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RIESZ TRANSFORMS ON CONNECTED SUMS

by Gilles CARRON

Abstract. — Assume that M0 is a complete Riemannian manifold with Ricci
curvature bounded from below and that M0 satisfies a Sobolev inequality of di-
mension ν > 3. Let M be a complete Riemannian manifold isometric at infinity to
M0 and let p ∈ (ν/(ν − 1), ν). The boundedness of the Riesz transform of Lp(M0)
then implies the boundedness of the Riesz transform of Lp(M)

Résumé. — Soit M0 une variété riemannienne complète à courbure de Ricci
bornée inférieurement et qui vérifie l’inégalité Sobolev de dimension ν > 3. Si M
est une variété riemannienne complète isométrique à M0 en dehors d’un compact
et si p ∈ (ν/(ν−1), ν) alors lorsque la transformée de Riesz est bornée sur Lp(M0)
elle est également bornée sur Lp(M).

1. Introduction

Let (M, g) be a complete Riemannian manifold with infinite volume,
we denote by ∆ = ∆g its Laplace operator, it has an unique self-adjoint
extension on L2(M,d volg) which is also denoted by ∆. The Green formula
and the spectral theorem show that for any ϕ ∈ C∞

0 (M) :

‖dϕ‖2L2 =〈∆ϕ, ϕ〉= ‖∆1/2ϕ‖2L2 ;

hence the Riesz transform T := d∆−1/2 extends to a bounded operator

T : L2(M) → L2(M ;T ∗M).

On the Euclidean space, it is well known that the Riesz transform has also
a bounded extension Lp(M) → Lp(M ;TM) for any p ∈]1,∞[. However,
this is not a general feature of the Riesz transform on complete Riemannian
manifolds, as a matter of fact, on the connected sum of two copies of the
Euclidean space Rn, the Riesz transform is not bounded on Lp for any

Keywords: Riesz transform, Sobolev inequalities.
Math. classification: 58J37, 58J35, 42B20.



2330 Gilles CARRON

p ∈ [n,∞[∩]2,∞[ ([7, 5]). It is of interest to figure out the range of p for
which T extends to a bounded map Lp(M) → Lp(M ;T ∗M). The main
result of [5] answered to this question for manifolds with Euclidean ends :

Theorem 1.1. — Let M be a complete Riemannian manifold of di-
mension n > 3 which is the union of a compact part and a finite number
of Euclidean ends. Then the Riesz transform is bounded from Lp(M) to
Lp(M ;T ∗M) for 1 < p < n, and is unbounded on Lp for all other values of
p if the number of ends is at least two.

The proof of this result used an asymptotic expansion of the Schwarz
kernel of the resolvent (∆ + k2)−1 near k → 0. In [5] using Lp cohomology,
we also find a criterion which insures that the Riesz transform is unbounded
on Lp :

Theorem 1.2. — Assume that (M, g) is a complete Riemannian man-
ifold with Ricci curvature bounded from below such that for some ν > 2
and C > 0, (M, g) satisfies the Sobolev inequality

∀ϕ ∈ C∞
0 (M), ‖ϕ‖

L
2ν

ν−2
6 C‖dϕ‖L2

and

(1.1) ∀x ∈ M,∀r > 1, volB(x, r) 6 Crν .

If M has at least two ends, then the Riesz transform is not bounded on Lp

for any p > ν.

Let (N, g0) be a simply connected nilpotent Lie group of dimension n > 2
(endowed with a left invariant metric). According to [1] we know that the
Riesz transform on (N, g0) is bounded on Lp for every p ∈]1,∞[. Let ν be
the homogeneous dimension of N ; for instance we can set

