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SIMULTANEOUS REDUCTION TO NORMAL FORMS
OF COMMUTING SINGULAR VECTOR FIELDS WITH

LINEAR PARTS HAVING JORDAN BLOCKS

by Masafumi YOSHINO & Todor GRAMCHEV (*)

Abstract. — We study the simultaneous linearizability of d–actions (and the
corresponding d-dimensional Lie algebras) defined by commuting singular vector
fields in Cn fixing the origin with nontrivial Jordan blocks in the linear parts.
We prove the analytic convergence of the formal linearizing transformations under
a certain invariant geometric condition for the spectrum of d vector fields gener-
ating a Lie algebra. If the condition fails and if we consider the situation where
small denominators occur, then we show the existence of divergent solutions of an
overdetermined system of linearized homological equations. In the C∞ category,
the situation is completely different. We show Sternberg’s theorem for a commut-
ing system of C∞ vector fields with a Jordan block although they do not satisfy
the condition.

Résumé. — Nous étudions la linéarisation simultanée de d–actions (et les al-
gèbres correspondants de Lie d–dimensionelles) definie par des champs de vecteurs
singuliers dans Cn fixant l’origine avec des parties linéaires ayant des blocs de Jor-
dan. Nous montrons la convergence analytique des transformations linéarisantes
formelles sous une condition d’invariance géométrique pour le spectre de d-champs
de vecteurs qui engendrent une algèbre de Lie. Si la condition n’est pas satisfaite et
si il y a des petits diviseurs, nous montrons l’existence de solutions divergentes pour
un système sous déterminé d’équations linéarisées homologiques. Dans le cadre de
fonctions C∞ la situation est complètement différente. Nous montrons le théorème
de Sternberg pour une famille commutative de champs de vecteurs qui ne satisfait
pas la condition.
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264 Masafumi YOSHINO & Todor GRAMCHEV

1. Simultaneous normalization

Let K be K = C or K = R, and B = ∞, B = ω or B = k for some
k > 0. Let Gn

B denote a d–dimensional Lie algebra of germs at 0 ∈ Kn of
CB vector fields vanishing at 0. Let ρ be a germ of singular infinitesimal
Kd–actions of class CB (d > 2)

(1.1) ρ : Kd −→ Gn
B .

We denote by ActB(Kd : Kn) the set of germs of singular infinitesimal
Kd–actions of class CB at 0 ∈ Kn. By choosing a basis e1, . . . , ed ∈ Kn,
the infinitesimal action can be identified with a d–tuple of germs at 0 of
commuting vector fields Xj = ρ(ej), j = 1, . . . , d (cf. [13], [17]). We can
define, in view of the commutativity relation, the action

ρ̃ : Kd ×Kn −→ Kn,(1.2)

ρ̃(s; z) = X1
s1
◦ · · · ◦Xd

sd
(z) = Xσ1

sσ1
◦ · · ·Xσd

sσd
(z), s = (s1, . . . , sd),

for all permutations σ = (σ1, . . . , σd) of {1, . . . , d}, where Xj
t denotes the

flow of Xj . We denote by ρlin the linear action formed by the linear parts
of the vector fields defining ρ.

We shall investigate necessary and sufficient conditions for the lineariza-
tion of ρ, namely, whether there exists a CB diffeomorphism g preserving
0 such that g conjugates ρ̃ and ˜ρlin

ρ̃(s; g(z)) = g(ρ̃lin(s, z)), (s, z) ∈ Kd ×Kn.(1.3)

We recall that in [13] and [24], the linear parts were supposed to be diag-
onalizable, while in [29] the existence of n − d anlalytic first integrals was
required. (See also [1], [15]). Following Katoks’ argument in [17], we take a
positive integer m 6 n such that Kn is decomposed into a direct sum of m
linear subspaces invariant under all A` = ∇X`(0) (` = 1, . . . , d):

Kn = Is1 + · · ·+ Ism , dim Isj = sj , j = 1, . . . ,m,(1.4)

s1 + · · ·+ sm = n.

The matrices A1, . . . , Ad can be simultaneously brought in an upper trian-
gular form, and we write again A` for the matrices,

A` =


A`

1 0s1×s2 . . . 0s1×sm

0s2×s1 A`
2 . . . 0s2×sm

...
...

...
...

0sm×s1 0sm×s2 . . . A`
m

 , ` = 1, . . . , d.(1.5)
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SIMULTANEOUS REDUCTION TO NORMAL FORMS 265

If K = C, the matrix A`
j is given by

A`
j =


λ`

j A`
j,12 . . . A`

j,1sj

0 λ`
j . . . A`

j,2sj

...
...

...
...

0 0 . . . λ`
j

 , ` = 1, . . . , d, j = 1, . . . ,m,(1.6)

with λ`
j , A

`
j,νµ ∈ C. On the other hand, if K = R, then we have, for every

1 6 j 6 m two possibilities: firstly, all A`
j (` = 1, . . . , d) are given by (1.6)

with λ`
j ∈ R. Secondly, sj = 2s̃j is even and A`

j is a s̃j × s̃j square block
matrix given by

A`
j =


R2(λ`

j , µ
`
j) A12

`,j . . . A
1s̃j

`j

0 R2(λ`
j , µ

`
j) . . . A

2s̃j

`j
...

...
...

...
0 0 . . . R2(λ`

j , µ
`
j)

 ,(1.7)

` = 1, . . . , d,

where

R2(λ, µ) :=
(

λ µ

−µ λ

)
, λ, µ ∈ R,(1.8)

and Ars
`j are appropriate real matrices.

Following the decomposition (1.6) (respectively, (1.7)) we define λ̃j by

λ̃k = t(λk
1 , . . . , λ

k
m) ∈ Km, k = 1, . . . , d.(1.9)

Then we assume

(1.10) λ̃1, · · · , λ̃d are linearly independent in Km.

One can easily see that (1.10) is invariantly defined.
By (1.5) we define

(1.11) ~λj = t(λ1
j , · · · , λd

j ) ∈ Kd, j = 1, . . . ,m,

and

(1.12) Λm := { ~λ1, . . . , ~λm}.

We define the cone Γ[Λm] by

(1.13) Γ[Λm] =


m∑

j=1

tj ~λj ∈ Kd; tj > 0, j = 1, . . . ,m,
m∑

j=1

tj 6= 0

 .
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266 Masafumi YOSHINO & Todor GRAMCHEV

Definition 1.1. — We say that the Kd–action ρ is a Poincaré morphism
if there exists a basis Λm ⊂ Km such that Γ[Λm] is a proper cone in Km,
namely it does not contain a straight real line. If the condition is not
satisfied, then, we say that the Kd–action is in a Siegel domain.

Note that the definition is invariant under the choice of the basis Λm.

Remark 1.2. — As to the alternative definition of a Poincaré morphism
we refer to [Definition 6.2.1, [24] ].

Next, we introduce the notion of simultaneous resonance. For α =
(α1, . . . , αm) ∈ Km, β = (β1, . . . , βm) ∈ Km, we set 〈α, β〉 =

∑m
ν=1 ανβν .

For a positive integer k we define Zm
+ (k) = {α ∈ Zm

+ ; |α| > k}. Put

ωj(α) =
d∑

ν=1

|〈λ̃ν , α〉 − λν
j |, j = 1, . . . ,m,(1.14)

ω(α) = min{ω1(α), . . . , ωm(α)}.(1.15)

Definition 1.3. — We say that Λm is simultaneously nonresonant (or,
in short ρ is simultaneously nonresonant), if

ω(α) 6= 0, ∀α ∈ Zm
+ (2).(1.16)

If (1.16) does not hold, then we say that Λm is simultaneously resonant.

Clearly, the simultaneously nonresonant condition (1.16) is invariant un-
der the change of the basis Λm. We state the first main result of our paper

Theorem 1.4. — Let ρ be a Poincaré morphism. Then ρ is conjugated
to a polynomial action by an holomorphic change of variables.

Remark 1.5. — In case ρ has a semi simple linear part, then Theorem
1.4 is already known. (cf. [Theorem 2.1.4, [24]]).

Example 1.6. — We compare our theorem with the results of Stolovitch
[24] and Zung [29]. Let ρ be a R2–action in Rn, n > 4 with m = 3. We
choose a basis Λ2 of R3 such that

(1.17) Λ2 =
{

t(1, 1, ν), t(0, 1, µ)
}
, ν, µ ∈ R.

(cf. [12] for similar and more general reductions of commuting vector fields
on the torus).

We will characterize the set of (ν, µ) ∈ R2 so that the action is a Poincaré
morphism, and determine the simultaneous resonances. By (1.13), Γ[Λ2] is
generated by the set of vectors {(1, 0), (1, 1), (ν, µ)}. Hence the action is
a Poincaré morphism if and only if these vectors generate a proper cone,

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS REDUCTION TO NORMAL FORMS 267

namely (ν, µ) is not in the set {(ν, µ) ∈ R2; ν 6 µ 6 0}. We note that the
interesting case is µ < ν 6 0, where every generator in (1.17) is in a Siegel
domain. Theorem 1.4 can be applied to such a case. In §3 we will show
that if the action is not a Poincaré morphism, i.e., ν < µ < 0, then there
exist (ν, µ) with the density of continuum such that the linearized overde-
termined system of two homological equations has a divergent solution.

Next we will determine (ν, µ) so that a simultaneous resonance exists. If
η = (η1, η2, η3) ∈ Z3

+(2) is a simultaneous resonance, we have the following
set of equations:

(1) η1 + η2 + νη3 = 1, η2 + µη3 = 0,

(2) η1 + η2 + νη3 = 1, η2 + µη3 = 1,

(3) η1 + η2 + νη3 = ν, η2 + µη3 = µ.

Elementary computations imply that, in order that one of these equations
has a solution η the (ν, µ) satisfies the following:
a) Case ν 6 µ 6 0. The resonance exists iff (ν, µ) ∈ Q− × Q−, where
Q− is the set of nonpositive rational numbers. The resonance is given by
(1+(µ−ν)k,−µk, k) and ((µ−ν)k, 1−kµ, k) where k > 1/(1−ν), k ∈ Z+,
and ((ν − µ)(1− k), µ(1− k), k), where k > (2− ν)(1− ν), k ∈ Z+.
b) Case ν > µ and µ 6 0. The resonance is given by (0,−µ/(ν −µ), 1/(ν −
µ)), where −µ/(ν − µ) ∈ Z+, 1/(ν − µ) ∈ Z+ and 2ν − µ 6 1.
c) Case µ > 0, ν 6 µ. The resonance is given by (0, 0, 1/ν), when ν = µ,
ν 6 1/2, ν−1 ∈ Z+; (0, ν, 0), when ν = µ > 2, ν ∈ Z+; ((µ− ν)/µ, 0, 1/µ),
if otherwise, where (µ− ν)/µ ∈ Z+, 1/µ ∈ Z+ and ν + µ 6 1.
d) Case ν > µ, µ > 0. The resonance is given by (ν − µ, µ, 0), where
ν − µ ∈ Z+, µ ∈ Z+ and ν > 2.

