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FINITENESS RESULTS FOR TEICHMÜLLER CURVES

by Martin MÖLLER (*)

Abstract. — We show that for each genus there are only finitely many alge-
braically primitive Teichmüller curves C, such that (i) C lies in the hyperelliptic
locus and (ii) C is generated by an abelian differential with two zeros of order g−1.
We prove moreover that for these Teichmüller curves the trace field of the affine
group is not only totally real but cyclotomic.

Résumé. — Pour chaque genre g fixé, on montre qu’il n’y a qu’un nombre fini de
courbes de Teichmüller C algébriquement primitives telles que (i) C appartient au
lieu hyperelliptique et (ii) C est engendrée par une différentielle abélienne avec deux
zéros d’ordre g−1. On montre en outre que pour ces courbes de Teichmüller le corps
de traces du groupe affine n’est pas seulement totalement réel mais cyclotomique.

Introduction

A Teichmüller curve is an algebraic curve in the moduli space of curves of
genus g, denoted by Mg, whose preimage in Teichmüller space is a complex
geodesic for the Teichmüller metric. Teichmüller geodesics are obtained
as the orbit of a pair (X0, q0) of a Riemann surface X0 plus a quadratic
differential q0 on X0 under the action of SL2(R). Those (few) pairs (X0, q0)
that give Teichmüller curves are called Veech surfaces. We restrict ourselves
to the case when q0 = (ω0)2 is a square of a holomorphic differential.
The case of proper squares might be analysed using the canonical double
covering of X0, that makes the pullback into a square. We remark that
Teichmüller curves naturally lift to the bundle ΩMg over Mg of holomorphic
one-forms. This bundle is stratified according to the multiplicity of the zeros
of the one-form. See Section 1 for more details.

Keywords: Teichmüller curves, cyclotomic field, Neron model.
Math. classification: 14D07, 32G20.
(*) Supported by the DFG-Schwerpunkt “Komplexe Mannigfaltigkeiten”.
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The first examples of Teichmüller curves were obtained as coverings of the
torus ramified over one point. There are infinitely many of them in each
stratum. First examples not of this type were discovered by Veech [18].
In particular the trace field of the affine group (see Section 1) is not Q in
Veech’s examples.

In genus 2 there are infinitely many non-torus coverings in the stratum
with one double zero but only a single one in the stratum with a two zeros.
If one fixes one additional discrete parameter (the discriminant of the order
all curves parametrized by such a Teichmüller curve have real multiplication
with), the number becomes finite also for Teichmüller curves in the stratum
with one double zero. In fact there are one or two of them according to the
congruence class of the discriminant mod 8. This classification is contained
in [12], [13] and [15].

To go beyond genus 2 we recall from [17] that the family of Jacobians
over a Teichmüller curve splits into an r-dimensional part with real multi-
plication and some rest, where r is the field extension degree of the trace
field over Q.

A Teichmüller curve in Mg is called algebraically primitive if the trace
field has degree g over Q. This implies that the curve is geometrically
primitive, i.e. that the pair (X0, ω0) does not arise from a surface of lower
genus plus a differential via a covering construction. Both notions coincide
in genus two, but in general the converse implication is not true.

At the time of writing the following is known about primitive Teichmüller
curves: Among Veech’s examples there are infinitely many algebraically
primitive ones, but at most one for each genus. Besides this there are se-
ries of examples and sporadic ones in [19], [20], [6]. Only finitely many of
them are algebraically primitive and for each genus there are only finitely
many examples. The recent work of McMullen (see [14]) contains infinitely
many geometrically primitve examples (although they are not algebraically
primitive) for the genera 3, 4 and 5.

The purpose of the present work is to obtain some finiteness results
valid in all genera. We cannot hope for such results for imprimitive curves
without fixing additional discrete parameters. For geometrically primitive
but algebraically imprimitive Teichmüller curves it seems unclear what to
expect. If we restrict to algebraically primitive Teichmüller curves we show,
generalizing [15]:

Theorem 3.1. — For fixed genus g there are only finitely many alge-
braically primitive Teichmüller curves in the connected component of the
stratum ΩMg(g − 1, g − 1), that parametrizes hyperelliptic curves.

ANNALES DE L’INSTITUT FOURIER



FINITENESS RESULTS 65

We will consider the family of curves f : X → C over a Teichmüller
curve C or over a suitable cover of C. Recall from [16] that the zeros of
the generating differential ω0 determine sections of f . In the algebraically
primitive case the difference of any two of those sections is a torsion element
of the relative Jacobian. The theorem is an instance of the philosophy
that torsion points on families of curves are rare. It might be possible to
show the same type of result for differentials with more zeros instead of
hyperelliptic ones. But using the same methods the combinatorics become
quite complicated then.

We briefly outline the strategy of our proof:
(i) From an argument in [16] we deduce that an algebraically primitive

Teichmüller curve in ΩMg(g−1, g−1)hyp has a reducible and an irreducible
degeneration (Theorem 2.3) in say the vertical and horizontal direction.

(ii) The irreducible degeneration is used to bound the torsion order
(Proposition 3.5 and Section 4). This limits the suitably normalized widths
of the cylinders in the horizontal direction to a finite set. It generalizes the
discussion of sine ratios in Section 2 of [15]. Proposition 3.5 has the flavour
of the toric case of the Mordell-Lang conjecture. Yet none of the versions
in the literature seems strong enough to cover what we need.