ν = lim
R→∞

log vol B(o,R)
log R

,

o ∈ N being a fixed point. Let (M, g) be a manifold isometric at infinity
to k > 1 copies of (N, g0). That is to say there are compact sets K ⊂ M

and K0 ⊂ N such that (M \K, g) is isometric to k copies of (N \K0, g0).
According to [7] we know that on (M, g) the Riesz transform is bounded
on Lp for p ∈]1, 2]. And the theorem 1.2 says that the Riesz transform is
not bounded on Lp when p > ν. In [5], we make the following conjecture :
show that the Riesz transform on (M, g) is bounded on Lp for p ∈]1, ν[.
The main result of this paper gives a positive answer to this conjecture ; in
fact we obtain a more general result concerning the boundedness of Riesz
transform for connected sums, under some mild geometrical conditions :
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Theorem 1.3. — Let (M0, g0) be a complete Riemannian manifold, we
assume that the Ricci curvature of (M0, g0) is bounded from below and
that for some ν > 3 and C > 0, (M0, g0) satisfies the Sobolev inequality

∀ϕ ∈ C∞
0 (M0), ‖ϕ‖

L
2ν

ν−2
6 C‖dϕ‖L2 .

Let p ∈]ν/(ν − 1), ν[, if on (M0, g0) the Riesz transform is bounded on
Lp then the Riesz transform is also bounded on Lp for any manifold M

isometric at infinity to several copies of (M0, g0).

Moreover under a uniform upper growth control of the volume of geodesic
balls (such as (1.1)), the result of [7] implies that under the assumption of
the theorem 1.3, the Riesz transform is bounded on M for any p ∈]1, 2] ;
hence the restriction of p > ν/(ν−1) is not really a serious one. Our method
is here less elaborate than the one of [5], its gives a more general result but
it is less sharp ; there are two restrictions : the first one is the dimension
restriction ν > 3 which is unsatisfactory, and the second concerns the
limitation p < ν which is perhaps also unsatisfactory when M has only one
end. However there are recent results of T. Coulhon and N. Dungey in this
direction [6].

There is now a long list of complete Riemannian manifolds (M0, g0) sat-
isfying our hypothesis and on which the Riesz transform is known to be
bounded on Lp for every p ∈]1,∞[. For instance Cartan-Hadamard man-
ifolds with a spectral gap [17], non-compact symmetric spaces [2] and Lie
groups of polynomial growth [1], manifolds with nonnegative Ricci curva-
ture and maximal volume growth [3] (see the discussion at the end of the
proof of theorem 1.3 about the case of manifolds with nonnegative Ricci
curvature and non maximal volume growth). Also H.-Q. Li [16] proved that
the Riesz transform on n-dimensional cones with compact basis is bounded
on Lp for p < p0, where

p0 =

n
(

n
2 −

√(
n−2

2

)2 + λ1

)−1

, λ1 < n− 1

+∞, λ1 > n− 1,

where λ1 is the smallest nonzero eigenvalue of the Laplacian on the basis.
Note that p0 > n. Our proof also applies to a manifold isometric at infinity
to several copies of cones, hence our theorem 1.3 also gives a partial answer
to the open problem 8.1 of [5] :

Corollary 1.4. — If (M, g) is a smooth Riemannian n−manifold of
dimension n > 4 with conic ends, then the Riesz transform is bounded on
Lp for any p ∈]1, n[.

TOME 57 (2007), FASCICULE 7



2332 Gilles CARRON

Our manifold (M0, g0) is not assumed to be connected, for instance the
theorem 1.3 implies that on the connected sum of a hyperbolic space and
a euclidean space of dimension n > 3, the Riesz transform is bounded on
Lp, for p ∈]n/(n− 1), n[.

Acknowledgements. I thank T. Coulhon for his interest and for his nice
comments which have improved the previous version of this paper.

2. Analytic preliminaries

2.1. A Sobolev inequality

Proposition 2.1. — Let (M, g) be a complete Riemannian manifold
with Ricci curvature bounded from below then for any p ∈ [1,∞[, there is
a constant C such that for all ϕ ∈ C∞

0 (M)

‖df‖Lp 6 C
[
‖∆f‖Lp + ‖f‖Lp

]
.

Remark 2.2.

i) In [8], T. Coulhon and X. Duong have shown that for every complete
Riemannian manifolds and any p ∈]1, 2], there is a constant C such
that

∀f ∈ C∞
0 (M), ‖df‖2Lp 6 C‖∆f‖Lp‖f‖Lp .

When p ∈]1, 2], this is clearly a stronger result.
ii) When the injectivity radius is assumed moreover to be positive, this

result is due to B. Davies (see corollary 10 in [10]) ; in this setting,
another proof along the idea of [14] can be given.