Let ν be a negative rational number, ν = −k1/k2, k1, k2 ∈ Z+, k2 6= 0.
Let µ be a rational number and satisfy µ < ν. Assume that the nonlinear
part of X2 is zero. If the nonlinear part of X1 consists of the resonant terms
of X2, then we have [X1, X2] = 0. We can easily see that the linearizability
of X1 holds provided µ 6= ν − 1/k2 = −(k1 + 1)/k2.

2. A Poincaré morphism

We start by showing equivalent forms of a Poincaré morphism.

Proposition 2.1. — The action is a Poincaré morphism if and only if
each of the following conditions holds

TOME 58 (2008), FASCICULE 1



268 Masafumi YOSHINO & Todor GRAMCHEV

i) there exist a positive constant C and an integer k0 such that

(2.1)
d∑

k=1

|
m∑

j=1

λk
jαj | > C1|α|, ∀α ∈ Zm

+ (k0).

ii) there exists a nonzero vector c = (c1, . . . , cd) ∈ Cd if K = C (re-
spectively, c = (c1, . . . , cd) ∈ Rd if K = R) such that

(2.2) c1λ̃
1 + · · ·+ cdλ̃

d is in a Poincaré domain,

namely, the convex hull of the set {
∑d

j=1 cjλ
j
k; k = 1, . . . ,m} in C

does not contain 0 ∈ C (respectively,

(2.3) the real parts of c1λ1
j + · · ·+ cdλ

d
j , j = 1, . . . ,m, are positive.)

Proof. — First we show (2.1). Suppose that (2.1) does not hold. Then
there exists a sequence α` ∈ Zm

+ , ` ∈ N such that |α`| → ∞ (`→∞) and

(2.4)
d∑

k=1

|
m∑

j=1

λk
jα

`
j | 6

|α`|
`
, ` ∈ N.

By taking a subsequence, if necessary, we may assume that α`/|α`| → t0 =
(t01, . . . , t

0
m) ∈ S1

`1
⋂

Rm
+ when ` → ∞, where S1

`1 := {x ∈ Km; ‖x‖`1 =∑m
j=1 |xj | = 1} stands for the `1 unit sphere. By letting `→∞ in (2.4) we

get
d∑

k=1

|
m∑

j=1

λk
j t

0
j | = 0.

It follows that
m∑

j=1

t0j
~λj = 0. Let J ⊂ {1, . . . ,m} be such that

∑
j∈J

t0j
~λj 6= 0.

Such a set J exists by (1.10). It follows that

0 6=
∑
j∈J

t0j
~λj = −

∑
j∈{1,...,m}\J

t0j
~λj .

Hence Γ[Λm] contains a straight line generated by
∑

j∈J t
0
j
~λj 6= 0. This

contradicts the assumption that Γ[Λm] is a proper cone.
Conversely, suppose that (2.1) is satisfied. We shall show that Γ[Λm] is

proper. Indeed, if otherwise, we can find t0 = (t01, . . . , t
0
m) ∈ S1

`1
⋂

Rm
+ \ 0

such that

(2.5)
m∑

j=1

t0jλ
k
j = 0, k = 1, . . . , d.

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS REDUCTION TO NORMAL FORMS 269

Because the set {α/|α|;α ∈ Zm
+ (2)} is dense in S1

`1
⋂

Rm
+ , there exists a se-

quence α` ∈ Zm
+ , ` ∈ N such that |α`| → ∞ (`→∞) and lim`→∞ α`/|α`| =

t0 . Therefore, in view of (2.5), we get

lim
`→∞

 1
|α`|

d∑
k=1

|
m∑

j=1

λk
jα

`
j |

 = 0,

which contradicts (2.1).
Next, we shall show ii). Suppose that Γ[Λm] be a proper cone in Kd.

Then we can find c = (c1, . . . , cd) ∈ Cd such that Γ[Λm] is contained in the
real half–space Pc := {z ∈ Kd, Re(

∑d
k=1 ckzk) > 0}. Therefore

(2.6) 0 < Re(
d∑

k=1

ck

m∑
j=1

tjλ
k
j ) =

m∑
j=1

tjRe(
d∑

k=1

ckλ
k
j )

for all t ∈ Rm
+ \ 0, which yields Re(

∑d
k=1 ckλ

k
j ) > 0 for j = 1, . . . ,m. We

note that, if K = R, then the use of the real part in the definition of the
half–space is superfluous. Finally, we readily see, from (2.2) that, if K = C
(respectively, (2.3) if K = R), then the cone Γ[Λm] is contained in Pc. Hence
Γ[Λm] is proper. �

Although the following proposition is known, we give an alternative proof
for the sake of completeness. (cf. [Lemma 3.1, [25]].)

Proposition 2.2. — Let the action ρ be a Poincaré morphism. Then
we can find a vector field in the corresponding Lie algebra which has the
same resonace as the simultaneous resonance of ρ and is in the Poincaré
domain.

Proof. — By ii) of Proposition 2.1 we can find a Poincaré vector field in
the Lie algebra as a linear combination of a base corresponding to (2.2). Let
cν be the numbers in (2.2), and define λ̃0 := (λ0

1, . . . , λ
0
m) =

∑d
ν=1 cν λ̃

ν .
Let S be a similtaneous resonance of ρ. Consider

〈λ̃0, α〉 − λ0
j =

d∑
ν=1

cν

(
〈λ̃ν , α〉 − λν

j

)
.

Because
∑d

ν=1 |〈λ̃ν , α〉 − λν
j | 6= 0 for every α ∈ Zm

+ (2) \ S, it follows that
the set 〈λ̃0, α〉 − λ0

j = 0 in c = (c1, . . . , cd) ∈ Cd is a hyperplane if α 6∈ S.
It follows that the set

{c = (c1, . . . , cd) ∈ Cd; 〈λ̃0, α〉 − λ0
j = 0,∃j, 1 6 j 6 m,∃α ∈ Zm

+ (2) \ S}

TOME 58 (2008), FASCICULE 1



270 Masafumi YOSHINO & Todor GRAMCHEV

is a countable union of nowhere dense closed set. Therefore we can find
c = (c1, . . . , cd) for which

∑d
ν=1 cν λ̃

ν satisfies the Poincaré condition and
has the resonance S. �

We propose a geometric expression of a Poincaré morphism.

Definition 2.3. — Let r > 0 and g be a Riemannian metric on Rn.
We denote by 〈·, ·〉g and ‖ · ‖g the inner product and the norm with respect
to g, respectively. We say that Xν :=

∑n
j=1X

ν
j (x)∂xj

(ν = 1, . . . , d) are
simultaneously transversal to the sphere ‖x‖g = r if, the vectors Xν :=
(Xν

1 , . . . , X
ν
n) (ν = 1, . . . , d) satisfy

(2.7)
d∑

ν=1

|〈Xν , x〉g| 6= 0, ∀x, ‖x‖g = r.

Theorem 2.4. — Let r > 0. Suppose that Bν :=
∑n

j=1(A
νx)j∂xj

(ν = 1, . . . , d) be a commuting system of semi simple linear real vector
fields in Rn. Let ρ be the action generated by {Bν}. We choose a real non-
singular matrix P such that Λν = PAνP−1 is a block diagonal matrix
given by Λν = diag {R2(ξν

1 , η
ν
1 ), . . . , R2(ξν

n1
, ην

n1
), λν

n1+1, . . . , λ
ν
n} for some

integer n1 6 n. Let g be a Riemannian metric defined by tPP . Then the
following conditions are equivalent.
(a) Bν (ν = 1, . . . , d) are simultaneously transversal to the sphere ‖x‖g = r.
(b) ρ is a Poincaré morphism.
(c) There exist real numbers cν (ν = 1, . . . , d) such that

∑d
ν=1 cνBν is

transversal to the sphere ‖x‖g = r.

Proof. — We note that 〈x, y〉g = 〈Px, Py〉 and ‖x‖g = ‖Px‖. By insert-
ing the relation Xν = Aνx = P−1ΛνPx into (2.7) we can easily see that
the simultaneous transversality condition is equivalent to

(2.8)
d∑

ν=1

|〈Λνy, y〉| 6= 0, ∀y = (y1, . . . , yn), ‖y‖ = r.

By definition, (2.8) can be written in

(2.9)
d∑

ν=1

|
n1∑

j=1

ξν
j (y2

2j−1 + y2
2j) +

n∑
j=n1+1

y2
jλ

ν
j | 6= 0, ∀y, ‖y‖ = r.

We define t = (t1, . . . , tn), t ∈ Rn
+,

∑
tj = 1 by tj = (y2

2j−1 + y2
2j)/2 if

j 6 n1 and tj = y2
j if j > 2n. Noting that ξν

j (y2
2j−1 + y2

2j) = 2tjξν
j =

tj(ξν
j + iην

j +ξν
j − iην

j ) we see that (2.9) is written in
∑d

ν=1 |
∑n

j=1 tjλ
ν
j | 6= 0

for every t ∈ Rn
+ and

∑
tj = 1. This is equivalent to (b) by definition.

Hence we have proved the equivalence of (a) and (b).
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SIMULTANEOUS REDUCTION TO NORMAL FORMS 271

By Proposition 2.1 the condition (b) is equivalent to the existence of real
numbers cν (ν = 1, . . . , d) such that

∑d
ν=1 cνBν is a Poincaré vector field.

By what we have proved in the above (d = 1) this is equivalent to say that∑d
ν=1 cνBν is transversal to the sphere ‖x‖g = r. �

Proof of Theorem 1.4. By Proposition 2.2 there exists a Poincaré vector
field χ0 in ρ which is in a Poincaré domain and has the same resonance as ρ.
If ρ is not resonant, then we have Theorem 1.4. In case there is a resonance
of ρ, then it follows from Lemma 3.2 of [25] that, if χ0 is normalized, then
so is ρ. �

3. Divergent solutions of overdetermined systems of
linearized homological equations

We now study the action ρlin which admits a Jordan block. We as-
sume that the action is formally (simultaneously) linearizable and is not a
Poincaré morphism and that the family of linear parts is Diophantine.

Let Cn
2{x} be the set of n vector functions of convergent power series of

x without constant and linear terms. We consider

(3.1) LAv = t(L1v, . . . , Ldv) = f, f := t(f1, . . . , fd) ∈ (Cn
2{x})d,

under the compatibility conditions

(3.2) Ljf
k = Lkf

j , j, k = 1, . . . , d,

where Lj is the Lie derivative of the linear vector field Ajx∂x

Ljv = [Ajx, v] = 〈Ajx, ∂x〉v −Ajv, j = 1, . . . , d.

