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SYMPLECTIC TORUS ACTIONS
WITH COISOTROPIC PRINCIPAL ORBITS

by Johannes Jisse DUISTERMAAT & Alvaro PELAYO (*)

Abstract. — In this paper we completely classify symplectic actions of a torus
T on a compact connected symplectic manifold (M, σ) when some, hence every,
principal orbit is a coisotropic submanifold of (M, σ). That is, we construct an
explicit model, defined in terms of certain invariants, of the manifold, the torus
action and the symplectic form. The invariants are invariants of the topology of
the manifold, of the torus action, or of the symplectic form.

In order to deal with symplectic actions which are not Hamiltonian, we develop
new techniques, extending the theory of Atiyah, Guillemin-Sternberg, Delzant, and
Benoist. More specifically, we prove that there is a well-defined notion of constant
vector fields on the orbit space M/T . Using a generalization of the Tietze-Nakajima
theorem to what we call V -parallel spaces, we obtain that M/T is isomorphic to
the Cartesian product of a Delzant polytope with a torus.

We then construct special lifts of the constant vector fields on M/T , in terms of
which the model of the symplectic manifold with the torus action is defined.

Résumé. — Dans cet article nous donnons une classification complète des ac-
tions symplectiques d’un tore T sur une variété compacte connexe symplectique
(M, σ) pour laquelle une, et donc toute orbite principale est une variété coïsotrope
de (M, σ). Cela veut dire que nous construisons un modèle explicite, défini en
termes de certains invariants de la variété, l’action torique et de la forme symplec-
tique.

Pour traiter des actions symplectiques qui ne sont pas hamiltoniennes, nous
développons des techniques nouvelles, étendant la théorie d’Atiyah, Guillemin-
Sternberg, Delzant et Benoist. En particulier, nous démontrons qu’il y a une notion
bien définie de champs de vecteurs constants sur l’espace des orbites M/T . En uti-
lisant une généralisation du théorème de Tietze-Nakayama à ce que nous appelons
aussi espaces V -parallèles, nous obtenons que M/T est isomorphe au produit car-
tésien d’un polytope de Delzant avec un tore.

Nous construisons alors les champs de vecteurs spéciaux dans M qui se projettent
sur les champs de vecteurs constants sur M/T , à l’aide desquels le modèle de la
variété symplectique avec action torique est défini.

Keywords: Symplectic, torus actions, coisotropic orbits, classification.
Math. classification: 53D35, 35J05, 35J10, 17B30, 22E25.
(*) The first author’s research is Research stimulated by a KNAW professorship.
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1. Introduction

Let (M,σ) be a smooth compact and connected symplectic manifold
of dimension 2n and let T be a torus which acts effectively on (M,σ) by
means of symplectomorphisms. We furthermore assume that some principal
T -orbit is a coisotropic submanifold of (M,σ), which implies that dT > n

if dT denotes the dimension of T . See Lemma 2.3 for alternative charac-
terizations of our assumptions. In this paper we will classify the compact
connected symplectic manifolds with such torus actions, by constructing
a list of explicit examples to which each of our manifolds is equivariantly
symplectomorphic. See Theorem 9.4, Theorem 9.6 and Corollary 9.7 for
our main result.

In many integrable systems in classical mechanics, we have an effective
Hamiltonian action of an n-dimensional torus on the 2n-dimensional sym-
plectic manifold, but also non-Hamiltonian actions occur in physics, see for
instance Novikov [42].

If the effective action of T on (M,σ) is Hamiltonian, then dT = n and
the principal orbits are Lagrangian submanifolds. Moreover, the image of
the momentum mapping is a convex polytope ∆ in the dual space t∗ of t,
where t denotes the Lie algebra of T . ∆ has the special property that at
each vertex of ∆ there are precisely n codimension one faces with normals
which form a Z-basis of the integral lattice TZ in t, where TZ is defined
as the kernel of the exponential mapping from t to T . The classification
of Delzant [11] says that for each such polytope ∆ there is a compact
connected symplectic manifold with Hamiltonian torus action having ∆
as image of the momentum mapping, and the symplectic manifold with
torus action is unique up to equivariant symplectomorphisms. For an effi-
cient proof of the uniqueness in the more general setting of orbifolds, see
Lerman and Tolman [33]. Such polytopes ∆ and corresponding symplectic
T -manifolds (M,σ, T ) are called Delzant polytopes and Delzant manifolds
in the exposition of this subject by Guillemin [20], after Delzant [11]. Each
Delzant manifold has a T -invariant Kähler structure such that the Kähler
form is equal to σ.

Because critical points of the Hamiltonian function correspond to zeros of
the Hamiltonian vector field, a Hamiltonian action on a compact manifold
always has fixed points. Therefore the other extreme case of a symplectic
torus action with coisotropic principal orbits occurs if the action is free. In
this case, M is a principal torus bundle over a torus, hence a nilmanifold for
a two-step nilpotent Lie group as described in Palais and Stewart [46]. If the
nilpotent Lie group is not commutative, then M does not admit a Kähler
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structure, cf. Benson and Gordon [7]. For four-dimensional manifolds M ,
these correspond to the third case in the description of Kodaira [30, Th. 19]
of the compact complex analytic surfaces which carry a nowhere vanishing
holomorphic (2, 0)-form. These were rediscovered as the first examples of
compact symplectic manifolds without Kähler structure by Thurston [51].
See the end of Remark 7.6.

The general case is a combination of the Hamiltonian case and the free
case, in the sense that M is an associated G-bundle G ×H Mh over G/H
with a 2dh-dimensional Delzant submanifold (Mh, σh, Th) of (M,σ, T ) as
fiber. Here Th is the unique maximal subtorus of T which acts in Hamil-
tonian fashion on (M,σ). It has dimension dh and its Lie algebra is denoted
by th. G is a two-step nilpotent Lie group, and H is a commutative closed
Lie subgroup of G, which acts on Mh via Th ⊂ H. The base space G/H is a
torus bundle over a torus, see Remark 7.3. This leads to an explicit model
of (M,σ, T ) in terms of the ingredients 1) – 6) in Definition 9.1. See Propo-
sition 7.2 and Proposition 7.4. The model allows explicit computations of
many aspects of (M,σ, T ). As an example we determine the fundamental
group of M in Proposition 8.2, and the Chern classes of the normal bundle
in M/Tf of the fixed point set of the action of Th on M/Tf in Proposi-
tion 8.1. Here Tf is a complementary subtorus to Th in T , which acts freely
on M . The main result of this paper is that the compact connected sym-
plectic manifolds with symplectic torus action with coisotropic principal
orbits are completely classified by the ingredients 1) – 6) in Definition 9.1,
see Theorem 9.4 and Theorem 9.6.

The proof starts with the observation that the symplectic form on the
orbits is given by a two-form σt on t, see Lemma 2.1. Write l := kerσt.
The inner product of the symplectic form σ with the infinitesimal action of
T defines a closed basic l∗-valued one-form σ̂ on M , which turns the orbit
space M/T into a locally convex polyhedral l∗-parallel space, as defined
in Definition 10.1. The locally convex polyhedral l∗-parallel space M/T is
isomorphic to ∆ × (N/P ), in which ∆ is a Delzant polytope in (th)∗ and
P is a cocompact discrete additive subgroup of the space N of all linear
forms on l which vanish on th. See Proposition 3.8.

The main step in the proof of the classification is the construction of lifts
to M of the constant vector fields on the l∗-parallel manifold M/T with
the simplest possible Lie brackets and symplectic products of the lifts. See
Proposition 5.5. This construction uses calculations involving the de Rham
cohomology of M/T .

TOME 57 (2007), FASCICULE 7
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All the proofs become much simpler in the case that the action of T
on M is free. We actually first analyzed the free case with Lagrangian or-
bits. Next we treated the case with Lagrangian principal orbits where M
is fibered by Delzant manifolds, and only after we became aware of the ar-
ticle of Benoist [6], we generalized our results to the case with coisotropic
principal orbits. In [6], Theorem 6.6 states that every compact connected
symplectic manifold with a symplectic torus action with coisotropic prin-
cipal orbits is isomorphic to the Cartesian product of a Delzant manifold
and a compact connected symplectic manifold with a free symplectic torus
action. However, even in the special case that the principal orbits are Lan-
grange submanifolds of M , this conclusion appears to be too strong, if the
word “isomorphic” implies “equivariantly diffeomorphic”, see Remark 9.8
and Benoist [5].

The paper is organized as follows. In Section 2 we discuss the condition
that some (all) principal orbits are coisotropic submanifolds of (M,σ). In
Section 3 we analyze the space of T -orbits in all detail, where we use the
definitions and theorems in the appendix Section 10 concerning what we
call “V -parallel spaces”. Section 4 contains a lemma about basic differen-
tial forms and one about equivariant diffeomorphisms which preserve the
orbits. In Section 5 we construct our special lifts of constant vector fields
on the orbit space. These are used in Section 6 in order to construct the
Delzant submanifolds of (M,σ) and in Section 7 for the normal form of
the symplectic T -manifold. The classification is completed by means of the
theorems in Section 9. In the first appendix, Section 10, we prove that ev-
ery straight line complete, connected and locally convex V -parallel space is
isomorphic to the Cartesian product of a closed convex subset of a finite-
dimensional vector space and a torus. See Theorem 10.13 for the precise
statement. This result is a generalization of the theorem of Tietze [52] and
Nakajima [41], which states that every closed and connected locally convex
subset of a finite-dimensional vector space is convex. In the second appen-
dix, Section 11, we describe the local model of Benoist [6, Prop. 1.9] and
Ortega and Ratiu [44] for a proper symplectic action of an arbitrary Lie
group on an arbitrary symplectic manifold.

There are many other texts on the classification of symplectic torus ac-
tions on compact manifolds which in some way are related to ours. The
book of Audin [2] is on Hamiltonian torus actions, with emphasis on the
topological aspects. Orlik and Raymond [43] and Pao [47] classified actions
of two-dimensional tori on four-dimensional compact connected smooth
manifolds. Because they do not assume an invariant symplectic structure,
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our classification in the four-dimensional case forms only a tiny part of
theirs. On the other hand the completely integrable systems with local
torus actions of Kogan [31] form a relatively close generalization of torus
actions with Lagrangian principal orbits. The classification of Hamiltonian
circle actions on compact connected four-dimensional manifolds in Karshon
[27], and of centered complexity one Hamiltonian torus actions in arbitrary
dimensions in Karshon and Tolman [28], are also much richer than our
classification in the case that n − dh 6 1. McDuff [38] and McDuff and
Salamon [39] studied non-Hamiltonian circle actions, and Ginzburg [18]
non-Hamiltonian symplectic actions of compact groups under the assump-
tion of a “Lefschetz condition”. In another direction Symington [50] and
Leung and Symington [34] classified four-dimensional compact connected
symplectic manifolds which are fibered by Lagrangian tori where however
the fibration is allowed to have elliptic or focus-focus singularities. In the
book of Mukherjee [40, Def. 3.4.2 and Lem. 3.4.3] there is a definition of
“locally toric manifolds” and a characterization of their orbit spaces which
is related to our characterization of the the orbit spaces as the cartesian
product of a Delzant polytope with a torus.

We are very grateful to Professor Karshon for her suggestion of the prob-
lem. A. Pelayo thanks her for moral and intellectual support during this
project. We also thank professors Deligne and McDuff for discussions which
have led to improvements of the paper.

2. Coisotropic principal orbits

Let (M,σ) be a smooth compact and connected symplectic manifold and
let T be a torus which acts effectively on (M,σ) by means of symplectomor-
phisms. In this section we show that some principal T -orbit is a coisotropic
submanifold of (M,σ) if and only if the Poisson brackets of any pair of
smooth T -invariant functions on M vanish if and only if every principal
T -orbit is a coisotropic submanifold of (M,σ). See Lemma 2.3, Remark 2.5
and Remark 2.11 below.

This follows from the local model of Benoist [6, Prop. 1.9], see Theo-
rem 11.1, which in the case of symplectic torus actions with coisotropic
principal orbits assumes a particularly simple form, see Lemma 2.10.

If X is an element of the Lie algebra t of T , then we denote by XM the
infinitesimal action of X on M . It is a smooth vector field on M , and the
invariance of σ under the action of T implies that

(2.1) d(iXM
σ) = LXM

σ = 0.

TOME 57 (2007), FASCICULE 7



2244 Johannes Jisse DUISTERMAAT & Alvaro PELAYO

Here Lv denotes the Lie derivative with respect to the vector field v, and
iv ω the inner product of a differential form ω with v, obtained by inserting
v in the first slot of ω. The first identity in (2.1) follows from the homotopy
identity Lv = d ◦ iv + iv ◦d combined with dσ = 0.

If f is a smooth real-valued function on M , then the unique vector field v
on M such that − iv σ = df is called the Hamiltonian vector field of f , and
will be denoted by Hamf . Given v, the function f is uniquely determined
up to and additive constant, which implies that f is T -invariant if and only
if v is T -invariant. If X ∈ t, then XM is Hamiltonian if and only if the
closed two-form iXM

σ is exact.
The following lemma says that the pull-back to the T -orbits of the sym-

plectic form σ on M is given by a constant antisymmetric bilinear form on
the Lie algebra t of T .

Lemma 2.1. — There is a unique antisymmetric bilinear form σt on t,
such that

σx(XM (x), YM (x)) = σt(X,Y )

for every X,Y ∈ t and every x ∈M .

Proof. — It follows from Benoist [6, Lemme 2.1] that if u and v are
smooth vector fields on M such that Lu σ = 0 and Lv σ = 0, then [u, v] =
Hamσ(u,v). We repeat the proof.

i[u,v] σ = Lu(iv σ) = iu(d(iv σ)) + d(iu(iv σ)) = −d(σ(u, v)).

Here we used Lu σ = 0 in the first equality, the homotopy formula for the Lie
derivative in the second identity, and finally dσ = 0, the homotopy identity
and Lv σ = 0 in the third equality. Applying this to u = XM , v = YM for
X,Y ∈ t, and using that [X,Y ] = 0, hence [XM , YM ] = −[X,Y ]M = 0, it
follows that Hamσ(XM ,YM ) = 0. Thus d(σ(XM , YM )) = 0, and the function
x 7→ σx(XM (x), YM (x)) is constant on M , because M is connected. �

In the further discussion we will need some basic facts about proper
actions of Lie groups, see for instance [15, Sec. 2.6–2.8]. For each x ∈ M

we write Tx := {t ∈ T | t · x = x} for the stabilizer subgroup of the T -
action at the point x. Tx is a closed Lie subgroup of T , it has finitely many
components and its identity component is a torus subgroup of T . The Lie
algebra tx of Tx is equal to the space of all X ∈ t such that XM (x) = 0.
In other words, tx is the kernel of the linear mapping αx : X 7→ XM (x)
from t to TxM . The image of αx is equal to the tangent space at x of
the T -orbit through x, and will be denoted by tM (x). The linear mapping
αx : t → TxM induces a linear isomorphism from t/tx onto tM (x).

ANNALES DE L’INSTITUT FOURIER
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For each closed subgroup H of T which can occur as a stabilizer sub-
group, the orbit type MH is defined as the set of all x ∈ M such that Tx

is conjugate to H, but because T is commutative this condition is equiv-
alent to the equation Tx = H. Each connected component C of MH is a
smooth T -invariant submanifold of M . The connected components of the
orbit types in M form a finite partition of M , which actually is a Whitney
stratification. This is called the orbit type stratification of M . There is a
unique open orbit type, called the principal orbit type of M , which is the
orbit type of a subgroup H which is contained in every stabilizer subgroup
Tx, x ∈M . Because the effectiveness of the action means that the intersec-
tion of all the Tx, x ∈M is equal to the identity element, this means that
the principal orbit type consists of the points x where Tx = {1}, that is
where the action is free. If the action is free at x, then the linear mapping
X 7→ XM (x) from t to TxM is injective. The points x ∈ M at which the
T -action is free are also called the regular points of M , and the principal
orbit type, the set of all regular points in M is denoted by Mreg. The prin-
cipal orbit type Mreg is a dense open subset of M , and connected because
T is connected, see [15, Th. 2.8.5]. The principal orbits are the orbits in
Mreg, the principal orbit type. In our situation, the principal orbits are the
orbits on which the action of T is free.

Lemma 2.2. — Let l be the kernel in t of the two-form σt on t defined
in Lemma 2.1, the set of all X ∈ t such that σt(X,Y ) = 0 for every Y ∈ t.
Then tx ⊂ l for every x ∈M .

Proof. — If X ∈ tx, then XM (x) = 0, hence σt(X,Y ) = σx(XM (x),
YM (x)) = 0 for every Y ∈ t. �

The linear subspace l of t will play an important part in the classification
of the symplectic torus actions with coisotropic principal orbits.

A submanifold C of M is called coisotropic, if for every x ∈ C, v ∈ TxM ,
the condition that σx(u, v) = 0 for every u ∈ TxC implies that v ∈ TxC. In
other words, if the σx-orthogonal complement (TxC)σx of TxC in TxM is
contained in TxC. Every symplectic manifold has an even dimension, say
2n, and if C is a coisotropic submanifold of dimension k, then

2n− k = dim(TxC)σx 6 dim(TxC) = k

shows that k > n. C has the minimal dimension n if and only if (TxC)σx =
TxC, if and only if C is a Lagrangian submanifold of M , an isotropic

submanifold of M of maximal dimension n. The next lemma is basically
the implication (iv) ⇒ (ii) in Benoist [6, Prop. 5.1].

TOME 57 (2007), FASCICULE 7
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Lemma 2.3. — Let (M,σ) be a connected symplectic manifold, and T

a torus which acts effectively and symplectically on (M,σ). Then every
coisotropic T -orbit is a principal orbit. Furthermore, if some T -orbit is
coisotropic, then every principal orbit is coisotropic, and dimM = dimT +
dim l.

Proof. — We use Theorem 11.1 with G = T , where we note that the
commutativity of T implies that the adjoint action of H = Tx on t is
trivial, which implies that the coadjoint action of H on the component
(l/h)∗ is trivial as well.

Let us assume that the orbit T · x is coisotropic, which means that
tM (x)σx ⊂ tM (x), or equivalently the subspace W defined in (11.5) is equal
to zero. This implies that the action of H on E = (l/h)∗ is trivial, and
the vector bundle T ×H E = T ×H (l/h)∗ is T -equivariantly isomorphic
to (T/H)× (l/h)∗, where T acts by left multiplications on the first factor.
It follows that in the model all stabilizer subgroups are equal to H, and
therefore Ty = H for all y in the T -invariant open neighborhood U of x in
M . Because the principal orbit type is dense in M , there are y ∈ U such
that Ty = {1}, and it follows that Tx = H = {1}, that is, T ·x is a principal
orbit. We note in passing that this implies that dimM = dimT + dim l.