Proof. — According to (theorem 4.1 in [3]) we know that if (M, g) is a
complete manifold with Ricci curvature bounded from below then for any
p ∈]1,∞[ there is a constant C such that

∀f ∈ C∞
0 (M), ‖df‖Lp 6 C

[ ∥∥∥∆1/2f
∥∥∥

Lp
+ ‖f‖Lp

]
.

Then an interpolation argument (see for instance proposition 5.5 in [15])
implies that ∥∥∥∆1/2f

∥∥∥2

Lp
6 ‖∆f‖Lp ‖f‖Lp ,

the proposition is now straightforward. �

ANNALES DE L’INSTITUT FOURIER



RIESZ TRANSFORMS ON CONNECTED SUMS 2333

2.2. Some estimates on the Poisson operator

Lemma 2.3. — Let (M, g) be a complete Riemannian manifold which
for some ν > 2 and C > 0 satisfies the Sobolev inequality :

∀ϕ ∈ C∞
0 (M), ‖ϕ‖

L
2ν

ν−2
6 C‖dϕ‖L2

then the Schwarz kernel Pσ(x, y) of the Poisson operator e−σ
√

∆ satisfies

Pσ(x, y) 6
Cσ

(σ2 + d(x, y)2)
ν+1
2

.

Moreover if 1 6 r 6 p 6 +∞ then∥∥∥e−σ
√

∆
∥∥∥

Lr→Lp
6

C

σν( 1
r−

1
p )

.

We know that the heat operator e−t∆ and the Poisson operator are re-
lated through the subordination identity :

e−σ
√

∆ =
σ

2
√

π

∫ ∞

0

e−
σ2
4t e−t∆ dt

t3/2
.

Hence these properties follow directly from the corresponding ones for the
heat operator e−t∆ and its Schwarz kernel Ht(x, y) :

(2.1) Ht(x, y) 6
c

tν/2
e−

d(x,y)2

5t

and if 1 6 r 6 p 6 +∞ then∥∥e−t∆
∥∥

Lr→Lp 6
C

t
ν
2 ( 1

r−
1
p )

,

which are consequences of the Sobolev inequality [18, 9].
We will also need an estimate for the derivative of the Poisson kernel :

Lemma 2.4. — Under the assumptions of lemma (2.3), let Ω ⊂ M be
an open subset and K be a compact set in the interior of M \ Ω then∥∥∥e−σ

√
∆
∥∥∥

Lp(Ω)→L∞(K)
6

C

(1 + σ)ν/p
,∥∥∥∇e−σ

√
∆
∥∥∥

Lp(Ω)→L∞(K)
6

C

(1 + σ)ν/p
.

Proof. — The first estimate is only a consequence of the lemma 2.3 be-
cause by assumption there is a constant ε > 0 such that

(2.2) (x, y) ∈ K × Ω ⇒ d(x, y) > ε.

To prove the second inequality, we will again only show the correspond-
ing estimate for the heat operator. First, according to the local Harnack

TOME 57 (2007), FASCICULE 7
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inequality (see V.4.2 in [9]), there is a constant C such that for any x ∈ K,
t ∈]0, 1] and y ∈ M :

(2.3) |∇xHt(x, y)| 6 C√
t
H2t(x, y).

But hence by (2.2) and (2.1), we get : for all (x, y) ∈ K × Ω then

H2t(x, y) 6
c

tν/2
e−

ε2
10t .

It follows easily that there is a certain constant C such that

∀t ∈]0, 1] :
∥∥∇e−t∆

∥∥
Lp(Ω)→L∞(K)

6 C.

Now assume that t > 1 :∥∥∇e−t∆
∥∥

Lp(Ω)→L∞(K)
6
∥∥∥∇e−

1
2∆
∥∥∥

L∞(M)→L∞(K)

∥∥∥e−(t− 1
2 )∆
∥∥∥

Lp(Ω)→L∞(M)
.

But we have ∥∥∥e−(t− 1
2 )∆
∥∥∥

Lp(Ω)→L∞(M)
6

C

(t− 1/2)ν/2p
.