(iii) The reducible degneration is used to relate the torsion order and the
moduli of the cylinders in the vertical direction (Theorem 2.4).

(iv) The combination of these informations limits the possibilities for the
flat geometry of a Veech surface to a finite number (see the prototype in
Figure 3.1 and the end of Section 3).

As a byproduct of the proof we obtain:

Corollary 3.8. — The trace field of an algebraically primitive Teich-
müller curve in the stratum ΩMg(g − 1, g − 1)hyp is cyclotomic.

The cyclotomic fields appear roughly as follows: The normalisations of
some degenerate fibres in the family over the Teichmüller curve are isomor-
phic to P1. Arranging the position of the zeros of the generating differential
suitably, the preimages of the nodes are forced by the torsion condition to
lie at roots of unity in P1. We deduce that enough periods of ω0 lie in this
cyclotomic field to conclude that the trace field is cyclotomic.

We remark that the trace fields of all presently known Teichmüller curves
are cyclotomic. Based on the above Corollary one might conjecture that this
holds in general, at least for Teichmüller curves with more than one zero.
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The author thanks F. Herrlich for valuable comments and C. McMullen
for pointing to the work of H. Mann on relations of roots of unity and for
the useful Lemma 3.4.

1. Notation

Strata of ΩMg. — We denote the tautological bundle over Mg by ΩMg.
Its points are pairs (X0, ω0) of a Riemann surface X0 of genus g and a
holomorphic differential (or equivalently: a one-form) ω0 ∈ Γ(X0,Ω1

X0).
This space is naturally stratified by the type of multiplicities of the zeros
of ω. Kontsevich and Zorich have determined the connected components of
the strata (see [7]).

A pair (X, ω) belongs to a hyperelliptic stratum if X is a hyperelliptic
curve with involution σ and quotient map π : X → X/〈σ〉 ∼= P1, such
that ω2 = π∗q for a quadratic differential q on P1 with (a) 2g + 1 simple
poles and a zero of order 2g − 3 or (b) 2g + 2 simple poles and a zero of
order 2g − 2. In case (a) the pair belongs to ΩMg(2g− 2) while in case (b)
the pair belongs to ΩMg(g−1, g−1). The hyperellipic strata form connected
components (see [7, Thm. 1] ). They will be denoted by a superscript ‘hyp’.
For (X, ω) ∈ ΩMg(g − 1, g − 1)hyp the involution σ interchanges the two
zeroes of ω.

Note that there are other types of zeros of a pair (X, ω) such that X is
hyperelliptic and such that ω2 is the pullback of a quadratic differential on
the quotient. But the above two cases are the only ones, where a connected
component consists entirely of such hyperelliptic pairs.

The two hyperelliptic strata are the natural generalisation of the only
two strata that exist for g = 2.

SL2(R)-action. — There is a natural action of SL2(R) on ΩMg minus
the zero section: Apply the R-linear transformation to the local complex
charts of X given by integrating ω to obtain a new complex structure and
apply the R-linear transformation to the real and imaginary parts of ω to
obtain a new one-form, which is holomorphic for the new complex structure.
For more details see e.g. [10] or [11]. This action obviously preserves the
stratification of ΩMg.

Teichmüller curves. — Teichmüller curves are algebraic curves

C −→ Mg

in the moduli space of curves of that are geodesic for the Teichmüller
metric. We deal here exclusively with Teichmüller curves generated by a
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pair (X0, ω0) i.e. whose natural lift to the bundle of quadratic differentials
over Mg lies in the image of ΩMg. Here C = H/Γ, where Γ ⊂ PSL2(R) is the
image of the affine group of (X0, ω0) (see e.g. [17]). Let K = Q(tr(γ), γ ∈ Γ)
be the trace field of Γ and r := [K : Q]. Let f : X → C denote the univer-
sal family over some finite unramified cover of C, abusively denoted by the
same letter. Let Jac(f) : Jac X/C → C denote the family of Jacobians. Re-
call from [17] that Jac X/C splits up to isogeny into a product of a family
g : A → C of abelian varieties of dimension r with real multiplication by K

and a family of abelian varieties of dimension g − r. Since the splitting up
to isogeny is not unique we take g : A → C to be the maximal quotient
in its isogeny class. This letter should cause no confusion with the genus
of X0.

We extend all the above families to families over C , i.e. let
. f : X → C be the stable model and
. f̃ : X̃ → C the minimal semistable model with smooth total space X̃.
Also let g : A → C be the corresponding family of semiabelian varieties.

Néron models for families of Jacobians. — Let F denote the func-
tion field of the curve C. The Néron Model

g̃ : Q −→ C

of a family g : A → C of semiabelian varieties is a group scheme, whose
fibre over the generic point of C coincides with AF and such that for any
given smooth group scheme Y → C any map Y F → QF over F extends
uniquely to a map Y → Q over all C . In particular sections of g extend to
sections of g̃. In all the cases we consider Néron Models exist, see [1].

In case of algebraically primitive Teichmüller curves, i.e. for g = r, the
family g is just Pic0(X/C ), i.e. line bundles on X that are of degree zero on
each component of each fibre. The connected component of 1 of Q, denoted
by Q0, coincides with Pic0(X/C ) in this case (see [1, Thm 9.5.4 b]).