First we consider a 2–action studied in Example 1.6. We assume that
there exists a vector field in the two-dimensional Lie algebra which is not
semi simple. In view of Example 1.6 we can choose a base X1, X2 with linear
parts Aj ∈ GL(4; C) satisfying Spec (A1) = {1, 1, ν, ν} and Spec (A2) =
{0, 1, µ, µ}, respectively, where ν 6 µ 6 0, (ν, µ) 6∈ Q2, and

(3.3) A1 =


1 0 0 0
0 1 0 0
0 0 ν ε

0 0 0 ν

 , A2 =


0 0 0 0
0 1 0 0
0 0 µ ε0ε

0 0 0 µ

 ,

where ε 6= 0 and ε0 ∈ C. We can make |ε| > 0 arbitrarily small by an
appropriate linear change of variables.

TOME 58 (2008), FASCICULE 1



272 Masafumi YOSHINO & Todor GRAMCHEV

Let ω(α) be defined by (1.15). We say that the simultaneous Diophantine
order of {Spec (A1), Spec (A2)} is τ0, if, for every τ > τ0 there exists C =
Cτ > 0 such that

(3.4) ω(α) > C|α|−τ , ∀α ∈ Z4
+(2),

while, for every τ < τ0 there exist C ′ > 0 and a subsequence α` ∈ Z4
+(2)

(` = 1, 2, . . .) such that

(3.5) ω(α`) 6 C ′|α`|−τ , ` ∈ N.

First we note that the conditions (3.4) and (3.5) for ω(α) are equivalent
to the corresponding ones for ‖qν‖ + ‖qµ‖ when q ∈ N, q → ∞, where
‖t‖ = minp∈Z |p− t|. Hence the number τ0 in (3.4) and (3.5) is equal to the
speed of the simultaneous approximation of ν and µ, namely ‖qν‖+‖qµ‖ ∼
Cq−τ0 for some constant C > 0 independent of q. Clearly, if (3.4) holds,
then we have an upper bound of τ0. By the result of M. Herman, [16], we
have an upper bound 2 + ε for every ε > 0 for almost all ν and µ. On
the other hand, Moser showed that there exist Liouville numbers ν and µ

such that ‖qν‖+ ‖qµ‖ > cq−τ for any given τ > 2. (See [Theorem 2, [20]]).
This implies that for every τ > 2, there exist Liouville numbers ν and µ

such that τ0 6 τ . We have another upper bound of τ0 if either ν or µ is
an algebraic number. Indeed, by Roth’s theorem, for any given τ > 1 there
exists c > 0 such that ‖qν‖+ ‖qµ‖ > cq−τ . Hence we have τ0 6 1. Finally,
by [Corollary 1B, p.27, [22]], if either ν or µ is an irrational number, then
we have a lower bound τ0 > 1/2.

We say that ν and µ are simultaneously Liouville, if (3.5) holds for every
τ > 0.

Let σ > 1. We say that a formal power series f(x) =
∑

α fαx
α is in a

Gevrey space Gσ
2 (C4) if fα = 0 for |α| 6 1 and, there exist C > 0 and

R > 0 such that |fα| 6 CR|α||α|!σ−1, (∀α ∈ Z4
+).

We consider the following equation

(3.6) LAv := t(L1v, L2v) = f, f = t(f1, f2) ∈ (C4
2{x})2, x ∈ C4,

where t(f1, f2) satisfies the compatibility condition L1f
2 = L2f

1. Then we
have:

Theorem 3.1. — Assume that ε0 ∈ R \ {0}. Let 1 < τ0 <∞ be given.
Then there exists E0 ⊂ {(ν, µ) ∈ R2; ν < µ 6 0} with the density of contin-
uum satisfying {(ν, µ) ∈ Q2; ν < µ 6 0} ⊂ E0 such that for every (ν, µ) ∈
E0, there exists an f = t(f1, f2) ∈ (C4

2{x})2 such that L1f
2 = L2f

1 and
Eq. (3.6) has a formal power series solution v 6∈

⋃
16σ<2+τ0

Gσ
2 (C4).
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Furthermore, if the conditions (ν, µ) 6∈ Q2, (3.4) and τ0 < +∞ hold,
then (3.6) has a unique solution v ∈

⋂
σ>2+τ0

Gσ
2 (C4) for every t(f1, f2) ∈

(C4
2{x})2 satisfying L1f

2 = L2f
1.

In order to prove Theorem 3.1, we need a function space G which is a
subspace of a set of holomorphic functions in a neighborhood of the origin.
First we give the definition in the case ε0 = 1, i.e., the nilpotent parts of
A1 and A2 coincide. We define G by

G :=

f = t(f1, f2, f3, f4); fj ≡ fj(x) =
∑

α∈Cj

fα,jx
α, j = 1, 2, 3, 4

 ,

where Cj ⊂ Z4
+(2) satisfies the following two conditions.

(1) There exist c0 > 0 and τ > τ0 such that for every α = (α1, α2, α3, α4)
∈ Cj , we have N = α3 + α4 6= 0, |α| > 2, and

|α1 − 1 + (ν − µ)N | < N−N(τ+1)cN0 , ∀α ∈ Cj (j = 1, 2),

|α1 + (ν − µ)(N − 1)| < N−N(τ+1)cN0 , ∀α ∈ Cj (j = 3, 4).

(2) The Diophantine condition for Spec(A1) holds: namely for every τ ′ <

τ0 < τ ′′, there exist c1 > 0 and c2 > 0 such that

c1N
−τ ′′ < |α1 + α2 − 1 + νN | < c2N

−τ ′ if α ∈ Cj , j = 1, 2,

c1N
−τ ′′ < |α1 + α2 + νN − ν| < c2N

−τ ′ if α ∈ Cj , j = 3, 4,

where N = α3 + α4 6= 0.

Remark 3.2. — If ε0 6= 1, we replace (1) with the following (1)’.

(1)’ There exist c0 > 0 and τ > τ0 such that for every α = (α1, α2, α3, α4) ∈
Cj , we have N = α3 + α4 6= 0, and

|ε0(α1 − 1 + α2 + νN)− (α2 + µN)| < N−N(τ+1)cN0 , if α ∈ C1.

In the case α ∈ C2, we replace α1 and α2 in the left-hand side of the above
inequality with α1+1 and α2−1, respectively. Similarly, in the case α ∈ C3

or α ∈ C4, we replace α1 and N in the left-hand side of the above inequality
with α1 + 1 and N − 1, respectively.

Remark 3.3. — The space G is a normed space with the norm ‖f‖ :=∑
α |fα|, where |fα| =

∑
j |fα,j | (f ∈ G). If the conditions (1) and (2)

in the definition of G hold, then the Diophantine condition for Spec(A2)
holds. Hence we have a simultaneous Diophantine condition for Spec(A1)
and Spec(A2). In the following, we will show that on the support Cj of
G, the divergence of the solutions of LA occurs, with a sharp Gevrey loss
equal to 1 + τ (G1 → G2+τ ).
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Remark 3.4. — The space G is not empty for an appropriate choice of
ν and µ such that ν < µ < 0, i.e., the action is not a Poincaré morphism.
We first consider the case ε0 = 1 for the sake of simplicity. If we construct
ν and µ so as to satisfy the conditions (1) and (2) for C1 = C2, then (1)
and (2) for C3(= C4) hold if we replace α1 and N in C1 with α1 + 1 and
N − 1, respectively. Hence we will consider C1.

We can easily construct an irrational number ν < 0 which satisfies (2).
In fact, α1 + α2 and N are given by a continued fraction expansion of
ν. Note that α1 can be taken arbitrarily. Next, by the standard measure
theoretic argument, we can show that there exist an irrational number
µ with ν − µ < 0 and the sequence {α1} such that (1) holds. By the
construction, we can also choose µ < 0 such that ν < µ < 0. It follows that
the action is not a Poincaré morphism. Moreover, we can easily see that
the set of ν and µ satisfying (1) and (2) has the density of continuum.

Next we consider the case ε0 6= 1. For the sake of simplicity, we give the
sketch of the proof for C1 in the case 0 < ε0 < 1. The other cases can
be treated similarly. First we construct ν so as to satisfy (2). Then the
sequence of the integers k ≡ α1 + α2 − 1 and N are also given. In order to
show that there exists µ satisfying (1)′, we consider the inequality∣∣∣∣α1 − 1 + (1− ε−1

0 )α2

N
− (ε−1

0 µ− ν)
∣∣∣∣ < N−N(τ+1)−1cN0 ε

−1
0 .

We consider closed intervals of length 2N−N(τ+1)−1cN0 ε
−1
0 with the centers

at α1−1+(1−ε−1
0 )α2

N , (α1 + α2 = k+ 1). Let N and one of these intervals IN
are given. Then we can choose N ′ > N and IN ′ such that IN contains IN ′ .
Hence we can construct a sequence of monotone decreasing intervals. By
taking a subsequence, if necessary, we see that there exists µ which satisfies
(1)′. By construction the set of µ has the density of continuum. We remark
that we can take ν̃ := ε−1

0 µ−ν > 0 if 0 < ε0 < 1. Indeed, since 1− ε−1
0 < 0

and k/N → −ν > 0 as k,N →∞, it follows that one can take the interval
IN so that IN is contained in the positive real axis and it is arbitrarily close
to the origin. Hence we have µ = ε0(ν̃ + ν) > ε0ν > ν, which implies that
the action is not a Poincaré morphism. Similarly, we can show that there
exists µ such that the condition does not hold in other cases.

The proof of Theorem 3.1 follows from the following propositions.

Proposition 3.5. — Assume that ε0 ∈ R \ {0}. Let 1 < τ0 < ∞.
Then there exists E′0 ⊂ {(ν, µ) ∈ R2 \ Q2; ν < µ < 0} with the density of
continuum such that the following property holds. For every (ν, µ) ∈ E′0
there exist real numbers c1, c2 and k0 > 0 such that for every g ∈ G,
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g =
∑

|α|>k0
gαx

α, there exist f j ∈ G (j = 1, 2) such that L1f
2 = L2f

1,
g = c1f

1+c2f2. Moreover, B := c1A1+c2A2 is nonresonant, and ω defined
by (1.15) for Spec(B) satisfies (3.5).

Proposition 3.6. — Assume that ε0 ∈ R \ {0} and 1 < τ0 < ∞. Let
(ν, µ) ∈ E′0, where E′0 is given by Proposition 3.5. Let c1, c2 and B be as in
Proposition 3.5. Then there exists g ∈ G such that the homology equation
LBv = g has a unique formal power series solution v which is not contained
in ∪16σ<2+τ0G

σ
2 (C4).