But with 2.3, we obtain :∥∥∥∇e−
1
2∆
∥∥∥

L∞(M)→L∞(K)
6 sup

x∈K

∫
M

|∇xH1/2(x, y)|dy

6 C sup
x∈K

∫
M

H1(x, y)dy 6 C.

Hence for all t > 0, we obtain∥∥∇e−t∆
∥∥

Lp(Ω)→L∞(K)
6

C

(1 + t)
ν
2p

and the second estimate follows from the subordination identity. �

3. Proof of the main theorem

Let (M0, g0) be a complete Riemannian manifold, we assume that the
Ricci curvature of (M0, g0) is bounded from below and that for some ν > 3
and C > 0, that (M, g) satisfies the Sobolev inequality

∀ϕ ∈ C∞
0 (M0), ‖ϕ‖

L
2ν

ν−2
6 C‖dϕ‖L2 .

We assume that on (M0, g0) the Riesz transform is bounded on Lp for some
p ∈]ν/(ν−1), ν[. And we consider M a complete Riemannian manifold such
that outside compact sets K ⊂ M and K0 ⊂ M0, M \ K is isometric to
M0 \K0, the case where M \K is isometric to several copies of M0 \K0 can

ANNALES DE L’INSTITUT FOURIER
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be done similarly by considering the disjoint union of k copies of M0. We
are going to prove that on M the Riesz transform is also bounded on Lp.
The first step is to build a good parametrix for the Poisson operator on M .
The first problem is that the operator

√
∆ is not a differential operator, we

circumvent these difficulties by working on R+ ×M . As a matter of fact,
the Poisson operator solves the Dirichlet problem :

(3.1)


(
− ∂2

∂σ2 + ∆
)

u(σ, x) = 0 on ]0,∞[×M

u(0, x) = u(x)
limσ→∞ u(σ, .) = 0.

The construction of the parametrix will be standard, the non locality na-
ture of the operator

√
∆ implies that we can not use the Duhamel formula,

instead we used the Green operator. The idea is to find Eσ(u) an approx-
imate solution for (3.1) and then to use the fact that, if G is the Green
operator of the operator − ∂2

∂σ2 + ∆ for the Dirichlet boundary condition,
then

e−σ
√

∆u = Eσ(u)−G

(
− ∂2

∂σ2
+ ∆

)
Eσ(u).

3.1. The parametrix construction

Let K̃ be another compact set in M containing K in its interior. We
identify

Ω = M \K = M0 \K0.

Let ρ0, ρ1 a smooth partition of unity such that

supp ρ0 ⊂ Ω and supp ρ1 ⊂ K̃,

let also ϕ0, ϕ1 be smooth functions, such that

suppϕ0 ⊂ Ω and suppϕ1 ⊂ K̃

Moreover we require that ϕi = 1 on a neighborhood of the support of ρi so
that we have :

ϕiρi = ρi.

Let ∆1 be the realization of the Laplace operator on K̃ for the Dirichlet
boundary condition and let ∆0 be the Laplace operator on M0. Let e−σ

√
∆i

their associated Poisson operator then we define for u ∈ Lp(M) :

Eσ(u) =
1∑

i=0

ϕi(e−σ
√

∆iρiu),

TOME 57 (2007), FASCICULE 7
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where we think of ρ0u as a function on Ω ⊂ M0 and of ϕ0(e−σ
√

∆0ρ0u) as
a function on Ω ⊂ M .

We can easily compute :(
− ∂2

∂σ2
+ ∆

)
Eσ(u) =

1∑
i=0

[∆, ϕi](e−σ
√

∆iρiu) = f(σ, x) =
1∑

i=0

fi(σ, x),

where

fi(σ, x) = [∆, ϕi](e−σ
√

∆iρiu)(x)(3.2)

= ∆ϕi(x)(e−σ
√

∆iρiu)(x)− 2
〈
dϕi(x), d(e−σ

√
∆iρiu)(x)

〉
.

From lemma 2.4 and the fact that the support of dϕ0 and ρ0 are disjoint,
we easily get that for all σ > 0 :

(3.3) ‖f0(σ)‖L1 + ‖f0(σ)‖Lp 6
C

(1 + σ)ν/p
‖ρ0u‖Lp .

