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SPECTRUM OF THE LAPLACE OPERATOR AND
PERIODIC GEODESICS: THIRTY YEARS AFTER

by Yves COLIN de VERDIÈRE

Abstract. — What is called the "Semi-classical trace formula" is a formula
expressing the smoothed density of states of the Laplace operator on a compact
Riemannian manifold in terms of the periodic geodesics. Mathematical derivation
of such formulas were provided in the seventies by several authors. The main goal
of this paper is to state the formula and to give a self-contained proof independent
of the difficult use of the global calculus of Fourier Integral Operators. This proof
is close in the spirit of the first proof given in the authors thesis. It uses the time-
dependent Schrödinger equation, some facts about the geodesic flow, the stationary
phase approximation and the metaplectic representation as a computational tool.

Résumé. — On appelle "Formule de trace semi-classique" une formule expri-
mant la densité d’état régularisée du laplacien d’une variété riemannienne com-
pacte en termes de ses géodésiques périodiques. Des preuves de telles formules ont
été données par plusieurs auteurs dans les années 70. Le but principal de cet article
est de présenter cette formule et d’en donner une preuve complète et indépendante
du difficile calcul global des opérateurs intégraux de Fourier. Cette preuve est d’un
esprit assez proche de celle de la thèse de l’auteur. Elle utilise l’équation de Schrö-
dinger dépendant du temps, des propriétés des géodésiques, la méthode de la phase
stationnaire et la représentation métaplectique comme outil de calcul.

Introduction

More(1) than 30 years after the first original works on the semi-classical
trace formulae (SCTF), it is still not possible to find a complete presen-
tation in textbooks. The standard reference [22] is quite difficult to read
due to the massive use of the global symbolic calculus of Fourier Integral
Operators. My own approach [52], [53] is closer to the intuition given from

Keywords: Laplace operator, semi-classics, symplectic geometry, twist map, trace for-
mula, spectrum, periodic geodesics, metaplectic, determinant.
Math. classification: 35P20, 53C22, 58J40.
(1) Many thanks to the referee who contributed a lot in order to make the paper easier
to read



2430 Yves COLIN de VERDIÈRE

the Feynman path integral, but the mathematical analysis is still difficult
to follow. In the present paper, I tried to present an optimized proof which
works for Laplace operators on Riemannian manifolds and even for semi-
classical Schrödinger operators.

The aim of SCTF is to derive properties of the eigenvalues of a Schrödinger
operator Ĥh in the semi-classical regime where h, the Planck constant, is
very small. From the mathematical point of view, h will tend to 0+. The
formal idea is to compute the trace of a suitable function of Ĥh in two ways
. Trace(f(Ĥh)) =

∑
j f(Ej(h)) where Ej(h) are the eigenvalues of Ĥh,

. Trace(f(Ĥh)) =
∫
X

[f(Ĥh)](x, x)|dx| where [A](x, y) denotes the
Schwartz kernel of the operator A.

Then comes the hard part which is to find exact or approximate for-
mulae for the kernel [f(Ĥh)](x, y) using the methods of partial differential
equations.

For example, if ∆g is the Laplace operator on a compact Riemannian
manifold, we start with Ĥ = 1

2 h
2∆g. There are several possibilities for f :

. f(E) = e−tE which corresponds to heat equation,

. f(E) = e−it
√

2E/h which corresponds to the wave equation,
. f(E) = e−itE/h which corresponds to the Schrödinger equation.
The trace of the heat kernel

∑
exp(− 1

2 th
2λj) where λj are the eigenval-

ues of ∆g admits as h→ 0 (or t→ 0 with h = 1) an asymptotic expansion
whose coefficients are related to locally computable quantities like curva-
ture and see nothing about the classical dynamics [10].

Wave equations give the most natural results for the Laplace operator,
but are working only for the Laplace operator. Moreover they make a strong
use of Schwartz’s distributions and Fourier Integral Operators [22].

We will use Schrödinger equation. Our goal is to derive a rather elemen-
tary proof which is not using the full symbolic calculus of Fourier integral
operators, but only the metaplectic representation.

We will start with a simpler type of operator which is the quantization
of a twist map and then see how to reduce the Schrödinger case to the
previous case.

There will be three main parts:
1) We will first write a trace formula for a Fourier Integral Operators U

associated with a twist canonical transformation: the Schwartz kernel of
such an operator admits a WKB form and the asymptotics of the traces
tN := Trace(UN ) can be derived from the stationary phase approximation.

ANNALES DE L’INSTITUT FOURIER
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The main result is a rather explicit asymptotic expansion involving the
fixed points of χN .

2) From the previous formula, we will derive a trace formula for Schrödinger
operators in the semi-classical limit and the expression of the smoothed den-
sity of states known as Gutzwiller formula. Gutzwiller formula expresses the
smoothed density of states in terms of periodic orbits of the classical limit
which is an Hamiltonian system. We will need the short time asymptotic
of the propagator which goes back to Lax and Hörmander [39], [33].

3) One of the main difficulties is the computation of the stationary phase
expansions. We will show how the calculus of determinants can be achieved
using the metaplectic representation. In particular, we will give formulae
for some determinants of discrete Sturm-Liouville operators (Jacobi type
matrices) which goes back to a formula of Levit and Smilansky [40] in the
continuous case (see also [38]).

1. About the history

SCTF has several origines : on one side, Selberg’s trace formula [50]
is an exact summation formula concerning the case of locally symmetric
spaces; this formula was interpreted by H. Huber [36] as a formula relating
eigenvalues of the Laplace operator and lengths of closed geodesics (also
called the “lengths spectrum”) on a closed surface of curvature −1.

On the other side, around 1970, two groups of physicists developed in-
dependently asymptotic trace formulae:
. M. Gutzwiller [29] for the Schrödinger operator, using the quasi-classical

approximation of the Green function; it is interesting to note that the word
“trace formula” is not written, but Gutzwiller instead speaks of a new
“quantization method” (the old one being “EBK” or “Bohr-Sommerfeld
rules”).
. R. Balian and C. Bloch [4], [5], [6] for the eigenfrequencies of a cavity

used what they call the “multiple reflection expansions”. They asked about
a possible application to Kac’s problem.

At the same time, under the influence of Mark Kac’s famous paper [37]
“Can one hear the shape of a drum?”, mathematicians became quite inter-
ested into inverse spectral problems, mainly using heat kernel expansions
(for the state of the art around 1970, see [10]).

The SCTF was put into its final mathematical form for the Laplace
operator on compact Riemannian manifolds without boundary by three
groups:

TOME 57 (2007), FASCICULE 7



2432 Yves COLIN de VERDIÈRE

. In my thesis [52], [53] inspired from the work of Balian and Bloch, I
used the short time expansion of the Schrödinger kernel and an approximate
Feynman path integral. As a corollary, I proved that the spectrum of the
Laplace operator determines generically the lengths of closed geodesics.
. Soon after my lectures in Nice, J. Chazarain [20] saw how to derive the

qualitative form of the trace for the wave kernel using FIO’s.
. Independently, H. Duistermaat and V. Guillemin [22], using the full

power of the symbolic calculus of FIO’s, were able to compute the main
term of the singularity from the Poincaré map of the closed orbit. Their
paper became, at least for mathematicians, the canonical reference on the
subject.

We will see in section 7 how the Schrödinger trace is related to the wave
trace.

After that, people were able to extend SCTF to:
. General semi-classical Hamiltonians [16], [43].
. Manifolds with boundary [27].
. Surfaces with conical singularities and polygonal billiards [13], [31].
. Several operators commuting operators [19].
. Around critical points of the Hamiltonian [17].
. In the presence of a finite symmetry group [18].
Recently, people [26], [60], [61] become able to say something about the

non principal terms in the singularities expansion which come from the
semi-classical Birkhoff normal form.