When W = {0}, we read off from (11.8) with σG/H given by σt in
Lemma 2.1, and (11.7), that the symplectic form Φ∗σ is given by

(Φ∗σ)(tH,λ)((X + h, δλ), (X ′ + h, δ′λ)) = σt(X,X ′) + δλ(X ′
l)− δ′λ(Xl)

for all (tH, λ) ∈ (T/H)×E0, and (X+h, δλ), (X ′+h, δ′λ) ∈ (t/h)× (l/h)∗.
In this model, the tangent space of the T -orbit is the set of all (X ′+h, δ′λ)
such that δ′λ = 0, of which the symplectic orthogonal complement is equal
to the set of all (X + h, δλ) such that X ∈ l and δλ = 0, which implies
that in this model every T -orbit is coisotropic and therefore the orbit T · y
is coisotropic for every y ∈ U . This shows that the set of all x ∈ M such
that T · x is coisotropic is an open subset of M . Because for all x ∈ Mreg

the tangent spaces of the orbits T · x have the same dimension, equal to
dimT , the set of all x ∈ Mreg such that T · x is coisotropic is closed in
Mreg. Because Mreg is connected, it follows that T · x is coisotropic for all
x ∈Mreg as soon as T · x is coisotropic for some x ∈Mreg. �

Remark 2.4. — In the proof of Lemma 2.3, linear forms on l/h were
identified with linear forms on l. For any linear subspace F of a finite-
dimensional vector space E we have the canonical projection p : x 7→
x + F : E 7→ E/F , and its dual mapping p∗ : (E/F )∗ → E∗. Because
p is surjective, p∗ is injective, and its image p∗((E/F )∗) is equal to the
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space F 0 of all ϕ ∈ E∗ such that ϕ|F = 0. This leads to a canonical linear
isomorphism p∗ from (E/F )∗ onto F 0, which will be used throughout this
paper to identify (E/F )∗ with the linear subspace F 0 of E∗.

Remark 2.5. — Let x ∈Mreg. Because the principal orbit type Mreg is
fibered by the T -orbits, the tangent space tM (x) at x of T ·x is equal to the
common kernel of the df(x), where f ranges over the T -invariant smooth
functions on M . Because −df = iHamf

σ, it follows that tM (x)σx is equal
to the set of all Hamf (x), f ∈ C∞(M)T . Here C∞(M)T denotes the space
of all T -invariant smooth functions on M .

Suppose that the principal orbits are coisotropic and let f ∈ C∞(M)T .
Then we have for every x ∈ Mreg that Hamf (x) ∈ tM (x)σx ∩ tM (x), or
Hamf (x) = X(x)M (x) for a uniquely determined X(x) ∈ l. It follows that
the Hamf -flow leaves every principal orbit invariant, and because Mreg is
dense in M , the Hamf -flow leaves every T -orbit invariant. Because a point
x ∈ M is called a relative equilibrium of a T -invariant vector field v if
the v-flow leaves T · x invariant, the conclusion is that all points of M are
relative equilibria of Hamf , and the induced flow in M/T is at standstill.
Moreover the T -invariance of Hamf implies that x 7→ X(x) ∈ l is constant
on each principal T -orbit, which implies that the Hamf -flow in Mreg is
quasiperiodic, in the direction of the infinitesimal action of l on Mreg.

If f, g ∈ C∞(M)T and x ∈ Mreg, then Hamf (x) and Hamg(x) both
belong to tM (x)σx∩tM (x), and it follows that the Poisson brackets {f, g} :=
Hamfg = σ(Hamf ,Hamg) of f and g vanish at x. Because Mreg is dense in
M , it follows that {f, g} ≡ 0 for all f, g ∈ C∞(M)T if the principal orbits
are coisotropic.

If conversely {f, g} ≡ 0 for all f, g ∈ C∞(M)T , then we have for every
x ∈ Mreg that tM (x)σx ⊂ (tM (x)σx)σx = tM (x), which means that T · x is
coisotropic. Therefore the principal orbits are coisotropic if and only if the
Poisson brackets of all T -invariant smooth functions vanish.

In Guillemin and Sternberg [23], a symplectic manifold with a Hamilton-
ian action of an arbitrary compact Lie group is called a multiplicity-free
space if the Poisson brackets of any pair of invariant smooth functions van-
ish. Because in [23] the emphasis is on representations of noncommutative
compact Lie groups, which do not play a role in our paper, and because
on the other hand we allow non-Hamiltonian actions, we did not put the
adjective “multiplicity-free” in the title.

TOME 57 (2007), FASCICULE 7
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The next lemma is statement (1) (a) in Benoist [6, Lemma 6.7]. For
general symplectic torus actions the stabilizer subgroups need not be con-
nected. For instance, there exist symplectic torus actions with symplectic
orbits and nontrivial finite stabilizer subgroups.

Lemma 2.6. — Let (M,σ) be a connected symplectic manifold, and T a
torus which acts effectively and symplectically on (M,σ), with coisotropic
principal orbits. Then, for every x ∈ M , the stabilizer group Tx is con-
nected, that is, a subtorus of T .

Proof. — As in the proof of Lemma 2.3, we use Theorem 11.1 with G =
T , where H acts trivially on the factor (l/h)∗ in E = (l/h)∗×W . Recall that
t ∈ T acts on T ×H E by sending H · (t′, e) to H · (tt′, e). When t = h ∈ H,
then

H · (ht′, e) = H · (ht′h−1, h · e) = H · (t′, h · e)

because T is commutative, and we see that the action of H on T ×H E is
represented by the linear symplectic action of H on W , where W is defined
by (11.5).

Because

dimM = (dimT + dim(l/h) + dimW )− dimH

and because the assumption that the principal orbits are coisotropic implies
that dimM = dimT + dim l, see Lemma 2.3, it follows that dimW =
2 dimH.

Write m = dimH. The action of the compact and commutative group H
by means of symplectic linear transformations on the 2m-dimensional sym-
plectic vector space (W,σW ) leads to a direct sum decomposition of W into
m mutually σW -orthogonal two-dimensional H-invariant linear subspaces
Ej , 1 6 j 6 m.

For h ∈ H and every 1 6 j 6 m, let ιj(h) denote the restriction to
Ej ⊂ W ' {0} × W ⊂ (l/h)∗ × W of the action of h on E. Note that
det ιj(h) = 1, because ιj(h) preserves the restriction to Ej × Ej of σW ,
which is an area form on Ej . Averaging any inner product in each Ej

over H, we obtain an H-invariant inner product βj on Ej , and ιj is a
homomorphism of Lie groups from H to SO(Ej , βj), the group of linear
transformations of Ej which preserve both βj and the orientation.

On the other hand, if h ∈ H and w ∈Wreg, then

h · w =
m∑

j=1

ιj(h)wj if w =
m∑

j=1

wj , wj ∈ Ej .
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Therefore ιj(h)wj = wj for all 1 6 j 6 m implies that h · w = w, hence
h = 1. This implies that the homomorphism of Lie groups ι, defined by

ι : h 7→ (ι1(h), . . . , ιm(h)) : H →
m∏

j=1

SO(Ej , βj),

is injective. Because both the source group H and the target group are
m-dimensional Lie groups, and the target group is connected, it follows
that ι is an isomorphism of Lie groups. This implies in turn that H is
connected. �

Remark 2.7. — The H-invariant inner product βj on Ej , introduced in
the proof of Lemma 2.6, is unique, if we also require that the symplectic
inner product of any orthonormal basis with respect to σW is equal to
±1. In turn this leads to the existence of a unique complex structure on
Ej such that, for any unit vector ej in (Ej , βj), we have that ej , i ej is an
orthonormal basis in (Ej , βj) and σW (ej , i ej) = 1. Here i :=

√
−1 ∈ C. This

leads to an identification of Ej with C, which is unique up to multiplication
by an element of T := {z ∈ C | |z| = 1}.

In turn this leads to an identification of W with Cm, with the symplectic
form σW defined by

(2.2) σCm

=
m∑

j=1

d zj ∧ dzj/2 i .

The element c ∈ Tm acts on Cm by sending z ∈ Cm to the element c ·z such
that (c · z)j = cjzj for every 1 6 j 6 m. There is a unique isomorphism
of Lie groups ι : H → Tm such that h ∈ H acts on W = Cm by sending
z ∈ Cm to ι(h) · z.

The identification of W with Cm is unique up to a permutation of the
coordinates and the action of an element of Tm.

In the local model of Lemma 2.10 below, we will use that any subtorus
of a torus has a complementary subtorus, in the following sense.

Lemma 2.8. — Let U be a dU -dimensional subtorus of a dT -dimensional
torus T . Let UZ and TZ denote the integral lattice, the kernel of the expo-
nential mapping, in the Lie algebra u and t of U and T , respectively. Let Yi,
1 6 i 6 dU , be a Z-basis of UZ. Then there are Zj , 1 6 j 6 dV := dT − dU ,
such that the Yi and Zj together form a Z-basis of TZ. If we denote by v

the span of the Zj , then V = exp v is a subtorus of T with Lie algebra
equal to v. V is a complementary subtorus of U in T in the sense that the
mapping U × V 3 (u, v) 7→ uv ∈ T is an isomorphism from U × V onto T .
The Zj form a Z-basis of the integral lattice VZ in the Lie algebra v of V .
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Proof. — We repeat the well-known argument. If X ∈ TZ, c ∈ Z, c 6= 0,
and cX ∈ UZ, then X ∈ u and expX = 1 in T , hence expX = 1 in
U , and it follows that X ∈ UZ. This means that the finitely generated
commutative group TZ/UZ is torsion-free, and therefore has a Z-basis Z̃j ,
1 6 j 6 k, cf. Hungerford [26, Th. 6.6 on p. 221]. We have that Z̃j = Zj+UZ
for some Zj ∈ TZ. If X ∈ TZ, then there are unique zj ∈ Z such that
X + UZ =

∑k
j=1 z

jZ̃j , which means that X −
∑k

j=1 z
jZj ∈ UZ. But this

implies that there are unique yi ∈ Z such that X−
∑k

j=1 z
jZj =

∑dU

i=1 y
iYi,

which shows that the Yi and Zj together form a Z–basis of TZ, which in
turn implies that k = dT − dU = dV .

The last statement follows from the fact that the mapping

(y, z) 7→ exp

 dU∑
i=1

yiYi +
dV∑
j=1

zjZj


from RdT to T induces an isomorphism from (R/Z)dT onto T which maps
(R/Z)dU × {0} onto U and {0} × (R/Z)dV onto V . �

Remark 2.9. — The complementary subtorus V in Lemma 2.8 is by no
means unique. The Zj can be replaced by any

Z ′j = Zj +
dU∑
i=1

cijYi, 1 6 j 6 dV ,

in which the cij are integers. This leads to a bĳective correspondence be-
tween the set of all complementary subtori of a given subtorus U and the
set of all dU × dF -matrices with integral coefficients.

Let H = Tx be the subtorus of T in Lemma 2.6. Let K be a complemen-
tary subtorus of H in T and, for any t ∈ T , let tH and tK be the unique
elements in H and K, respectively, such that t = tHtK . Let X 7→ Xl be
a linear projection from t onto l. We also use the identification of W with
Cm as in Remark 2.7. With these notations, we have the following local
model for our symplectic T -space with coisotropic principal orbits.

Lemma 2.10. — Under the assumptions of Lemma 2.6, there is an iso-
morphism of Lie groups ι from H onto Tm, an open Tm-invariant neigh-
borhood E0 of the origin in E = (l/h)∗ × Cm, and a T -equivariant diffeo-
morphism Φ from K × E0 onto an open T -invariant neighborhood U of
x in M , such that Φ(1, 0) = x. Here t ∈ T acts on K × (l/h)∗ × Cm by
sending (k, λ, z) to (tKk, λ, ι(tH) · z). In addition, the symplectic form Φ∗σ
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on K × E0 is given by

(Φ∗σ)(k,λ,z)((X, δλ, δz), (X ′, δ′λ, δ′z)) = σt(X,X ′) + δλ(X ′
l)− δ′λ(Xl)

(2.3)

+ σCm

(δz, δ′z)

for all (k, λ, z) ∈ K × (l/h)∗ × Cm, and (X, δλ, δz), (X ′, δ′λ, δ′z) ∈ k ×
(l/h)∗×Cm. Here we identify each tangent space of the torus K with k and
each tangent space of a vector space with the vector space itself. Finally,
σCm

is the symplectic form on Cm defined in (2.2).

Proof. — As in the proof of Lemma 2.6, we use Theorem 11.1 with G =
T , where H acts trivially on the factor (l/h)∗ and h ∈ H acts on W = Cm

by sending z ∈ Cm to ι(h) · z. Here ι : H → Tm is the isomorphism from
the torus H onto the standard torus Tm introduced in Remark 2.7, and
the symplectic form σCm

on Cm is given by (2.2).
Because K is a complementary subtorus of H in T , the manifold K ×E

is a global section of the vector bundle πK : T ×H E → T/H ' K. Indeed,
if (t, e) ∈ T × E, then (tK , tH · e) = (ttH−1, tH · e) is the unique element
in (K × E) ∩ H · (t, e). Furthermore, if t ∈ T and (k, e) ∈ K × E, then
(tKk, tH · e) is the unique element in (K × E) ∩ H · (tk, e). This exhibits
T×HE as a trivial vector bundle over K, which is a homogeneous T -bundle,
where t ∈ T acts on K × E by sending (k, e) to (tKk, tH · e).

Finally, if in (11.7) we restrict ourselves to X ∈ k, then the right hand
side simplifies to λ(Xl) + σW (w, δw)/2, which leads to (2.3). �

Remark 2.11. — In the local model of Lemma 2.10, we have that T(k,λ,z)

= H if and only if z is a fixed point of ι(H) = Tm if and only if z = 0.
Because K×(l/h)∗×{0} is a symplectic submanifold of K×(l/h)∗×Cm, it
follows that every orbit type is a smooth symplectic submanifold of (M,σ).

Moreover, T · (k, λ, 0) = K × {λ} × {0} is a coisotropic submanifold
of K × (l/h)∗ × Cm, and we conclude that every T -orbit is a coisotropic
submanifold of its orbit type.

The discussion of the relative equilibria in Remark 2.5, with Mreg re-
placed by any orbit type MH , leads to the conclusion that for every f ∈
C∞(M)T the flow of the Hamiltonian vector field Hamf in MH is quasi-

periodic, in the direction of the infinitesimal action of l/h in MH .

We conclude this section with a discussion of the special case that the
two-form σt in Lemma 2.1 is equal to zero.

Lemma 2.12. — We have σt = 0 if and only if l := kerσt = t if and
only if some T -orbit is isotropic if and only if every T -orbit is isotropic.
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Also, every principal orbit is a Lagrangian submanifold of (M,σ) if and
only if some principal orbit is a Lagrangian submanifold of (M,σ) if and
only if dimM = 2dimT and σt = 0.

Proof. — The equivalence of σt = 0 and kerσt = t is obvious, whereas
the equivalence between σt = 0 and the isotropy of some (every) T -orbit
follows from Lemma 2.1.

If x ∈Mreg and T ·x is a Lagrange submanifold of (M,σ), then dimM =
2 dim(T · x) = 2 dimT , and σt = 0 follows in view of the first statement in
the lemma.

Conversely, if dimM = 2dimT and σt = 0, then every orbit is isotropic
and for every x ∈ Mreg we have dimM = 2 dimT = 2 dim(T · x), which
implies that T · x is a Lagrangian submanifold of (M,σ). �

3. The orbit space

In this section we investigate the orbit space of our action of the torus
T on the compact connected symplectic manifold (M,σ) with coisotropic
principal orbits. The main results are that the closed basic one-form σ̂

of Lemma 3.1 exhibits the orbit space as a locally convex polyhedral l∗-
parallel space, see Definition 10.1 and Lemma 3.5, and that as such M/T is
isomorphic to the Cartesian product of a Delzant polytope and a torus, see
Proposition 3.8. The assumption that the principal orbits are coisotropic
will be assumed throughout this section, unless explicitly stated otherwise.

3.1. Canonical local charts on the orbit space

In this subsection we exhibit the space of T -orbits as an l∗-parallel space
in the sense of Definition 10.1.

We denote the space of all orbits in M of the T -action by M/T , and
by π : M → M/T the canonical projection which assigns to each x ∈ M

the orbit T · x through the point x. The orbit space is provided with the
maximal topology for which the canonical projection is continuous; this
topology is Hausdorff.

For each connected component C of an orbit type MH in M of the
subgroup H of T , as introduced in the paragraphs preceding Lemma 2.2,
the action of T on C induces a proper and free action of the torus T/H
on C, and π(C) has a unique structure of a smooth manifold such that
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π : C → π(C) is a principal T/H-bundle. (M/T )H := π(MH) is called the
orbit type of H in M/T and π(C) is a connected component of (M/T )H .
The connected components of the orbit types in the orbit space form a
finite stratification of the orbit space, cf. [15, Sec. 2.7].

Although M/T is equal to the union of the finitely many strata of the
orbit type stratification in M/T , where each of these strata is a smooth
manifold, the orbit space M/T is not a smooth manifold, unless the action
of T on M is free. In general the principal orbit type (M/T )reg = Mreg/T is
a smooth manifold of dimension dimM−dimT , which is an open and dense
subset of M/T , and M/T will have singularities at the lower dimensional
strata, the strata in the complement of (M/T )reg in M/T . However, in this
section we will obtain a much more explicit description of the orbit space
M/T .

A smooth differential form ω on M is called basic with respect to the
T -action if it is T -invariant, that is LXM

ω = 0 for every X ∈ t, and
if iXM

ω = 0 for every X ∈ t. The basic differential forms constitute a
module over the algebra C∞(M)T of T -invariant smooth functions on M ,
the basic forms of degree zero on M . A smooth differential form ω on M is
basic if and only if the restriction of ω to the principal orbit type is equal
to π∗ν for a smooth differential form ν on the principal orbit type in M/T .

A theorem of Koszul [32] says that the Čech (= sheaf) cohomology group
Hk(M/T,R) ofM/T is canonically isomorphic to the de Rham cohomology

of the basic forms on M , that is, the space of closed basic k-forms on M

modulo its subspace consisting of the dν in which ν ranges over the basic
(k − 1)-forms on M . This theorem holds for any proper action of a Lie
group on any smooth manifold, and in particularly it does not need the
compactness of M .