Let us explain why this estimate also holds for f1. Note that the operator

S(σ) = [∆, ϕ1]e−σ
√

∆1ρ1

is an operator with smooth Schwarz kernel and compact support, more-
over because the corresponding estimate of the lemma (2.4) also holds for
σ ∈ [0, 1] on a compact manifold, the Schwarz kernel of S(σ) is uniformly
bounded when σ → 0. Hence there is a constant C such that

∀σ ∈ [0, 1], ‖S(σ)u‖L∞ 6 C‖ρ1u‖Lp .

Now the operator ∆1 has a spectral gap on Lp (its Lp spectrum is also its
L2 spectrum), hence there is a constant C such that for all σ > 0 then

‖e−σ
√

∆1‖Lp→Lp 6 Ce−σ/C .

Hence for σ > 1 :

‖S(σ)u‖L∞ 6 ‖[∆, ϕ1]e
1
2

√
∆1‖Lp→L∞‖e−(σ−1/2)

√
∆1ρ1u‖Lp

6 Ce−σ/C‖ρ1u‖Lp .

The result follows by noticing that the fi’s have compact support in K̃ \K.
Eventually we obtain the estimate :

Lemma 3.1. — When u ∈ Lp(M) and we define an operator Sσ by
Sσu = f = f0 + f1 where f0, f1 are defined by (3.2) then

∀σ > 0, ‖Sσ(u)‖L1 + ‖Sσ(u)‖Lp 6
C

(1 + σ)ν/p
‖u‖Lp .

ANNALES DE L’INSTITUT FOURIER
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3.2. The Riesz transform on M

We introduce now G, the Green operator of the operator
(
− ∂2

∂σ2 + ∆
)

on R+×M for the Dirichlet boundary condition. Its Schwarz kernel is given
by

G(σ, s, x, y) =
∫ ∞

0

e−
(σ−s)2

4t − e−
(σ+s)2

4t

√
4πt

Ht(x, y)dt

where Ht is the heat kernel on M and

e−
(σ−s)2

4t − e−
(σ+s)2

4t

√
4πt

the heat kernel on the half-line R+ for the Dirichlet boundary condition.
We have

e−σ
√

∆u = Eσ(u)−G(Sσ(u)).

Hence

∆−1/2u =
∫ ∞

0

e−σ
√

∆udσ =
1∑

i=0

ϕi∆
−1/2
i ρiu

−
∫

R2
+×M

G(σ, s, x, y)f(s, y)dσdsdy.

Let
g(x) =

∫
R2

+×M

G(σ, s, x, y)f(s, y)dσdsdy

then we have

(3.4) ∆−1/2u =
1∑

i=0

ϕi∆
−1/2
i ρiu− g.

But ∫ ∞

0

G(σ, s, x, y)dσ =
1√
4π

∫ ∞

0

[∫ s

−s

e−
v2
4t dv

]
Ht(x, y)

dt√
t

=
2√
π

∫ ∞

0

e−r2

[∫ s2

4r2

0

Ht(x, y)dt

]
dr.

It follows from the above computation that

g(x) =
2√
π

∫
R2

+

e−r2

[∫ s2

4r2

0

(e−t∆f(s))(x)dt

]
drds.

The following lemma is now the last crucial estimate :

TOME 57 (2007), FASCICULE 7
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Lemma 3.2. — There is a constant C such that

‖∆g‖Lp + ‖g‖Lp 6 C‖u‖Lp .

Proof. — Recall that according to [4], (M, g) itself satisfies the same
Sobolev inequality :

∀ϕ ∈ C∞
0 (M), ‖ϕ‖

L
2ν

ν−2
6 C‖dϕ‖L2 .

Hence the heat operator satisfies the following mapping properties : for
1 6 q 6 p 6 +∞ we have

∥∥e−t∆
∥∥

Lq→Lp 6
C

t
ν
2 ( 1

q−
1
p )

.