2. The trace formula for a quantized twist

2.1. Twist maps

Definition 1. — A twist map is a canonical diffeomorphism χ : V →W

where V(y,η) and W(x,ξ) are open sets of the cotangent bundle T ?X of a
smooth d-manifold X, which satisfies: the projection π : Γχ → X × X,
(defined by π ((y, η), (x, ξ)) = (x, y)), where Γχ is the graph of χ, is a
diffeomorphism of Γχ onto an open subset Ω of X ×X.

The twist map χ will be called exact if the closed form αχ, which is the
restriction of the the Liouville 1-form ξdx − ηdy of T ?(X × X) to Γχ is
exact.

We will call S : Ω → R any function which satisfies dS = αχ. Such a
function S is called a generating function of χ.

ANNALES DE L’INSTITUT FOURIER
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A locally twist map is a canonical diffeomorphism χ : V → W which is
locally a twist map.

If χ is a twist map with generating function S, we have

χ
(
y,− ∂S

∂y

)
=

(
x,
∂S

∂x

)
.

Also, if A := χ′(z0) is the derivative of χ at the point z0 and if χ is twist
at z0, A is a twist linear map whose generating function is the Hessian of
the generating function S of χ at the point (x0, y0) corresponding to z0.

Example 2.1 (Twist maps of the annulus). — This is a much studied
example since Poincaré and Birkhoff (see [9]). We take X = R/Z:
. The Poincaré map P of an elliptic periodic orbit of an Hamiltonian

system with 2 degrees of freedom: the map P admits in the generic case a
so-called Birkhoff normal form

P : (θ, ρ) 7−→
(
θ + F (ρ) + 0(ρN ), ρ+ 0(ρN )

)
and hence is a twist map of the annulus for ρ close to 0 if F ′(0) 6= 0.
. The Frenkel-Kontorova map χ(y, η) = (y + α(y) + η, α(y) + η) is a

twist canonical map which is exact iff α(y) is the derivative of a periodic
function f(y). In the latter case, we can take

S(x, y) = 1
2 (x− y)2 + f(y).

. The billiard map: if B is a smooth convex billiard plane table with a
boundary ∂B, the return map, T (s, sin θ) = (s′, sin θ′) where s ∈ R/LZ is
the arc length on ∂B and θ the incidence angle on the boundary at the
point m(s), contains the main part of the dynamics and is a twist map [38].
It admits the distance S(s, s′) = d(m(s),m(s′)) as a generating function.

Example 2.2 (Small time flow of a regular Lagrangian). — Let us start
with a Lagrangian L(x, v) : TX → R.

Definition 2. — The Lagrangian L is said to be regular if the Legendre
transform

Leg : (x, v) −→
(
x,
∂L

∂v

)
is a global diffeomorphism from TX onto T ?X.

Let ϕt be the associated Hamiltonian flow: ϕt : T ?X → T ?X. If V ⊂ T ?X

is an open bounded set, the flow ϕt restricted to V is a twist map for t 6= 0
small enough.

TOME 57 (2007), FASCICULE 7
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Proof. — Consider the expansion

ϕt(y, η) =
(
y + t

∂H

∂ξ
(y, η) +O(t2), η − t

∂H

∂x
(y, η) +O(t2)

)
and apply inverse function theorem using the fact that ∂2H/∂ξ2 is invert-
ible. �

Let us consider the open set Ω ⊂ X × X as before, for any (x, y) ∈ Ω
there exists an unique extremal curve γxy : [0, t] → X from y to x so that
Leg(y, γ̇(0)) ∈ V . The action integral

S(x, y) :=
∫ t

0

L
(
γxy(s), γ̇xy(s)

)
ds

is a generating function for ϕt : V →W .

A more specific example:

Example 2.3. — (X, g) is a Riemannian manifold, Q : X → R,

L = 1
2‖v‖

2 −Q(x), H = 1
2‖ξ‖

2 +Q(x)

andQ∞ = lim infx→∞Q(x). We can take E < Q∞ and V = {H(y, η) < E}.
If Q ≡ 0, we have S(x, y) = d2(x, y)/2t where d is the Riemannian

distance and we can take Ω = {(x, y) | d(x, y) < ρ} where ρ is the in-
jectivity radius of (X, g). In this case, the map (y, η) 7→ x(ϕt(y, η)) is the
exponential map: x = exp(y, tη). The flow ϕt is locally twist near (y, η)
with x = exp(y, tη) if x and y are not conjugate points along the geodesic
γ(s) = exp(y, stη), 0 6 s 6 1. Given E, this is the case for t 6= 0 and
small enough.

2.2. Quantizations of a twist map

We will consider, for h > 0, an operator Uh : L2(X) → L2(X) whose
(Schwartz) kernel is

[Uh](x, y) = (2πih)−
1
2 da(x, y)s(x, y)eiS(x,y)/h|dxdy | 12

with a ∈ C∞0 (Ω) and s(x, y) = |det(∂2
x,yS)| 12 . The function s is a nor-

malization which makes Uh unitary in case a = 1 and S is quadratic (see
Section 11.2). The operator U is smoothing, with compactly supported ker-
nel and is called a quantization of χ. It would be nice to know about its
spectrum in the semi-classical limit!

It is interesting to note that in general Uh is not a normal operator. It
would imply, by stationary phase approximation, that, if ã(y, η) = a(x, y)

ANNALES DE L’INSTITUT FOURIER
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with (x, ξ) = χ(y, η), then |ã| is constant along the trajectories of χ which
is impossible if they escape to infinity! An important exception will be
ψ(Ĥ) exp(−itĤ/h)) with Ĥ a semi-classical Schrödinger operator and the
support of ψ is contained in ]−∞, E∞[ (see Section 3).

2.3. Discrete Feynman path integrals

One way to get some information on the eigenvalues of U is to derive
“trace formulae” expressing the asymptotic behavior of tN := Trace(UN )
as h→ 0.

We can formally write [UN ] and tN as discrete Feynman inte-
grals: a path γ of length N will be a sequence (y = x0, . . . , x = xN )
with (xk, xk+1) ∈ Ω. We will denote by PNx,y the set of such paths
with the measure |dγ | = |dx1 · · · dxN−1|. The action of the path
γ = (y = x0, . . . , x = xN ) will be S(γ) := S(x, xN−1)+· · ·+S(x1, y). We de-
note by

A(γ) :=
N−1∏
j=0

a(xj , xj+1)s(xj , xj+1).

We have

(2.1) [UN ](x, y) = (2πih)−
1
2Nd

∫
PN

x,y

eiS(γ)/hA(γ)|dγ |,

and

(2.2) tN = (2πih)−
1
2Nd

∫
X

|dx|
( ∫

PN
x,x

eiS(γ)/hA(γ)|dγ |
)
.

Defining PN as the set of periodic sequences (x0, x1, · · · , xN−1, x0) and
using Fubini, so that for all i, (xi, xi+1) ∈ Ω, we get

tN = (2πih)−
1
2Nd

∫
PN

eiS(γ)/hA(γ)|dγ |.

We will evaluate the previous expressions by the stationary phase (see
Section 11.1).

Lemma 1. — . The critical points of S : PNx,y → R are sequences
(y, x1, · · · , xN−1, x) which are the projections of orbits χk(y, η):

χk(y, η) = (xk, ξk), k = 0, . . . , N − 1.

. The critical points of S : PN → R are the projections
(x0, x1, · · · , xN−1, x0) of closed orbits sitting in V .

TOME 57 (2007), FASCICULE 7
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Proof. — Let us define ξ0 = −∂2S(x1, y) and ξk = ∂1S(xk, xk−1),
for k = 1, . . . , N . The criticality condition is

∂2S(xk+1, xk) = −∂1S(xk, xk−1)

for k = 1, . . . , N − 1, which is equivalent to say that we have

(xk+1, ξk+1) = χ(xk, ξk).