Lemma 3.1. — Recall that l is the kernel of the antisymmetric bilinear
form σt which had been introduced in Lemma 2.1. For each X ∈ l, σ̂(X) :=
− iXM

σ is a closed basic one-form on M .

Proof. — That σ̂(X) is closed follows from (2.1). Because X ∈ l, we have
for each Y ∈ t that − iYM

(σ̂(X)) = σt(X,Y ) = 0. Also we have for every
Y ∈ t that

−LYM
σ̂(X) = i[YM ,XM ] σ + iXM

(LYM
σ) = 0.

Here we have used the Leibniz identity for the Lie derivative, the commu-
tativity of t, and the T -invariance of σ which implies that LYM

σ = 0. �

For each x ∈M , σ̂(X)x is a linear form on TxM which depends linearly
on X ∈ l, and therefore X 7→ σ̂(X)x is an l∗-valued linear form on TxM ,

TOME 57 (2007), FASCICULE 7



2254 Johannes Jisse DUISTERMAAT & Alvaro PELAYO

which we denote by σ̂x. In this way x 7→ σ̂x is an l∗-valued one-form on M ,
which we denote by σ̂. With these conventions, we have

(3.1) σ̂x(v)(X) = σ̂(X)x(v) = σx(v,XM (x)), x ∈M, v ∈ TxM, X ∈ l.

Note that the l∗-valued one-form σ̂ on M is basic and closed.
Let X ∈ t and suppose that XM = Hamf for some f ∈ C∞(M). Then

we have for every Y ∈ t that

YM (f) = iYM
(df) = − iYM

(iXM
σ) = σ(YM , XM ) = σt(Y,X),

and it follows that f ∈ C∞(M)T if and only if X ∈ l := kerσt. The T -
action on (M,σ) is called a Hamiltonian T -action if for every X ∈ t there
exists an f ∈ C∞(M)T such that XM = Hamf and the assignment X 7→ f

is a Lie algrebra anti-homomorphism from t to C∞(M). Note that if l = t,
that is, if σt = 0, then the T -action is Hamiltonian if and only if if for every
X ∈ t there exists an f ∈ C∞(M) such that XM = Hamf .

We recall the Delzant manifolds, mentioned in Section 1. Koszul’s theo-
rem now implies the following.

Corollary 3.2. — We do not assume that the principal orbits are
coisotropic. Let X ∈ t. Then XM = Hamf for some f ∈ C∞(M)T , if and
only if X ∈ l := kerσt and the cohomology class [σ̂(X)] ∈ H1(M/T,R) is
equal to zero. If the T -action is Hamiltonian, then σt = 0. Finally, if σt = 0
and H1(M/T,R) = 0, then the T -action is Hamiltonian and (M,σ, T ) is a
Delzant manifold.

Remark 3.3. — In the local model of Lemma 2.10, the T -orbit space
of K × E0 is equal to E0/Tm, which is contractible by using the radial
contractions in E0. It follows that for every x0 ∈M there is a T -invariant
open neighborhood U of x0 in M such that the open subset π(U) of the
orbit space M/T is contractible. Because of Koszul’s theorem, and because
the Čech cohomology of π(U) is trivial, it follows that the infinitesimal
action of l on U is Hamiltonian. Therefore, if σt = 0, then the T -action is
locally Hamiltonian in the sense that every element in M has a T -invariant
open neighborhood in M on which the T -action is Hamiltonian.

In the local model of Lemma 2.10, we write zj = |zj | ei θj

with θj ∈
R/2πZ for each 1 6 j 6 m. Then the symplectic form σW with W = Cm

in (2.2) is equal to

(3.2) σCm

=
m∑

j=1

dρj ∧ d θj , in which ρj := |zj |2/2.
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The mapping (λ, ρ) : M := K × (l/h)∗ × Cm → (l/h)∗ × Rm induces a
homeomorphism from the T -orbit space M/T ' (l/h)∗ × (Cm/Tm) onto
(l/h)∗ × Rm

+ , in which

Rm
+ := {ρ ∈ Rm | ρj > 0 for every 1 6 j 6 m}.

Note that (ei α1
, . . . , ei αm

) ∈ Tm acts on Cm by sending θ to θ + α and
leaving ρ fixed. If we identify the Lie algebra of Tm with (i R)m, then
the infinitesimal action of β ∈ (i R)m in (θ, ρ)-coordinates is equal to the
constant vector field (β, 0). The tangent mapping at 1 of the isomorphism
ι : H → Tm is a linear isomorphism from h onto (i R)m, which we we also
denote by ι.

For every Y ∈ t, the infinitesimal action YM of Y on M is equal to
the vector field (Yk, 0, ι(Yh) · z), see the description of the action of T on
the model in Lemma 2.10. Write Y = Yh + Yk with Yh ∈ h and Yk ∈ k.
Here k denotes the Lie algebra of the complementary torus K to H in T ,
which implies that t = h ⊕ k. Because h ⊂ l, we have (Yh)l = Yh and
Yl = Yh +(Yk)l = Yh +(Yl)k. Because δλ ∈ (l/h)∗ is a linear form on l which
is equal to zero on h, it follows that

(3.3) δλ((Yk)l) = δλ(Yl), δλ ∈ (l/h)∗, Y ∈ t.

Therefore, if in (2.3) we substitute

(X ′, δ′λ, δ′z) = YM (k, λ, z) = (Yk, 0, ι(Yh) · z)

with Y ∈ l, then we obtain

(3.4) σt(X,Yk)+ δλ((Yk)l)+σCm

(δz, ι(Yh) ·z) = δλ(Y )+
m∑

j=1

ι(Yh)jδρj/ i .

Here we have used that Yk = (Yl)k = (Yk)l ∈ l := kerσt implies that
σt(X,Yk) = 0. Furthermore (3.3) with Y ∈ l implies that δλ((Yk)l) = δλ(Y).
Finally the formula for the σCm

-term follows from (3.2), as (dρj)(ι(Yh)·z) =
0, (dρj)(δz) = δρj , and (dθj)(ι(Yh) ·z) = ι(Yh)j/ i because the infinitesimal
action of β := ι(Yh) ∈ i Rm is equal to (

∑
j β

j∂/∂θj)/ i.
Consider the linear mapping

(3.5) A : (δλ, δρ) 7→ [Y 7→ δλ(Y ) +
m∑

j=1

ι(Yh)jδρj/ i]

from (l/h)∗ × Rm onto l∗. A is a linear isomorphism, because the source
space and the target space have the same dimension, and kerA = 0: testing
with arbitrary Y ∈ h yields that δρ = 0, and then testing with arbitrary
Y ∈ l yields that δλ = 0.
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Let Xj denote the element of h ⊂ l such that ι(Xj) = 2π i ej , in which
ej denotes the j-th standard basis vector in Rm. Note that the 2π i ej ,
1 6 j 6 m, form a Z-basis of the integral lattice of the Lie algebra of Tm,
and because ι : H → Tm is an isomorphism of tori, it follows that the Xj ,
1 6 j 6 m, form a Z-basis of the integral lattice of the Lie algebra h of H.
Also note that

(A(λ, ρ))(Xj) =
m∑

k=1

ι(Xj)kρk/ i = 2πρj , 1 6 j 6 m.

Here it is essential that we use the coordinates ρj instead of their infinites-
imal displacements δρj , because in Lemma 3.4 below we are interested in
the the consequences of the inequalities ρj > 0. This leads to the following
conclusion.

Lemma 3.4. — Let Φ be the T -equivariant symplectomorphism from
K × E0 ⊂ M onto the open T -invariant neighborhood U of x in M as
introduced in Lemma 2.10. Then the smooth mapping Ψ : U → l∗, which
consists of Φ−1 : U →M , followed by the (λ, ρ)-map and then A, induces a
homeomorphism χ from U/T onto an open neighborhood of 0 in the corner

{ξ ∈ l∗ | ξ(Xj) > 0 for every 1 6 j 6 m}

in l∗, such that σ̂ = dΨ. Here the Xj , 1 6 j 6 m, form a Z-basis of the
integral lattice of the Lie algebra h ⊂ l of H.

Proof. — For every Y ∈ l, the right hand side of (3.4) is equal to − iYM
σ.

Combined with the definitions of Ψ and A, this yields that σ̂ = dΨ. Because
(k, λ, z) 7→ (λ, ρ) is a homeomorphism from (K×E)/T onto (l/h)∗×(R+)m,
χ is a homeomorphism from U/T onto an open neighborhood of 0 in the
corner in l∗ which is determined by the inequalities ξ(Xj) > 0, 1 6 j 6
m. �

If Ψ̃ : Ũ → l∗ is mapping as in Lemma 3.4, with corresponding chart
χ̃ : Ũ/T → l∗, then

d(Ψ− Ψ̃) = dΨ− dΨ̃ = σ̂ − σ̂ = 0

shows that Ψ − Ψ̃ is locally constant on U ∩ Ũ , which implies that χ − χ̃

is locally constant on (U/T ) ∩ (Ũ/T ). In terms of Definition 10.1, we have
proved

Lemma 3.5. — With the χ of Lemma 3.4 as local charts on M/T , the
orbit space M/T is a locally convex polyhedral l∗-parallel space. The linear
forms v∗α,j , 1 6 j 6 m, in Definition 10.1 are the l∗ 3 ξ 7→ ξ(Xj), where
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the Xj , 1 6 j 6 m, form a Z-basis of the integral lattice of the Lie algebra
h ⊂ l of a stabilizer group H = Tx of an element x ∈M .

In the next lemma we will introduce the subtorus Th of T which later
will turn out to be the unique maximal subtorus of T which acts on M in
a Hamiltonian fashion. For this reason Th will be called the Hamiltonian
torus.

Lemma 3.6. — There are only finitely many different stabilizer sub-
groups of T , each of which is a subtorus of T . The product Th of all the
different stabilizer subgroups is a subtorus of T , and the Lie algebra th

of Th is equal to the sum of the Lie algebras of all the different stabilizer
subgroups of T . It follows from Lemma 2.2 that th ⊂ l := kerσt.

Proof. — In the local model of Lemma 2.10, the stabilizer subgroup of
(k, λ, z) is equal to the set of all h ∈ H such that ι(h)j = 1 for every j such
that zj 6= 0. It follows that we have 2m different stabilizer subgroups Ty,
y ∈ U , namely one for each subset of {1, . . . ,m}. Because M is compact, is
follows that there are only finitely many different stabilizer subgroups of T .
For the last statement we observe that the product of finitely many subtori
is a compact and connected subgroup of T and therefore a subtorus of T .
Also the image under the exponential mapping of the sum of the finitely
many different Lie algebras of the stabilizer subgroups of T is equal to Th,
which proves that the Lie algebra of Th is equal to the sum of the finitely
many different tx, x ∈ M . See for instance [15, Sec. 1.12] for the general
facts about Lie subgroups of tori, which we have used here. �

Remark 3.7. — The orbit π(x) = T ·x ∈M/T of any x ∈Mreg is called
a regular point of M/T . Recall from the paragraph preceding Lemma 2.2
that x ∈ Mreg if and only if Tx = {1} if and only if tx = {0}. Therefore
the set (M/T )reg of all regular points in M/T is just the principal orbit
type, which is a smooth manifold of dimension dimM − dimT . In the
local model of Lemma 2.10 with x ∈ Mreg, where h = tx = {0} and
m = 0, at each point the l∗-valued one-form σ̂ corresponds to the projection
(δt, δλ) 7→ δλ : t× l∗ → l∗, and t× {0} is equal to the tangent space of the
T -orbit. It follows that for every p ∈ (M/T )reg the induced linear mapping
σ̂p : Tp(M/T )reg → l∗ is a linear isomorphism.

More generally, the orbit type stratification, introduced in the paragraph
preceding Lemma 2.2, leads to a corresponding decomposition of M/T . The
strata for the T -action in M = K × (l/h)∗ × Cm are of the form M

J
in

which J is a subset of {1, . . . ,m} and M
J

is the set of all (k, λ, z) such
that zj = 0 if and only if j ∈ J . In terms of the (θ, ρ)-coordinates, this
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corresponds to ρj = 0 for all j ∈ J and ρk > 0 for k /∈ J . The Lie algebra of
the corresponding stabilizer subgroup of T corresponds to the span of the
vector fields ∂/∂θj with j ∈ J . Therefore, if Σ is a connected component
of the orbit type in M/T defined by the subtorus H of T with Lie algebra
h, then for each p ∈ Σ we have σ̂p(X) = 0 for all X ∈ h, and σ̂p may be
viewed as an element of (l/h)∗ = h0, the set of all linear forms on l which
vanish on h, see Remark 2.4. The linear mapping σ̂p : TpΣ → (l/h)∗ is a
linear isomorphism.

3.2. M/T is the Cartesian product
of a Delzant polytope and a torus

In the following Proposition 3.8, the orbit space M/T is viewed as a
locally convex polyhedral l∗-parallel space, as in Definition 10.1 with Q =
M/T and V = l∗. See Lemma 3.5. Let the subset D of l∗× (M/T ) and the
mapping (ξ, p) 7→ p+ξ from D to M/T be defined as in Definition 10.7. We
have the linear subspace N of V = l∗, which acts on Q = M/T by means
of translations, and the period group P of the N -action on Q, as defined
in Lemma 10.11 and Lemma 10.12, respectively. With the choice of a base
point p ∈ M/T , we write Dp = {ξ ∈ l∗ | (ξ, p) ∈ D}. Let t′h be a linear
complement of th in t and let p ∈ M/T . With these definitions, and the
identification of (l/th)∗ with the space of linear forms on l which vanish on
th, see Remark 2.4, we have the following conclusions.

Proposition 3.8. — Let C be a linear complement of (l/th)∗ in l∗.
i) N = (l/th)∗, P is a cocompact discrete subgroup of the additive

group N , and N/P is a dimN -dimensional torus.
ii) There is a Delzant polytope ∆ in C ' (th)∗, such that Dp = ∆+N .
iii) The mapping Φp : (η, ζ) 7→ p+ (η+ ζ) is an isomorphism of locally

convex polyhedral l∗-parallel spaces from ∆× (N/P ) onto M/T .

Proof. — The linear forms v∗j which appear in the characterization of N
in Theorem 10.13 are equal to the collection of all the Xi ∈ h ⊂ l = (l∗)∗

which appear in Z-bases of integral lattices of Lie algebras h of stabilizer
subgroups H of T . Because N is equal to the common kernel of all the v∗j ,
N is equal to the set (l/th)∗ of all elements of l∗ which vanish on the sum
th ⊂ l of the finitely many different Lie algebras h of stabilizer subgroups
of T .

Because C is a linear complement of (l/th)∗ in l∗, the mapping ξ 7→ ξ|th
induces an isomorphism from C onto (th)∗. ∆ is a Delzant polytope in (th)∗
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in the sense of Guillemin [20, p. 8], because each Z-basis of the integral
lattice of tx can be extended to a Z-basis of the integral lattice of th, see
Lemma 2.8.

Because C is a linear complement of (l/th)∗ = N = RP in l∗, Proposi-
tion 3.8 now follows from Lemma 3.5 and Theorem 10.13. �

Corollary 3.9. — Let (M,σ) be a compact connected 2n-dimensional
symplectic manifold and suppose that we have an effective symplectic ac-
tion of an n-dimensional torus T on (M,σ), where we do not assume that
the principal orbits are coisotropic. Then the following conditions are equiv-
alent.

i) The action of T has a fixed point in M .
ii) The sum of the Lie algebras of all the different stabilizer subgroups

of T is equal to the Lie algebra of T .
iii) σt = 0 and M/T is homeomorphic to a convex polytope.
iv) σt = 0 and H1(M/T,R) = 0.
v) The action of T is Hamiltonian.

Proof. — If x is a fixed point, then Tx = T , hence tx = t, which implies
ii).

Write t′ for the sum of the Lie algebras of all the different stabilizer sub-
groups of T . If X ∈ tx, then XM (x) = 0 and it follows from Lemma 2.1
that σt(X,Y ) = 0 for every Y ∈ t. This shows that σt(X,Y ) = 0 for every
X ∈ t′ and every Y ∈ t. Now ii) means that t′ = t, hence σt = 0, and
Lemma 2.12 implies that every principal orbit is a Lagrangian submanifold
of (M,σ), and therefore coisotropic. It follows that we may apply Proposi-
tion 3.8 with th = t′ = t, and conclude that Φp is a homeomorphism from
the Delzant polytope ∆ onto M/T .

iii) ⇒ iv) because any convex polytope is contractible.
iv) ⇒ v) follows from Corollary 3.2.
Finally v) ⇒ i) follows from the fact that the image of the momentum

mapping is equal to the convex hull of the images under the momentum
mapping of the fixed points, cf. Atiyah [1, Th. 1] or Guillemin and Sternberg
[22, Th. 4]. �

The implication i) ⇒ v) has also been obtained by Giacobbe [17, Th.
3.13].

Note that if the conditions i) – v) in Corollary 3.9 hold, then (M,σ)
together with the T -action on M is a Delzant manifold, and M/T is the
corresponding Delzant polytope. If a compact Lie group K acts linearly
and continuously on a vector space V , then the average of v ∈ V over K is
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defined as ∫
K

k · vm(dk)/m(K),

in which m denotes any Haar measure on K.

Corollary 3.10. — With the notation of Proposition 3.8, let πN/P :
M/T → N/P be the mapping Φ−1

p followed by the projection from ∆ ×
(N/P ) onto the second factor. Let ιp : N/P → M/T be defined by ιp(ζ +
P ) = p+ ζ. Then we have the following conclusions.

For each nonnegative integer k, the mapping π∗N/P : Hk(N/P,R) →
Hk(M/T,R) is an isomorphism, with inverse equal to ι∗p.

The mapping which assigns to any λ ∈ ΛkN∗ the cohomology class of the
constant k-form λ on N/P is an isomorphism from ΛkN∗ onto Hk(N/P,R),
and every closed k-form on N/P is cohomologous to its average over the
torus N/P .

Proof. — The first statement follows because ∆ is a convex subset of t∗

and hence it is contractible. The second statement is a well-known char-
acterization of the cohomology of tori. The fact that a closed differential
form on a compact connected Lie group is cohomologous to its average goes
back to Élie Cartan [9]. �

Any finite-dimensional vector space W carries a positive translation-
invariant measure m, which is unique up to a positive factor. For any non-
negligible compact subset A of W , the center of mass of A is defined as∫

A

xm(dx)/m(A) ∈W,

which is independent of the choice of the positive translation-invariant mea-
sure m on W .