As a consequence, for all t ∈ [0, 1], then

‖(e−t∆f(s))‖Lp 6 ‖f(s))‖Lp 6
C

(1 + s)ν/p
‖u‖Lp

and if t > 1, then

‖(e−t∆f(s))‖Lp 6
∥∥e−t∆

∥∥
L1→Lp ‖f(s))‖L1 6

1

t
ν
2 (1− 1

p )

C

(1 + s)ν/p
‖u‖Lp .

Hence

‖g‖Lp 6
2√
π

∫
R2

+

e−r2

[∫ s2

4r2

0

‖(e−t∆f(s))‖Lpdt

]
dsdr

6
2√
π

∫
R2

+

e−r2

∫ s2

4r2

0

C

max
(
1, t

ν
2 (1− 1

p )
) 1

(1 + s)ν/p
dt

dsdr

‖u‖Lp .

But because p < ν, we have∫
{2r

√
t6s}

e−r2 1

max
(
1, t

ν
2 (1− 1

p )
) 1

(1 + s)ν/p
dsdtdr

=
ν

ν − p

∫
R2

+

e−r2 1

max
(
1, t

ν
2 (1− 1

p )
) 1

(1 + 2r
√

t)ν/p−1
dtdr

and this integral is finite exactly when p > ν/(ν − 1) and ν > 3.

ANNALES DE L’INSTITUT FOURIER
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It remains to estimate ‖∆g‖Lp , which is easier because

∆g =
2√
π

∫
R2

+

e−r2

[∫ s2

4r2

0

∆(e−t∆f(s))dt

]
drds

= − 2√
π

∫
R2

+

e−r2

[∫ s2

4r2

0

d

dt
(e−t∆f(s))dt

]
drds

=
2√
π

∫
R2

+

e−r2
[
f(s)− (e−

s2

4r2 ∆f(s))
]

drds.

Hence

‖∆g‖Lp 6
4√
π

∫
R2

+

e−r2
‖f(s)‖Lpdrds

6
4√
π

(∫
R2

+

e−r2 C

(1 + s)ν/p
drds

)
‖u‖Lp .

�

Now we can finish the proof of the main theorem : let Ti be the Riesz
transform associated with the operator ∆i. With the formula (3.4), we
obtain

d∆−1/2u =
1∑

i=0

ϕiTiρiu +
1∑

i=0

dϕi(∆
−1/2
i ρiu)− dg.

By hypothesis, T0 is bounded on Lp. Moreover since ϕ1T1ρ1 is a pseudo
differential operator of order 0 with compact support it is also bounded
on Lp. The operator dϕ1(∆

−1/2
i ρ1u) has a smooth kernel with compact

support, hence it is bounded on Lp. Moreover, the Sobolev inequality

∀ϕ ∈ C∞0 (M0), ‖ϕ‖
L

2ν
ν−2

6 C‖dϕ‖L2 .

also implies the following mapping properties of the ∆−1/2
0 ([18]) :∥∥∥∆−1/2

0

∥∥∥
Lp→L

pν
ν−p

6 C.

Hence∥∥∥dϕ0(∆
−1/2
0 ρ0u)

∥∥∥
Lp

6 C‖∆−1/2
0 ρ0u‖Lp(K̃\K) 6 C ′‖∆−1/2

0 ρ0u)‖
L

pν
ν−p (K̃)

6 C‖ρ0u‖Lp .

Moreover the lemmas (3.2) and (2.1) imply that

‖dg‖Lp 6 C‖u‖Lp .

All these estimates yield the fact that the Riesz transform is bounded on Lp.
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3.3. A comment on manifolds with non negative Ricci curvature

The proof of theorem 1.3 is fairly general, we can easily make a list
of the properties which makes it runs ; let (Mi, gi) i = 1, ..., b be complete
Riemannian manifolds and let (M, g) be isometric at infinity to the disjoint
union M1∪ ...∪Mb. That is to say there are compact sets K ⊂ M , Ki ⊂ Mi

such that M \K is isometric to (M1 \K1)∪ ...∪ (Mb \Kb). Let K̃ ⊂ K̂ such
that K̃ (resp. K̂) contains K in its interior (resp. K̃). And let K̂i, K̃i ⊂ Mi

such that :