The same argument extends to the cyclic case. �

2.4. Non degeneracy

There are several possible non degeneracy assumptions. They can be
formulated “à la Morse-Bott” (critical point of action integrals) or purely
symplectically.

Definition 3 (Clean intersections). — Two sub-manifolds Y and Z

of X intersect cleanly iff Y ∩ Z is a manifold whose tangent space is the
intersection of the tangent spaces of Y and Z.

A diffeomorphism F admits a clean manifold of fixed points if the graph
of F intersects cleanly the diagonal.

Definition 4 (Morse-Bott non degenerate critical points). — A mani-
fold W of critical points of a function f : M → R is Morse-Bott ND if the
Hessian of f is non degenerate transversely to W .

One can reformulate the Morse-Bott non degeneracy condition in terms
of clean intersection as follows: W is a Morse-Bott ND critical manifold
of f if Y = {(x, f ′(x)) | x ∈M} and Z = {(x, 0) | x ∈M} intersect cleanly
as submanifolds of X = T ?M .

We will need the

Lemma 2. — Using the previous notations, χN admits a clean man-
ifold W of fixed points if and only if the action S(x0, x1, . . . , xN−1, x0)
admits a Morse-Bott ND critical manifold.

The following statement will be explained in Section 11.4:

Lemma 3 (Canonical measures). — If W is a clean manifold of fixed
points of a symplectic map, W is equipped with a canonical smooth mea-
sure dµW .

ANNALES DE L’INSTITUT FOURIER
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2.5. Van Vleck’s formula

Theorem 1. — Let us give x, y ∈ X so that χN is a locally twist map
near each (y, η) so that χN (y, η) = (x, .) (which is true for almost all
pairs (x, y) thanks to Sard’s theorem), we have

[UN ](x, y) ∼ (2πih)−
1
2 d

( ∑
α

|det ∂2
xySα|

1
2 e−

1
2 iµαπ eiSα/h

∞∑
j=0

Bαj h
j
)

where
. α labels the solutions of χN (y, ηα) = (x, .) We will denote by

γα = (xα0 = y, xα1 , . . . , xN = x)

the projection of the trajectories: χk(y, ηα) = (xαk , ξ
α
k );

. µα is the Morse index(2) of S(γ) : PNxy → R for the critical point γα;

. Sα(x, y) =
∑N−1
k=0 S(xαk+1, x

α
k ), with xαN = x, xα0 = y (a local generat-

ing function for χN );
. Bα0 = ΠN−1

k=0 a(x
α
k+1, x

α
k ).

Proof. — This formula is obtained by applying the method of stationary
phase (Theorem 11) to the integral given in Equation (2.1) and using the
formula for the determinant of a Jacobi matrix (Theorem 13) in order to
evaluate the large determinant which we need to evaluate. �

2.6. Trace formulae

We get:

Theorem 2. — Let us assume that χ admits (a finite number of) clean
connected manifolds Wα of periodic points, i.e. points satisfying χN (z) = z.
We get the following asymptotic expansion of the trace:

tN := Trace(UN ) ∼
∑
α

(2πih)−
1
2 να e−

1
2 iιαπ eiS(Wα)/h

( ∞∑
j=0

Aαj h
j
)
,

with

. Aα0 =
∫
Wα

N∏
j=1

a
(
x(χj(z)), x(χj−1(z))

)
dµα,

(2) The Morse index of a critical point x of a smooth function F : X → R is the maximal
dimension of a subspace of the tangent space TxX on which the hessian of F is < 0.

TOME 57 (2007), FASCICULE 7
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where dµα is the canonical measure on Wα;
. να = dimWα;
. ια is the Morse index of the action S(γ) on the periodic path

γα = (x0, x1, . . . , xN = x0).

Proof. — The proof is by application of the stationary phase for ND
critical manifolds (Section 11.1) to the integral given in Equation (2.2) and
using the computation of the canonical measure (Section 11.5) in order to
evalauate the principal contribution. �

In general, it is difficult to extract precise information on the asymptotic
behavior of the eigenvalues of Uh from the trace formula. We will now see
that the situation is much better in case of a flow U(t).

3. Schrödinger operators

3.1. The Laplace operator

Let (X, g) be a smooth compact connected Riemannian manifold of di-
mension d. Let us denote by |dx| = |g| · |dx1· · · dxd|, with |g| =

√
det(gij),

the canonical volume element on (X, g) and L2(X, |dx|) the associated
Hilbert space. There exists a canonical symmetric differential operator of
order 2, the Laplace operator on (X, g), denoted ∆g, which is given in local
coordinates by:

∆g = −|g|−1∂i|g| gij∂j .
Because X is compact, ∆g admits an unique self-adjoint extension

and L2(X, |dx|) admits an orthonormal basis of (smooth) eigenfunctions.
It will be convenient to label such a basis by integers (ϕj , j = 1, . . . ) so
that ∆gϕj = λjϕj and

λ1 = 0 < λ2 6 λ3 6 · · · 6 λj 6 · · ·

with λj →∞. Note that the sequence (λj) is uniquely defined, but the ϕj
are not unique, only the eigenspaces are.

With the exception of a very few cases (compact rank 1 symmetric spaces,
tori) the eigenvalues are not explicitly computable.

It is known (Weyl’s law) that λj ∼ cd vol(X)−2/dj2/d with cd = 4π2b
−d/2
d

where bd is the volume of the unit ball in Rd.
The goal of the SCTF is the description in terms of the geodesic flow of

some asymptotic properties as j →∞ (the classical limit) of the eigenvalues
of ∆g.

ANNALES DE L’INSTITUT FOURIER
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3.2. Semi-classical Schrödinger operators

If (X, g) is a (possibly non compact) Riemannian manifold and
Q : X → R a smooth function which satisfies lim infx→∞Q(x) = E∞ >

−∞, the differential operator Ĥ = 1
2 h

2∆ +Q is semi-bounded from below
and admits self-adjoint extensions. For all those extensions, the spectrum
is discrete in the interval ] −∞, E∞[ and the eigenfunctions Ĥϕj = Ejϕj
are localized in the domain Q 6 Ej . If X is compact and Q = 0, we recover
the case of the Laplace operator with Ej = 1

2 h
2λj .

We will denote by

inf Q < E1(h) < E2(h) 6 · · · 6 Ej(h) 6 · · · < E∞

this part of the spectrum.

4. Classical dynamics

Most results are in principle well known. Some possible references are [2]
and [1].

4.1. Geodesics

The geodesic flow Gt of (X, g) is defined as the following 1-parameter
group of diffeomorphisms on the tangent bundle TX: Gt(x0, v0) = (xt, vt)
were t 7→ xt is the geodesic of X so that x(t = 0) = x0 and ẋ(t = 0) = v0
and vt is the speed at time t of the previous geodesic. It is well known that
the geodesic flow can also be described using the Hamiltonian formulation.
On T ?X, we consider the Hamiltonian H0(x, ξ) = 1

2 ‖ξ‖
2
g and we will still

denote by Gt the geodesic flow on T ?X.

4.2. Newton flows

The Euler-Lagrange equations for the Lagrangian L(x, v) := 1
2 ‖v‖

2
g −Q(x)

admit an Hamiltonian formulation on T ?X whose energy is given by

H = 1
2‖ξ‖

2
g +Q(x).

We will denote by XH the Hamiltonian vector field

XH :=
∑
j

∂H

∂ξj
∂xj

− ∂H

∂xj
∂ξj

.

Preservation of H by the dynamics shows immediately that the Hamilton-
ian flow Φt restricted to H < E∞ is complete.

TOME 57 (2007), FASCICULE 7
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4.3. Closed orbits

Definition 5. — A closed orbit (γ, T ) of the Hamiltonian H consists
of an orbit γ of XH which is homeomorphic to a circle and a nonzero real
number T so that ΦT (z) = z for all z ∈ γ. T will be called the period of γ.