Corollary 3.11. — Let X ∈ t. Then XM is Hamiltonian if and only if
X ∈ th. Furthermore, the image of any momentum mapping of the Hamil-
tonian action of Th on M is equal to a translate of the Delzant polytope
∆ in Proposition 3.8, where we note that any two momentum mappings
for the same torus action differ by a constant element of th

∗. The trans-
lational ambiguity of ∆ can be removed by putting the center of mass of
∆ at the origin. Here a momentum mapping for the Hamiltonian action of
Th is a smooth th

∗-valued function µ on M such that for every X ∈ th the
X-component of dµ is equal to − iXM

σ.

Proof. — It follows from Corollary 3.2 and Corollary 3.10 that the vector
field XM is Hamiltonian if and only if [σ̂(X)] = 0 if and only if [ι∗p(σ̂(X))] =
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ι∗p[σ̂(X)] = 0. Now constant one-forms on N/P are canonically identified
with linear forms on N = (l/th)∗, which are identified with elements of l/th.
With this identification, ι∗p(σ̂(X)) corresponds to X + th, which is equal to
zero if and only if X ∈ th.

The second statement in the corollary follows from the fact that if µ is a
momentum mapping for the Hamiltonian Th-action, then d(µ(X)) = σ̂(X)
for every X ∈ th. In other words, µ differs from the th-component of any
canonical local chart on M/T by a constant vector in th

∗. Therefore the
image of µ corresponds to ∆ ' (M/T )/N , the orbit space of the transla-
tional N -action on M/T . Here we use that restriction to th of linear forms
on l leads to a canonical identification of l∗/(l/th)∗ with th

∗. �

McDuff [38] proved that a symplectic circle action on a four-dimensional
compact connected symplectic manifold is Hamiltonian, if and only if it has
a fixed point, but that in higher dimensions there exist non-Hamiltonian
symplectic circle actions with fixed points. Corollary 3.11 follows from [38]
if dimM = 4, but not if dimM = 2n > 4. Our proof of Corollary 3.11
uses in an essential way that XM is an infinitesimal action of a symplectic
action of an n-dimensional torus with a Lagrangian orbit.

Remark 3.12. — Because a Hamiltonian torus action has fixed points,
it follows from Corollary 3.11 that the action of Th on M has fixed points,
that is, there exist x ∈ M such that Th ⊂ Tx, hence Th = Tx because the
definition of Th in Lemma 3.6 implies that Tx ⊂ Th for every x ∈ M . In
other words, Th can also be characterized as the unique maximal stabilizer
subgroup of T .

Actually the fixed points in M for the action of Th are the x ∈ M such
that µ(x) is a vertex of the Delzant polytope ∆, where µ : M → ∆ ⊂ th

∗

denotes the momentum map of the Hamiltonian Th-action.

Remark 3.13. — Let th 6= t. It follows from Lemma 3.6 that for every
X ∈ t \ th the vector field XM has no zeros in M , and we conclude that
the Euler characteristic χ(M) of M is equal to zero.

Furthermore the localization formula of Berline-Vergne and Atiyah-Bott
in equivariant cohomology, in the form of [12, (4.13)], yields for every T -
equivariantly closed T -equivariant differential form ω on M that the inte-
gral of ω over M is equal to zero, when evaluated at X ∈ t \ th. Because
t\th is dense in t, it follows that the integral over M of each T -equivariantly
closed T -equivariant differential form is identically equal to zero. If X ∈ th,
then Corollary 3.11 implies that XM is Hamiltonian, and the zeros of XM

are the critical points of its Hamiltonian function, which form a non-empty
subset of M . In this case the localization formula [12, (4.13)] yields that the
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sum over the connected components F of the zeroset of XM of the integrals
over F of ω(X)/ε(X) is equal to zero. The generalization of Ginzburg [18,
Th. 6.1] of the Duistermaat-Heckman formula is related to these observa-
tions. On the other hand the integral over M of a Th-equivariantly closed
Th-equivariant differential form, such as th 3 X 7→ ei(µ(X)−σ), is usually
nonzero.

If th = t, then it follows from Corollary 3.9 and Corollary 3.2 that
(M,σ, T ) is a Delzant manifold, and χ(M) is equal to the number of ver-
tices of the Delzant polytope ∆. This can be proved by observing that for
a generic X ∈ t the momentum map is bĳective from the zeroset of XM to
the set of vertices of ∆, and each zero of XM has Poincaré index equal to
one. See also Guillemin [20, Exerc. 4.15].

4. Two lemmas

The following lemmas will be used later in the paper. Lemma 4.1 is used
in the proof of Proposition 5.5, whereas Lemma 4.2 is used in the proof of
Lemma 5.2 and Lemma 7.1. The proofs of Lemma 4.1 and Lemma 7.1 are
based on the local models of Lemma 2.10.

Throughout this section, (M,σ) is a symplectic manifold with an effective
symplectic action of a torus T with coisotropic principal orbits.

Lemma 4.1. — Let Xj , 1 6 j 6 dim l, be a basis of l. The basic k-forms
on M are the k-forms

(4.1) ω =
∑

j1<...<jk

fj1,...,jk
σ̂(Xj1) ∧ . . . ∧ σ̂(Xjk

)

in which fj1,...,jk
∈ C∞(M)T and σ̂ is defined as in Lemma 3.1.

Proof. — Because the one-forms σ̂(Xj) are basic, any ω as in (4.1) with
fj1,...,jk

∈ C∞(M)T is a basic form.
Using partitions of unity with elements of C∞(M)T , it is sufficient to

prove the converse statement in a local model as in Lemma 2.10. Let ω be
a basic k-form. In the principal stratum where ρj > 0 for every 1 6 j 6 m,
we have that

ω =
k∑

l=0

∑
j1<...<jl

fk−l
j1,...,jl

(ρ) dρj1 ∧ . . . ∧ dρjl
,

in which the fk−l
j1,...,jl

(ρ) are uniquely determined smooth (k − l)-forms on
(l/h)∗, depending smoothly on ρ. We are done if we can prove that the
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fk−l
j1,...,jl

extend smoothly over the boundary where some of the ρj are equal
to zero.

Recall that ρj = ((pj)2 + (qj)2)/2, if zj = pj + i qj with pj , qj ∈ R. Then
dρj = pj dpj + qj dqj shows that dρj1 ∧ . . . ∧ dρjl

has the component( l∏
i=1

qji

)
dqj1 ∧ . . . ∧ dqjl ,

and therefore the smoothness of ω implies that for each 0 6 l 6 k and each
sequence j1, . . . , jl with j1 < . . . < jl the form( l∏

i=1

qji

)
fk−l

j1,...,jl
(ρ)

depends smoothly on (p,q). Applying the differential operator ∂l/∂qj1 . . . ∂qjl

and putting q = 0, we obtain that

fk−l
j1,...,jl

((p1)2/2, . . . , (pl)2/2)

depends smoothly on p, and moreover is invariant under each of the reflec-
tions pj 7→ −pj . Whitney [53] proved that this implies that the function
fk−l

j1,...,jl
extends smoothly over the boundary where some of the ρj are equal

to zero. �

For any smooth mapping f from a smooth manifold M to a smooth
manifold N , the tangent mapping Txf is the linear mapping from TxM

to Tf(x)N which in local coordinates corresponds to the Jacobi matrix of
f at the point x.

Lemma 4.2. — Let Φ : M → M be a T -equivariant diffeomorphism
which preserves the T -orbits. Then there is a unique smooth T -invariant
mapping τ : M → T such that Φ(x) = τ(x) · x for every x ∈M .

If Φ preserves the symplectic form σ, then (Txτ)(v) ∈ l for each x ∈ M
and v ∈ TxM . Here l is the kernel of the antisymmetric bilinear form σt

introduced in Lemma 2.1, and we identify each tangent space of T with t.

Proof. — The first statement has been proved for arbitrary torus actions
on orbifolds by Haefliger and Salem [25, Th. 3.1], but in our case the proof
is elementary. The statement is obvious if we replace M by the set Mreg on
which the action is free and defines a principal T -fibration, and it remains
to be proved that τ has a smooth extension to M . In the local model of
Lemma 2.10, we have

Φ : (k, λ, z) 7→ (τ(λ, ρ)Kk, λ, ι(τ(λ, ρ)H) · z).
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The smoothness of Φ implies that (λ, ρ) 7→ τ(λ, ρ)K has a smooth extension.
Write τ̂(λ, ρ) = ι(τ(λ, ρ)H) ∈ Tm. It remains to prove that the fact that
Ψ : (λ, z) 7→ τ̂(λ, ρ) ·z has a smooth extension, implies that τ̂ has a smooth
extension, because the fact that ι : H → Tm is an isomorphism of Lie
groups then implies that τH has a smooth extension.

Now the function

f j(λ, z) := Ψ(λ, z)jzj = τ̂(λ, ρ)j |zj |2

has a smooth extension, of which the restriction to the “real domain”
q = 0 is an even function in each of the variables pj . It therefore fol-
lows from Whitney [53] that there is a smooth function gj such that
f j(λ, z) = gj(λ, ρ). However gj(λ, ρ) = 0 when ρj = 0, and it follows
that

gj(λ, ρ) =
∫ 1

0

∂gj(λ, ρ1, . . . , tρj , . . . , ρn)/∂t dt = hj(λ, ρ)ρj ,

in which

(λ, ρ) 7→ hj(λ, ρ) =
∫ 1

0

∂gj(λ, ρ1, . . . , rj , . . . , ρn)/∂rj
∣∣
rj=tρj

dt

is smooth. Because

hj(λ, ρ)ρj = gj(λ, ρ) = f j(λ, z) = 2τ̂(λ, ρ)jρj ,

it follows that τ̂ = hj/2 when ρj > 0, which extends smoothly over the
boundary ρj = 0.

Write, for each x ∈M , τ ′x := Txτ , viewed as a linear mapping from TxM

to t, and τ(x)M
′ := Tx(τ(x)M ), which is a symplectic linear mapping from

TxM to TΦ(x)M . Then it follows from the sum rule for differentiation of
an expression in which a variable occurs at several places, that

(4.2) (TxΦ)v = τ(x)M
′
v + (τ ′xv)M (Φ(x)), v ∈ TxM.

IfX∈t, then the T -equivariance of Φ implies that (TxΦ)XM (x)=XM (Φ(x)).
On the other hand, the commutativity of T implies that τ(x)M (t · x) =
t · τ(x)M (x) = t ·Φ(x) for every t ∈ T , and differentiating this with respect
to t at t = 1 in the direction of X, we obtain τ(x)M

′(XM (x)) = XM (Φ(x)).
The condition σ = Φ∗σ implies that we have, for every x ∈ M , v ∈ TxM ,
and X ∈ t,

σx(v,XM (x)) = σΦ(x)((TxΦ)v, (TxΦ)XM (x))

= σΦ(x)(τ(x)M
′
v + (τ ′xv)M (Φ(x)), XM (Φ(x)))

= σΦ(x)(τ(x)M
′
v, τ(x)M

′
XM (x)) + σt(τ ′xv,X),
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which implies that σt(τ ′xv,X) = 0 because τ(x)M
′ is symplectic. Because

σt(X, τ ′xv) = 0 for every X ∈ t, it follows that τ ′xv ∈ l := kerσt. �

Remark 4.3. — One can prove that Φ is a T -equivariant symplectomor-
phism of (M,σ) which preserves the T -orbits, if and only if for every x ∈M
there exists a T -invariant open neighborhood U of x in M , a T -invariant
smooth function f on U , and an element t ∈ T , such that Φ = eHamf ◦tM
on U . The “if” part follows from Remark 2.5.

5. Lifts

Let (M,σ) be our compact connected symplectic manifold, together with
an effective action of the torus T by means of symplectomorphisms of
(M,σ), such that some (all) principal orbits of the T -action are coisotropic
submanifolds of (M,σ).

If we identify each of the tangent spaces of (M/T )reg with l∗ as in Re-
mark 3.7, then any ξ ∈ l∗ can be viewed as a constant vector field on
(M/T )reg. A vector field Lξ in Mreg is called a lift of ξ, if Txπ(Lξ(x)) = ξ for
all x ∈ Mreg. Here the tangent mapping Tx π : TxMreg → Tπ(x)(M/T )reg

of π is identified with the linear mapping σ̂x : TxM → l∗, defined by the
l∗-valued one-form σ̂ on M . In view of the definition of σ̂ in Lemma 3.1
and (3.1), the condition that Lξ is a lift of ξ therefore is equivalent to

(5.1) σ(Lξ, XM ) = ξ(X), ξ ∈ l∗, X ∈ l.

If Lξ, ξ ∈ l∗, is a family of smooth T -invariant vector fields on Mreg,
which depends linearly on ξ and are lifts in the sense of (5.1), then for
each x ∈ Mreg the vectors Lξ(x), ξ ∈ l∗, span a linear subspace Hx of
TxM which is complementary to the tangent space tM (x) at x of the orbit
T ·x. The Hx, x ∈Mreg, are the horizontal spaces for a unique T -invariant
infinitesimal connection∇ for the principal T -bundle π : Mreg → (M/T )reg.
This connection is T -invariant, if and only if each of the lifts Lξ, ξ ∈ l∗, is
T -invariant.

Conversely, if we have given a T -invariant infinitesimal connection ∇
for the principal T -fibration in Mreg, with horizontal spaces Hx = H∇

x ,
x ∈ Mreg, then we have for each ξ ∈ l∗ a unique lift Lξ of ξ such that
Lξ(x) ∈ Hx for every x ∈Mreg. Lξ is called the horizontal lift of ξ defined
by the connection ∇, and denoted by ξ∇hor in the literature on connections.
Because the mapping ξ 7→ ξ∇hor is linear, “lifts Lξ which depend linearly
on ξ” and “connections” are equivalent objects. We will use the somewhat
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simpler notation Lξ instead of ξ∇hor, because it is the lifts which we will be
using to construct our global model.

In this section we construct lifts Lξ, ξ ∈ l∗, depending linearly on ξ,
which are admissible in the sense of Definition 5.3, and have Lie brack-
ets and symplectic products which are as simple as we can get them. See
Proposition 5.5 below. This construction is based on a computation in the
cohomology of the closed basic differential forms on M , which according to
the theorem of Koszul [32] is canonically isomorphic to the sheaf (= Čech)
cohomology of the orbit space M/T with values in R. The lifts in Proposi-
tion 5.5 form the core of the construction of the model for the symplectic
T -manifold (M,σ, T ), given in Proposition 7.2 and Proposition 7.4.

5.1. Admissible connections

Definition 5.1. — Let, in the local model of Lemma 2.10 with the
diffeomorphism Φ, the lift Lξ be equal to the image under TΦ of the vec-
tor field (Xξ, δλξ, δzξ). Then, in terms of the (θ, ρ)-coordinates in Cm, we
obtain in view of (2.3) and (3.5) that the equation (5.1) is equivalent to
A(δλξ, δρξ) = ξ. Let (δλξ, δρξ) = A−1(ξ), and let LΦ

ξ be the image un-
der TΦ of the “constant” vector field (0, δλξ, (0, δρξ)), where we use the
(θ, ρ)-coordinates in Cm. Then LΦ

ξ is a smooth T -invariant vector field on
U ∩Mreg, and a lift of ξ. We call LΦ

ξ the local model lift defined by the
local model with the diffeomorphism Φ.

The local model lift LΦ
ξ extends to a smooth T -invariant vector field on

U when δρξ = 0, that is, when ξ = 0 on h. On the other hand, if we
write rj = |zj |, then ∂/∂ρj = (1/rj)∂/∂rj . This shows that LΦ

ξ has a pole
singularity at any point (k, λ, z) for which there exists a 1 6 j 6 m such
that zj = 0 and ξ(Xj) 6= 0.

Lemma 5.2. — Let Φ̃ : K̃ × Ẽ0 → Ũ be another local model as in
Lemma 2.10, where we use the same projection X 7→ Xl : t → l. Then
there is a smooth T -invariant mapping α : U ∩ Ũ → l, such that LΦ̃

ξ (x) =

LΦ
ξ (x) + α(x)M (x) for every x ∈ U ∩ Ũ ∩Mreg. Here LΦ

ξ and LΦ̃
ξ are the

local model lifts Definition 5.1.

Proof. — Let x0 ∈ U∩Ũ and write (k0, λ0, (θ0, ρ0)) = Φ−1(x0), where we
use the (θ, ρ)-coordinates in Cm. By permuting the coordinates in Cm, we
can arrange that (ρ0)j = 0 for 1 6 j 6 m0 and (ρ0)j > 0 for m0 < j 6 m.
Then H0 := Tx0 is equal to the subgroup ι−1(Tm0 × {1}) of H, where ι
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denotes the isomorphism from H onto Tm, introduced in Remark 2.7. Here
H = Tx as in Lemma 2.10. Let H ′

0 := ι−1({1} × Tm−m0). Then H ′
0 is a

complementary subtorus to H0 in H, and K0 := H ′
0K is a complementary

subtorus to H0 in T which contains K. Let (θ′, ρ′) and (θ′′, ρ′′) be the first
m0 and the last m − m0 of the (θ, ρ)-coordinates, respectively. Then the
rotation of zj over (θ′′)j , for each m0 < j 6 m, defines an element R(θ′′)
of {1} × Tm−m0 , and ι−1(R(θ′′)) ∈ H ′

0.
On the other hand

Λ0(ρ′′) : X 7→
m∑

j=m0+1

ρjι(X)/ i

is a linear form on h which is equal to zero on the Lie algebra h0 of H0.
This linear form has a unique extension to a linear form Λ(ρ′′) on l which
is equal to zero on l∩ k. In this way we obtain an element Λ(ρ′′) ∈ (l/h0)∗.
A straightforward computation shows that the mapping

Ψ : (k, λ, (θ, ρ)) 7→ (ι−1(R(θ′′))k, λ− λ0 + Λ(ρ′′ − ρ′′0), (θ′, ρ′))

when restricted to the the domain where ρj > 0 for all m0 < j 6 m,
defines a smooth T -equivariant symplectomorphism from K × (l/h)∗×Cm

to K0 × (l/h0)∗ × Cm0 . Moreover, Ψ ◦ Φ−1(x0) belongs to the T -orbit of
(1, 0, 0) in K0 × (l/h0)∗ × Cm0 . Because the tangent mapping of Ψ maps
(0, δλ, (0, δρ)) to (0, δλ+ Λ(δρ′′), (0, δρ′)), we have LΦ◦Ψ−1

ξ = LΦ
ξ .