Torsion. — Let f : X → C be the universal family over a Teich-
müller curve generated by (X0, ω0) in the stratum ΩMg(k1, . . . , kr). Recall
from [16] that, maybe after passing to a finite unramified cover of C, the
zeros of ω0 define sections s1, . . . , sr of f . For any pair (i, j) the differ-
ence si − sj is a torsion section of g. It extends to a section of g̃. Since
(in characteristic zero) the kernel of multiplication by some integer is étale
on any group scheme, in particular on the Néron Model (see [1, Lemma
7.3.2]), the order of (si − sj) restricted to any fibre of g̃ equals the same
number N(i, j). In particular this holds for the fibres over the cusps.

TOME 58 (2008), FASCICULE 1



68 Martin MÖLLER

2. Degenerations

We study the degenerate fibres and give a relation between the geometry
of a degenerate fibre and the torsion order of the difference of the two
zeros, if (X0, ω0) ∈ ΩMg(g − 1, g − 1) generates an algebraically primitive
Teichmüller curve.

Theorem 2.1. — Let f : X → C be the universal family over a Teich-
müller curve. The sum of the genera of the components of a singular fibre
of f is at most g− r. In particular the degenerate fibres of an algebraically
primitive Teichmüller curve have only rational components.

Proof. — A family of abelian varieties with real multiplication degen-
erates to a semi-abelian variety whose abelian part is trivial (see e.g. [3],
Lemma 2.23). Hence the abelian part of the fibre of g over any cusp has
dimension at most g − r.

Alternatively this can be deduced from the Clemens-Schmid exact se-
quence for a degeneration of Hodge structures and the explicit description
of the local system in [17]. �

We recall how the degeneration of a Teichmüller curve is described via
the euclidian geometry defined by (X0, ω0): A geodesic on X0 has a well-
defined slope and all geodesics with this slope form a direction. Veech
dichotomy (see [18]) states that each direction that contains a geodesic
joining two zeros or one zero to itself (a saddle connection) is periodic, i.e.
each geodesic in this direction is closed or a saddle connection.

The closed geodesics of a periodic direction (say the horizontal one) sweep
out cylinders Ci and we denote their core curves by γi. Consider the de-
generate fibre obtained by applying diag(et, e−t) to (X0, ω0) for t → ∞.
Say this point corresponds to the cusp c ∈ C r C. By [9] the stable model
of the singular (or ‘degenerate’) fibre Xc of f is obtained by squeezing the
core curves of the Ci to points. Topologically the irreducible components
of Xc are obtained by cutting along the γi.

Corollary 2.2. — Each direction of a Teichmüller curve in

ΩMg(k1, . . . , ks)

has at least r and at most r + s− 1 cylinders.

Proof. — Each component of the degeneration in the given direction
contains at least one zero. �

For the rest of this section we suppose that (X0, ω0) generates an alge-
braically primitive Teichmüller curve.
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Theorem 2.3. — For any two zeros Z1 and Z2 of ω0 with Z1 6= Z2

there is a direction with the following property: Let Xc denote the singular
fibre corresponding to the degeneration in this direction and si the sections
defined by the Zi. Then s1 and s2 intersect Xc in different irreducible
components.

Proof. — We know that si does not intersect the degenerate fibre in
a node. Suppose the statement was wrong. Then s1 − s2 defines a non-
zero section of Pic0(X/C ) over the completed Teichmüller curve C . This
is not possible by proof of [16, Thm. 3.1]. We isolate the argument for
convenience of the reader. We use the uniformization of the semiabelian
scheme g : A := Pic0(X/C ) → C. It is given by the exact sequence

0 → j∗VZ −→ E0,1 −→ Oan
C

(A) → 0,

where VZ := R1f∗Z is the local system underlying the variation of Hodge
structures of g and where E0,1 = R1g∗OA . We take cohomology and note
that H0(C, E0,1) vanishes since A/C has no fixed part by the hypothesis
of algebraic primitivity. In loc. cit. we recalled that, by the work of Zucker,
the cohomology of the complex local system j∗VC carries a Hodge structure
with the following two properties. First, we can calculated the space of
global sections we are interested in by

H0(C,Oan
C

(A)) = Ker
(
H1(C, j∗VZ) → H1(C, E0,1)

)
= H1(C, j∗VZ) ∩Ker

(
H1(C, j∗VC) → H1(C, E0,1)

)
= H1(C, j∗VZ) ∩H1(C, j∗VC)1,1.

Recall now from [17, Thm. 2.5] that, again by algebraic primitivity, we
have a decomposition VC =

⊕g
i=1 Lσi exclusively into Galois conjugate

local subsystems of rank two. The second property of the Hodge structure
on j∗V we use is that is calculated by

H1(C, j∗VC)1,1 =
⊕

σi∈Gal(K/Q)

H1
(
C,Li → (Li)−1 ⊗ Ω1

C
(log S)

)
,

where Li is the (1, 0)-part of the Deligne extension (Lσi ⊗OC)ext and the
map in the complex is the Kodaira-Spencer map. Since for σ1 := id the
Kodaira-Spencer map is an isomorphism (this is the definition of ‘maximal
Higgs’ in [17] and characterizes Teichmüller curves), the first summand
vanishes. But the action of K permutes the summands transitively and
hence

H1(C, j∗VZ) ∩H1(C, j∗VC)1,1 = 0.