We will denote by T0(γ) > 0 (the primitive period) the smallest T > 0
for which ΦT (z) = z.

. The (linear) Poincaré map Πγ of a closed orbit (γ, T ) with H(γ) =
E. We restrict the flow to SE := {H = E} and take an hypersurface Σ
inside SE transversely to γ at the point z0. The associated return map
Pγ is a local diffeomorphism fixing z0. Its linearization Πγ := P ′γ(z0) is
the linear Poincaré map, an invertible (symplectic) endomorphism of the
tangent space Tz0Σ.
. The Morse index ι(γ). — Closed orbits (γ, T ) are critical point of the

action integral
∫ T
0
L(γ(s), γ̇(s))ds on the manifold C∞(R/TZ, X). They

have always a finite Morse index (see [46]) which is denoted by ι(γ). For
general Hamiltonian systems, the Morse index is replaced by the Conley-
Zehnder index [44].
. The nullity index ν(γ) is the dimension of the space of infinitesimal

deformations of the closed orbit γ by closed orbits. It is the dimension
of the kernel of the map (δt, δz) 7→ Φ′T (z0)δz − δz + δtXH . We have al-
ways ν(γ) > 2.

Example 4.1 (Geodesic flows). — . Manifold with < 0 sectional curva-
ture: in this case, we have for all closed geodesics ι(γ) = 0, ν(γ) = 2.
. Flat tori of dimension d: we have then ι(γ) = 0 and ν(γ) = d+ 1.
. Sphere of dimension 2 with constant curvature: if γn is the nth iterate

of the great circle, we have ι(γn) = 2|n| and ν(γn) = 4.

It is a beautiful result of J.-P. Serre [51] that any pair of points (a, b)
on a closed Riemannian manifold are the end points of infinitely many
geometrically distincts geodesics. Counting geometrically distinct closed
geodesics is much harder especially for simple manifold like the spheres. It is
now known that every closed Riemannian manifold admits infinitely many
geometrically distinct closed geodesics (at least in some cases for a generic
metric, [11, Chap. V]). Concerning more general Hamiltonian systems a lot
is known [32].
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4.4. Non degeneracy and orbits cylinders

Definition 6. — A closed orbit γ will called weakly non degenerate
(WND) if 1 is not an eigenvalue of the Poincaré map Πγ .

Remark 1. — If γ is WND, it does not imply that the iterates are WND,
because some non trivial roots of unity could be eigenvalues of Πγ .

Lemma 4. — If γE0 is a WND orbit with H(γ) = E0, there exists for E
close to E0 a closed orbit γE contained in H = E smoothly depending
on E.

Definition 7. — The smooth family γE with E close to E0 will be
called an orbit cylinder.

For an orbit cylinder γE we will denote by T (E) the period of γE which
is a smooth function of E.

Definition 8. — A closed orbit γ will called strongly non degenerate
(SND) if γ is weakly non degenerate and T ′(E0) 6= 0.

Example 4.2. — In the case of the Riemannian geodesics, both non
degeneracy assumptions coincide. They are true if, for example, the metric
has < 0 curvature. If X is fixed, all closed geodesics are (SND) for a generic
(in the Baire sense) Riemannian metric.

More general ND assumptions can be introduced in order to cover for
example the case of completely integrable systems. In this case they recover
the usual ND assumptions of KAM theories.

Proposition 1. — If γ is a WND orbit of period T , there exists an
(unique) symplectic splitting of the tangent space to any point z of γ so
that the differential of the flow at time T is given by

Φ′T (z) =

 1 −dT /dE 0
0 1 0
0 0 Πγ

 .

The first piece of the splitting is the 2d tangent space to the orbit cylinder.

4.5. Actions

Definition 9. — If (γ, T ) is a periodic orbit, we define the following
quantities which are both called action of γ:

Ŝ(γ) =
∫
γ

ξdx, S(γ) =
∫
γ

(ξdx −Hdt) =
∫ T

0

L
(
γ(t), γ̇(t)

)
dt.
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We get
Ŝ(γ)− S(γ) = H(γ)T.

If γ is SND, we have two smooth functions Ŝ = Ŝ(E) and S = S(T )
associated to any orbit cylinder. They satisfies

dŜ
dE

= T (E),
dS
dT

= −E(T ).

We can summary the previous properties as follows:

Theorem 3. — Ŝ(E) and −S(T ) are Legendre transforms of each other
in the symplectic space (R2, dE ∧ dT ).

5. Statement of SCTF for Schrödinger operators

5.1. Playing with spectral densities: the pre-trace formula

We will define “regularized spectral densities”. The general idea is as
follows: we want to study a sequence of real numbers Ej(h) (a spectrum)
in some interval [a, b] depending of a small parameter h. We introduce a
non negative function ρ ∈ S(R) which satisfy

∫
ρ(t)dt = 1 and introduce

Dρ,ε,h(E) =
∑ 1

ε
ρ
(E − Ej(h)

ε

)
.

It gives the analysis of the spectrum at the scale ε. Of course, we will
adapt the scaling ε to the small parameter h. If the scaling is smaller than
the size of the mean spacing of the spectrum, we will get a very precise
resolution of the spectrum.

The general philosophy is:
. If h is the semi-classical parameter of a semi-classical Hamiltonian,

the mean spacing ∆E is of order hd (Weyl’s law). The trace formula gives
the asymptotic behaviour of Dρ,ε,h(E) for ε ∼ h (and hence εγ∆E except
if d = 1) . This behaviour is not universal and thus contains a lot of
information’s (in our case, on closed trajectories)
. Better resolution of the spectrum needs the use of the long time be-

haviour of the classical dynamics and is conjectured “universal”
From now on, we choose two smooth functions:
. ρ(τ) which is equal to 1 near 0 and so that ρ̂(t) =

∫
e−iτtρ(τ)dτ is

compactly supported
. ψ ∈ C∞0 ( ]−∞, E∞[ ).

We define:
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. The regularized density of states

D(E) :=
∞∑
j=1

ψ(Ej)
1
h
ρ
(E − Ej(h)

h

)
.

If I = [a, b] ⊂ ]−∞, E∞[, a < E < b and ψ ≡ 1 near E, we have

D(E) =
∑

a<Ej<b

1
h
ρ
(E − Ej(h)

h

)
+O(h∞).

. The partition function given by the (finite) sum

(5.1) Z(t) =
∞∑
j=1

ψ(Ej)e−itEj/h = Trace(Uψ(t))

with Uψ(t) = ψ(Ĥ) exp(−itĤ/h).
Duistermaat-Guillemin’s trick relates the behaviour of D(E) to the be-

haviour of Z(t) thanks to the fundamental pre-trace formula

(5.2) D(E) =
1

2πh

∫
R

eitE/hρ̂(t)Z(t)dt.

The idea is then to start from a semi-classical approximation of the prop-
agator [Uψ(t)](x, y) and to insert Z(t) =

∫
X

[Uψ(t)](x, x)|dx| into Equa-
tion (5.2).

5.2. Formal series and WKB expansions

An usefull notation: if
∑
ajh

j is a formal power series in h, we will write
A(h) =

∑
ajh

j as a way to say that A(h) is a function of h (h small)
admitting the asymptotic expansion

∑
ajh

j . Such a function is usually
obtained by a so-called summation process.

Definition 10. — A function u(x, h) where x ∈ X, a smooth manifold,
and h → 0, a real parameter, admits a WKB expansion (in short, u is a
WKB function), if u admits an asymptotic expansion

u(x, h) = eiS(x)/h
∞∑
j=0

aj(x)hj

with S : X → R smooth and aj : X → C smooth.
More precisely, for all N, α,

Dα
x (e−iS(x)/hu(x, h)−

N−1∑
j=0

aj(x)hj) = O(hN )
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uniformly on every compact set in X.