Similarly we have a smooth T -equivariant symplectomorphism Ψ̃ from
a T -invariant open neighborhood of Φ̃−1(x0) in K̃ × (l/h̃)∗ × Cm̃ onto a
T -invariant open neighborhood of (1, 0, 0) in K̃0 × (l/h0)∗ × Cm0 , such
that Ψ̃ ◦ Φ̃−1(x0) ∈ T · (1, 0, 0) and LΦ̃◦Ψ̃−1

ξ = LΦ̃
ξ . Here K̃0 is another

complementary subtorus to H0 in T .
The mapping

Ξ : (k, λ, z) 7→ (k
K̃
, λ, ι(kK̃0

H0
) ·z) : K0×(l/h0)∗×Cm0 → K̃0×(l/h0)∗×Cm0

is a T -equivariant symplectomorphism which maps (1, 0, 0) to (1, 0, 0).
Here we have written, for each k ∈ K0, k = k

K̃0
kK̃0

H0
with kK̃0

H0
∈ H0

and k
K̃0

∈ K̃0. Because h = kK̃0
H0

is the unique element in H0 such that

k
K̃0

:= kh−1 ∈ K̃0, the fact that Ξ is a T -equivariant symplectomorphism
follows from the proof of Lemma 2.10, with (H,K) replaced by (H0,K0)
and by (H0, K̃0), respectively. Because the tangent mapping of Ξ maps
(0, δλ, δz) to (0, δλ, δz), we have that

LΦ̃◦Ψ̃−1◦Ξ
ξ = LΦ̃◦Ψ̃−1

ξ = LΦ̃
ξ .
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The mapping Θ := Ψ ◦ Φ−1 ◦ Φ̃ ◦ Ψ̃−1 ◦ Ξ is a smooth T -equivariant
symplectomorphism from an open T -invariant neighborhood of (1, 0, 0) in
K0 × (l/h0)∗ × Cm0 , onto an open T -invariant neighborhood of (1, 0, 0)
in K0 × (l/h0)∗ × Cm0 , which preserves the T -orbit of (1, 0, 0). Recall the
l∗-valued one form σ̂ defined in Lemma 3.1, which we used to identify
all tangent spaces of the orbit space with l∗. Because every T -equivariant
symplectomorphism preserves σ̂, its induced transformation of the orbit
space has derivative equal to the identity at every point. Therefore Θ is a
translation on each connected open subset of the T -orbit space by means
of a constant element v of l∗. Because Θ preserves the T -orbit of (1, 0, 0),
we have v = 0 on the connected component of (1, 0, 0) of the domain of
definition Υ of Θ. That is, Θ preserves all the T -orbits in a T -invariant
open neighborhood of (1, 0, 0).

It now follows from Lemma 4.2 that there there is a smooth T -invariant
l-valued function τ on Υ, such that Θ(υ) = τ(υ) · υ and Tυτ(δυ) ∈ l for
every υ ∈ Υ and δυ ∈ TυΥ. It follows from (4.2), with Φ and υ replaced
by Θ and δυ := (0, δλ, δz), respectively, where δθ = 0 and (δλ, δρ) = A−1ξ,
that TΘ maps the vector field (0, δλ, δz) to the sum of (0, δλ, δz) and

((τ ′vδv)k0 , 0, ι((τ
′
vδv)h0).

Because Φ̃◦ Ψ̃−1 ◦Ξ = Φ◦Ψ−1 ◦Θ, LΦ̃◦Ψ̃−1◦Ξ
ξ = LΦ̃

ξ , and LΦ◦Ψ−1

ξ = LΦ
ξ , the

conclusion of the lemma follows with α(x̃) = τ ′υδυ if x̃ = Φ ◦Ψ−1(υ). �

Definition 5.3. — We use the atlas of local models as in Lemma 2.10,
with a fixed linear projection X 7→ Xl from t onto l. For every ξ ∈ l∗, an
admissible lift of ξ is a smooth T -invariant vector field Lξ on Mreg such
that for each local model as in Lemma 2.10 there is a smooth T -invariant
l-valued function αξ on U , such that Lξ(x) = LΦ

ξ (x)+αξ(x)M (x) for every
x ∈ U . Here LΦ

ξ is the local model lift introduced in Definition 5.1.
If we are at an orbit type Σ with stabilizer group H, and ξ is equal to

zero on the Lie algebra h ⊂ l of H, then Lξ has a unique smooth T -invariant
extension to an open neighborhood of Σ in M , which will also be denoted
by Lξ. In particular, if ζ ∈ N := (l/th)∗, the space of linear forms on l

which vanish on th, then Lζ is a smooth T -invariant vector field on the
whole manifold M .

An admissible connection for the principal T -bundle π : Mreg→(M/T )reg

is a linear mapping ξ 7→ Lξ from l∗ to the space of smooth vector fields
on Mreg, such that, for each ξ ∈ l∗, Lξ is an admissible lift of ξ. Because
we work with a fixed action of the torus T , we will just write “admissible
connection” in the sequel.
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In the literature, the term “admissible connection” has been used in
various different frameworks and with correspondingly different meanings.
Our usage of the term “admissible connection” continues this.

Lemma 5.4. — There exist admissible connections ξ 7→ Lξ. For each
admissible connection ξ 7→ Lξ, we have

(5.2) σ(Lξ, XM ) = ξ(Xl), ξ ∈ l∗, X ∈ t.

Proof. — If we piece the local model lifts LΦ
ξ , introduced in Defini-

tion 5.1, together by means of a partition of unity consisting of smooth
T -invariant functions with supports in the local model neighborhoods U ,
then it follows from Lemma 5.2 that the resulting connection is admissible.

In the local model of Lemma 2.10, where we use the (θ, ρ)-coordinates
in Cm as in (3.2), (3.5), we have LΦ

ξ = (0, δλξ, (0, δρξ)) with (δλξ, δρξ) =
A−1(ξ). Furthermore X · (k, λ, z) = (Xk, 0, (ι(Xh)/ i, 0)). It follows that

σ(LΦ
ξ , XM ) = δλξ((Xk)l) +

m∑
j=1

ι(Xh)j(δρξ)j/ i = ξ(Xl).

Here we have used (3.3) with Y replaced by X. On the other hand

σx(αξ(x)M , XM (x)) = σt(αξ(x), X) = 0

for every X ∈ t if αξ(x) ∈ l := kerσt, and (5.2) now follows from Defini-
tion 5.3. �

The equation (5.2) improves upon (5.1) if l is a proper linear subspace
of t, that is, if σt 6= 0. If the principal orbits are Lagrangian submanifolds
of M , then l = t and (5.2) is the same as (5.1).

5.2. Special admissible connections

Recall the Hamiltonian torus Th, the unique maximal stabilizer subgroup
Th of T as in Remark 3.12 and Lemma 3.6, with Lie algebra th ⊂ l. In
our quest for nice admissible lifts, we will use a decomposition of T into
the subtorus Th and a complementary subtorus Tf, as in Lemma 2.8 with
U = Th. Note that the torus Tf acts freely on M , because if x ∈ M , then
Tx ⊂ Th, hence Tx ∩ Tf ⊂ Th ∩ Tf = {1}. This explains our choice of the
subscript f in Tf. Note also that the choice of a complementary subtorus Tf

to Th is far from unique if {1} 6= Th 6= T . See Remark 2.9. We will refer to
Tf as a freely acting complementary torus to the Hamiltonian torus Th.
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If tf denotes the Lie algebra of Tf, then we have a corresponding direct
sum decomposition t = th ⊕ tf of Lie algebras. Each linear form on th

∗

has a unique extension to a linear form on l which is equal to zero on tf.
This leads to an isomorphism of th

∗ with the linear subspace (l/l ∩ tf)∗ of
l∗. This isomorphism depends on the choice of the complementary freely
acting torus Tf to the Hamiltonian torus in T . Note that the direct sum
decomposition l = th ⊕ (l ∩ tf) implies the direct sum decomposition

(5.3) l∗ = (l/l ∩ tf)∗ ⊕ (l/th)∗.

Let

(5.4) µ : M → ∆ ⊂ (l/l ∩ tf)∗ ' th
∗

denote the projection π : M → M/T , followed by the projection from
M/T ' ∆ × (N/P ) onto the first factor. Here we use the isomorphism
Φp : ∆ × (N/P ) → M/T of Proposition 3.8, with N = (l/th)∗ and C =
(l/l ∩ tf)∗ ' th

∗. Note that µ : M → th
∗ is a momentum mapping for the

Hamiltonian Th-action on M as in Corollary 3.11.
With these notations, Proposition 5.5 below yields the existence of an

admissible connection for which both the Lie brackets and the symplectic
products of the Lξ take an extremely simple form. (We are tempted to
call such a connection a “minimal admissible connection”, see also Subsec-
tion 8.1, but we do not have a proposal for a functional which is minimized
exactly by the connections in Proposition 5.5.) In Remark 5.7 and Re-
mark 5.8 we discuss the topological meaning of the antisymmetric bilinear
form c : N × N → l. From these remarks it follows that c is unique. The
freedom in the choice of the admissible connection in Proposition 5.5 will
be described in Lemma 5.9.

Proposition 5.5. — There exists an admissible connection l∗ 3 ξ 7→ Lξ

as in Definition 5.3, and an antisymmetric bilinear mapping c : N ×N → l,
with the following properties.

i) [Lη, Lη′ ] = 0 for all η, η′ ∈ C,
ii) [Lη, Lζ ] = 0 for all η ∈ C and ζ ∈ N ,
iii) [Lζ , Lζ′ ] = c(ζ, ζ ′)M for all ζ, ζ ′ ∈ N ,
iv) σ(Lη, Lη′) = 0 for all η, η′ ∈ C,
v) σ(Lη, Lζ) = 0 for all η ∈ C and ζ ∈ N , and finally
vi) σx(Lζ(x), Lζ′(x)) = −µ(x)(ch(ζ, ζ ′)) for all ζ, ζ ′ ∈ N and x ∈ M .

Here ch(ζ, ζ ′) denotes the th-component of c(ζ, ζ ′) in the direct sum
decomposition l = th ⊕ (l ∩ tf).
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The antisymmetric bilinear mapping c : N ×N → l in part iii) satisfies the
relation

(5.5) ζ(c(ζ ′, ζ ′′)) + ζ ′(c(ζ ′′, ζ)) + ζ ′′(c(ζ, ζ ′)) = 0

for every ζ, ζ ′, ζ ′′ ∈ N . Note that ζ is a linear form on l which vanishes on
th, and therefore ζ(c(ζ ′, ζ ′′)) is a real number which only depends on the
projection of c(ζ, ζ ′) to l/th.

Proof. — We start with an arbitrary admissible connection l∗ 3 ξ 7→ Lξ,
which exists according to Lemma 5.4, and first simplify the Lie brackets.

We use the isomorphism Φp : ∆ × (N/P ) → M/T of Proposition 3.8,
in order to identify M/T with ∆ × (N/P ) = (∆ ×N)/P ⊂ l∗/P . In view
of Lemma 4.1, the smooth basic k-forms on M satisfy ω = π∗ν on Mreg

for uniquely determined smooth k-forms ν on (∆reg × N)/P , such that
ν extends to a smooth k-form on l∗/P . This leads to an identification of
the space of all smooth basic k-forms on M with the space of all restric-
tions to (∆ × N)/P of smooth k-forms on l∗/P . If we view ξ ∈ l∗ as a
constant vector field on l∗/P , then the fact that Tπ maps Lξ to ξ implies
that (π∗ν)(Lξ1 , . . . , Lξk) = ν(ξ1, . . . , ξk). Because π intertwines the flow of
Lξ with the flow of the constant vector field ξ, we also have the identity
LLξ

(π∗ν) = π∗(Lξ ν) for the Lie derivatives. In particular the differentia-
tion of T -invariant smooth functions on M in the direction of the vector
field Lξ corresponds to the differentiation ∂ξ of smooth functions on M/T

in the direction of the constant vector field ξ.
Let Xi, 1 6 i 6 dl := dim l, be a basis of l. We will write α = αiXi,

in which the real numbers αi are the coordinates of α ∈ l with respect
to this basis, and we use Einstein’s summation convention when summing
over indices which run from 1 up to dl.

The local model lifts LΦ
ξ and LΦ

ξ′ , introduced in Definition 5.1, commute
because they are constant vector fields on K × E0 in the local model of
Lemma 2.10, where we use the (θ, ρ)-coordinates for z. If Lξ = LΦ

ξ +
αi

ξ(Xi)M as in Definition 5.3, then the fact that the vector fields LΦ
ξ and

LΦ
ξ′ commute as well as the vector fields αi

ξ(Xi)M and αj
ξ′(Xj)M , implies

that [Lξ, Lξ′ ] = βi
ξ,ξ′(Xi)M , in which the uniquely determined T -invariant

functions βi
ξ,ξ′ on U = Φ(K × E0) are given by

βi
ξ,ξ′ = Lξα

i
ξ′ − Lξ′α

i
ξ = ∂ξα

i
ξ′ − ∂ξ′α

i
ξ.

That is, β = dα on U , if we define the basic l-valued one-form α and two-
form β by α(ξ) = αi

ξXi and β(ξ, ξ′) = βi
ξ,ξ′Xi, respectively. Because β is
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locally exact, it follows that the globally defined smooth basic two-form β

is closed.
Any other connection l∗ 3 ξ → L̃ξ is admissible, if and only if

(5.6) L̃ξ = Lξ + α̃i
ξ(Xi)M ,

in which α̃(ξ) := α̃i
ξXi defines a smooth basic l∗-valued one-form α̃ on M .

With the same reasoning as above we obtain that [L̃ξ, L̃ξ′ ] = β̃i
ξ,ξ′(Xi)M ,

in which β̃(ξ, ξ′) := β̃i
ξ,ξ′Xi defines a smooth basic l∗-valued two-form β̃,

such that β̃ = β + dα̃.
According to Corollary 3.10, the de Rham cohomology class of β contains

a unique c = β̃, such that c(ξ, ξ′) = 0 when ξ ∈ C or ξ′ ∈ C, and for
ξ, ξ′ ∈ N the l-valued function c(ξ, ξ′) is a constant, equal to the average of
β(ξ, ξ′) over any N/P -orbit in M/T . This leads to the desired properties
of the Lie brackets, where the uniqueness of c follows from the injectivity
of the mapping Λ2N∗ → H2(N/P,R) in Corollary 3.10.

We now turn to the symplectic inner products. Let ξ, ξ′ ∈ l∗. It follows
from Definition 5.1 that σ(LΦ

ξ , L
Φ
ξ′) = 0. In view of Definition 5.3 and

formula (5.2) we conclude that σ(Lξ, Lξ′) is a smooth function on M , which
moreover is T -invariant. Therefore (ξ, ξ′) 7→ σ(Lξ, Lξ′) defines a smooth
basic two-form s on M . If in (5.6) we take α̃i

ξ = ∂ξϕ
i for ϕi ∈ C∞(M/T ),

that is, α̃ = dϕ, then the Lie brackets do not change, but

s̃(ξ, ξ′) := σ(L̃ξ, L̃ξ′) = s(ξ, ξ′) + ∂ξ′(ϕ(ξ))− ∂ξ(ϕ(ξ′)),

where we have used that σ((Xi)M , (Xj)M ) = σt(Xi, Xj) = 0, because
Xi, Xj ∈ l. This means that s̃ = s− dϕ.

In order to investigate the exterior derivative of s, we recall the identity

(dω)(u, v, w) = ∂u(ω(v, w)) + ∂v(ω(w, u)) + ∂w(ω(u, v))

+ ω(u, [v, w]) + ω(v, [w, u]) + ω(w, [u, v]),(5.7)

which holds for any smooth two-form ω and smooth vector fields u, v, w. It
follows that

(ds)(ξ, ξ′, ξ′′) = ∂ξs(ξ′, ξ′′) + ∂ξ′s(ξ′′, ξ) + ∂ξ′′s(ξ, ξ′)

= Lξ(σ(Lξ′ , Lξ′′)) + Lξ′(σ(Lξ′′ , Lξ)) + Lξ′′(σ(Lξ, Lξ′))

= −σ(Lξ, [Lξ′ , Lξ′′ ])− σ(Lξ′ , [Lξ′′ , Lξ])− σ(Lξ′′ , [Lξ, Lξ′ ])

= −ξ(c(ξ′, ξ′′))− ξ′(c(ξ′′, ξ))− ξ′′(c(ξ, ξ′)),

where in the third identity we have used that dσ = 0, and in the last
identity we have inserted [Lξ, Lξ′ ] = c(ξ, ξ′)i(Xi)M and (5.1).
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This shows that ds is constant. In the notation of Corollary 3.10, we have
that d(ι∗ps) = ι∗p(ds) is constant, and cohomologically equal to zero, which
in view of the first part of the last statement in Corollary 3.10 implies that
ι∗p(ds) = 0. That is, (ds)(ξ, ξ′, ξ′′) = 0 when ξ, ξ′, ξ′′ ∈ N , which in turn is
equivalent to (5.5). On the other hand it follows from the already proved
statements about the Lie brackets that c(ξ, ξ′) = 0 if ξ ∈ C or ξ′ ∈ C, and
hence (ds)(ξ, ξ′, ξ′′) = 0 unless one of the vectors ξ, ξ′, ξ′′ belongs to C and
the other two belong to N . Moreover, if ξ ∈ C and ξ′, ξ′′ ∈ N , then we
obtain that (ds)(ξ, ξ′, ξ′′) = −ξ(c(ξ′, ξ′′)).

In other words, the smooth basic two-form S := s+µch is closed. Here µ
is viewed as a th

∗-valued T -invariant function on M , and the pairing with
the th-valued antisymmetric bilinear form ch yields a smooth basic two-
form µch on M . According to Corollary 3.10, the smooth basic one-form ϕ

can be now chosen such that if S̃ = S − dϕ, then S̃(ξ, ξ′) = 0 when ξ ∈ C
or ξ′ ∈ C, and for ξ, ξ′ ∈ N the function S̃(ξ, ξ′) is constant.

We finally observe that if α : ξ 7→ αξ is a linear mapping from l∗ to
l, which is viewed as a constant, hence closed one-form on the l∗-parallel
space M/T , then the Lie brackets of the Lξ’s do not change if we replace
Lξ by Lξ + (αξ)M . However, σ(Lξ, Lξ′) then gets replaced by σ(Lξ, Lξ′) +
ξ(αξ′) − ξ′(αξ). Because any antisymmetric bilinear form on l∗ is of the
form (ξ, ξ′) 7→ ξ(αξ′)− ξ′(αξ), for a suitable linear mapping α : l∗ → l, we
can arrange that S̃ = 0, which leads to vi) in Proposition 5.5. �

Remark 5.6. — Because the left hand side of (5.5) is antisymmetric in
ζ, ζ ′, ζ ′′, it is automatically equal to zero when dimN = dim l−dim th 6 2.
However, when dimN > 3, then the equations (5.5) impose nontrivial
conditions on the l-valued two-form c on N .