TOME 58 (2008), FASCICULE 1
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We conclude that there are no non-zero analytic sections of g and conse-
quently no non-zero algebraic sections either. �

Suppose from now on that the Teichmüller curve C is generated by a
differential with two zeros of order g−1. By Theorem 2.3 there is a direction,
say the vertical one, such that the corresponding singular fibre Xv has two
components. The vertical direction has hence g+1 cylinders. Let γi denote
the core curves of the cylinders. We number them in such a way that
for i = 1, . . . , a the curve γi degenerates to a node on the first component
of Xv, while for i = a+1, . . . , a+b the curve γi degenerates to a node on the
second component. We enumerate the components of Xv such that a 6 b.
Note that a+b 6 g−1 since the two components of Xv intersect in at least
two points: a core curve of a cylinder is not separating.

We denote by hv
i the height and by bv

i the width of the i-th vertical
cylinder, i.e. the length of γi. Moreover let mv

i = hv
i /bv

i be the modulus of
the i-th vertical cylinder.

It is remarked in Veech [18] that the moduli mv
i for i = 1, . . . , g + 1 are

commensurable. It is no loss of generality for the purposes below to rescale
the generating differential of the Teichmüller curve such that mv

i ∈ N and
gcd(mv

i , i = 1, . . . , g + 1) = 1.
A small simple loop in C around the cusp c obtained by degenerating in

the vertical direction corresponds (compare [18, Prop. 2.4]) to the product

( g+1∏
i=1

D
mv

i
γi

)k

, where Dγi
is a Dehn twist along γi.

Here k is some positive integer, which appears since we have taken (with
abuse of notation) coverings of the Teichmüller curve C that may ramify at
the cusps. Hence the loop is not necessarily a generator of the corresponding
parabolic subgroup of the affine group. This means that in the stable model
the node in Xv corresponding to γi is given by xy = tm

v
i k, where t is

a local coordinate of C at the cusp c and x, y are local coordinates of an
embedding of a neighborhood of the node in the stable fibre into C3. In fact,
the statement is local in the base C and in the total space and it reduces
for mv

i k = 1 to the easiest case of the Picard-Lefschetz transformation.
The general case is obtained via base change. After resolving this singularity
the fibre X̃v of the semistable model with smooth total space of f contains
a chain of mv

i k − 1 rational (−2)-curves in the preimage of the node.

Theorem 2.4. — Let N denote the order of s2 − s1. Suppose that the
moduli mv

i are integers and let mv = lcm{mv
i , i = a + b + 1, . . . , g + 1}.
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Then the torsion order and the moduli of the cylinders are related by
g+1∑

i=a+b+1

mv

mv
i

divides N.

Proof. — By the preceding discussion the fibre X̃v looks as in the fol-
lowing figure. Lines correspond to components of the semistable fibre, in-
tersection points are nodes and Z1, Z2 are the intersection points of the
section si with the stable fibre.

Figure 2.1. Semistable model of X̃v

Section 9.6 in [1], in particular p. 283, gives a presentation of the com-
ponent group Q/Q0 of the Néron model of a flat family of curves with
smooth total space over a discrete valuation ring. This can be applied
to the localization of f̃ at the ‘vertical’ cusp: Let ηij denote the nodes
of the singular fibre, i.e. the edges of the dual (intersection) graph used
in loc. cit. The component group is generated by the ηi1 and ηij − ηi j−1

for i = 1, . . . , g + 1 and j = 2, . . . ,mv
i k with the following relations: The com-

ponents of X̃v contribute

ηij − ηi j−1 = 0,

for i = 1, . . . , g + 1, j = 2, . . . ,mv
i k, and

g+1∑
i=a+b+1

ηi1 +
a∑

i=1

(ηi1 − ηi mv
i
k) = 0,

TOME 58 (2008), FASCICULE 1
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−
g+1∑

i=a+b+1

ηi mv
i
k +

a+b∑
i=a+1

(ηi1 − ηi mv
i
k) = 0,

and the fundamental group of the intersection graph contributes the rela-
tions

mv
i k∑

j=1

ηij = 0, i = 1, . . . , a + b,

mv
i k∑

j=1

ηij −
mv

g+1k∑
j=1

ηg+1 j = 0, i = a + b + 1, . . . , g.

The difference s2 − s1 defines a section of Q, hence of G := Q/Q0, which
is given in this presentation e.g. by

[s2 − s1] =
mv

g+1k∑
j=1

ηg+1 j .

We shall show that the order of [s2 − s1] in G equals
∑g+1

i=a+b+1 mv/mv
i .

We may simplify the presentation of G using only the generators ηi,1

for 1, . . . , g + 1 and relations

(mv
i k) ηi,1 = 0, i = 1, . . . , a + b,

(mv
i k) ηi,1 − (mv

gk)ηg+1,1 = 0, i = a + b + 1, . . . , g + 1,

g+1∑
i=a+b+1

ηi,1 = 0.

In this presentation [s2 − s1] = (mv
i k) ηi,1 for any i = a + b + 1, . . . , g + 1.

We have ( g+1∑
i=a+b+1

mv

mv
i

)
[s2 − s1] = (mvk)

g+1∑
i=a+b+1

ηi,1 = 0.

To see that the order is not smaller, we consider [s2 − s1] in the group H

with the same generators and all but the last relation. If n · [s2 − s1] = 0
in G then there is n′ ∈ Z such that n · [s2 − s1] = n′

∑g+1
i=a+b+1 ηi,1 in H.