Remark 3.7. — Our divergence results imply in the case of a single
holomorphic vector field, that generically vector fields obtained by nonlin-
ear holomorphic perturbations are nonlinearizable (see R. Pérez Marco [19]
for more details). We point out that our results generalize those for single
vector fields in the presence of nontrivial Jordan blocks (see [15]). As to
the case of smooth C∞ hyperbolic R2–actions we refer [13].

First we will prove Theorem 3.1, assuming Propositions 3.5 and 3.6.

Proof of Theorem 3.1. — We will prove the former half. Let E′0 be the
set given by Proposition 3.5. We define E0 := E′0∪{(ν, µ) ∈ Q2; ν < µ 6 0}.
By the result of Example 1.6 (a), we know that if (ν, µ) ∈ Q2, ν < µ 6 0,
then (3.6) has an infinite resonance, α = (α1, α2, α3, α4), α1 = 1+(µ−ν)k,
α2 = −µk, α3 +α4 = k, where k > (1− ν)−1, k ∈ Z+. Hence v =

∑
α vαx

α

is a formal solution of (3.6) with f = 0 for vα ∈ C4, where the summation
with respect to α is taken over the resonances α in the above. Because |vα|
is arbitrary, we take vα such that |vα| = |α|!2+τ0 (|α| → ∞), which implies
v 6∈

⋃
16σ<2+τ0

Gσ
2 (C4).

Next we study the case (ν, µ) ∈ E′0. By Proposition 3.6 there exists
g ∈ G such that the unique solution v of LBv = g with B = c1A1 + c2A2

is not contained in
⋃

16σ<2+τ0
Gσ

2 (C4). By Proposition 3.5 we can choose
f j ∈ G (j = 1, 2) such that L1f

2 = L2f
1 and g = c1f

1 + c2f
2. Because

the solution v of LAv = f is a unique solution of LBv = g, we see that
v 6∈

⋃
16σ<2+τ0

Gσ
2 (C4).

We will prove the latter half. We consider the system of equations Ljv =
f j(j = 1, 2), where L1f

2 = L2f
1. Let B denote either A1 or A2. For the

sake of simplicity, we assume that B is put in a Jordan normal form with
the diagonal part B0 := diag{λ1, λ2, λ3, λ3} and the off-diagonal element
ε1. We note that, for the equation L1v = f1 we have λ1 = λ2 = 1, λ3 = ν,
ε1 = ε, while for L2v = f2 we have λ1 = 0, λ2 = 1, λ3 = µ, ε1 = ε0ε. The
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homology operator LB corresponding to B is given by

LBv = 〈B0x, ∂x〉v + ε1R[v]−Bv, v ∈ C4
2{x},(3.7)

〈B0x, ∂x〉v =
∑
|α|>2

(λ1α1 + λ2α2 + λ3(α3 + α4))vαx
α,(3.8)

where v(x) =
∑

|α|>2 vαx
α and

R[v] =
∑
|α|>2

(α3 + 1)v(α1,α2,α3+1,α4−1)x
α.(3.9)

For g(x) = t(g1, g2, g3, g4) ∈ C4
2{x} we expand gk(x) in the Taylor series

gk(x) =
∑

α gα;kx
α. For nonnegative integers N , α1 and α2 we define Vk

and Gk by

Vk := t{v(α1,α2,N−`,`);k}N
`=0, Gk := t{g(α1,α2,N−`,`);k}N

`=0,

where k = 1, 2, 3, 4. In view of (3.9), the equation LBv = g is equivalent to

(λ1α1 + λ2α2 + λ3N − λ1)V1 + ε1MNV1 = G1,(3.10)

(λ1α1 + λ2α2 + λ3N − λ2)V2 + ε1MNV2 = G2,(3.11)

(λ1α1 + λ2α2 + λ3(N − 1))V3 + ε1MNV3 = G3 + ε1V4,(3.12)

(λ1α1 + λ2α2 + λ3(N − 1))V4 + ε1MNV4 = G4,(3.13)

where MN is given by

(3.14) MN =



0 0 0 . . . 0 0 0
N 0 0 . . . 0 0 0
0 N − 1 0 . . . 0 0 0
0 0 N − 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 0 0
0 0 0 . . . 0 1 0


, N > 1,

and M0 = 0.
Let f j(x) = t(f j

1 (x), . . . , f j
4 (x)) and let f j

k(x) =
∑

α f
j
α;kx

α (j = 1, 2; k =
1, . . . , 4) be the Taylor expansion of f j

k(x). We substitute the Taylor ex-
pansions of v and f j into the equations Ljv = f j . For every (α1, α2) ∈ Z2

+

and N ∈ Z+ such that α1 + α2 +N > 2 we compare the coefficients of xα

(α3 + α4 = N) with homogeneous degree α1 + α2 +N . If we set

(3.15) F j = t(F j
1 , F

j
2 , . . . , F

j
4 ), F j

k = t{f j
(α1,α2,N−r,r);k}

N
r=0,

and V = t(V1, V2, . . . , V4), Vk := t{v(α1,α2,N−r,r);k}N
r=0, H = t(0, 0, V4, 0),

then we can write the system of equations Ljv = f j (j = 1, 2) in the
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following form

(3.16) AV = F 1 + εH, BV = F 2 + εε0H,

where A and B are the block diagonal matrices given by

A := diag{A1,A2,A3,A4}(3.17)

= diag


(α1 + α2 + νN − 1)Id+ εMN

(α1 + α2 + νN − 1)Id+ εMN

(α1 + α2 + νN − ν)Id+ εMN

(α1 + α2 + νN − ν)Id+ εMN

 ,

B := diag{B1,B2,B3,B4}(3.18)

= diag


(α2 + µN)Id+ ε0εMN

(α2 + µN − 1)Id+ ε0εMN

(α2 + µN − µ)Id+ ε0εMN

(α2 + µN − µ)Id+ ε0εMN

 .

We will solve (3.16). Because either ν or µ is an irrational number, we
suppose that ν 6∈ Q. We will show that for each k = 1, . . . , 4 either Ak

or Bk is nonsingular. Indeed, suppose that |α| = α1 + α2 + N > 2. If
N 6= 0, 1, then by the irrationality of ν, the matrices Ak (k = 1, . . . , 4) are
nonsingular. If N = 0 or N = 1, then by the condition α1 + α2 + N > 2,
Ak (k = 1, . . . , 4) are nonsingular. We can similarly argue if µ 6∈ Q.

We will determine V4. By inductive arguments and L1f
2 = L2f

1 we get

v(α1,α2,N−`,`);4 =
∑̀
r=0

(−ε1)r

(λ1α1 + λ2α2 + λ3(N − 1))r+1
(3.19)

× (N − `+ r)!
(N − `)!

g(α1,α2,N−`+r,`−r);4

for ` = 0, 1, . . . , N , provided λ1α1 + λ2α2 + λ3(N − 1) 6= 0. Note that, if
A4 is nonsingular, then (3.19) is valid for λ1 = λ2 = 1, λ3 = ν, ε1 = ε,
g(α1,α2,N−`+r,`−r);4 = f1

(α1,α2,N−`+r,`−r);4, while if B4 is nonsingular, then
(3.19) is valid for λ1 = 0, λ2 = 1, λ3 = µ, ε1 = ε0ε, g(α1,α2,N−`+r,`−r);4 =
f2
(α1,α2,N−`+r,`−r);4. Similar explicit formulas are derived for vα1,α2,N−`,`;k,
k = 1, 2. As to the term v(α1,α2,N−`,`);3, there appears the term ε1V

N
4 in

the right-hand side of (3.12).
By (3.4) we have

(3.20) |α1 + α2 + νN − ν|+ |α2 + µN − µ| > C|α1 + α2 +N |−τ

for some C > 0. It follows that either |α1+α2+νN−ν| > C|α1+α2+N |−τ/2
or |α2 + µN − µ| > C|α1 + α2 + N |−τ/2 holds. Suppose that the former
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estimate holds. We have the same estimate in case the latter inequality
holds. Without loss of generality we may assume that C < 2. Let τ be such
that τ > τ0. Then we have

|α1 + α2 + ν(N − 1)|r+1 > (C/2)r+1|α1 + α2 +N |−τ(r+1)(3.21)

> (C/2)N+1|α1 + α2 +N |−τ(N+1).

Noting that (N − `+ r)!/(N − `)! 6 N !, we see from (3.19) that if
g(α1,α2,N−`+r,`−r);4 has a Gs estimate, namely, g(α1,α2,N−`+r,`−r);4 =
O((α1 + α2 + N)!s−1) modulo exponential factors, then v(α1,α2,N−`,`);4 =
O((α1 + α2 +N)!s+τ ). Especially, if s = 1, then we have v(α1,α2,N−`,`);4 =
O((α1 + α2 + N)!τ+1). Similarly, we can easily see that v(α1,α2,N−`,`);j

(j = 1, 2, 4) have the estimate v(α1,α2,N−`,`);j = O((α1 + α2 +N)!τ+1).
Next we determine v(α1,α2,N−`,`);3 by a similar relation like (3.19). We

note that there appears v(α1,α2,N−`+r,`−r);4 in the term g(α1,α2,N−`+r,`−r);3

of (3.19). By (3.19) we can easily see that v(α1,α2,N−`+r,`−r);4 =
O(N (`−r+1)τ (` − r)!) modulo terms of exponential growth CN for some
C > 0. Substituting the estimate into (3.19), we see that the right-hand
side of (3.19) is estimated by N (`−r+1)τ+(r+1)τ (N−`+r)!(`−r)!/(N−`)! =
N (`+2)τN !/(N − `)! modulo terms of exponential growth. Because ` 6 N

and τ > 1, we see that v(α1,α2,N−`,`);3 = O(NNτN !) modulo terms of expo-
nential growth. Since τ > τ0 is arbitrary, it follows that v(α1,α2,N−`,`);3 =
O((α1 + α2 +N)!σ) for every σ > 1 + τ0. �

Proof of Proposition 3.5. — Let E′0 be the set of (ν, µ) ∈ R2\Q2, ν < µ 6
0 such that G 6= ∅. The set E′0 has the density of continuum. (cf. Remark
3.4.) We shall show that if (c1, c2) 6∈ R2 is not contained in the some set E
with Lebesgue measure zero, then B := c1A1+c2A2 is nonresonant. Indeed,
the eigenvalues of B are given by c1, c1 + c2, c1ν + c2µ with multiplicity.
For every α = (α1, . . . , α4) ∈ Z4

+(2), the resonance relations are given by

(3.22) c1α1 + (c1 + c2)α2 + (c1ν + c2µ)(α3 + α4) = c1,

and the ones with c1 in the right-hand side replaced by c1+c2 and c1ν+c2µ,
respectively. Because the argument is similar, we consider the first relation.
It follows from (3.22) that

c1(α1 + α2 + ν(α3 + α4)− 1) + c2(α2 + µ(α3 + α4)) = 0.