Remark 5.7. — For every x ∈ Mreg, let Hx denote the linear span
in TxM of the vectors Lξ(x), ξ ∈ l∗. Then the Hx, x ∈ Mreg, define a
T -invariant infinitesimal connection of the principal T -bundle Mreg over
(M/T )reg ' ∆int × (N/P ). Here ∆int denotes the interior of the Delzant
polytope ∆. Any connection of this principal T -bundle has a curvature
form which is a smooth t-valued two-form on Mreg/T . The cohomology
class of the curvature form is an element of H2(Mreg/T, t), which is in-
dependent of the choice of the connection. The action of N on M/T

leaves Mreg/T ' (M/T )reg invariant, with orbits isomorphic to the torus
N/P , and the pull-back to the N -orbits defines an isomorphism from
H2(Mreg/T, t) onto H2(N/P, t), which in turn is identified with (Λ2N∗)⊗ t

as in Corollary 3.10.
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The proof of Proposition 5.5 shows that the element c ∈ (Λ2N∗) ⊗ l ⊂
(Λ2N∗) ⊗ t is equal to the negative of the pull-back to an N -orbit of the
cohomology class of the curvature form. This proves in particular that the
antisymmetric bilinear mapping c : N ×N → l in Proposition 5.5 is inde-
pendent of the choice of the freely acting complementary torus Tf to the
Hamiltonian torus in T . More precisely, if (M̃, σ̃, T ) is another symplectic
manifold with an effective symplectic T -action with coisotropic principal or-
bits, then Proposition 5.5 with (M,σ, T ) replaced by (M̃, σ̃, T ) yields an an-
tisymmetric bilinear mapping c̃ instead of c. If there exists a T -equivariant
symplectomorphism Φ from (M,σ, T ) onto (M̃, σ̃, T ) then c̃ = c.

Remark 5.8. — The retrivializations of the principal T -bundle π : Mreg

→ Mreg/T define a one-cocycle of smooth t-valued functions on Mreg/T ,
of which the sheaf (= Čech) cohomology class τ in H1(Mreg/T,C∞(·, T ))
classifies the principal T -bundle π : Mreg → Mreg/T . Because the sheaf
C∞(·, t) is fine, the short exact sequence

0 → TZ → C∞(·, t) exp→ C∞(·, T ) → 1

induces an isomorphism δ : H1(Mreg/T,C∞(·, T )) → H2(Mreg/T, TZ). Here
exp denotes the exponential mapping t → T . The cohomology class δ(τ) ∈
H2(Mreg/T, TZ) is called the Chern class of the principal T -bundle π :
Mreg →Mreg/T . It is a general fact, see for instance the arguments in [13,
Sec. 15.3], that the image of δ(τ) in H2(Mreg/T, t) under the coefficient
homomorphism H2(Mreg/T, TZ) → H2(Mreg/T, t) is equal to the negative
of the cohomology class of the curvature form of any connection in the
principal T -bundle. In view of Remark 5.7, we therefore conclude that c
represents the Chern class of the principal T -bundle π : Mreg →Mreg/T .

In view of the canonical isomorphism between sheaf cohomology and
singular cohomology, this implies that the integral of c over every two-
cycle in (M/T )reg belongs to TZ. If ζ, ζ ′ ∈ P , then for every p ∈ (M/T )reg

the mapping

ιζ,ζ′ : (t, t′) 7→ p+ (tζ + t′ζ ′) : R2/Z2 → (M/T )reg

defines a two-cycle in (M/T )reg, and

c(ζ, ζ ′) =
∫

R2/Z2
(ιζ,ζ′)∗c.

It follows that c(ζ, ζ ′) ∈ TZ for every ζ, ζ ′ ∈ P .
In Lemma 7.1, this conclusion will be proved by means of a group the-

oretical consideration. Other topological interpretations of c will be given
in Proposition 8.2 and Proposition 8.1.

ANNALES DE L’INSTITUT FOURIER



SYMPLECTIC TORUS ACTIONS WITH COISOTROPIC ORBITS 2275

Let Lin(E,F ) denote the space of all linear mappings from a vector space
E to a vector space F . In the following lemma we use that a smooth T -
invariant mapping α : M → Lin(l∗, l) corresponds to a unique smooth basic
l-valued one-form on M , which we also denote by α, such that α(x)(ξ) =
αx(v) for every v ∈ TxM such that σ̂x(v) = ξ. In view of Lemma 4.1, α
can also be viewed as the restriction to M/T of a smooth l-valued one-form
on l∗/P , if we identify the l∗-parallel space M/T with a subset of l∗/P as
in Proposition 3.8.

Lemma 5.9. — Let l∗ 3 ξ 7→ Lξ be a connection as in Proposition 5.5.
Then l∗ 3 ξ 7→ L̃ξ is an admissible connection, if and only if there exists
a smooth T -invariant mapping α : x 7→ (ξ 7→ αξ(x)) from M to Lin(l∗, l),
such that L̃ξ(x) = Lξ(x) + αξ(x)M (x) for every x ∈M and ξ ∈ l∗. Propo-
sition 5.5 holds with L replaced by L̃, if and only if α is closed when
considered as a smooth basic l-valued one-form on M , and moreover α is
symmetric in the sense that

(5.8) ξ(αξ′(x))− ξ′(αξ(x)) = 0

for all ξ, ξ′ ∈ l∗ and all x ∈M .

Proof. — The first statement follows from Definition 5.3, the definition
of admissible connections. It follows from the proof of Proposition 5.5 that
[L̃ξ, L̃ξ′ ] ≡ [Lξ, Lξ′ ] if and only if α is closed. In view of the uniqueness of c,
see Remark 5.7, we have iv), v), vi) in Proposition 5.5 with L replaced by
L̃, if and only if σ(L̃ξ, L̃ξ′) ≡ σ(Lξ, Lξ′), which is equivalent to (5.8). �

6. Delzant submanifolds

Let (M,σ) be our compact connected symplectic manifold, together with
an effective action of the torus T by means of symplectomorphisms of
(M,σ), such that some (all) principal orbits of the T -action are coisotropic
submanifolds of (M,σ).

Recall the especially nice admissible connection introduced in Proposi-
tion 5.5, the construction of which is based on the identification in Propo-
sition 3.8 of the orbit space M/T with the l∗-parallel space ∆ × (N/P ).
Proposition 6.1 below implies that the vector fields YM , Y ∈ th, and Lη,
η ∈ C, are tangent to the fibers of a fibration of M by Delzant submani-
folds. From this section on, the word fibration is short for a locally trivial
smooth fiber bundle. The remainder of this section is devoted to the proof
and further precision of Proposition 6.1. For any subset Y of a set X, the
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inclusion mapping ιY is the identity on Y , viewed as a mapping from Y

to X.

Proposition 6.1. — Let l∗ 3 ξ 7→ Lξ be an admissible connection as in
Proposition 5.5. Then there is a unique smooth T -invariant distribution D
on M such that, for every x ∈Mreg, Dx is equal to the linear span in TxM

of the vectors YM (x) with Y ∈ th and Lη(x), η ∈ C := (l/l ∩ tf)∗ ' th
∗.

The distribution D is integrable. Each integral manifold manifold I of D
is invariant under the action of the Hamiltonian torus Th, and (I, ιI∗σ, Th)
is a Delzant manifold with the Delzant polytope ∆ introduced in Propo-
sition 3.8. Here ιI : I → M is the inclusion mapping from I into M .
The integral manifolds of D form a smooth fibration of M into Delzant
submanifolds with Delzant polytope ∆.

Proof. — This follows from Lemma 6.3 below, which in turn uses Lemma
6.2. �

Lemma 6.2. — Let πN/P : M → N/P be the mapping which is equal
to π : M → M/T , followed by the inverse M/T → ∆ × (N/P ) of the
isomorphism Φp in Proposition 3.8, iii), followed by the projection ∆ ×
(N/P ) → N/P onto the second factor.

Then πN/P : M → N/P defines a smooth fibration of M over the torus
N/P . Each fiber F of πN/P : M → N/P is a connected compact T -invariant
smooth submanifold of M . For each fiber F of πN/P : M → N/P , F ∩Mreg

is dense in F .

Proof. — Because π :Mreg →(M/T )reg and the projection from (M/T )reg

' ∆reg × (N/P ) onto N/P are smooth fibrations with connected fibers, it
follows that the restriction to Mreg of πN/P is a smooth fibration with
connected fibers.

In the local model of Lemma 2.10, the mapping πN/P corresponds to the
mapping

(k, λ, z) 7→ λ(l/th)∗ + P ∈ N/P,
where we have used the direct sum decomposition (5.3). This shows that
πN/P is a smooth submersion. Moreover, for each fiber F of πN/P : M →
N/P , F∩Mreg is dense in F , because the point (k, λ, z) is regular if and only
if zj 6= 0 for every j. Because the fiber F ∩Mreg of the restriction to Mreg of
πN/P is connected, it follows that F is connected. Because M is compact,
the submersion πN/P is proper, and because every proper submersion is a
fibration, it follows that πN/P is a fibration. �

As observed in the beginning of Subsection 5.2, the action on M of the
complementary torus Tf to Th is free. This exhibits each fiber F of πN/P
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as a principal Tf-bundle πF/Tf : F → F/Tf, in which the Tf-orbit space
F/Tf is a compact, connected smooth manifold, on which we still have the
action of the Hamiltonian torus Th. The following lemma says that there
is a symplectic form σF/Tf on F/Tf such that

(6.1) (F/Tf, σF/Tf , Th)

is a Delzant manifold defined by the Delzant polytope ∆, and that the
fibration πF/Tf : F → F/Tf is trivial, exhibiting F as the Cartesian product
of the Delzant manifold F/Tf with Tf.

Lemma 6.3. — There is a unique smooth distribution D on M such
that, for every x ∈ Mreg, Dx is equal to the linear span in TxM of the
vectors YM (x), Y ∈ th, and Lη(x), η ∈ C. The distribution D is integrable
and T -invariant.

For every fiber F of the fibration πN/P in Lemma 6.2, we haveD|F ⊂ TF ,
which implies that I ⊂ F or I ∩ F = ∅ for every integral manifold I of D.
Let f0 ∈ F and let I0 be the integral manifold of D such that f0 ∈ I0. For
each y ∈ F/Tf there is a unique i(y) ∈ I0 such that πF/Tf(i(y)) = y. The
mapping

(y, tf) 7→ tf · i(y) : (F/Tf)× Tf → F

is the inverse of a trivialization τ of the principal Tf-fibration πF/Tf : F →
F/Tf. The trivialization τ is T -equivariant, where t ∈ T acts on (F/Tf)×Tf

by sending (πF/Tf(f), t̃f) to (πF/Tf(th · f), tft̃f), if t = thtf, with th ∈ Th and
tf ∈ Tf.

Finally, there is a unique symplectic form σF/Tf on F/Tf such that, for
any integral manifold I of D in F ,

(6.2) (πF/Tf ◦ ιI)
∗σF/Tf = ιI

∗σ,

if ιI : I → F denotes the inclusion mapping from I into F . With this
symplectic form, (6.1) is a Delzant manifold with Delzant polytope ∆. For
each integral manifold I of D in F , (I, ιI∗σ, Th) is a Delzant manifold with
Delzant polytope ∆, and πF/Tf ◦ ιI is a Th-equivariant symplectomorphism
from (I, ιI∗σ, Th) onto the Delzant manifold (6.1).

Proof. — In order to investigate the Dx with x ∈ Mreg near a singular
point x0, we use a local model as in Lemma 2.10, with the (θ, ρ)-coordinates
in Cm as in (3.2). Here H = Tx0 is a subtorus of the Hamiltonian torus Th.
Let K0 be a complementary subtorus to H in Th. We will take K = K0Tf

as the complementary subtorus to H in T . For the Lie algebras we have
the corresponding direct sum decompositions th = tx ⊕ k0 and k = k0 ⊕ tf.
The span of the infinitesimal actions of the elements Y ∈ h is equal to
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the span of the vector fields (0, 0, ∂/∂θj), 1 6 j 6 m, and the vector
fields (Y, 0, 0) with k0. The LΦ

η , η ∈ C, are the linear combinations of the
vector fields (0, 0, ∂/∂ρj), 1 6 j 6 m, and the vector fields (0, δλ, 0), with
constant δλ ∈ (l/(h⊕(l∩ tf))∗. According to Definition 5.3, the definition of
admissible lifts, Lη = LΦ

η + vη in which the vector field vη is smooth on M ,
of the form vη(x) = αη(x)M (x) for a smooth T -invariant l-valued function
α on M . We write vj instead of vη if η is such that LΦ

η = (0, 0, ∂/∂ρj). The
problem is that the vector fields ∂/∂θj and ∂/∂ρj have a zero and a pole
at zj = pj + i qj = 0.

Now
∂

∂ρj
= (2ρj)−1(pj ∂

∂pj
+ qj ∂

∂qj
) and

∂

∂θj
= −qj ∂

∂pj
+ pj ∂

∂qj

imply that

pjLηj − qj

2ρj
(Yj)M =

∂

∂pj
+ pjvj and qjLηj +

pk

2ρk
(Yj)M =

∂

∂qj
+ qjvj .

These two vector fields are smooth and converge to ∂/∂pj and ∂/∂qj , re-
spectively, as zj → 0. This proves the first statement in the lemma. We
also obtain for every x ∈M that TxM = Dx⊕Ex, if Ex denotes the linear
span of the ZM (x), Z ∈ tf, and the Lη(x), ζ ∈ N .

In view of (5.1), conclusion i) in Proposition 5.5, and the commutativity
of the infinitesimal action of th on M , the vector fields YM and Lη all
commute with each other. This implies that on Mreg the distribution D

satisfies the Frobenius integrability condition. Because Mreg is dense in M ,
it follows by continuity that D is integrable on M . Because the vector fields
YM , and Lη are T -invariant, the restriction to Mreg of D is T -invariant,
and it follows by continuity that D is T -invariant.

For each x ∈Mreg, the vectors XM (x), X ∈ t, and Lη(x), η ∈ C := (l/l∩
tf)∗, together span TxF = kerTxπN/P , hence Dx ⊂ TxF . Because Mreg∩F
is dense in F , see Lemma 6.2, it follows by continuity that D|F ⊂ TF . This
implies in turn that if I is an integral manifold of D in M and I ∩ F 6= ∅,
then I ⊂ F and I is an integral manifold of D|F .

Because for every x ∈ F the linear subspaces Dx and ((tf)M )x of TxF

have zero intersection and their dimensions add up to the dimension of F ,
we have that Dx is a complementary linear subspace to ((tf)M )x in TxF ,
and it follows that D|F defines a Tf-invariant infinitesimal connection for
the principal Tf-bundle πF/Tf : F → F/Tf.

It follows from (5.2) and the conclusion v) in Proposition 5.5, that for
every x ∈ Mreg the complementary linear subspaces Dx and Ex of TxM

are σx-orthogonal, and by continuity the same conclusion follows for every
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x ∈M . This implies that, for every x ∈M , Dx is a symplectic vector sub-
space of TxM , and therefore every integral manifold I of D is a symplectic
submanifold of (M,σ).

If I is an integral manifold of D, then the restriction to I of πF/Tf is a
covering from I onto F/Tf. Because σ is invariant under the action of Tf,
there is a unique two-form σF/Tf on F/Tf such that (6.2) holds, and because
πF/Tf ◦ ιI is a covering, it follows that σF/Tf is a smooth symplectic form
on F/Tf.

The mapping from F/Tf to ∆ induced by (5.4), which we also denote by
µ, is a momentum mapping for the Th-action on the symplectic manifold
(F/Tf, σF/Tf). Because for any q ∈ N/P the pre-image of {q} under the
projection from M/T ' ∆× (N/P ) onto the second factor is equal to ∆×
{q}, and µ forgets the second factor, we have that µ(F ) = ∆, and therefore
µ(F/Tf) = ∆. Because F is compact and connected, see Lemma 6.2, the
image F/Tf of F under the continuous projection F → F/Tf is also compact
and connected. The conclusion is that (6.1) is a Delzant manifold defined
by the Delzant polytope ∆.

Because F/Tf is simply connected in view of Lemma 6.4, (πF/Tf)|I : I →
F/Tf is a diffeomorphism. The other statements in the lemma now readily
follow. �

Lemma 6.4. — Every Delzant manifold is simply connected.

Proof. — Every Delzant manifold can be provided with the structure of
a toric variety defined by a complete fan, cf. Delzant [11] and Guillemin
[20, App. 1], and Danilov [10, Th. 9.1] observed that such a toric variety is
simply connected. The argument is that the toric variety has an open cell
which is isomorphic to Cn, of which the complement is a complex subvariety
of complex codimension one. Therefore any loop can be deformed into the
cell and contracted within the cell to a point. �

Remark 6.5. — The pull-back to each Tf-orbit of the symplectic form σ

on M is given by

σx(XM (x), YM (x)) = σt(X,Y ) for all X,Y ∈ tf.

Because t = th⊕ tf and th ⊂ l := kerσt, we have that this pull-back is equal
to zero if and only σt = 0, that is, the principal T -orbits are Lagrangian.
In this case the tangent spaces of the Tf-orbits in F are the kernels of the
pull-back to F of σ, and the symplectic form σF/Tf on F/Tf is the reduced
form of the pull-back to F of σ. In other words, (F/Tf, σF/Tf) is a reduced
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phase space for the “momentum mapping” πN/P : M → N/P for the Tf-
action, where the word momentum mapping is put between parentheses
because the free Tf-action is not Hamiltonian.

The T -invariant projection πN/P : M → N/P induces a Th-invariant
projection πN/P : M/Tf → N/P , of which the fibers are canonically iden-
tified with the F/Tf, where the F are the fibers of πN/P : M → N/P . If
σt = 0, then the symplectic leaves in M/Tf of the Poisson structure on
C∞(M/Tf) = C∞(M)Tf are equal to the fibers F/Tf of πN/P : M/Tf →
N/P , provided with the symplectic forms σF/Tf . It is quite remarkable
that the symplectic leaves form a fibration, because in general the sym-
plectic leaves of a Poisson structure are only immersed submanifolds, not
necessarily closed.

7. A global model

Let (M,σ) be our compact connected symplectic manifold, together with
an effective action of the torus T by means of symplectomorphisms of
(M,σ), such that some (all) principal orbits of the T -action are coisotropic
submanifolds of (M,σ).