5.3. The Schrödinger trace

Our goal is now to describe the asymptotic behaviour ofD(E) around E0.
The main results can be expressed as follows:

Theorem 4. — Let us assume that E0 < E∞ is not a critical value
of H and all periodic trajectories contained in H = E0 and of periods in
the support of ρ̂ are WND, we have, for E close enough to E0:
. D(E) = DWeyl(E)+

∑
γ Dγ(E)+O(h∞) where γ is one of the (finitely

many) periodic trajectories in H = E and periods in Support( ρ̂ );
. with a0(E) =

∫
H=E

|dxdξ/dH |,

(5.3) DWeyl(E) = (2πh)−d
( ∞∑
j=0

aj(E)hj
)
;

. Dγ(E) is a WKB function whose principal part is, if γ is SND:

(5.4)
ε

2πh
e−

1
2 iι(γ)π e

i
∫

γ
ξdx/h

aγ(E)

with aγ(E) = ρ(T (E))T0(E)/|det(Id−Πγ)|
1
2 , T0(E) the primitive period,

and

ε =
{ −i if T ′(E) > 0,

1 if T ′(E) < 0.

If γ is only WND, the formula is the same except that εe−
1
2 iι(γ)π is now

(the exponential of) a Maslov index.

The SCTF can also be derived the same way for Schrödinger operators
with magnetic field . . . One can even extend it to Hamiltonian systems
which are not obtained by Legendre transform from a regular Lagrangian.
In this case, Morse indices have to be replaced by the more general Maslov
indices.

5.4. The Weyl term

Choose a < E∞ and let t0(a) > 0 be the smallest period of a non trivial
closed trajectory γ with H(γ) 6 a (see [59]). In this section, we fix ρ so
that Support( ρ̂ ) is contained in ]− t0, t0[. If E is not a critical value of H,
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and, for ψ ∈ C∞0 (] −∞, a[), we have, insisting on the dependence w.r. to
ψ:

Dψ(E) = DWeyl(E) ∼ (2πh)−d
( ∞∑
j=0

aj(E,ψ)hj
)
,

with a0(E,ψ) =
∫
H=E

ψ(H)|dLdH |.
If we define the distributions

Aj(ψ) =
∫ +∞

−∞
aj(E,ψ)dE

we get ∑
ψ(Ej) ∼ (2πh)−d

( ∞∑
j=0

Aj(ψ)hj
)
,

Moreover, the previous asymptotic works even if they are critical values
of H inside the support of ψ. The Aj ’s are, for j > 1 of the following form:

Aj(ψ) =
∫
T?X

Nj∑
l>2

ψ(`)(H(x, ξ))Pj,`(x, ξ)|dxdξ |

and the Pj,`(x, ξ)’s are “locally computable” from the Hamiltonian H(x, ξ)
and its derivatives [56].

Remark 2. — If H(x,−ξ) = H(x, ξ), we have the “transmission prop-
erty” and the A2j+1 vanish.

In the case of the Laplace operator and χ(E) = e−E , the Aj ’s are called
the “heat invariants” [10].

From that kind of formula, it is possible to deduce the following estimates
on the remainder term in Weyl’s law:

Theorem 5. — If a, b are not critical values of H:

#
{
j | a 6 Ej(h) 6 b

}
= (2πh)−d volume

(
{a 6 H 6 b}

)(
1 +O(h)

)
.

This remainder estimate is optimal and was first shown in rather great
generality by Hörmander [33].

5.5. The contributions of periodic orbits

The proof involves the study, for t 6= 0, of Z(t) = Trace(Uψ(t)) which is
given by:
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Proposition 2. — . If t is not the period of a trajectory γ with
H(γ) ⊂ Support(ψ), then Z(t) = O(h∞)
. If γ is an SND closed trajectory of period T , Zγ(t) is near T a WKB

function whose principal symbol is

(5.5)
1

(2πih)
1
2

e−
1
2 iι(γ)π eiS(T )/hb0(T ),

with b0(T ) = T0|dE/dT |
1
2 · |det(Id−Πγ)|−

1
2 .

It is then enough to put the previous asymptotic formula in Equa-
tion (5.2) and to apply once more a stationary phase argument.

5.6. Formal derivation from the Feynman path integral

5.6.1. The Feynman integral

R. Feynman (see [24], [48]) found a geometric representation of the
propagator, i.e. the kernel p(t, x, y), with t 6= 0, of the unitary group
exp(−itĤ/h) using an integral (FPI := Feynman path integral) on the
manifold Ωt,x,y of paths from y to x in the time t; if L(γ, γ̇) is the La-
grangian, we define

Jt(γ) :=
∫ t

0

L
(
γ(s), γ̇(s)

)
ds

and we have, for t > 0:

p(t, x, y) =
∫

Ωt,x,y

e
i
h Jt(γ)|dγ |,

where |dγ | is a “Riemannian measure” on the manifold Ωt,x,y with the
natural Riemannian structure.

There is no justification FPI as a flexible tool, but as we will see FPI is
a very efficient tool in semi-classics.

5.6.2. The trace and loop manifolds

Let us try a formal calculation of the partition function and its semi-
classical limit. We get:

Z(t) =
∫
X

|dx|
∫

Ωx,x,t

e
i
h Jt(γ)|dγ |.
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If we denote by Ωt the manifold of paths γ : R/tZ → X, (loops) and we
apply Fubini (sic!), we get:

Z(t) =
∫

Ωt

e
i
h Jt(γ)|dγ |.

5.6.3. The semi-classical limit

We want to apply stationary phase in order to get the asymptotic ex-
pansion of Z(t); critical points Jt : Ωt → R are the closed orbits of the
Euler-Lagrange flow and hence of the Hamiltonian flow of period t. We
need

1) the ND assumption (Morse-Bott),
2) the Morse index,
3) the determinant of the Hessian.

1) The ND assumption is the original Morse-Bott one in Morse theory: we
have smooth manifolds of critical points and the Hessian is transversely ND.

2) The Morse index is the Morse index of the action functional Jt on
closed loops.

3) The Hessian is associated to a periodic Sturm-Liouville operator for
which many regularization’s have already been proposed (Levit-Smilanski
[40] and CdV [55], Zeta regularization, see [49]).

We get that way a sum of contributions given by the components Wj,t

of Wt:
. Zj(t) = (2πih)−

1
2 e

i
h S(γj)Aj(h) with Aj(h) ∼

∑∞
l=0 aj,`h

` and
. aj,0 = e−

1
2 iµπ/|δ| 12 where µ is the Morse index and δ is a regularized

determinant.

6. A proof of SCTF for Schrödinger operators

We will prove SCTF using the fact that the short time propagator is
given as a quantization of the short time flow which is a twist map, so that
we can apply Theorem 2.

6.1. The short time propagator

The purpose of this section is to derive an asymptotic formula for the
kernel Pχ(t, x, y) of Uχ(t) = χ(Ĥ) exp(−itĤ/h) with χ ∈ C∞0 for t small
enough.
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We will start with a finite atlas (Ωα) of X and a partition of unity
aα ∈ C∞0 (Ωα). We will also choose bα ∈ C∞0 (Ωα) so that bα is equal to 1
near the support of aα. We will choose δ > 0 so that the balls of radius δ
around Supp(bα) are contained in Ωα. Let us denote by t0 > 0 so that if
φt(y, η) = (x, ξ), |t| 6 t0 and H(x, ξ) ∈ Supp(χ), we have dist(x, y) 6 δ.
We will start from

f =
∑

bαaαf and aαf(x) = (2πh)−d
∫

eixξ/hâαf(ξ)dξ

so that it is enough to have the:

Lemma 5. — The solution of the Cauchy problem

h

i
ut + Ĥu = 0, u(0, x) = bα(x)ei〈x|ξ〉/h

is given for |t| 6 t0 by

u(t, x) = eiΣα(t,x,ξ)/h
( ∞∑
j=0

bα,j(t, x, ξ)hj
)

+O(h∞).