Listing the equivalence class of the right hand side in H this means that
we can write n =

∑g+1
i=a+b+1 ni such that

n · [s2 − s1] =
g+1∑

i=a+b+1

ni(mv
i k) ηi,1 =

g+1∑
i=a+b+1

n′ηi,1.
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Hence n′ is a common multiple of all mv
i k and hence mvk, which appeared

above, is minimal.

Since the order of s2 − s1 in the component group divides N we are
done. �

Example 2.5. — In case of the decagon, the unique primitive Teich-
müller curve in ΩM2(1, 1) one has N = 5 and the moduli are (1, 2, 1)
(see [15]). This is confirmed by

(2/1 + 2/2 + 2/1) | 5.

3. Algebraically primitive Teichmüller curves
in ΩMg(g − 1, g − 1)hyp

In this section we prove the following theorem:

Theorem 3.1. — There are only finitely many algebraically primitive
Teichmüller curves in the component ΩMg(g − 1, g − 1)hyp for each g > 2.

We specialize the results of Section 2 to the algebraically primitive case
and the hyperelliptic stratum. We start with a direction that contains a
saddle connection joining the two zeros, say the horizontal one. By The-
orem 2.1 and Corollary 2.2 this direction contains precisely g cylinders.
Similarly as for the vertical cylinders we denote by hh

i , bh
i and mh

i the
(respective) heights, widths and moduli of the horizontal cylinders.

Suppose that the vertical direction is chosen as in the paragraph preced-
ing Theorem 2.4. Since the hyperelliptic involution interchanges the zeros
it also interchanges the components of such a degenerate fibre and hence
a = b. Moreover since the hyperelliptic involution on a smooth hyperelliptic
curve has 2g +2 fixed points, these fixed points have to degenerate to g +1
nodes joining the two components. We have shown:

Lemma 3.2. — For a degenerate fibre of an algebraically primitive Te-
ichmüller curve in the component ΩMg(g− 1, g− 1)hyp we have a = b = 0.

We describe a prototype for a Veech surface in ΩMg(g − 1, g − 1)hyp:
Suppose the hyperelliptic involution fixes n of the g horizontal cylinders
and interchanges the remaining g − n cylinders in pairs. This implies that
we have precisely 2n Weierstraß points contained in the interiors of the hor-
izontal cylinders. The Weierstraß points on the boundary define sections
of the family f (again maybe after passing to an unramified cover of C)
that do not pass through the nodes of the degenerate fibre. Hence they are
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fixed points of the ’hyperelliptic’ involution that acts on the normalization
of the degenerate fibre. Since this normalization is isomorphic to P1 there
are precisely two fixed points and hence precisely two Weierstraß points
on the boundary. To obtain 2g + 2 Weierstraß points alltogether we must
have n = g, i.e. all the horizontal cylinders are fixed by the involution.
We conclude that such a Veech surface looks as in Figure 3.1. The dots cor-
respond to the Weierstraß points, the square and the cross denote the zeroes
of ω0. Vertical edges are glued by horizontal translations. The horizontal
edges containing the Weierstraß points are glued on the same horizontal
cylinder. In the other cases the ‘free’ top horizontal saddle connection of
the i-th cylinder is glued to the ‘free’ bottom saddle connection of the
(i + 1)-st cylinder. For g even the square and the star have to be switched
in the lowest parallelogram.

Figure 3.1. Prototype of a Veech surface in ΩMg(g − 1, g − 1)hyp

We normalize the prototype (by GL+
2 (R)-action) by imposing that

(3.1) hh
1 = 1 and bh

1 = 1 + w1, i.e. that mv
g+1 = 1,

where the the (g +1)-st vertical cylinder sits in the upper left corner of the
picture. We suppose no longer (as we did in Section 2) that the vertical
moduli are all integers but only that they are rational.

Remark 3.3. — By [17, Thm. 2.6] the Jacobian of X0 has real multipli-
cation and the prototype above looks similar to the ones in [12], Section 3.

ANNALES DE L’INSTITUT FOURIER



FINITENESS RESULTS 75

Nevertheless we do not claim that the elliptic curves obtained by glueing
the horizontal slits are isogenous (what is known to be true in genus 2).

Horizontal degeneration. — Let Xh be the singular fibre obtained by
degeneration in the horizontal direction. By Theorem 2.1 the degenerate
fibre Xh is a singular rational curve with g nodes. We denote by Xnorm

h its
normalization. We suppose that the intersection of Xh with s2 and s1 lift
to the points 0 and ∞ on Xnorm

h , respectively. Since the hyperelliptic invo-
lution interchanges the two sections, we may suppose that one of its fixed
points is 1, i.e. that it acts by z 7→ 1/z. The Weierstraß points degenerate
to ±1 and g pairs (xi, 1/xi) on Xnorm

h that are glued together on Xh.
Let L ⊂ f∗ωX/C be the distinguished subbundle, whose restriction to X0

is C·ω0. We choose a generator ωh of L|Xh
and denote by ωnorm

h its pullback
to Xnorm

h . The differential ωnorm
h has zeros of order g − 1 at 0 and infinity

and simple poles at x±1
i such that the residues differ by a factor −1.