Because (ν, µ) 6∈ Q2 and |α| > 2, we can easily see that either α1 + α2 +
ν(α3 +α4)−1 6= 0 or α2 +µ(α3 +α4) 6= 0 holds. Hence the set of (c1, c2) ∈
R2 satisfying (3.22) is a straight line. Therefore the set E of all (c1, c2)
satisfying a resonance relation for some α has Lebesgue measure zero.
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In order to show that Spec(B) satisfies (3.5), let ω̃j(α) and ω̃(α) (α ∈
Z4

+) be defined by (1.14) and (1.15) for B, respectively. Then we have
ω̃(α) 6 ω̃j(α) 6 max{|c1|, |c2|}ωj(α) for j = 1, . . . , 4 and all α ∈ Z4

+. Next,
we will estimate ω4(α) for α ∈ C4, where C4 is given in the definition of G.
We note ω4(α) = |α1 + α2 + ν(N − 1)| + |α2 + µ(N − 1)| and |α|/N → ν

(N, |α| → ∞). By the conditions (1) and (2) in the definition of G we have
that for every τ ′ < τ0 there exists c0 > 0 such that ω4(α) 6 c0|α|−τ ′ , when
|α| → ∞, α ∈ C4. This proves (3.5).

Let (c1, c2) 6∈ E and g ∈ G be given. We consider

(3.23) L1f
2 = L2f

1, c1f
1 + c2f

2 = g.

By expanding f j(x) = t(f j
1 , f

j
2 , f

j
3 , f

j
4 ) into the Taylor series we define F j

by (3.15). We similarly define

G = t(G1, G2, G3, G4), Gk = t{g(α1,α2,N−r,r);k}N
r=0,

where g(x)= t(g1, g2, g3, g4), gk(x)=
∑

α gα;kx
α. We set H1 := t(0, 0, F 1

4 , 0)
and H2 := t(0, 0, F 2

4 , 0). We substitute the expansions of f j and g into
(3.23). For every (α1, α2) ∈ Z2

+ and N ∈ Z+ such that α1 +α2 +N > 2 we
compare the coefficients of xα of homogeneous degree α1 + α2 +N . Then
(3.23) is equivalent to

(3.24) AF 2 − BF 1 − εH2 + εε0H
1 = 0, c1F

1 + c2F
2 = G,

where A and B are given by (3.17) and (3.18).
First we will construct a formal power series solution F j (j = 1, 2) of

(3.24). It follows from (3.24) and the definition of Hj that

AkF
2
k − BkF

1
k = 0, c1F

1
k + c2F

2
k = Gk, k = 1, 2, 4.

We recall that (cf. the proof of Theorem 3.1) either Ak or Bk is nonsingular
for each k = 1, 2, . . . , 4. Assuming that Ak is nonsingular we obtain F 2

k =
A−1

k BkF
1
k , and hence c1F 1

k + c2A−1
k BkF

1
k = Gk. It follows that

(3.25) F 1
k = (c1Id+ c2A−1

k Bk)−1Gk = (c1Ak + c2Bk)−1AkGk,

if c1Ak + c2Bk is nonsingular. The last condition holds if (c1, c2) is not
contained in a set of Lebesgue measure zero in R2, which may depend on
α1, α2, N . We have similar relations if Bk is nonsingular.

In case k = 3, we obtain A3F
2
3 − B3F

1
3 = ε(F 2

4 − ε0F
1
4 ) instead of

AkF
2
k − BkF

1
k = 0. A simple computation yields that

F 1
3 = (c1A3 + c2B3)−1A3G3 − εc2(c1A3 + c2B3)−1(F 2

4 − ε0F
1
4 ).

By taking the union of all exceptional sets of (c1, c2) with α1, α2 and N

in the set of nonnegative integers such that α1 + α2 +N > 2, we see that
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there exists a unique formal power series solution f j(x) (j = 1, 2) of (3.23),
provided (c1, c2) is not in an exceptional set of Lebesgue measure zero.

We will show the convergence of f j(x) (j = 1, 2). It is sufficient to prove
the convergence of f1(x) since we may take c2 6= 0 in view of the choice
of c1 in the above argument. By the condition (2) in the definition of G,
we can easily see that L−1

1 exists on G, namely L−1
1 L1 = L1L

−1
1 = Id.

Let g ∈ G. Then it follows from (3.23) and the relation L1f
2 = L2f

1 that
L1g = c1L1f

1 + c2L2f
1. Hence we have

g = c1f
1 + c2L

−1
1 L2f

1.

Now we have

L−1
1 L2 = L2L

−1
1 = (L2 − ε0L1)L−1

1 + ε0Id, on G.

By definition, we have

L2 − ε0L1 = 〈A2x, ∂x〉 − ε0〈A1x, ∂x〉+ ε0A1 −A2.

Hence, L2− ε0L1 is semi-simple. By the condition (2) and the proof of the
latter half of Theorem 3.1, it follows that the absolute value of the coef-
ficient of xα of L−1

1 g (g =
∑

α gαx
α) is bounded by N (τ ′′+1)NCN |gα| for

some C > 0, where τ ′′ > τ0 can be taken arbitrarily close to τ0. On the other
hand, the operator (L2 − ε0L1) is the one which multiplies the coefficients
of xα with (α2 + µN − ε0(α1 + α2 − 1 + νN)) for the first component. We
have similar expressions for other components. By the condition (1)′, the
absolute value of the term is bounded by N−N(τ+1)cN0 for some τ > τ0. Be-
cause τ ′′ > τ0 can be taken arbitrarily close to τ0, the growth NN(τ ′′+1)CN

which comes from L−1
1 is absorbed by the term N−N(τ+1)cN0 . Therefore,

the operator (L2 − ε0L1)L−1
1 maps G to G. By taking k0 sufficiently large,

the norm of (L2− ε0L1)L−1
1 on the space G ∩{g =

∑
α gαx

α; |α| > k0} can
be made arbitrarily small.

In view of the construction of c1 and c2 we may assume that c1+c2ε0 6= 0.
Writing

g = c1f
1 + c2L

−1
1 L2f

1 = (c1Id+ c2ε0Id+R)f1,

where R = (ε0L1 − L2)L−1
1 , and by noting that R preserves homogeneous

polynomials, we see that (c1Id+ c2ε0Id+R)−1 exists as a map from G to
G. Therefore we have f1 ∈ G. �

Proof of Proposition 3.6. — Because Spec (B) satisfies (3.5) by Propo-
sition 3.5 we may assume, by taking a subsequence if necessary, that ω̃j(α)
satisfies (3.5) for α = α`. Without loss of generality we may assume that
j = 4. We consider ω̃4(α). Let g = t(g1, . . . , g4), gk =

∑
β gβ;kx

β be the con-
vergent power series defined by gβ;k = 0 for k = 1, 2, 3 and all β ∈ Z4

+(2);
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g(β1,β2,β3,β4);4 = 0 if β4 > 1; g(α1,α2,N,0);4 = 1 for α = (α1, α2, α3, α4) = α`,
(` = 1, 2, . . .), N = α3 + α4; g(β1,β2,β3,0);4 = 0, if otherwise. We want to
solve LBv = g. Let λj be the eigenvalues of B. By the same argument as
in the proof of Theorem 3.1 we have the formula (3.19). Then we have

(3.26) v(α1,α2,0,N);4 = (−ε1)N (λ1α1 + λ2α2 + λ3(N − 1))−N−1N !,

for all α = α`, ` = 1, 2, . . .. By (3.5) we have: for every τ ′ < τ0 we can find
a constant C > 0 such that

|(λ1α
`
1 + λ2α

`
2 + λ3(N` − 1))−1| > CNτ ′

` , ∀` ∈ N,

where α` = (α`
1, α

`
2, α

`
3, α

`
4), N` = α`

3 + α`
4. Therefore, by (3.26)

(3.27) |v(α`
1,α`

2,0,N`);4
| > (C|ε1|)N`N

(N`+1)τ ′

` N`!, ` ∈ N, α1 ∈ Z+(2).

Because ε1 6= 0 and τ ′ < τ0 can be taken arbitrarily close to τ0, (3.27),
Stirling’s formula and the inequality N ! > CNNN ,∀N ∈ Z+ yield the
assertion. �

Example 3.8. — We give an example of a formal Gevrey linearization.
(cf. Theorem 3.1.) We consider

(3.28) LΛu = R(x+ u), Λ =

 1 0 0
0 −τ −1
0 0 −τ

 ,

where τ > 0 is an irrational number. For C � 1, let f be an analytic
function f(x1, x2) =

∑
α fαx

α1
1 xα2

2 , where the summation with respect to
α is taken for α ∈ Z2

+(2) such that 1 < α1 − τα2 < C. We define R(x) =
t(0, x3f(x1, x2), 0). We shall show that the unique solution of (3.28) is in
G2. Indeed, we may look for the solution u of (3.28) in the form u =
t(0, x3w(x), 0). We can easily see that w satisfies

Lw ≡ (x1∂x1 − τx2∂x2 − τx3∂x3 + x3∂x2)w(3.29)

= f(x1, x2 + x3w) ≡ g(x).

We substitue the expansion w(x) =
∑

α wαx
α into (3.29). We can easily see

that the summation in the expansion of w(x) can be taken for α such that
α1 − τ(α2 +α3) > 1. Indeed, by the definition the support of g(x) satisfies
α1 − τ(α2 + α3) > 1 if the support of w(x) satisfies the same condition.
On the other hand, by simple computations the support of L−1w satisfies
α1 − τ(α2 +α3) > 1 if the support of w satisfies the condition. From these
properties we can show the assertion for the homogeneous part 2 of w
because there appears no term form w in g. Inductively, we can prove the
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assertion. If we expand g(x) =
∑

α gαx
α, then by the same calculations as

in (3.19) we obtain

(3.30) w(α1,N−`,`) =
∑̀
r=0

g(α1,N−`+r,`−r)

(α1 − τN)r+1

(N − `+ r)!
(N − `)!

, ` = 0, 1, . . . , N.

If we can show that g(α1,N−`+r,`−r) = O((` − r)!) modulo terms of order
Kα1+N (K > 0), then we can easily see that w(α1,N−`,`) = O(`!). This
proves that the solution u of (3.29) is in G2.

If α1 + N = 2, then no term from the expansion of w appears in
g(α1,N−`+r,`−r) in (3.29). Hence, by the analyticity assumption of f , we
obtain the desired estimate for wα with α1 + N = 2, α2 + α3 = N .
Suppose that we have w(α1,N−`,`) = O(`!) up to α1 + N < ν for some
ν > 2. Then by the definition of g(x) and simple computations of the sub-
stitution of a Gevrey power series into an analytic function, we see that
g(α1,N−`,`) = O(`!). Hence, by the inductive argument we obtain the desired
estimate, w(α1,N−`,`) = O(`!), α1 +N = ν.