M \ K̃ ' (M1 \ K̃1)∪ ...∪ (Mb \ K̃b), M \ K̂ ' (M1 \ K̂1)∪ ...∪ (Mb \ K̂b),

let ∆i be the Laplace operator on Mi. We assume that on each Mi, the
Ricci curvature is bounded from below such that on each Mi and M , we
get the estimate induced by the Sobolev inequality (2.1). Assume that for
some functions f, g : R+ → R∗+ we have the estimate :∥∥∥e−σ

√
∆i

∥∥∥
Lp(Mi\K̂i)→L∞(K̃i)

+
∥∥∥∇e−σ

√
∆i

∥∥∥
Lp(Mi\K̂i)→L∞(K̃i)

6
1

f(σ)
,

and that on the manifold M :∥∥e−t∆
∥∥

L1(K̂)→Lp(M)
6

1
g(t)

.

with

(3.5)
∫ ∞

0

ds

f(s)
< ∞

(3.6)
∫

R2
+

e−u2
min

(
1,

1
g(t)

)[∫ ∞

2u
√

t

ds

f(s)

]
dudt < ∞.

Then if for all i, the Riesz transform Ti := d∆−1/2
i is bounded on Lp,

then on M , the Riesz transform is also bounded on Lp.
A natural and well study class of manifolds satisfying such estimates are

manifolds satisfying the so called relative Faber-Krahn inequality : for some
α > 0 and c > 0, we have :

∀B(x,R),∀Ω ⊂ B(x,R), λ1(Ω) >
c

R2

(
volΩ

volB(x,R)

)−α

where

λ1(Ω) = inf
f∈C∞0 (Ω)

∫
Ω
|df |2∫

Ω
f2

is the first eigenvalue of the Laplace operator on Ω for the Dirichlet bound-
ary condition. According to A. Grigor’yan [11] this inequality is equivalent
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to the conjunction of the doubling property : uniformly in x and R > 0 we
have

volB(x, 2R)
volB(x,R)

6 C

and of the upper bound on the heat operator

Ht(x, y) 6
C

volB(x,
√

t)
e−

d(x,y)2

5t .

Manifolds with non negative Ricci curvature are examples of manifolds
satisfying this relative Faber-Krahn inequalities.

Assume that each Mi satisfies this relative Faber-Krahn inequality and
if we assume that for i = 1, ..., b, there is a point oi ∈ Ki and all R > 1

volB(oi, R) := Vi(R) > CRν

then we get easily from the subordination identity :∥∥∥e−σ
√

∆i

∥∥∥
Lp(Mi\K̂i)→L∞(K̃i)

+
∥∥∥∇e−σ

√
∆i

∥∥∥
Lp(Mi\K̂i)→L∞(K̃i)

6
1

(1 + σ)ν/p
.

Now the problem comes from the fact that we don’t know how to obtain a
relative Faber-Krahn inequality on M from the one we assume on the Mi’s.
However, recently in (page 877 of [13]), A. Grigor’yan and L. Saloff-Coste
have announced the following very useful result (see also [12]) : when the
Mi’s satisfy the relative Faber-Krahn inequality then

∀B(x,R) ⊂ M,∀Ω ⊂ B(x,R), λ1(Ω) >
c

R2

(
volΩ

µ(x,R)

)−α

,

where

µ(x,R) =
{

volB(x,R) if B(x,R) ⊂ M \K

infi Vi(R) else.

Hence from our volume growth estimate, we will obtain (see [11]) when
t > 1 : ∥∥e−t∆

∥∥
L1(K̂)→Lp(M)

6
C

t
ν
2

p−1
p

.

With this result of A. Grigor’yan and L. Saloff-Coste and with the result
of D. Bakry [3], we will obtain :

Proposition 3.3. — Let (M1, g1), ..., (M, gb) be complete Riemannian
manifolds with non negative Ricci curvature. Assume that on all Mi’s we
have the volume growth lower bound :

volB(oi, R) > CRν .
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Then assume that ν > 3 and p ∈]ν/(ν − 1), ν[ then on any manifold iso-
metric at infinity to the disjoint union of the Mi’s, the Riesz transform is
bounded on Lp.
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