Since Jac(f) = g for an algebraically primitive curve, the torsion condi-
tion implies that there is a map t : X → P1 whose fibre over 0 (resp. ∞)
equals s1 (resp. s2) with multiplicity N . The map extends to t : Xbl → P1

for some suitable blowup of X . Since Xh is irreducible and contains both
a point that maps to 0 and to ∞, the map t has to be non-constant on Xh.
Hence t has the form z 7→ zN on Xnorm

h and factors through Xh. This
implies that xi are 2N -th roots of unity.

Since the degenerate fibre can be obtained from (X0, ω0) by applying
diag(et, e−t) ⊂ SL2(R) the residues of ωnorm

h around the g poles coincide
up to a common scalar multiple with the integrals of ω0 along the core
curves of the horizontal cylinders, i.e. with the bh

i .

Lemma 3.4. — The residues bh
i (i = 1, . . . , g) of ωnorm

h , normalized such
that bh

1 = 1, form a basis of K/Q.

Proof. — Let λ denote a primitive element of K/Q and consider it (see
[17, Thm. 2.6]) as an endomorphism Tλ of the family of semiabelian vari-
eties g . In particular Tλ acts on Xh. The differential ωh is an eigenform
for the action of Tλ. Hence Tλ acts Q-linearly on the periods bh

i of ωh

and (bh
1 , . . . , bh

g ) form an eigenvector for the eigenvalue λ ∈ K. Since bh
1 = 1

we can express all powers of λ as Q-linear combinations of the bh
i . Since λ

is primitive and [K : Q] = g, the bh
i form a basis. �

We have shown that we can write ωnorm
h in two ways

ωnorm
h =

g∑
i=1

( bh
i

z − xi
− bh

i

z − x−1
i

)
dz = C

zg−1∏g
i=1

(
(z − xi)(z − x−1

i )
) dz,
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where xi are roots of unity, bh
i form a basis of a real subfield K ⊂ Q(x1, . . . , xg)

and C is some real number.

Proposition 3.5. — For fixed g, there are only finitely many g-tupels
(x1, . . . , xg) of roots of unity such that there exist real numbers bh

1 , . . . , bh
g

which form a Q-basis of some real number field K ⊂ Q(x1, . . . , xg) and
a real constant C, such that we have the following identity of rational
functions

g∑
i=1

( bh
i

z − xi
− bh

i

z − x−1
i

)
= C

zg−1∏g
i=1

(
(z − xi)(z − x−1

i )
) ·

In particular the least common multiple of the orders of the xi satisfying
the above condition is bounded by a function depending only on g.

The proof does not require any properties of Teichmüller curves and will
be given in the next section.

Corollary 3.6. — There is only a finite number of period tupels

(bh
2 , . . . , bh

g , w1)

and torsion orders N that can occur for a Veech curve normalized as
in (3.1).

Proof. — The finiteness of possibilities for the bh
i is an immediate con-

sequence of the previous proposition. The period w1 is the integral of ωh

along a path from 0 to ∞ that crosses the unit circle once (in a point dif-
ferent from ±1 and x±1

i ). Since the xi are fixed up to a finite number of
choices this determines w1 up to a finite number of choices.

Let s be the section of the family g̃ (or g , it doesn’t matter near Xh.)
given by the difference the two zeros. The order of s at Xh is bounded
above by the least commom multiple of the multiplicative orders of the xi.
This quantity is bounded by Proposition 3.5 for g fixed. Finally we remark
that the torsion order of a section is independent of the fibre chosen. �

Vertical direction. — The work has been done in the previous section.
We record that Theorem 2.4 implies:

Lemma 3.7. — For fixed N there is only a finite number of possibilities
for the moduli mv

i .

Proof of Theorem 3.1. — Fix one of the finitely many possibilities for
the bh

i , w1 and hence wi (i = 1, . . . , g) and for the moduli mv
j (j = 1, . . . , g).

For all j the heights hv
j are bounded above by max{wi; i = 1, . . . , g − 1}.

Hence all the bv
j are bounded above.
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Let J1 ⊂ {1, . . . , g} be the indices of vertical cylinders intersecting w1.
For j ∈ J1 the heights hv

j are bounded away from zero since bv
j is bounded

away from zero by hh
1 = 1 and the mv

j are fixed. Since the bh
i are fixed and hv

i

are bounded away from zero, there is a only finite number of possibilities
for the intersection numbers eij := γh

i · γv
j for i = 1, . . . , g and j ∈ J1.

We fix one possibility.

Claim. — For at least one (say the i0-th) of the horizontal cylinders
intersected by some j ∈ J1 the height hh

i0
is bounded away from zero

by a constant depending only on w1, the moduli mv
j and the intersection

numbers fixed so far.
In fact, we know that w1 =

∑
j∈J1

e1jh
v
j and by definition

hv
j = mv

j

g∑
i=1

eijh
h
j .

Putting these equations together we obtain using hh
1 = 1

w1 −
∑
j∈J1

mv
j e2

1j =
g∑

i=2

hh
i ·

( ∑
j∈J1

mv
i e1jeij

)
.

The left hand side of this equation is non-negative and if it were zero this
would imply that the vertical cylinders crossing w1 do not intersect any
other horizontal cylinder but the first. This is absurd. Hence it is positive
and depends only on quantities fixed so far. This implies that not all the hh

i

for i = 2, . . . , g can be simultaneously arbitrarily small.
Using the claim we denote by J2 the set of cylinders that intersect γ1

or γi0 . As above this limits the eij for j ∈ J2 to a finite number. We now
proceed inductively analysing wj in place of w1 to conclude that all inter-
section numbers eij vary through a finite list.