We will briefly mention the general case of d–actions. We suppose that
there exist j, 1 6 j 6 m and `0, 1 6 `0 6 d such that A`0

j in (1.6) admits
only one dimensional eigenspace, i.e., the geometric multiplicity of λ`

j is
one. For a positive integer r we define the r– square nilpotent matrix Nr

by

(3.31) Nr =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 .

By assumption we have

(3.32) A`0
j = λ`0

j Id+ εNsj , ε 6= 0.

By the explicit description of the centralizers of matrices (cf. [14]) all other
matrices have the following form

(3.33) A`
j = λ`

jId+
sj−1∑
k=1

ε`j
k (Nsj )

k ε`j
k ∈ C, k = 1, . . . , sj − 1.

We have

Theorem 3.9. — Assume (3.32). Then there exist ε`j

k in (3.33), λ`
j ,

(` = 1, 2, . . . , d; j = 1, 2, . . . , n) with the density of continuum such that
the followings hold;
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(i) The simultaneously nonresonant condition (1.16) holds, and there exists
a sequence α` ∈ Zn

+(2), ` ∈ N and a positive number c0 > 0 such that
|α`| → ∞ (`→∞) and 0 < ω(α`) 6 c0, ` ∈ N.
(ii) There exists an f := t(f1, f2, . . . , fd) ∈ (Cσ

2{x})d satisfying (3.2) such
that v := L−1

A f satisfies v 6∈
⋃

16σ<2G
σ
2 (Cn).

4. Sternberg’s theorem for commuting vector fields

The results in section 2 imply that the simultaneous linearization of
a Poincaré morphism with a Jordan block is reduced essentially to the
Poincaré–Dulac theorem for a single vector field in an analytic category.
On the other hand, in view of the results in section 3, the reduction seems
impossible if the action is not a Poincaré morphism.

In this section we shall illustrate that the situtation is completely differ-
ent in a smooth category. We consider two commuting vector field in R4

which are in a Siegel domain and only one of the two has a linear part
with nontrivial Jordan block. Obviously, the action is not a Poincaré mor-
phism. We will show that they are simultaneously linearizable in Ck for
every k > 1.

Let X(y) and Y (y) be commuting C∞ vector fields with the common
singular point at the origin 0 ∈ R4. Suppose that ∇X(0) = A, ∇Y (0) = B,
where

A =


1 0 0 0
0 1 0 0
0 0 −ν 0
0 0 0 −ν

 , B =


0 0 0 0
0 1 0 0
0 0 −µ ε

0 0 0 −µ

 ,(4.1)

where ε 6= 0. We assume that the action is not a Poincaré morphism,
namely, (cf. Example 1.6)

(4.2) ν > µ > 0, ν ∈ R \Q.

We also note that the irrationality of ν implies that the pair (X,Y ) is
nonresonant. Then we have

Theorem 4.1. — Suppose that (4.1) and (4.2) are verified. Let m > 1
be an integer. Then there exists a Cm– change of the variables y = u(x) =
x + v(x), v(0) = 0, ∇v(0) = 0 in some neighborhood of the origin which
transforms both X and Y to their linear parts.
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We need to prepare lemmas in order to prove our theorem. By Sternberg’s
theorem we may assume thatX is linear, i.e.Xv(y) = ∇v(y)Ay. LetR(y) =
t(R1(y), R2(y), R3(y), R4(y)) be the nonlinear part of Y

(4.3) Y f(y) = ∇f(y)(By +R(y)).

Suppose that the change of variables y = u(x) = x + v(x), v(0) = 0,
∇v(0) = 0 linearizes both X and Y . Then v(x) satisfies the system of
homology equations

(4.4) ∇v(x), Bx−Bv = R(x+ v(x)),

and

(4.5) ∇v(x)Ax−Av = 0.

We write x = (x1, x2, x
′′) and z = (z1, z′). Let c1 > 0 and 0 < c2 6 1 be

constants. Then we define

(4.6) Ω = {x′ = (x2, x3, x4) = (x2, x
′′) ∈ R3; |x2| < c1, |x′′| < c2},

(4.7) Ω1 = {x1 ∈ R; |x1| < 1} × Ω.

Then we have

Lemma 4.2. — Let k = ∞ or k > 1 be an integer. Let L be given by

L =
2∑

j=1

xj∂xj
− ν

4∑
k=3

xk∂xk
.

Then the Ck solution of

Lf(x)− f(x) = 0, x = (x1, x2, x3, x4) ∈ Ω1,(4.8)

(respectively,

Lw(x) + νw(x) = 0 x = (x1, x2, x3, x4) ∈ Ω1)(4.9)

is given by

f(x) = x1ϕ±(
x2

x1
, x3|x1|ν , x4|x1|ν), for ± x1 > 0,(4.10)

or

f(x) = x2ϕ±(
x2

x1
, x3|x1|ν , x4|x1|ν), for ± x1 > 0,(4.11)

(respectively, by

w(x) = |x1|−νψ±(
x2

x1
, x3|x1|ν , x4|x1|ν), for ± x1 > 0 ),(4.12)

where ϕ±(z) ∈ Ck(Ω) (respectively ψ±(z) ∈ Ck(Ω).)
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Proof. — Let L be the operator given in the lemma. We want to solve
(4.8) and (4.9). First we solve (4.8) in the region x1 > 0. If we set f(x) =
x1ϕ(x) (resp. f(x) = x2ψ(x)), then we have that

(4.13) Lϕ(x) = 0, (resp. Lψ(x) = 0).

By the theorem in page 61 of [2], the solutions of (4.13) are given by the
first integral of the corresponding characteristic equation. For the sake of
simplicity, we consider the equation Lϕ(x) = 0. The characteristic equation
is given by

(4.14)
dx1

x1
=
dx2

x2
= −dx3

νx3
= −dx4

νx4
.

If we integrate (4.14) by taking x1 as an independent variable, then we
obtain

(4.15) x2 = x1x
0
2, x3 = x−ν

1 x0
3, x4 = x−ν

1 x0
4,

where x0
2, x

0
3, x

0
4 are certain constants. It follows that the first integral ϕ+(x)

is given by

(4.16) ϕ+(x) ≡ ϕ̃+

(
x2

x1
, x3x

ν
1 , x4x

ν
1

)
= ϕ̃+(x0

2, x
0
3, x

0
4),

for some differentiable function ϕ̃+. Hence, the general solution of (4.8) in
x1 > 0 is given by f(x) = x1ϕ+(x) (resp. f(x) = x2ϕ+(x) for possibly
different ϕ+).

In case x1 < 0 we make the same argument by replacing x1 with −x1.
We see that there exists ϕ−(x) such that f(x) = x1ϕ−(x) (resp. f(x) =
x2ϕ−(x) for possibly different ϕ−. )

Next we consider the equation (4.9). We set w(x) = |x1|−νψ(x). For
the sake of simplicity we consider the case x1 > 0. The case x1 < 0 can
be treated similarly if we replace x1 with −x1. We can easily see that ψ
satisfies Lψ = 0. Hence it follows from the above argument that

(4.17) w(x) = x−ν
1 ψ+(x) = x−ν

1 ψ̃+

(
x2

x1
, x3x

ν
1 , x4x

ν
1

)
.

�

By the commutativity we see that every component of v = R(x) =
(R1, . . . , R4) satisfies either (4.8) or (4.9). Hence, by Lemma 4.1 we have,
for ±x1 > 0,

Rj(x) = xjΨ
j
±(
x2

x1
, x3|x1|ν , x4|x1|ν), j = 1, 2,(4.18)

Rj(x) = |x1|−νΨj
±(
x2

x1
, x3|x1|ν , x4|x1|ν), j = 3, 4(4.19)
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for some functions Ψj
±. In the following we will cut off Rj(x) with a smooth

function being identically equal to 1 in some neighborhood of the origin and
with support contained in a small neighborhhood of the origin, which we
give in the proof of Theorem 4.1. For the sake of simplicity, we denote the
modified Rj(x) with the same letter. We set

(4.20) z1 = x2/x1, z2 = x3|x1|ν , z3 = x4|x1|ν .

For every x1 6= 0, we define Ψj
±(z) by (4.18) and (4.19), namely, for ±x1 >

0,

Ψj
±(z) = x−1

j Rj(x1, x1z1, |x1|−νz2, |x1|−νz3), j = 1, 2,(4.21)

Ψj
±(z) = |x1|νRj(x1, x1z1, |x1|−νz2, |x1|−νz3), j = 3, 4.(4.22)

We can easily see that Ψj
± ∈ C∞(R3

z) (j = 1, 2, 3, 4).
By (4.5) and simple computations we see that every component of v(x) =

(v1(x), . . . , v4(x)) satisfies either (4.8) or (4.9). It follows from Lemma 4.1
that every component of v has an expression

(4.23) vj(x) = xjϕ
j
±(
x2

x1
, x3|x1|ν , x4|x1|ν), j = 1, 2,

and

(4.24) vj(x) = |x1|−νϕj
±(
x2

x1
, x3|x1|ν , x4|x1|ν), j = 3, 4,

for some ϕj
± with ±x1 > 0.

We substitute the transformation (4.20) and (4.23), (4.24) into (4.4), and
we rewrite (4.4) as an equation of z for the unknown functions ϕj

±(z) with
a parameter x1. Recalling that vj = xjϕ

j
± and vj = |x1|−νϕj

± we obtain

x2∂x2v1 = x1z1∂z1ϕ
1
±(z), x3∂x3v1 = x1z2∂z2ϕ

1
±(z),(4.25)

x4∂x4v1 = x1z3∂z3ϕ
1
±(z), x4∂x3v1 = x1z3∂z2ϕ

1
±(z),(4.26)

and we have similar relations for v2 = x2ϕ
2
±(x) and vj = |x1|−νϕj

±(x). In
fact we have

〈∇v1(x), Bx〉 = x1Lϕ1
±(z), for ± x1 > 0,(4.27)

〈∇v2(x), Bx〉 − v2(x) = x2Lϕ2
±(z), for ± x1 > 0,(4.28)

〈∇vj(x), Bx〉 = |x1|−νLϕj
±(z), for ± x1 > 0, j = 3, 4,(4.29)

where

Lf(z) = z1∂z1f(z)− (µz2 − εz3)∂z2f(z)− µz3∂z3f(z).(4.30)

We define ϕ±(z) = t(ϕ1
±(z), ϕ2

±(z), ϕ3
±(z), ϕ4

±(z)).
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Lemma 4.3. — We have the expression

(4.31) Rj(x+ v(x)) = xjE
j
±(z, ϕ±(z)), for ± x1 > 0, j = 1, 2,

where Ej
±(z, w) is given by

Ej
±(z, w)(4.32)

= (1 + wj)Ψ
j
±

(
z1

1 + w2

1 + w1
, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν

)
and

(4.33) Rj(x+ v(x)) = |x1|−νEj
±(z, ϕ±(z)) for ± x1 > 0, j = 3, 4,

with

Ej
±(z, w) = |1 + w1|−ν(4.34)

× Ψj
±

(
z1

1 + w2

1 + w1
, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν

)
.