In Subsection 7.1 we will show that the T -action together with the in-
finitesimal action of the vector fields Lζ , ζ ∈ N , introduced in Propo-
sition 5.5, lead to an action on M of a two-step nilpotent Lie group G,
whereG is explicitly defined in terms of the antisymmetric bilinear mapping
c : N ×N → l introduced in Proposition 5.5. Subsection 7.1 is a sequence
of definitions, together with some of their immediate consequences.

Recall the fibration of M into Delzant submanifolds introduced in Propo-
sition 6.1. The action of G on M will be used to exhibit this fibration as a
G-homogeneous bundle over the homogeneous space G/H with fiber equal
to a Delzant manifold defined by the Delzant polytope ∆. Here H is a
closed Lie subgroup of G which is explicitly defined in terms of c and the
period group P in N , defined in Lemma 10.12 with Q = M/T , V = l∗, and
N = (l/th)∗. See Proposition 7.2.

The symplectic form on this bundle of Delzant manifolds is given explic-
itly by means of the formula (7.14), in terms of the antisymmetric bilinear
form σt on t introduced in Lemma 2.1, the antisymmetric bilinear mapping
c : N×N → l introduced in Proposition 5.5, and the symplectic form σh on
the Delzant manifold Mh. In this way we obtain an explicit global model
for our symplectic manifold (M,σ) with symplectic T -action.
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7.1. An extension G of N by T acting on M

In the sequel, X∞(M) denotes the Lie algebra of all smooth vector fields
on M , provided with the Lie brackets [u, v] of u, v ∈ X∞(M) such that
[u, v]f = u(vf)−v(uf) for every f ∈ C∞(M). We denote the flow after time
t ∈ R of v ∈ X∞(M) by etv. This defines an exponential mapping v 7→ ev

from X∞(M) to the group Diff∞(M) of all smooth diffeomorphisms of M ,
which is analogous to the exponential mapping exp from the Lie algebra of
any Lie group to the Lie group.

Let l∗ 3 ξ 7→ Lξ be an admissible lift as in Proposition 5.5. For each
ζ ∈ N , Lζ is a smooth vector field on M , see Definition 5.3, and because
M is compact, its flow etLζ : M →M is defined for all t ∈ R.

A Lie algebra g is called two-step nilpotent if [[X,Y ], Z] = 0 for all
X,Y, Z ∈ g. Because the vector fields Lζ , ζ ∈ N commute with the XM ,
X ∈ t, and the XM , X ∈ t, commute with each other, it follows from iii)
in Proposition 5.5 that the linear span of the XM , X ∈ t, and the Lζ ,
ζ ∈ N , is a two-step nilpotent Lie subalgebra gM of X∞(M). Moreover, if
we provide g := t×N with the structure of a two-step nilpotent Lie algebra
defined by

(7.1) [(X, ζ), (X ′, ζ ′)] = −(c(ζ, ζ ′), 0), (X, ζ), (X ′, ζ ′) ∈ g = t×N,

then the mapping (X, ζ) 7→ XM + Lζ is an injective anti-homomorphism
of Lie algebras from g to X∞(M), with image equal to gM .

The vector space t×N , provided with the product

(7.2) (X, ζ)(X ′, ζ ′) = (X+X ′−c(ζ, ζ ′)/2, ζ+ζ ′), (X, ζ), (X ′, ζ ′) ∈ t×N,

is a two-step nilpotent Lie group with Lie algebra equal to g and the identity
as the exponential mapping. It follows that the mapping

(7.3) (X, ζ) 7→ eXM+Lζ = eXM ◦ eLζ

is a (left) action of the group t ×N on M , that is a homomorphism from
the group t×N to the group Diff∞(M), with infinitesimal action given by
(X, ζ) 7→ XM + Lζ . It follows that

(7.4) eXM+Lζ ◦ eX′
M+Lζ′ = e(X+X′−c(ζ,ζ′)/2)M+Lζ+ζ′ .

The kernel of the homomorphism (7.3) is equal to the discrete normal
subgroup TZ ×{0} of t×N , in which TZ = ker exp is the integral lattice in
the Lie algebra t of T . It follows that the connected Lie group G = T×N '
(t/TZ)×N acts smoothly on M , where in T ×N we have the product

(7.5) (t, ζ)(t′, ζ ′) = (tt′ e−c(ζ,ζ′)/2, ζ + ζ ′)
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and the action is given by

(7.6) (t, ζ) 7→ tM ◦ eLζ .

We have the exact sequence of groups 1 → T → G → N → 1, where the
homomorphism from G onto N corresponds to passing from the action of G
on M to the action of N on the orbit space M/T , on which T acts trivially.

Note that the Lie algebra of G is equal to the previously introduced
two-step nilpotent Lie algebra g = t ×N . Also note that the T -orbit map
π : M → M/T intertwines the action of G on M with the translational
action of N on M/T , in the sense that π((t, ζ) · x) = π(x) + ζ for every
(t, ζ) ∈ G = T ×N .

7.2. The holonomy of the connection

Let l∗ 3 ξ 7→ Lξ be an admissible connection as in Proposition 5.5. For
each ζ ∈ P and p ∈ M/T , the curve γζ(t) := p + tζ, 0 6 t 6 1, is a loop
in M/T . If x ∈M and p = π(x), then the curve δ(t) = etLζ (x), 0 6 t 6 1,
is called the horizontal lift in M of the loop γζ which starts at x, because
δ(0) = x, δ′(t) = Lζ(δ(t)) is a horizontal tangent vector which is mapped
by Tδ(t)π to the constant vector ζ, which implies that π(δ(t)) = γζ(t),
0 6 t 6 1. The element of T which maps the initial point δ(0) = x to the
end point δ(1) is called the holonomy τζ(x) of the loop γζ and the intial
point x with respect to the given connection. Because δ(1) = eLζ (x), we
have τζ(x) ·x = eLζ (x). In Lemma 7.1 below we investigate the dependence
of the holonomy element τζ(x) ∈ T on the point x ∈ M and the period
ζ ∈ P .

Lemma 7.1. — Let ζ ∈ N . Then the following conditions are equivalent.
i) There exists an x ∈M and a t ∈ T such that eLζ (x) = t · x.
ii) ζ ∈ P , where P is the period group in N for the translational action

of N on M/T , as defined in Lemma 10.12 with Q = M/T , V = l∗,
and N = (l/th)∗.

iii) The diffeomorphism eLζ leaves all T -orbits in M invariant.
For each ζ ∈ P there is a unique T -invariant smooth mapping τζ : M →

T such that eLζ (x) = τζ(x) · x for every x ∈M . We have

(7.7) τζ(t · eLζ′ (x)) = ec(ζ,ζ′) τζ(x)

for every (t, ζ ′) ∈ T ×N .
We have c(ζ, ζ ′) ∈ TZ whenever ζ, ζ ′ ∈ P , and T × P is a commutative

subgroup of G.
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Finally, the mapping τζ : M → T is constant on every fiber of the
fibration of M into Delzant submanifolds introduced in Proposition 6.1,
and satisfies

(7.8) τζ′(x)τζ(x) = τζ+ζ′(x) ec(ζ′,ζ)/2, x ∈M, ζ, ζ ′ ∈ P.

Proof. — Because the action of eLζ on the T -orbits is equal to the trans-
formation p 7→ p + ζ in M/T , the equivalence between i), ii), iii) follows
from Lemma 10.12 with Q = M/T , V = l∗, and N = (l/th)∗.

If ζ ∈ P , then eLζ leaves each T -orbit invariant. Because, for every ζ ∈ N ,
eLζ commutes with the T -action, this implies the existence of the smooth
mapping τζ in view of Lemma 4.2.

In order to show that (7.7) holds, we observe that

eLζ′ (τζ(eLζ′ (x)) · x) = τζ(eLζ′ (x)) · eLζ′ (x) = eLζ (eLζ′ (x))

= (eLζ ◦ eLζ′ ◦ e−Lζ )(eLζ (x))

= eLζ′+[Lζ ,Lζ′ ](τζ(x) · x) = eLζ′ (ec(ζ,ζ′) ·(τζ(x) · x)),

which implies that τζ(eLζ′ (x)) = ec(ζ,ζ′) τζ(x). In combination with the
T -invariance of τζ this yields (7.7).

If ζ ′ ∈ P , then we have for every x ∈ M that eLζ′ (x) ∈ T · x, hence
τζ(eLζ′ (x)) = τζ(x), which in view of (7.7) implies that ec(ζ,ζ′) = 1, hence
c(ζ, ζ ′) ∈ TZ. The fact that c(ζ, ζ ′) ∈ TZ for all ζ, ζ ′ ∈ P implies in view of
(7.5) that T × P is a commutative subgroup of T ×N .

Because Lζ commutes with all Lη, η ∈ C := (l/l ∩ tf)∗ ' th
∗, see ii) in

Proposition 5.5, we have

eLη (τζ(eLη (x)) · x) = τζ(eLη (x)) · eLη (x) = eLζ (eLη (x))

= eLη (eLζ (x)) = eLη (τζ(x) · x),

which for regular x implies that τζ(eLη (x)) = τζ(x). By continuity this
identity extends to all x ∈M . Because also τζ(t · x) = τζ(x) for all t ∈ Th,
it follows from the definition in Proposition 6.1 of the fibration of M into
Delzant submanifolds, that τζ is constant on its fibers.

If ζ, ζ ′ ∈ P , then we obtain, using (7.4), that

τζ′(x) · (τζ(x) · x) = τζ′(x) · eLζ (x) = eLζ (τζ′(x) · x) = (eLζ ◦ eLζ′ )(x)

= e−c(ζ,ζ′)M /2 · eLζ+ζ′ (x) = ec(ζ′,ζ)M /2 ·(τζ+ζ′(x) · x),

which implies (7.8). �
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Let εl, 1 6 l 6 dN := dimN , be a Z-basis of P . For any ζ ∈ P we
have ζ =

∑
l ζlε

l for unique integral coordinates ζl ∈ Z. With the notation
cll

′
:= c(εl, εl′) ∈ l ∩ TZ, the formula (7.8) leads to the formula

(7.9) τζ(x) = e
∑

l<l′
ζlζl′c

ll′/2
dN∏
l=1

τεl(x)ζl

for τζ(x) in terms of the elements τεl(x) ∈ T . In other words, all holonomies
at a given point x ∈M can be expressed in terms of the holonomies of the
basic loops γεl , 1 6 l 6 dN , by means of the formula (7.9).

7.3. M as a G-homogeneous bundle
with the Delzant manifold as fiber

In this subsection, let (Mh, σh, Th) be one of the Delzant submanifolds of
(M,σ, T ) in Proposition 6.1. That is, Mh is an integral manifold I of the
distribution H, and σh = ιI

∗σ, if ιI denotes the inclusion mapping from I

to M . Recall that all Delzant manifolds with the same Delzant polytope
are Th-equivariantly symplectomorphic, which means that one may iden-
tify (Mh, σh, Th) with any favourite explicit model of a Delzant manifold
with Delzant polytope ∆. We will construct a model for our symplectic
T -manifold (M,σ, T ) by means of the mapping A : G×Mh →M which is
defined by

(7.10) A((t, ζ), x) = t · eLζ (x), t ∈ T, ζ ∈ N, x ∈Mh.

Write τζ for the common value of the τζ(x) for all x ∈Mh, see Lemma 7.1.
Define

(7.11) H := {(t, ζ) ∈ G | ζ ∈ P and tτζ ∈ Th} .

Then H is a closed Lie subgroup of G, commutative because T × P is
commutative, see Lemma 7.1. Furthermore,

(7.12) ((t, ζ), x) 7→ (tτζ) · x : H ×Mh →Mh

defines a smooth action of H on the Delzant manifold Mh.

Proposition 7.2. — The mapping (7.10) induces a diffeomorphism α

from G×H Mh onto M , where h ∈ H acts on G×Mh by sending (g, x) to
(gh−1, h · x).

The diffeomorphism α intertwines the action of G on G ×H Mh, which
is induced by the action (g, (g′, x)) 7→ (gg′, x) of G on G ×Mh, with the
action of G on M , and therefore also the action of the normal subgroup
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T ×{0} ' T of G with the T -action on M . The projection (g, x) 7→ g : G×
Mh → G induces a G-equivariant smooth fibration ψ : G×H Mh → G/H,
and δ = ψ ◦ α−1 : M → G/H is a G-equivariant smooth fibration of which
the Delzant submanifolds of M introduced in Proposition 6.1 are the fibers.

Proof. — Let x0 ∈ Mh and y ∈ M . For each ζ ∈ N , the projection
πN/P : M → N/P defined in Lemma 6.2 intertwines the diffeomorphism
eLζ in M with the translation in N/P over the vector ζ. Because these

translations act transitively on N/P , there exists a ζ ∈ N such that
πN/P (y) = πN/P (x0) + ζ, which implies that e−Lζ (y) belongs to the same
fiber F of πN/T as x0. With such a choice of ζ, it follows from Lemma 6.3
that there exists tf ∈ Tf and x ∈ Mh such that e−Lζ (y) = tf · x, or equiv-
alently y = tf · eLζ (x). This shows that already the restriction of A to
(Tf ×N)×Mh is surjective.

Let g, g′ ∈ G, x, x′ ∈ Mh and g · x = g′ · x′. Then x′ = h · x in which
h := (g′)−1g. Write h = (t, ζ) with t ∈ T and ζ ∈ N . Then

πN/P (x) = πN/P (x′) = πN/P (t · eLζ (x)) = πN/P (eLζ (x)) = πN/P (x) + ζ

implies that ζ ∈ P , and it follows from Lemma 7.1 that

x′ = t · eLζ (x) = t · τζ · x = (tτζ)f · ((tτζ)h · x.

Because x′ and (tτζ)h · x belong to the same integral manifold I of H,
it follows from Lemma 6.3 that the element (tτζ)f of Tf is equal to the
identity element, hence tτζ ∈ Th and x′ = (tτζ) · x. In other words, h ∈ H,
g′ = gh−1 and x′ = (tτζ) · x. This proves that the mapping A induces a
bĳective mapping α from G×H Mh onto M .

The closedness of H in G implies that the right action of H on G is
proper and free, hence the action of H on G × Mh is proper and free,
and the orbit space G×H Mh has a unique smooth structure for which the
projection G×Mh → G×HMh is a principal H-bundle. With respect to this
smooth structure on G×H Mh, the mapping α : G×H Mh →M is smooth.
The transversality to TMh of the span of ZM , Z ∈ tf and the Lζ , ζ ∈ N ,
implies that at every point the tangent mapping of A is surjective. Hence
α is a submersion, and because α is bĳective, it follows from the inverse
mapping theorem that α is a diffeomorphism. The other statements in the
proposition are general facts about induced fiber bundles G ×H Mh over
G/H with fiber Mh, see for instance [15, Sec. 2.4]. �

Remark 7.3. — On G/H we still have the free action of the torus T/Th,
which exhibits G/H as a principal T/Th-bundle over the torus (G/H)/T '
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N/P . Palais and Stewart [46] showed that every principal torus bundle over
a torus is diffeomorphic to a nilmanifold for a two-step nilpotent Lie group.
In this remark we will give an explicit nilmanifold description of G/H.

The Hamiltonian torus Th, or rather the identity component Ho = Th ×
{0} of H, is a closed normal Lie subgroup of both G = T ×N and H, and
the mapping (gHo)(H/Ho) 7→ gH is a G-equivariant diffeomorphism from
(G/Ho)/(H/Ho) onto G/H. The group structure in G/Ho = (T/Th)×N

is defined by

(7.13) (t, ζ)(t′, ζ ′) = (tt′ e−cl/th (ζ,ζ′)/2, ζ + ζ ′), t, t′ ∈ T/Th, ζ, ζ ′ ∈ N,

and cl/th : N × N → l/th is equal to c : N × N → l, followed by the
projection l → l/th. This exhibits G/Ho as a two-step nilpotent Lie group
with universal covering equal to (t/th)×N and covering group (T/Th)Z '
TZ/(Th)Z. Also note that ι : ζ 7→ (τζ−1, ζ)Ho is an isomorphism from the
period group P onto H/Ho.

In view of (7.11), we conclude that the compact homogeneous G-space
G/H is isomorphic to the quotient of the simply connected two-step nilpo-
tent Lie group (t/th) × N by the discrete subgroup of (t/th) × N which
consists of all (Z, ζ) ∈ (t/th)× P such that eZ τζ ∈ Th.

7.4. The symplectic form on the global model

In Proposition 7.2 we have described the global model Mmodel := G×H

Mh for the T -manifold M , where the multiplication in the Lie group G =
T ×N is defined by (7.5). We now describe the symplectic form on Mmodel.

Proposition 7.4. — Let ω be the pull-back of σ to G×Mh = (T×N)×
Mh by means of the mapping A in (7.10). Let δa = ((δt, δζ), δx) and δ′a =
((δ′t, δ′ζ), δ′x) be tangent vectors to G ×Mh at a = ((t, ζ), x), where we
identify each tangent space of the torus T with t. Write X = δt+c(δζ, ζ)/2
and X ′ = δ′t+ c(δ′ζ, ζ)/2. Then

ωa(δa, δ′a) = σt(δt, δ′t) + δζ(X ′
l)− δ′ζ(Xl)− µ(x)(ch(δζ, δ′ζ))

+ (σh)x(δx, (X ′
h)Mh(x))− (σh)x(δ′x, (Xh)Mh(x))

+ (σh)x(δx, δ′x).(7.14)

Here Xh denotes the th-component of X ∈ t with respect to the direct sum
decomposition th ⊕ tf.

If πMmodel denotes the canonical projection from G×Mh onto Mmodel :=
G×H Mh, then the T -invariant symplectic form σmodel := α∗σ on Mmodel

is the unique two-form β on Mmodel such that ω = πMmodel
∗β.
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Proof. — It follows from (7.4) that

eLζ′+ζ = ec(ζ′,ζ)M /2 ◦ eLζ′ ◦ eLζ .

Therefore, if we substitute ζ ′ = εδζ and differentiate with respect to ε at
ε = 0, we get the vector c(δζ, ζ)M/2 + Lδζ at the image point under the
mapping eLζ . Because eLζ commutes with the T -action, it follows, with the
notations y = A(a) and B = tM ◦ eLζ , that

δy = (TaA)(δa) = (XM + Lδζ)(y) + (TxB)(δx),

in which X = δt+ c(δζ, ζ)/2.
If x is a regular point in Mh, then we can write δx = (YM + Lη)(p) for

uniquely determined Y ∈ th and η ∈ C = (l/l ∩ tf)∗ ' (th)∗. The vector
fields YM , Y ∈ th, and Lη, η ∈ C, commute with the vector fields XM ,
X ∈ t, and Lζ , ζ ∈ N , because of ii) in Proposition 5.5 and the fact that
all the vector fields are T -invariant. Therefore (TxB)(δx) = (YM +Lη)(y),
and we obtain that (TaA)(δa) is equal to the value at y = A(a) of the
vector field (X + Y )M + Lδζ+η.