Fix one of the finitely many possibilities for the intersection numbers.
We know that

bh
i =

g+1∑
j=1

eijh
v
j =

g+1∑
j=1

eijm
v
j bv

j

for i = 1, . . . , g and for j = 1, . . . , g we know by definition

bv
j =

g∑
i=1

eijh
h
i .

Let E denote the g× (g +1)-matrix with entries eij . From [5] we deduce
that Ediag(mv

i )Et is regular. In fact they show that the eigenvalues of
Ediag(mv

i )Etdiag(mh
i ) form a basis of K/Q. Hence we may plug the second
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equation above in the first and solve uniquely for the hh
i , since we know

the bh
i . This also determines the bv

j and consequently the hv
j .

We know all heights and widths of the cylinders and it remains to limit
the possible twists ti for i = 2, . . . , g to a finite number. The absolute values
of the twists are bounded by the intersection numbers times bh

i and they
can only vary in positive integral linear combinations of the hv

i . Hence there
is only a finite number of possibilities for the twists. �

Corollary 3.8. — The trace field K of an algebraically primitive Te-
ichmüller curve in ΩMg(g − 1, g − 1)hyp is abelian.

Proof. — In the above proof of Theorem 3.1 we have seen that the peri-
ods bh

i lie in the field Q(xi), where xi are roots of unity. The field generated
by the bh

i coincides with the trace field of Γ by Lemma 3.4. �

Since it fits into this context, we end our finiteness discussion by the
following complement:

Theorem 3.9. — Fix a genus g and consider all Teichmüller curves

C −→ Mg.

If we fix moreover the Euler characteristic χ(C) = 2g−2+n of C then there
is only a finite number of possibilities for the monodromy, in particular for
the trace field of such a Teichmüller curve.

Proof. — The Euler characteristic of the corresponding curve in the mod-
uli space M

[3]
g of curves with level-3-structure is also bounded. Hence we

can apply Proposition 3.10 in [2]. �

4. Proof of Propostion 3.5

Suppose we are given a rational function as in the statement of Propo-
sition 3.5. Choosing

∏g
i=1(z − xi)(z − x−1

i ) as common denominator and
comparing coefficients of z0 to zg−2 translates into the following system of
equations for e = 1, . . . , g − 1 (the coefficients of zg to z2g−2 provide the
same system):

(4.1)
g∑

i=1

(
bh
i (xi − x−1

i )
∑

j1<···<je

all jk 6=i

e−1∏
k=1

(xjk
+ x−1

jk
)
)

= 0.

We subtract in the first step
∑g

j=1(xj+x−1
j ) times the equation with e = 1

from e = 2 to obtain an equation denoted by (Eq:2′).
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Then subtracting
∑

j1<j2
(xj + x−1

j ) times the equation with e = 1
from e = 3 and adding

∑g
j=1(xj+x−1

j ) times the equation (Eq:2′) we obtain
an equation denoted by (Eq:3′).

Proceeding in this way we obtain the simplified system

(Eq:e′)
g∑

i=1

(
bh
i (xi − x−1

i )(xi + x−1
i )e−1

)
= 0.

This system of equations is equivalent to the system

(Eq:e′′)
g∑

i=1

(
bh
i (xe

i − x−e
i )

)
= 0

for e = 1, . . . , g − 1, which will be used in the sequel.
We say that an equation

(4.2)
k∑

i=1

aiζi = 0

where the ζi are pairwise different roots of unity and where the ai lie in
the number field K form a K-relation of length k. The relation is called
irreducible, if

∑k
i=1 biζi = 0 and bi(ai − bi) = 0 for all i implies that bi = 0

for all i or ai−bi = 0 for all i. Each relation is a sum of irreducible relations,
but there may be several ways of writing a relation as sum of irreducible
relations.

Lemma 4.1. — Let
∑k

i=1 aiζi = 0 be an irreducible K-relation with
K ⊂ Qab and [K : Q] = g. Then multiplying the relation by a suitable root
of unity we can achieve that

ζi ∈ Q(e2πi/N )

where

N =
∏

p62kg prime

pν0(p) and ν0(p) =
⌈

logp

(
1 +

g

p− 1

)⌉
.

In particular the ζi appearing in such a relation with the normalization ζ1 = 1
belong to a finite set.

Proof. — The following argument extends a theorem of Mann [8] from
the case of rational coefficients to the case of coefficients in a field of
bounded degree over Q.

Suppose the irreducible relation has ζi ∈ Q(e2πi/N ) and N = pνN ′ for
some ν > ν0 + 1 and gcd(p, N ′) = 1. Let ζ be a primitive pν-th root of

TOME 58 (2008), FASCICULE 1



80 Martin MÖLLER

unity and let ρ be a primitive N/p-th root of unity. Resorting the relation
according to powers of ζ we obtain

(4.3)
p−1∑
j=0

bjζ
j = 0 where bj =

∑
i∈Λj

aiρ
αi ,

where Λj = {i : ∃αi ∈ N such that ραiζj = ζi}. The coefficients bj belong
to L = K(ρ). Since K ⊂ Qab and [K : Q] 6 g we know that

K ⊂ Q(e2πi/pj0(p)
, p prime).