Proof. — We have
x2 + v2(x)
x1 + v1(x)

=
x2(1 + ϕ2

±(z))
x1(1 + ϕ1

±(z))
(4.35)

=
x2

x1

1 + ϕ2
±(z)

1 + ϕ1
±(z)

= z1
1 + ϕ2

±(z)
1 + ϕ1

±(z))
.

(x3 + v3(x))|x1 + v1|ν(4.36)

= (x3 + |x1|−νϕ3
±(z))|x1|ν |1 + ϕ1

±(z)|ν

= (x3|x1|ν + ϕ3
±(z))|1 + ϕ1

±(z)|ν

= (z2 + ϕ3
±(z))|1 + ϕ1

±(z)|ν .
(x4 + v4(x))|x1 + v1|ν(4.37)

= (x4 + |x1|−νϕ4
±(z))|x1|ν |1 + ϕ1

±(z)|ν

= (x4|x1|ν + ϕ4
±(z))|1 + ϕ1

±(z)|ν

= (z3 + ϕ4
±(z))|1 + ϕ1

±(z)|ν .

Hence, if j = 1, 2, we get

Rj(x+ v(x)) = (xj + vj(x))(4.38)

× Ψj
±(
x2 + v2(x)
x1 + v1(x)

, (x3 + v3(x))|x1 + v1|ν , (x4 + v4)|x1 + v1(x)|ν)

= xj(1 + ϕj
±)

× Ψj
±

(
z1

1 + ϕ2
±

1 + ϕ1
±
, (z2 + ϕ3

±)|1 + ϕ1
±|ν , (z3 + ϕ4

±)|1 + ϕ1
±|ν

)
,
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which yields (4.31). Similarly, we can readily prove (4.33). �

Now we are ready to write explicitly the reduction of the overdetermined
system for v: (XA−A)v = 0, (Xb−B)v = R(x+ v(x)) into a 4× 4 system
of equations for ϕ±(z) in z ∈ Ω with a parameter x1. Then the new system
of semilinear homological equations for ϕ± is written as follows

(L − B̃)(ϕ±) = E±(z, ϕ±(z)),(4.39)

E±(z, w) = (E1
±(z, w), . . . , E4

±(z, w)),

where Ej
±(z, w) are given by (4.32) and (4.34) and

(4.40) B̃ =


0 0 0 0
0 0 0 0
0 0 −µ ε

0 0 0 −µ

 .

We prepare a lemma.

Lemma 4.4. — Let ν > 0 be an irrational number. Let f(x) and w(x)
be smooth solutions of (4.8) and (4.9) in Ω1, respectively satisfying that

f(0) = w(0) = 0,(4.41)

∇f(0) = ∇w(0) = 0.(4.42)

We cut off f(x) and w(x) with a smooth function being identically equal
to 1 in some neighborhood of the origin and with support contained in a
small neighborhhood of the origin. For the sake of simplicity we denote the
modified functions with the same letter. Let ϕ±(z) and ψ±(z) be defined
by (4.10), (4.11) and (4.12), respectively by the same way as (4.21) and
(4.22). Then, for every α ∈ Z3

+, we have

∂α
z Θ(z1, 0) = 0, ∀z = (z1, 0) ∈ Ω,(4.43)

with Θ = ϕ± and Θ = ψ±.

Proof. — Because ν is an irrational number we can easily see, from (4.8)
and (4.9) that every f(x) and w(x) satisfying (4.41) and (4.42) are flat at
the origin, namely all derivatives ∂α

x f(x), ∂α
xw(x) (α ∈ N4) vanish at the

origin x = 0. Let Θ(z)=ϕ±(z), and set f(x)=x1ϕ±(x2/x1, x3|x1|ν, x4|x1|ν),
x1 6= 0. Then we have

∂α′

x

(
x−1

1 f(x)
)

= ∂α′

x ϕ±(x2/x1, x3|x1|ν , x4|x1|ν)(4.44)

= x−α2
1 |x1|ν(α3+α4)∂α2

z1
∂α3

z2
∂α4

z3
ϕ±(z)

∣∣∣
z1=x2/x1,z2=x3|x1|ν ,z3=x4|x1|ν

.
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We let x tend to zero so as to satisfy x2/x1 = z1, z2 = x3|x1|ν = 0 and
z3 = x4|x1|ν = 0. Then we have

∂α2
z1
∂α3

z2
∂α4

z3
ϕ±(z1, 0, 0)(4.45)

= lim
x→0

xα2
1 |x1|−ν(α3+α4)∂α′

x

(
x−1

1 f(x1, x2, 0, 0)
)

= 0,

because f(x) is flat at the origin. The other cases will be proved similarly.
�

Remark. — Let ϕ±(z) ∈ Ck(Ω) be given. Assume that (4.43) is satisfied
for Θ = ϕ± up to some finite |α|. Then the function f(x) defined by (4.10)
gives a finitely smooth solution of (4.8) if ν is an irrational number. Indeed,
the finite smoothness at x1 = 0 follows from the argument of Lemma 4.4.

In order to solve (4.39) we introduce a function space. Let N > 1 and
k 6 N be integers. Let 0 < c′2 < c2 6 1 be a constant. Then we define

‖V ‖k;N = sup
z∈R3,0<|z′|6c′2

∑
|α|6k

|z′||α|
∣∣∂α

z

(
|z′|−NV (z)

)∣∣ ,(4.46)

|V (z)| = (
4∑

j=1

|Vj(z)|2)1/2, V (z) = (V1(z), V2(z), V3(z), V4(z)).

The set of all Ck functions V (z) such that ‖V ‖k,N <∞ is a Banach space
Bk;N with the norm ‖·‖k;N . Then we have

Lemma 4.5. —

i) For any integers k > 0 and 0 6 ` 6 N , there exists a constant
Ck,N > 0 such that

(4.47) ‖u‖k;` 6 Ck,N‖u‖k;N , ∀u ∈ Bk;N .

ii) For every f, g ∈ Bk;N we have fg ∈ Bk;N and there exists a constant
Ck,N > 0 such that

(4.48) ‖fg‖k;N 6 Ck,N‖f‖k;N‖g‖k;N , ∀f, g ∈ Bk;N .

Proof. — Because |z′| 6 1, we have, for |α| 6 k

|z′||α|∂α(|z′|−`u(z)) = |z′||α|∂α(|z′|N−`|z′|−Nu(z))

= |z′||α|
∑

β+γ=α

(
α

β

)
∂β |z′|N−`∂γ(|z′|−Nu(z))

6 C1 sup |z′||γ||∂γ(|z′|−Nu(z))|

for some C1 > 0. This proves i).
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In order to prove ii) we have, for |α| 6 k

|z′||α||∂α(|z′|−Nfg)|(4.49)

6
∑

β+γ=α

(
α

β

)
|z′||β||∂β(|z′|−Nf)||z′||γ||∂γg|

6 C2‖f‖k;N‖g‖k,0 6 C3‖f‖k;N‖g‖k,N .

Here C2 > 0 and C3 > 0 are constants. This proves ii) . �

We define the operator Q by

QV = −
∫ ∞

0

e−tB̃V (etCz)dt,(4.50)

V = (V1, . . . , V4) = (ϕ1
±, ϕ

2
±, ϕ

3
±, ϕ

4
±),

where

(4.51) C =

 1 0 0
0 −µ ε

0 0 −µ

 .

We can easily see that U = QV gives the solution of (L− B̃)U = V . Then
we have

Lemma 4.6. — Let the integers k and N satisfy that 0 6 2k < N − µ

and µ(k + 1−N) + k < 0. Then there exists Ck,N (Ω) > 0 such that

‖QV ‖k;N 6 Ck,N (Ω) ‖V ‖k;N , ∀V ∈ Bk;N .(4.52)

Proof. — First we note that

etCz = (etz1, e
−µtz2 + e−µtεtz3, e

−µtz3),(4.53)

e−tB̃V = (V1, V2, e
µt(V3 − εtV4), eµtV4).(4.54)

Hence we have

V (etCz) = V (etz1, e
−µt(z2 + εtz3), e−µtz3)(4.55)

= e−µNt((z2 + εtz3)2 + z2
3)N/2Ṽ (etCz),

where Ṽ (ζ) = V (ζ)/|ζ ′|N . It follows that the right-hand side integral of
(4.50) converges, because the growing term eµt in e−tB can be absorbed by
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e−µNt, (µ > 0). First we estimate ‖QV ‖0;N . By (4.54) and (4.55) we have

‖QV ‖0;N(4.56)

= sup
z∈R3,0<|z′|6c′2

(
1

|z′|N

∫ ∞

0

∣∣∣e−tB̃V (etCz)
∣∣∣ dt)

6 sup
z∈R3,0<|z′|6c′2

(
1

|z′|N

∫ ∞

0

(1 + |ε|t)eµt
∣∣V (etCz)

∣∣ dt)
6 sup

(
1

|z′|N

∫ ∞

0

(1 + |ε|t)eµ(1−N)t

× ((z2 + |ε|tz3)2 + z2
3)N/2

∣∣∣Ṽ (etCz)
∣∣∣ dt) .

On the other hand we note that

|z′|−N ((z2 + |ε|tz3)2 + z2
3)N/2 6 |z′|−N (|z′|+ |ε|t|z3|)N(4.57)

6 (1 + |ε|t)N .

In order to estimate Ṽ (etCz) we note the following inequality

(4.58) e−µt(|z2 + εtz3|2 + z2
3)1/2 6 |z′|(1 + |ε|t)e−µt 6 |z′| 6 c′2,

because we have |ε| < µ. It follows that

(4.59) |Ṽ (etCz)| 6 sup
z∈R3,0<|z′|6c′2

|Ṽ (z)|.

Hence the right-hand side of (4.56) is estimated in the following way

6 sup
z∈R3,0<|z′|6c′2

|Ṽ (z)|
∫ ∞

0

(1 + |ε|t)N+1eµ(1−N)tdt 6 C‖V ‖0;N(4.60)

for some C > 0 independent of V . It follows that ‖QV ‖0;N 6 C‖V ‖0;N for
some C > 0.