Here:
. Σα is the solution of the Hamilton-Jacobi equation Σt +H(x,Σx) = 0

with Σ(0, x, ξ) = 〈x | ξ〉;
. bα,0(0, x, ξ) = bα(x).

This lemma goes back essentially to Lax [39].

Sketch of proof. — The proof uses only the formulae giving the action
of a ΨDO on a WKB function. The first term vanishes because of the
Hamilton-Jacobi equation. The next one then vanishes if bα,0(t, x, ξ) satis-
fies a suitable differential equation called the “transport equation”. We get
that way a complete asymptotic expansion solving the Cauchy problem up
to O(h∞). It remains to prove that the computed asymptotic expansion
is the asymptotic expansion of the solution which uses only the unitarity
of U(t). �

From the lemma, we get the small time propagator as follows:

Theorem 6. — For |t| 6 t0, we have

Pχ(t, x, y) = (2πh)−d
∑
α

∫
ei(Σα(t,x,ξ)−〈y|ξ〉)aα,h(t, x, y, ξ)dξ

with aα,h a compactly supported symbol and

aα,0(0, x, y, ξ) = bα(x)aα(y)χ
(
H(x, ξ)

)
.
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Proof. — Let us start with the Fourier inversion formula:

f(x) = (2πh)−d
∑
α

∫
bα(x)ei〈x|ξ〉/hâαf(ξ)dξ.

Putting inside the formula given in Lemma 5 and using the fact that χ(Ĥ)
is a ΨDO of principal symbol χ(H) gives the proof. �

From Theorem 6, we get, using the stationary phase approximation, the
following WKB approximation for the propagator:

Theorem 7. — We have, for 0 < t 6 t0, the following WKB expansion:

Pχ(t, x, y) = (2πih)−
1
2 d

∑
α

eiSα(t,x,y)/h
( ∞∑
j=0

Aα,j(t, x, y)hj
)

whera Sα(t, x, y) is a generating function for the flow at time t given by
the action integral and

Aα,0(t, x, y) = det(∂2
xySα)

1
2 aα(y)χ

(
H(x, ξ)

)
.

Proof. — The proof is by applying the stationary phase to the formula
of Theorem 6. It allows to identify S as the value of Σ(t, x, ξ) − 〈y | ξ〉 at
the critical point y = Σξ. Moreover the Morse index is clearly d from the
expansion Σ(t, x, ξ) = 〈x|ξ〉− tH(x, ξ) +O(t2). The value of Aα,0(t, x, y) is
derived from the unitarity of U(t). �

6.2. The proof of SCTF

Using the approximation of the propagator Pχ(t, x, y) given by Theo-
rem 7, we see that the proof is completed using the trace formula for quan-
tized twist maps as given in Theorem 2.

7. From the Schrödinger trace to the wave trace

Let (X, g) be a compact Riemannian manifold and

λ1 = µ2
1 6 · · · 6 λj = µ2

j 6 · · ·

the eigenvalues of ∆g. The solution of the Cauchy problem for the wave
equation

∂2
t u+ ∆gu = 0
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is given in terms of the unitary group UW (t) = exp(−it
√

∆) whose trace
ZW (t) =

∑
j e−itµj is a Schwartz distribution which is called the wave

trace. We can rewrite in a semi-classical way

UW (t) = exp(−itK̂/h)

with K̂ := h
√

∆ and the classical Hamiltonian is then K(x, ξ) = ‖ξ‖ which
is homogeneous of degree 1. The associated flow is the geodesic flow with
speed ≡ 1. A closed orbit for K, even if it satisfies WND, is never SND,
because periods of K−closed orbits are independent of energy!

One can pass from the Schrödinger SCTF to the wave trace quite formally
because the eigenvalues Fj = hµj of h

√
∆ are related to the eigenvalues

Ej = 1
2 h

2λj of Ĥ = 1
2 h

2∆ by Fj =
√

2Ej .
The wave trace expansion can be derived from Theorem 4 as applied

to h
√

∆. One can also pass directly from the trace formula for Ĥ to a
trace formula for Φ(Ĥ) where Φ is a diffeomorphism near the energy E;
here Φ(E) =

√
2E.

Theorem 8. — Let us assume that ρ̂(t) ≡ 1 near T0 and ψ(E) ≡ 1
near E0. The expansion corresponding to the periodic orbit γ (for both
Hamiltonians H and Φ(H)) of new period T ′0 = T0/φ

′(E0) and new energy
F0 = Φ(E0) is obtained just by the change of variables F = Φ(E) in the
smoothed measures Dρ,ψ(E)|dE |.

Proof. — Let us fix some interval I = ]a, b[ with a < E0 < b and consider
the two h-dependent measures

Z(E) =
∑
Ej∈I

δ(Ej) and W (F ) =
∑

Fj∈Φ(I)

δ(Fj).

The measure W is the push-forward of Z by the diffeomorphism Φ which
we will consider as the Fourier integral operator

Φ? : z(E)dE 7−→ z
(
Ψ(F )

)
Ψ′(F )dF

with Ψ = Φ−1. We will now re-interpret Dρ,ψ(E)dE as the image of Z(E)
by the pseudo-differential operator Pρ,ψ of Schwartz kernel 1

h ρ(
1
h (E −

E′))ψ(E′) which is compactly supported in T ?I and of principal symbol
ρ̂(t)ψ(E). Moreover Pρ,ψ is equal to Id micro-locally near (E0, T0). We have

Φ?(Pρ,ψZ) = Φ?Pρ,ψ(Φ?)−1W,

from which we conclude by using Egorov Theorem. More precisely, the
pseudo-differential operator Φ?Pρ,ψ(Φ?)−1 is the identity micro-locally
near (F0, T

′
0). �
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From the Schrödinger trace D(µ) := Dρ,ψ(h,E), with h = µ−1, E = 1
2

and ψ ∈ C∞0 ( ]0, 1[ ), equal to 1 near 1
2 , we get the asymptotic expan-

sion of
∑
ρ(µ − µj) which is the content of the formula of Duistermaat-

Guillemin [22]: ∑
ρ(µ− µj) ∼

µ→+∞
µ−1D

( 1
µ

, 1
2

)
,

where ∼ means that the asymptotic expansions are the same.

Remark 3. — The previous observation does not apply near E = 0
where Φ is no longer a diffeomorphism. As a result, the singularity of the
wave trace at the origin is more complicated than the singularity of the
(complex) heat trace. The former may contain logarithmic terms as ex-
plained in details in [22].

8. Degenerate cases

The trace formula can be extended to much more degenerated cases. The
non trivial contributions to D(E) will come from oscillating integrals with
phases whose critical points are bĳectively associated with closed orbits. It
implies that general results on stationary phase expansions depending on
the theory of singularities can be applied (see for example [3], [41]).

8.1. The integrable case

As observed by Berry-Tabor [12], the trace formula in this case comes
from the Poisson summation formula. Asymptotics of the eigenvalues to
any order can then be given in the so-called quantum integrable case by
Bohr-Sommerfeld rules.

Using (semi-classical) action-angle coordinates, we start with the Hamil-
tonian on the torus Rd/2πZd defined by

Ĥ exp
(
i〈ν | x〉

)
= H(hν) exp

(
i〈ν | x〉

)
and compute the trace Za(t) of a(hDx) exp(−itĤ/h) using the expression
of the eigenvalues H(hν):

Za(t) =
∑
ν∈Zd

a(hν)e−itH(hν)/h.