Since cyclotomic fields for powers of different primes are linearly disjoint
over Q we deduce that[

L(ζ) : L
]

=
[
Q(ρ, ζ), Q(ρ)

]
= p.

Hence bj = 0 for j = 0, . . . , p−1. Since the original relation was irreducible,
this is only possible if Λj0 = {1, . . . , k} for some j0 (and the other Λj are
empty). This means that we can reduce N by multiplying the original
relation with a suitable power of ζ.

We have bounded the exponents that occur in the factorization of N . It
remains to bound the size of primes dividing N . Suppose that p is prime
and divides N to the order ν 6 ν0(p). As above let ζ be a primitive pν-
th root of unity, but we let now ρ be a primitive N/pν-th root of unity.
Resorting the relation according to powers of ζ we obtain

(4.4) f(ζ) :=
pν−1∑
j=0

bjζ
j = 0 where bj =

∑
i∈Λj

aiρ
αi

The coefficients bj of f lie in K(ρ). Since Q(ρ)∩Q(ζ) = Q the polynomial f

is a multiple of the minimal polynomial fζ/K of ζ over K, which has degree
at least φ(pν) − g. Here φ denotes Euler’s φ-function. On the other hand
by construction at most k of the coefficients bj are non-zero. Hence there is
somewhere a gap of size pν/k between non-zero bj . Multiplying the relation
by a suitable power ζ we may suppose from the beginning that

deg f 6 pν
(
1− 1

k

)
.

If pν/k − 1 > g + pν−1 this leads to a contradiction to the degree of fζ/K .
This condition is fulfilled if the rough bound p 6 2kg is violated. �

Proof of Proposition 3.5. — Suppose the finiteness statement was wrong.
Then there exists a sequence (bh

i,n, xi,n) for n ∈ N satisfying (Eq:e′′) for all
e = 1, . . . , g − 1 and such that least common multiple N(n) of the orders
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of the xi,n is unbounded. We interpret the (solutions of the) equations as
relations between roots of unity

g∑
i=1

bh
i,nxe

i,n +
−1∑

i=−g

bh
i,nxe

i,n = 0

with the convention that bh
i,n = bh

−i,n and xi,n = x−1
−i,n.

For each n and each e we may write the relation in a (non-unique)
way as a sum of irreducible relations. The summands occuring in such an
irreducible relation form a partition of I := {−g, . . . ,−1, 1, . . . , g}. Since
this set admits only finitely many partitions we pass to a subsequence
of (bh

i,n, xi,n) and suppose without loss of generality that there are parti-
tions Pe consisting of subsets Pe,j of I such that for e = 1, . . . , g−1, for all j

and for all n ∈ N ∑
i∈Pe,j

bh
i,nxe

i,n = 0

is an irreducible relation. We apply Lemma 4.1 to these relations and write

(4.5) xe
i,n = ζi,e,nσi,e,n

with the following two properties: First, the ζi,e,n are roots of unity of
order bounded by a function depending only on g since the relations are of
length 6 2g. Second if i and i′ are both in Pe,j then σi,j,n = σi′,j,n. Passing
to a subsequence again we may suppose

ζi,e,n = ζi,e for all n ∈ N.

We want to limit the possible choices for the σi,e,n to a finite set in order
to obtain a contradiction. From (4.5) we deduce that

σi,e,n = σe
i,1,n

ζe
i,1

ζi,e
·

This means that the σi,e,n for different second arguments are closely related.
Since they coincide when the first argument varies in a fixed partition
set Pe,j there is, roughly speaking, a partition of I that controls the σi,e,n

for all e simultaneously. More precisely, consider the following equivalence
relation: i ∼ i′ if there exists (e, j) such that Pe,j ⊃ {i, i′}. Denote the
corresponding partition by P0 =

⋃
j P0,j . Then σi,e,n and σi′,e,n differ

for P0,j ⊃ {i, i′} at worst by a product of ζi,e and a (g−1)!-th root of unity.
We may suppose that they actually coincide by recording the discrepancy
in modified ζi,e. I.e. we write

(4.6) xe
i,n = ζ̃i,e σe

i,n
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with the following two properties: First, ζ̃i,e is root of unity of order bounded
by a function depending only on g and second if i and i′ are both in P0,j

then σi,n = σi′,n.
Suppose P0,j does not contain a pair {i,−i}. Then the cardinality k

of P0,j is at most g. We fix n ∈ N. The bh
i,n are solutions of the system of

equations

(4.7)
∑

i∈Po,j

bh
i,nxe

i,n = 0, e ∈ {1, . . . , k − 1}.

Since the bh
i,n are real we may take complex conjugates to see that they also

solve the system of equations for e ∈ {−k + 1, . . . ,−1}. Since xi,n 6= xj,n

for i 6= j the only solution is
∑

i∈Po,j
xe

i,n = 0, i.e. all bh
i,n for i ∈ P0,j are

equal. This contradicts that the bh
i form a Q-basis of K.

On the other hand if P0,j contains {i0,−i0} we deduce from

ζ−i0,1σi0,n = ζ−i0,1σ−i0,n = x−i0,n = x−1
i0,n = (ζi0,1σi0,n)−1

that σi0,n runs for n ∈ N through a finite set. By construction the same
holds for σi,n for all i ∈ P0,j . Applying this to all partition sets of P0

the orders of the σi,n and hence the orders of the xi,n are bounded. This
contradicts the choice of the sequence xi,n. �
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