and x, y ∈ Td with x− y /∈ S, we write the set of singular elements in Pa

x,y

as a union of two subsets each of which we will show to have measure zero:

Pa
x,y ∩ Sing = Singin

x,y ∪ Singout
x,y

where:
i) Singin

x,y consists of those f ∈ Pa
x,y for which all singular points of the

nodal set (that is z so that f(z) = 0, ∇f(z) = 0) lie in Bx ∪ By. If z ∈ Bx

then f(x) = ±f(z) and ∇f(x) = ±∇f(z) so either f(x) = 0, ∇f(x) = 0
or the same with y replacing x. If both a1, a2 6= 0 then Singin

x,y = ∅, and in
any case we will see that Singin

x,y has measure zero in Pa
x,y: Indeed, as we

saw in Lemma 2.3, for every x ∈ Td, the linear space

{f ∈ E : f(x) = 0,∇f(x) = 0}

has codimension d + 1 in E . Since Pa
x,y has codimension 2 in E , we find

that Singin
x,y is a union of two affine hyperplanes of codimension at least

d− 1 > 1 in Pa
x,y (recall d > 2), and therefore has measure zero in Pa

x,y.
ii) Singout

x,y consists of f ∈ Pa
x,y for which there is a singular point z of

the nodal set outside of Bx ∪ By. Thus in the notation of (B.6),

Singout
x,y = πE ◦Ψ−1

x,y(~0, 0, a)
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where πE : Td×E → E is the projection onto the second factor. Since x−y /∈
S, we may use Lemma B.3 to deduce that Ψ−1

x,y(~0, 0, a) is a submanifold of
Td × E of codimension d + 3, hence its projection πE ◦ Ψ−1

x,y(~0, 0, a) has
codimension at least 3 in E and hence codimension at least one in Pa

x,y.
Thus Pa

x,y∩Sing has measure zero in Px,y, in fact has codimension at least
one. �
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