We will apply Poisson summation formula as well as the approximation of
the h-Fourier transform of a(ξ) exp(−itH(ξ)) given from stationary phase.
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The ND condition for stationary phase will be that ξ → ∇H(ξ) is a local
diffeomorphism on the support of a. After some calculations we get, for t 6=
0:

Z(t) ∼ 1
(2πth)

1
2 d

∑
γ∈Zd

eitA(γ)/h(2π)d ·
∣∣ det

(
H ′′
ξξ(ξγ)

)∣∣− 1
2

with t∇H(ξγ) = γ and tA(γ) the action of the closed orbit γ.

8.2. The maximally degenerated case

Let us assume that (X, g) is a compact Riemannian manifold for which
all geodesics have the same smallest period T0 = 2π. Then we have the
following clustering property [57], [54], [47]:

Theorem 9. — There exists some constant C and some integer α so
that:

1) the spectrum of ∆ is contained in the union of the intervals

Ik =
[(
k + 1

4α
)2 − C,

(
k + 1

4α
)2 + C

]
;

2) N(k) = #Spectrum(∆) ∩ Ik is a polynomial function of k for k large
enough.

Property 2) is consequence of the trace formula [54].

9. An example: rational harmonic oscillators

Let us consider the harmonic oscillator

Ĥ = 1
2h

2∆ + 1
2 (x2 + 4y2)

in (R2,Eucl) whose spectrum is EN = h(N + 3
2 ) with multiplicities

aN = #{2k + ` = N | k, ` > 0}. One can check that

(9.1) aN = 1
2

(
N + 3

2

)
+ 1

4 (−1)N .

Let us consider the SCTF with a function ρ so that the compactly sup-
ported Fourier transform ρ̂ satisfies

∑
`∈Z ρ̂(t− 2π`) ≡ 1. We have then by

applying Equation (5.2) with E = 1, h = (N0 + 3
2 )−1:

D(1) =
N0 + 3

2

2π

∞∑
N=0

aN

∫
R
ρ̂(t)ψ

( N + 3
2

N0 + 3
2

)
eit(N0−N)dt
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which is equal to (N0 + 3
2 )aN0 and hence

aN =
(
N + 3

2

)−1(DWeyl +Dγ) + o(1).

We easily compute, using formulas (5.3) and (5.4)

DWeyl =
(N + 3

2

2π

)2( d
dE

)
E=1

vol
{

1
2 (ξ2 + η2) + 1

2 (x2 + 4y2) 6 E
}

= 1
2

(
N + 3

2

)2 +O(1),

Dγ for the “short” orbit

γ(t) =
(
x = 0, ξ = 0; y = cos 2t/

√
2, η = −2 sin 2t/

√
2
)
,

with T0 = π, Πγ = − Id, A(γ) = 2π:

Dγ =
(
N + 3

2

)
1
4 (−1)N

and deduce an equality

aN = 1
2 (N + 3

2 ) + 1
4 (−1)N + εN ,

with εN → 0. Because εN is an integer, εN ≡ 0 for N large. The previous
type of result can be extended to any rational harmonic oscillator (see the
contribution of B. Zhilinskii in [45, pp. 126–136]).

10. Applications to the inverse spectral problem

We will now restrict ourselves to the case of the Laplace operator on a
compact Riemannian manifold (X, g). The following result is a corollary
of SCTF:

Theorem 10 (see [52], [53]). — If X is given, there exists a generic
subset GX , in the sense of Baire category, of the set of smooth Riemannian
metrics on X, so that, if g ∈ GX , the length spectrum of (X, g) can be
recovered from the Laplace spectrum. The set GX contains all metric with<
0 sectional curvature and (conjecturally) all metrics with 6 0 sectional
curvature.

We can take the set of metrics for which all closed geodesics are non
degenerate and the length spectrum is simple.
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11. Sturm-Liouville determinants and the metaplectic
representation

11.1. The stationary phase approximation

Let us consider the following integral

I(h) = (2πih)−
1
2N

∫
RN

eiS(x)/ha(x)|dx|

where S : RN → R is smooth and a ∈ C∞0 (RN ).

Theorem 11 (stationary phase). — . If S has no critical point in the
support of a, I(h) = O(h∞)
. If the critical points of S in the support of a belongs to a non degenerate

connected critical manifold W of dimension n,

I(h) = (2πih)−
1
2 n e−

1
2 iνπ eiS(W )/h

( ∞∑
k=0

cjh
j
)

+O(h∞)

with

c0 =
∫
W

a(y)dµW

where ν is the Morse index of S along W and dµW is the quotient of the
measure |dx| by the “Riemannian measure” on the normal bundle to W

associated to the Hessian of S:

dµW :=
|dx|

|det(∂2
αβS)| 12 |dz |

where z = (zα) are coordinates on the normal bundle.

Proof. — Using Morse lemma, the integral can be reduced to the case
where there are local coordinates (y, z) so that S(y, z) = 1

2Q(z) with Q a
non degenerate quadratic form. The proof then works by first integrating
with respect to z and using an elegant argument due to Hörmander (see
[34, Sec. 7.7]) for the case of a non degenerate critical point. �

Remark 4. — As suggested by Don Zagier, we can reformulate the sta-
tionary phase formula as follows: let us consider the case of an ND man-
ifold W of critical points of dimension n and the Schwartz distributions
Th = (2πih)

1
2 (n−N) eiS(x)/h|dx|. Then the weak limit of Th is the Radon

measure e−
1
2 iνπµW .
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11.2. The metaplectic representation

Good references for the metaplectic representation are [25, Chap. 4] and
[35, Section 18.5].

In what follows, ε will denote a number in the set {±1,±i}.
A symplectic linear map χ : T ?Rd → T ?Rd defined by

[χ ] =
( α β

γ δ

)
is a linear twist symplectic map if and only if β is invertible; χ admits then
an unique quadratic generating function q(x, y) = 1

2 〈Ax|x〉 + 〈Bx|y〉 +
1
2 〈Cy|y〉 with A,C symmetric matrices and B an invertible matrix. We
have:

[χ ] =
(

−B−1C −B−1

tB −AB−1C −AB−1

)
.

We will define four operators χ̂ on L2(Rd) by their Schwartz kernels

[ χ̂ ](x, y) = ε(2πih)−
1
2 d eiq(x,y)/h

∣∣ det(B)
∣∣ 1

2 .

Using unitarity of Fourier transforms, we see that χ̂ is an unitary map
of L2(Rd). Moreover, if χ1, χ2, χ2 ◦ χ1 are twist maps, we have

χ̂2 · χ̂1 = ε χ̂2 ◦ χ1

as follows from the calculus of Fresnel integrals. The closure of all χ̂’s,
with χ linear twist maps, is a Lie subgroup M(d) of the Hilbert unitary
group U(L2(Rd)). The mapping χ̂ → χ extends to a group morphism of
M(d) onto the symplectic group Sp(d) whose kernel is Z/4Z. The connected
component of the identity of M(d) is a two-fold covering of the symplectic
group called the metaplectic group Mp(d) and the previous recipe gives a
natural unitary representation of Mp(d) into L2(Rd) called the metaplectic
representation.

11.3. Metaplectic traces

Metaplectic maps are not trace class, but they admit traces in the sense
of distribution as follows:

Let us consider, for χ a linear symplectic map, the distribution Iχ on
R2d defined by

Iχ(p) = Trace
(
χ̂Op(p)

)
TOME 57 (2007), FASCICULE 7
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where Op(p) is the Weyl quantization of p ∈ C∞0 (T ?Rd) defined by

[Op(p)](x, y) = (2πh)−d
∫

Rd

ei〈x−y|ξ〉/hp
(

1
2 (x+ y), ξ

)
|dξ |.

Let us denote by Fχ = ker(χ − Id) the space of fixed points of χ and
n = dimFχ.

Theorem 12. — The distributional trace admits the following asymp-
totic behaviour Iχ(p) ∼ ε(2πih)−

1
2 n

∫
Fχ
pdµχ where dµχ is a Lebesgue

measure on Fχ. Moreover dµχ is a purely symplectic invariant of χ:
if χ2 = χ−1χ1χ, then dµχ2 = χ?(dµχ1).