Next we will estimate the derivative |z′||α|∂α
z (|z′|−NQV ). By Leibnitz

rule it is sufficient to estimate the term |z′||α|∂γ |z′|−N∂α−γ(QV ), where
α > γ. By simple computations, we have |z′||α|∂γ |z′|−N 6 C1|z′|−N+|α|−|γ|

for some C1 > 0 independent of z′. On the other hand, we have

∂α−γ(QV ) = −∂α−γ

∫ ∞

0

e−tB̃((z2 + εtz3)2 + z2
3)N/2e−µNtṼ (etCz)dt

= −
∑

β6α−γ

(
α− γ

β

)
×

∫
e−tB̃−µNt∂β

z ((z2 + εtz3)2 + z2
3)N/2∂α−γ−βṼ (etCz)dt.
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We can easily see

(4.61)
∣∣∣∂β

z ((z2 + εtz3)2 + z2
3)N/2

∣∣∣ 6 C2(1 + |ε|t)N |z′|N−|β|

for some C2 > 0. If we set α− β − γ = δ, δ = (δ1, δ2, δ3), then we have

(4.62) ∂α−β−γ Ṽ (etCz) = etδ1−µ(δ2+δ3)t(∂δ1
1 ∂

δ2
2 (εt∂2 + ∂3)δ3 Ṽ )(etCz).

It follows that

|z′||α|∂γ |z′|−N |∂α−γ(QV )|(4.63)

6 C3|z′|−N+|α|−|γ|
∑

β

∫ ∞

0

eµt−µNt

×|∂β
z ((z2 + εtz3)2 + z2

3)N/2||∂α−γ−βṼ (etCz)|dt

6 C3|z′|−N+|α|−|γ|
∫ ∞

0

eµt−µNt(1 + |ε|t)N+1

×
∑

β

|z′|N−|β||∂α−γ−βṼ (etCz)|dt

6 C4

∫ ∞

0

∑
|ξ|=|α−β−γ|6k

|z′||ξ||(∂ξ
z Ṽ )(etCz)|

×(1 + |ε|t)N+1+|ξ|eµt−µNt+|α|tdt.

In order to estimate |z′||ξ||(∂ξ
z Ṽ )(etCz)|, we set ζ = etCz. Then we have

|z′||ξ||(∂ξ
z Ṽ )(etCz)| = |(e−tCζ)′||ξ||(∂ξṼ )(ζ)|(4.64)

6 eµ|ξ|t|(∂ξṼ )(ζ)|((ζ2 + εtζ3)2 + ζ2
3 )|ξ|/2

6 eµkt(1 + |ε|t)k|ζ ′||ξ||(∂ξṼ )(ζ)|
6 ‖V ‖k;Ne

µkt(1 + |ε|t)k.

By assumption we have (1 + k−N)µ+ |α| 6 (1 + k−N)µ+ k < 0. Hence
the right-hand side integral in (4.63) converges. Therefore we see that the
right-hand side of (4.63) can be estimated by C5‖V ‖k;N . �

Proof of Theorem 4.1. — Let the integers k and N satisfy that 0 6 2k <
N − µ and n > 2, µ(k + 1 − N) + k < 0. By setting ϕ± = QV , (4.39) is
equivalent to

V = E±(z,QV ).(4.65)

We define the sequence V j
± (j = 0, 1, 2, . . .) by

(4.66) V 0
± = E±(z, 0), V 1

± = E±(z,QV 0
±)− E±(z, 0),
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and

V j+1
± = E±(z,Q(V 0

± + · · ·+ V j
±)) − E±(z,Q(V 0

± + · · ·+ V j−1
± )),(4.67)

j = 1, 2, . . .

We will show the convergence of
∑∞

j=0 V
j
± =: V±. By the definition and

Lemma 4.3 we have V 0
± = E±(z, 0) = Ψ±(z). Next we have

V 1
± = E±(z,QV 0

±)− E±(z, 0)(4.68)

= QV 0
±

∫ 1

0

∇wE±(z, τQV 0
±)dτ.

Let ε′ > 0 be a small constant chosen later, and suppose that

(4.69) ‖Ψ±‖k;N < ε′, ‖∇Ψ±‖k;N < ε′.

Then, by Lemma 4.6 and the definition of V 0
± we have

(4.70) ‖τQV 0
±‖k;N 6 c1‖V 0

±‖k;N = c1‖Ψ±‖k;N < c1ε
′

for some c1 > 0 independent of Ψ±. Here we recall from (4.66) that V 0
± =

E±(z, 0) and E±(z, 0) = Ψ±(z) by (4.32) and (4.34).
In order to estimate ‖∇wE±(·, τQV 0

±)‖k;N , we set w = (w1, . . . , w4) =
τQV 0

± and

ζ = (ζ1, ζ ′) =
(
z1

1 + w2

1 + w1
, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν

)
.

The differentiation ∂α
z (∇wE±(z, τQV 0

±)) consists of terms which are prod-
uct of ∂β∇Ψ±(ζ) (α > β) and the differentiations of w. First, the product
of differentiations of w is bounded by a constant in view of (4.70). On the
other hand, in order to estimate |∂β

ζ ∇Ψ±(ζ)|, we note

|∂β
ζ ∇Ψ±(ζ)| = |∂β

ζ

(
|ζ ′|N |ζ ′|−N∇Ψ±(ζ)

)
|

6 C0

∑
γ6β

|∂γ
ζ |ζ

′|N ||∂β−γ
ζ (|ζ ′|−N∇Ψ±(ζ))|

for some constant C0 > 0. Because N > 2k > 2|β| > 2|γ| and |ζ ′| 6 1,
we have |∂γ

ζ |ζ ′|N | 6 C1|ζ ′|N−|γ| 6 C1|ζ ′||β|−|γ| for some C1 > 0. It follows
from the definition of the norm that |∂β

ζ ∇Ψ±(ζ)| 6 C2‖∇Ψ±‖k;N for some
C2 > 0. Hence, if ε′ > 0 is sufficiently small, then we obtain, by the
definition of E±(z, w) in (4.39), (4.32) and (4.34),

(4.71) ‖∇wE±(·, τQV 0
±)‖k;N 6 c2‖∇Ψ±‖k;N < c2ε

′,

for some c2 > 0 independent of ε′ and Ψ±.
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It follows from (4.68) that

‖V 1
±‖k;N 6 ‖QV 0

±‖k;N

∫ 1

0

‖∇wE±(z, τQV 0
±)‖k;Ndτ 6 c1c2ε

′2.

In order to show the general case, we assume that ‖V j
±‖k;N 6 cj1c

j
2ε
′j+1

for j = 0, 1, 2, . . . , k. Then we have

(4.72) ‖
k∑

j=0

V j
±‖k;N 6

k∑
j=0

cj1c
j
2ε
′j+1 6

ε′

1− c1c2ε′
.

By the definition we have

V k+1
± = E±(z,Q(V 0

± + · · ·+ V k
±))− E±(z,Q(V 0

± + · · ·+ V k−1
± ))(4.73)

= QV k
±

∫ 1

0

∇wE±(z,Q(V 0
± + · · ·+ V k−1

± ) + τQV k
±))dτ.

By the apriori estimate (4.72) and the boundedness of Q, the substitution
in the right-hand side of (4.73) is well–defined. Moreover, by the same
argument as in the proof of (4.71) we see that

‖∇wE±(z,Q(V 0
± + · · ·+ V k−1

± ) + τQV k
±)‖k;N 6 c2ε

′.

It follows from (4.73) that

‖V k+1
± ‖k;N 6 ‖QV k

±‖k;Nc2ε
′
∫ 1

0

dτ 6 ck+1
1 ck+1

2 ε′k+2.

Hence we have the estimate of V j
± for j = k + 1. It follows that the series

V± :=
∑∞

j=0 V
j
± converges in Bk;N and V± is a solution of (4.65). We note

that, by (4.72) V± satisfies the estimate ‖V±‖k;N 6 ε′(1 − c1c2ε
′)−1, and

V± is divisable by |z′|2.
Next we verify the smallness assumption (4.69) uniformly with respect

to x1 6= 0 in some neighborhood of x1 = 0. Because the argument is similar
we consider the condition ‖Ψ±‖k;N < ε′. In view of the definition of Ψ± in
(4.21) and (4.22), we shall estimate

x−1
j Rj(x1, x1z1, |x1|−νz2, |x1|−νz3), j = 1, 2

and
|x1|νRj(x1, x1z1, |x1|−νz2, |x1|−νz3), j = 3, 4

with x1 6= 0 close to 0. Because the argument is similar, we consider the
case j = 1. We have, for |α| 6 k

|z′||α|
∣∣∂α

z (|z′|−NΨ1
±(z))

∣∣(4.74)

= x−1
1 |z′||α|

∣∣∂α
z (|z′|−NR1(x1, x1z1, |x1|−νz2, |x1|−νz3))

∣∣ .
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By (4.43) we have that, for every positive integer p, the term

R1(x1, x1z1, |x1|−νz2, |x1|−νz3)|z′|−p

is smooth at z = 0. Because

|z′|p = (|x1|ν |x1|−ν |z′|)p = (|x1|ν |x′′|)p, x′′ = (x3, x4),

and |x′′| is bounded by the support condition of Rj , the negative power
|z′|−N in the right-hand side of (4.74) is absorbed by |z′|p if p is suffi-
ciently large. On the other hand, if the differentiation ∂α

z is applied to
R1(x1, x1z1, |x1|−νz2, |x1|−νz3), then the negative power of |x1| appears.
These terms are also uniformly bounded when x1 → 0, because there ap-
pears positive power of |x1| from |z′|p. Because all derivatives of R(x) at
the origin vanish, we see that the right-hand side of (4.74) can be made
arbtrarily small if we cut off R(x) in a sufficiently small neighborhood of
the origin. This proves that we have (4.69).

We set ϕ± = QV± ∈ Bk;N , and ϕ±(z) = (ϕ1
±(z), ϕ2

±(z), ϕ3
±(z), ϕ4

±(z)).
The function ϕ± is a solution of (4.39). Then we define vj(x) (j = 1, 2, 3, 4)
by (4.23) and (4.24). For a given integer m, we can easily see that vj(x) is
a Cm function if we take k and N in Bk;N sufficiently large. If we rewrite
(4.39) with the variable x, then we see that v is a solution of (4.4), where the
nonlinear part R is modified by a cutoff function. In order to show that v is a
solution of the original (4.4) we will show the apriori estimate of v. Indeed, if
|x+v| < ε′′ for sufficiently small ε′′, then v is a solution of (4.4). By Lemma
4.6 and the uniform estimate of V± in x1 we know that ϕ1

±(z) is uniformly
bounded in z and x1. It follows that v1(x) = x1ϕ

1
± is arbitrarily small if x1

is sufficiently small. Similarly we can show that v2(x) = x2ϕ
2 is small by the

estimate of V±. On the other hand, we have x3 +v3(x) = x3 + |x1|−νϕ3
±(z).

Because ϕ3
± is divisable by |z′|2 and |z′| = |x1|ν |x′′|, by Lemma 4.4 we see

that |x3 + v3(x)| < ε′′ uniformly in x1. Similarly we can show the same
estimate for x4 + v4. Therefore we see that v is a solution of (4.4). �
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