Proof. — Let us prove first the second assertion: from the exact Egorov
theorem (see [35, p. 158]), for any ψ in Sp(d), we have

ψ̂Op(p)ψ̂−1 = Op(p ◦ ψ).

We deduce that for any χ and ψ in Sp(d), we have

Iψχψ−1(p) = Iχ(p ◦ ψ).

Using ψ so that ψχψ−1 is a twist map, the first assertion comes from a
direct use of the stationary phase approximation. �

Remark 5. — If χ is twist, one can reduce to p = p(x) and use stationary
phase on Rd instead R2d.

11.4. Measures on fixed point sets

Using the fact that dµχ is invariant by conjugacy, we can reduce the
computations to suitable normal forms:

Example 11.1. — . If F = 0, then dµχ = |det(Id−χ)|− 1
2 δ(0).

. If [χ] =
(

1 a
0 1

)
in a symplectic basis (∂x, ∂ξ) with a 6= 0, then

dµχ = |a|− 1
2 |dx|.

Both examples can be proved using twist maps and evaluating the trace
by stationary phase from a generating function.
. For the first example, we can take:

q(x, y) = 1
2 〈Ax | x〉+ 〈Bx | y〉+ 1

2 〈Cy | y〉

with B invertible, and check the identity:

det(Id−χ) det(B) = det(A+B +t B + C).
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. For the second one take

q(x, y) =
1
2a

(x− y)2.

It is easy to extend the previous construction to the case of a symplectic
diffeomorphism with a clean manifold of fixed points W getting a mea-
sure µW on W .

11.5. Applications to discrete Sturm-Liouville with Dirichlet or
periodic boundary conditions

We assume that E, a d-dimensional real vector space, is equipped with a
Lebesgue measure |dx|. We will consider a “Jacobi matrix” [L] on E⊕N+1

given by

[L] :=



A0 B0 0 · · · 0 0
tB0 A1 B1 · · · 0 0
0 tB1 A2 · · · 0 0
0 0 · · · · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · AN−1 BN−1

0 0 · · · · · · tBN−1 0


,

and denote by Q = QL the associated quadratic form

Q(x0, . . . , xN ) = 1
2 〈Lx | x〉.

Our goal is to compute the determinants of L, of the restriction L0 of L
to x0 = xN = 0 and of the “restriction” Lper of L to x0 = xN :

[Lper] :=



A0 B0 0 · · · 0 BN−1
tB0 A1 B1 · · · 0 0
0 tB1 A2 · · · 0 0
0 0 · · · · · · 0 0
· · · · · · · · · · · · · · · · · ·

tBN−1 0 · · · · · · tBN−2 AN−1


.

Let us denote by bi = det(−Bi), by χi the canonical transformation
generated by qi(u, v) = 1

2 〈Aiu | u〉+ 〈Biv | u〉 and

χ = χN−1 ◦ · · · ◦ χ0.

We have

χ =
( α β

γ δ

)
.
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Theorem 13. — We have the following formulae:

det(L) = b0 · · · bN−1 det(γ),(11.1)

det(L0) = b0 · · · bN−1 det(β),(11.2)

det(Lper) = (−1)db0 · · · bN−1 det(Id−χ).(11.3)

Proof. — We will do the proof in the case where χ is twist. We have the
following expressions of [χ̂ ](x, y) with b := b0 · · · bN−1:

[ χ̂ ](x, y) = ε(2πih)−
1
2Nd

∫
e

i
hQ(x,x1,...,xN−1,y)|b| 12 |dx1 · · · dxN−1|

and

[ χ̂ ](x, y) = (2πih)−
1
2 d|det(B)| 12 e

i
h ( 1

2 〈Ax|x〉+〈Bx|y〉+
1
2 〈Cy|y〉).

The proof is as follows:
. For formula (11.1), we compute by stationary phase the integral∫

[ χ̂ ](x, y)dxdy using the two expressions of [χ̂](x, y).
. For formula (11.2), we compute by stationary phase in the first expres-

sion the integral [ χ̂ ](0, 0) and compare with the kernel given in the second
one.
. For formula (11.3), we compute by stationary phase the integral∫

[ χ̂ ](x, x)dx using the tow expressions of [ χ̂ ](x, y).

It is then enough to check the signs ±. �

From the previous formulae, we can get the Van Vleck formula (Theo-
rem 1) and the trace formula (Theorem 2) for a twist map with isolated
periodic points.

11.6. Regularized Determinants of continuous Sturm-Liouville
operators

Let us consider the scalar differential operator

L = − d2

dx2
+ q(x), 0 6 x 6 T

which we will discretize as follows: let ε = T/N , and Lε : RN+1 → RN−1

defined by

(Lεx)j =
2xj − xj−1 − xj+1

ε2
+ q(jε)xj , 1 6 j 6 N.

We will consider the quadratic form qε on RN+1 defined by

qε(x0, · · · , xN ) = 1
2 〈Lx | x〉RN−1 .
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We introduce the following operators:
. Lε,Dir the restriction of Lε to x0 = xN+1 = 0,
. Lε,Neu the operator on RN+1 associated to qε,
. Lε,Per the operator on RN associated to the restriction of qε

to x0 = xN+1

and χε : R2 → R2 the symplectic map defined by

χε

(
x0,

x1 − x0

ε

)
=

(
xN ,

xN − xN−1

ε

)
,

with Lεx = 0 and the matrix of χε:

[χε] =
( αε βε
γε δε

)
.

From Theorem 13, we get:
. det(Lε,Dir) = ε−Nγε,
. det(Lε,Neu) = ε−Nβε,
. det(Lε,Per) = −ε−N det(Id−χε).

As ε→ 0, we get:
. For k = 1, · · · , the eigenvalue λk(ε) of Lε,Dir (resp. Lε,Neu, resp. Lε,Per)

converges to the the eigenvalue λk of the corresponding boundary value
operator associated to L
. χε converges to the map χ : (x(0), x′(0)) → (x(T ), x′(T )) with Lx = 0.

It is then possible [55] to deduce the result of Levit-Smilansky [40]:

Theorem 14. — Let us consider the Dirichlet eigenvalues λik of Lqi ,
i = 1, 2, we have

∞∏
k=1

λ1
k

λ2
k

=
β1

β2

,

where βi are the corresponding entries of the matrices of χi.
Similar results holds for the two other boundary value problems.

12. Recent progress

. Birkhoff normal forms: Zelditch [60], [61] and Guillemin [26] were able
to use an extension of the classical Birkhoff normal form associated to a
closed geodesic to a semi-classical one. From these formulae, it is rather
clear that it is possible to deduce the full asymptotic expansion of the
contribution of this geodesic to the SCTF.
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. Long time trace formulae: using an extension of the Sternberg Theo-
rem due to Delatte, F. Faure [23] were recently able to get a SCTF for a
quantum hyperbolic map were the summation include all closed trajectories
of periods O(log h).

13. Open problems

. Are they isospectral Riemannian manifolds with different length spec-
tra and conversely?

Zoll manifolds provides example of manifolds for which the geodesic flow
is conjugated to the geodesic flow on the round 2-sphere. On the other
hand, it is known that manifolds isospectral to the round 2-sphere is a
round 2-sphere.

It is very unlikely that there exists isospectral manifolds with different
length spectra. It is however possible that the WKB expansion associated
to two closed geodesics of the same length cancel, such making invisible
that length in the SCTF.
. What are the implications of SCTF for eigenvalue statistics? It has

been conjectured since a long time [14], [12] that at small scale, the eigen-
value statistics of the Laplace operator on a manifold with Anosov geodesic
flow obey to laws derived from random matrix theory. At the moment SCTF
provides only information on a much marger scale (not universal) and I see
no ways to go further from SCTF contrary to the belief of many physicists!
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