In view of (5.2) and iv), v) in Proposition 5.5, the symplectic product of
this vector with the one in which δt, δζ, Y , η are replaced by δ′t, δ′ζ, Y ′,
η′, respectively, is equal to

(δζ + η)((X ′ + Y ′)l)− (δ′ζ + η′)((X + Y )l) + σy(Lδζ(y), Lδ′ζ(y)),

in which X = δt+c(δζ, ζ)/2+Y and X ′ = δ′t+c(δ′ζ, ζ)/2+Y ′. Collecting
terms and using the equations η(X ′

l) = η(X ′
h) = (σh)x(δx, (X ′

h)Mh(x)),
η′(Xl) = η′(Xh) = (σh)x(δ′x, (Xh)Mh(x)), η(Y ′) − η′(Y ) = (σh)x(δx, δ′x),
and vi) in Proposition 5.5, we arrive at (7.14).

Because A=α ◦ πMmodel , we have

ω = A∗σ = πMmodel
∗(α∗σ) = πMmodel

∗σmodel.

The uniqueness in the last statement follows because πMmodel is a submer-
sion. �

Lemma 7.5. — Let Tf be a complementary torus to the Hamiltonian
torus Th in T . Then the following conditions are equivalent.

a) (M,σ, T ) is T -equivariantly symplectomorphic to the Cartesian pro-
duct of a symplectic Tf- space (Mf, σf, Tf) on which the Tf-action
is free and a Delzant manifold (Mh, σh, Th). Here t ∈ T acts on
Mf×Mh by sending (xf, xh) to (tf ·xf, th ·xh), if t = tfth with tf ∈ Tf

and th ∈ Th.
b) c(P × P ) ⊂ tf.
c) c(N ×N) ⊂ tf.
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d) The th-component ch of c in the direct sum decomposition l =
th ⊕ (l ∩ tf) is equal to zero.

Proof. — The equivalence between b) and c) follows from the fact that
P has a Z-basis which is an R-basis of N . The equivalence between c) and
d) is obvious.

If (M,σ, T ) is equal to the Cartesian product of a Delzant manifold
(Mh, σh, Th) and a symplectic Tf-space (Mf, σf, Tf) for which the Tf-action
on Mf is free, then we can choose the Lζ in the direction of the second
component Mf. In this case we have for every ζ, ζ ′ ∈ N that [Lζ , Lζ′ ] ∈ tf,
which means that the antisymmetric bilinear mapping c : N × N → l in
Proposition 5.5 has the property that c(N×N) ⊂ tf, or equivalently ch = 0.

For the converse, assume that c(N ×N) ⊂ tf, which implies that ch = 0.
Then the Lie group G is equal to the Cartesian product Th ×Gf, in which
Gf = Tf×N , where the product in Gf is defined as in (7.5) with T replaced
by Tf. According to Subsection 7.5 we can multiply the elements τεl(x), for
x ∈ Mh, by any element of exp(l). Because th ⊂ l, it follows that we can
arrange that τεl(x) ∈ Tf for every 1 6 l 6 dN , and then it follows from
(7.9) that τζ ∈ Tf for every ζ ∈ P . The mapping ι : ζ 7→ (τζ−1, ζ) is a
homomorphism from P onto a discrete cocompact subgroup of Gf. Write
Mf := Gf/ι(P ). It follows that the mapping

(7.15) Af : ((tf, ζ), x) 7→ tf · eLζ (x) : Gf ×Mh →M

induces a diffeomorphism αf from Mf ×Mh onto M . Moreover, it follows
from (7.14) that the symplectic form αf

∗σ on Mf ×Mh is equal to πf
∗σf +

πh
∗σh, if πf and πh is the projection form Mf ×Mh onto the first and the

second factor, respectively, and the symplectic form σf on Mf is given by

(7.16) (σf)b(δb, δ′b) = σt(δt, δ′t) + δζ(X ′
l)− δ′ζ(Xl).

Here b = (t, ζ)ι(P ) ∈ (Gf/ι(P )), the tangent vectors δb = (δt, δζ) and
δ′b = (δ′t, δ′ζ) are elements of tf × N , the vectors X := δt + c(δζ, ζ)/2
and X ′ := δ′t + c(δ′ζ, ζ)/2 are elements of tf, and finally σ(Lδζ , Lδ′ζ) = 0
because in vi) in Proposition 5.5 we have ch = 0. It follows that (M,σ, T )
is T -equivariantly symplectomorphic to (Mf, σf, Tf)×(Mh, σh, Th), in which
(Mf, σf, Tf) is a compact connected symplectic manifold with a free sym-
plectic action Tf-action. �

Remark 7.6. — In the proof of Lemma 7.5 we have also given a global
model for (M,σ, T ) in the case that the action of T is free. Note that the
mapping g 7→ gHo defines an isomorphism from Gf onto the group G/Ho

in Remark 7.3, and an isomorphism from ι(P ) onto H/Ho, which leads to
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an identification of Mf = Gf/ι(P ) with the manifold G/H. In Remark 7.3,
G/H has been described as a principal Tf-bundle over the torus N/P , and
as a nilmanifold for a two-step nilpotent Lie group.

The example of Kodaira [30, Th. 19, case 3] is equal to Gf/ι(P ) with
Tf = R2/Z2, N = R2, P = Z2, σt = 0, and c(e1, e2) = me1 if e1, e2 denotes
the standard basis in R2. Furthermore, τζ is given by the formula (7.9), in
which τe1 = τe2 = 0 modulo Z2. We learned this reference from Fernández,
Gotay and Gray [16]. For m = 1 this is the first example of Thurston [51].
For more examples, see McDuff and Salamon [39, Ex. 3.8 on p.88] and the
references therein.

Remark 7.7. — If {1} 6= Th 6= T , then the choice of a complementary
torus Tf to Th in T is far from unique, see Remark 2.9. It can happen that
for some choice of Tf we have c(N × N) ⊂ tf, whereas for another choice
we have not.

However, if c(N × N) ⊂ th and c 6= 0, then there is no choice of a
complementary torus Tf to Th such that c(N × N) ⊂ tf, and therefore
(M,σ, T ) is in no way T -equivariantly symplectomorphic to a Cartesian
product of a symplectic manifold with a free torus action and a Delzant
manifold.

Remark 7.8. — If dimN 6 1 then c(ζ, ζ ′) ≡ 0 because every antisym-
metric bilinear form on a one-dimensional space is equal to zero, and we
conclude that (M,σ, T ) is a Cartesian product of a Delzant manifold with
a two-dimensional homogeneous symplectic torus.

If M is four-dimensional, that is, n = 2, then it is proven in [48] that we
have only few possibilities.

a) The homogeneous symplectic torus, where T acts freely and transi-
tively on M . Cases where T is replaced by a subtorus with coisotro-
pic orbits are treated as subcases.

b) (M,σ, T ) is T -equivariantly symplectomorphic with the Cartesian
product of a two-dimensional homogeneous symplectic torus and a
sphere, provided with a rotationally invariant area form.

c) (M,σ, T ) is a four-dimensional Delzant manifold.
d) The action of T is free with Lagrangian orbits, but not in case a).

See the proof of Lemma 7.5 for a more detailed description of this
case. The example of Kodaira mentioned in Remark 7.6 seems to
be the first one in the literature.
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7.5. The holonomy invariant

In view of the surjectivity of the mapping A in Proposition 7.2, Lem-
ma 7.1 contains the description of the dependence of the holonomy τ(x) :
ζ 7→ τζ(x) : P → T on all points x ∈ M . The only change which occurs
is that if x is replaced by x′ = eLζ′ (x), ζ ′ ∈ N , then τζ(x) is replaced by
τζ(x) ec(ζ,ζ′), see (7.7). We now investigate the dependence of the holonomy
on the choice of the admissible connection as in Proposition 5.5.

It follows from Lemma 5.9 that l∗ 3 ξ 7→ L̃ξ is another connection as in
Proposition 5.5, if and only if there exists a smooth T -invariant mapping
α : x 7→ (ξ 7→ αξ(x)) from M to Lin(l∗, l), which is closed when viewed as
an l-valued one-form on M/T , and symmetric in the sense of (5.8), such
that L̃ξ(x) = Lξ(x) + αξ(x)M (x) for every x ∈ M and ξ ∈ l∗. The change
from L to L̃ leads to a change from τζ(x) to

(7.17) τ̃ζ(x) = τζ(x) e

∫
γζ

α
.

Here γζ(t) := π(x)+tζ, 0 6 t 6 1, is a loop in M/T because ζ ∈ P . Because
α is closed, the integral

∫
γζ
α only depends on the de Rham cohomology

class of α, which means that for the effect on the τζ(x)’s we can restrict
ourselves to constant l-valued one-forms on l∗, that is, linear mappings from
l∗ to l, or equivalently, bilinear forms on l∗. Therefore, at a given point
x ∈ M , the allowed changes in τζ(x), ζ ∈ P , consist of the multiplications
with eαζ , where α ranges over the space of linear mappings ξ 7→ αξ from l∗

to l, which are symmetric in the sense of (5.8).

Definition 7.9. — Let Homc(P, T ) denote the space of mappings τ :
ζ 7→ τζ : P → T such that

(7.18) τζ′τζ = τζ+ζ′ ec(ζ′,ζ)/2, ζ, ζ ′ ∈ P.

Because c(P ×P ) ⊂ TZ, the factor ec(ζ′,ζ)/2 in (7.18) is an element of order
two in T . Therefore the elements of Homc(P, T ) are quite close to being
homomorphisms from P to T . They are homomorphisms from P to T if
c(P × P ) ⊂ 2TZ.

If h : ζ 7→ hζ is a homomorphism from P to T , then h · τ : ζ 7→
τζhζ ∈ Homc(P, T ) for every τ ∈ Homc(P, T ), and (h, τ) 7→ h · τ defines a
free, proper, and transitive action of Hom(P, T ) on Homc(P, T ). Because
Hom(P, T ) is a torus group, a compact, connected, and commutative Lie
group with Lie algebra equal to the vector space Hom(P, t) of dimension
dimN dimT , it follows that Homc(P, T ) is diffeomorphic to a torus of di-
mension dimN dimT .
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Definition 7.10. — For each ζ ′ ∈ N , ζ 7→ c(ζ, ζ ′) is a homomorphism
from P to t, actually l-valued. Write c(·, N) for the set of all c(·, ζ ′) ∈
Hom(P, t) such that ζ ′ ∈ N . c(·, N) is a linear subspace of the Lie algebra
Hom(P, t) of Hom(P, T ).

Let Sym denote the space of all linear mappings α : l∗ → l which are
symmetric in the sense of (5.8). For each α ∈ Sym, the restriction α|P of
α to P is a homomorphism from P to l ⊂ t. In this way the set Sym |P of
all α|P such that α ∈ Sym is another linear subspace of Hom(P, t). Write

(7.19) T := Homc(P, T )/ expA, A := c(·, N) + Sym |P
for the orbit space of the action of the Lie subgroup expA of Hom(P, T ) on
Homc(P, T ). Because expA need not be a closed subgroup of Hom(P, T ),
the quotient topology of T need not be Hausdorff.

It follows from (7.8) and (7.18), that for every choice of a connection as
in Proposition 5.5 and every x ∈ M , the mapping τ(x) : ζ 7→ τζ(x) is an
element of Homc(P, T ). It is the point of (7.19), that the right hand side in

(7.20) τ := (expA) · τ(x) ∈ T

defines an invariant τ of our symplectic T -space (M,σ, T ), in the sense that
it neither depends on the choice of the point x ∈ M , nor on the choice of
the connection as in Proposition 5.5.

Remark 7.11. — In order to obtain some more insight in the vector
space A in (7.19), we use the direct sum decomposition t = th ⊕ tf, where
th ⊂ l is the Lie algebra of the Hamiltonian torus Th and tf is the Lie algebra
of a complementary torus Tf to Th in T . This leads to an identification of
N = (l/th)∗ with (l ∩ tf)∗ and of its linear complement C in l∗ with th

∗.
Let (Symf)|P denote the space of all linear mappings α : (l∩ tf)∗ → l∩ tf,

which satisfy the symmetry condition (5.8) with l replaced by l ∩ tf. The
space Sym |P of all restrictions to P ⊂ N = (l ∩ tf)∗ of linear mappings
α : l∗ → l which satisfy the the symmetry condition (5.8) is equal to the
direct sum of the space Hom(P, th) of all homomorphisms from P to th, and
the space (Symf)|P . This means that in the space T in (7.19) we dispose
of the Th- components, and in the computation of A we can replace c by
its l ∩ tf-component cf.

Now suppose that ζ ′ ∈ N and cf(·, ζ ′) ∈ (Symf)|P . This is equivalent to
the condition that

−ζ ′(c(ζ, ζ ′′)) = ζ ′′(c(ζ, ζ ′)) + ζ(c(ζ ′, ζ ′′)) = ζ ′′(cf(ζ, ζ ′))− ζ(cf(ζ ′′, ζ ′)) = 0

for all ζ, ζ ′′ ∈ P ⊂ N = (l∩tf)∗. Here we have used (5.5) in the first equality.
In the second equality we have used the antisymmetry of c and the fact
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that the elements ζ ′′, ζ ∈ N = (l/th)∗ are equal to zero on th. In other
words, cf(·, ζ ′) ∈ (Symf)|P if and only if ζ ′ = 0 on c(P ×P ), or equivalently
ζ ′ = 0 on the linear subspace of l which is spanned by c(N × N). Let
c0 denote the space of all ζ ′ ∈ l∗ which are equal to zero on the linear
span of c(N ×N). In view of (5.5) we have ker c ⊂ c0, and it follows that
the dimension of cf(·, N)∩ (Symf)|P is equal to dim c0− dim ker c, whereas
the dimension of cf(·, N) is equal to dimN − dim ker cf. It follows that
the dimension of cf(·, N) + (Symf)|P is equal to dN (dN + 1)/2− (dim c0 −
dim ker c), in which dN = dimN = dim(l ∩ tf). Therefore the codimension
of cf(·, N) + (Symf)|P in the dN

2-dimensional space Hom(P, l ∩ tf) is equal
to dN (dN − 3)/2 + dim ker cf − dim ker c + dim c0. Because all elements of
A map to l, it follows that
(7.21)
dim T = dN (dimT − dN ) + dN (dN − 3)/2 + dim ker cf− dim ker c+ dim c0.

8. Applications of the global model

Let (M,σ) be our compact connected symplectic manifold, together with
an effective action of the torus T by means of symplectomorphisms of
(M,σ), such that some (all) principal orbits of the T -action are coisotropic
submanifolds of (M,σ).

In this section, which is not needed for the classification in Section 9, we
give some applications of Proposition 7.2 to minimal coupling, the reduced
phase spaces, the topology of the torus action, and to the universal covering
of our symplectic T -space M .

8.1. Minimal coupling

The fibration of M by Delzant manifolds is a fibration by symplectic
submanifolds with a structure group H which acts on the fiber by means
of symplectomorphisms. See Proposition 7.2. Moreover, the distribution
spanned by the ZM , Z ∈ tf, and the Lζ , ζ ∈ N , which we used in the
construction of the model, is the symplectic orthogonal complement of the
fibers. This follows from the fact that at the regular points the tangent
space to the Delzant submanifold is spanned by the YM , Y ∈ th, and the
Lη, η ∈ C, combined with Lemma 2.1 and th ⊂ l := kerσt, the equa-
tion (5.2), and v) in Proposition 5.5. Because the ZM , Z ∈ tf, commute
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with each other and with the Lζ , ζ ∈ N , the only nonzero Lie brackets
of horizontal vector fields are the [Lζ , Lζ ] = c(ζ, ζ ′)M , ζ, ζ ′ ∈ N , see iii)
in Proposition 5.5. The vertical part of [Lζ , Lζ ] is equal to ch(ζ, ζ ′)M . Be-
cause, for every Y ∈ th, YM is the Hamiltonian vector field defined by the
function x 7→ µ(x)(Y ), the vertical part of [Lζ , Lζ ] is the Hamiltonian vec-
tor field defined by the function x 7→ µ(x)(ch(ζ, ζ ′)). It follows from vi) in
Proposition 5.5 that the derivative of this function is equal to the negative
of the derivative of σ(Lζ , Lζ′), and therefore the vertical part of [Lζ , Lζ′ ] is
equal to −Hamσ(Lζ ,Lζ′ )

. This equation, which holds in great generality for
the curvature of the symplectically orthogonal connection in a fibration by
symplectic manifolds, is known as minimal coupling, see Guillemin, Ler-
man and Sternberg [21, Sec. 1.3]. In this way equation vi) in Proposition
5.5 represents the minimal coupling term in the symplectic form on M .
This observation was suggested to us by Yael Karshon.

Recall that the fibration of M by Delzant manifolds was not a priori
given. It has been constructed using the special admissible connection in-
troduced in Proposition 5.5, and it is not unique if {1} 6= Th 6= T .

8.2. The reduced phase spaces

On the symplectic manifold (M,σ) we have the Hamiltonian action of
the torus Th, with momentum mapping µ : M → th

∗, where µ(M) ' ∆. Let
q ∈ µ(M). Then, restricting the discussion to the orbit type stratum which
contains µ−1({q}), we obtain that µ−1({q}) is a compact and connected
smooth submanifold of M , on which Th/H acts freely, where H denotes the
common stabilizer subgroup of the elements in µ−1({q}). It follows that
the orbit space Mq := µ−1({q})/Th has a unique structure of a compact
connected smooth manifold, such that the projection πq : µ−1({q}) →Mq

is a principal Th/H-fibration.
At each point of µ−1({q}), the kernel of the pull-back to µ−1({q}) of σ is

equal to the tangent space of the Th-orbit through that point, and it follows
that there is a unique symplectic form σq onMq such that (πq)∗σq = (ιq)∗σ,
if ιq denotes the inclusion mapping from µ−1({q}) to M . The symplectic
manifold (Mq, σq) is called the reduced phase space at the µ-value q for
the Hamiltonian action of Th on (M,σ).

On Mq we still have the action of the torus T/Th, which is free, leaves the
symplectic form σq invariant, and has coisotropic orbits. The vector fields
Lζ , ζ ∈ N , are tangent to µ−1({q}), and are intertwined by πq with unique
smooth vector fields Lq

ζ on Mq. In combination with (πq)∗σq = (ιq)∗σ, this
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implies that (πq)∗(σq(Lq
ζ , L

q
ζ′)) = (ιq)∗(σ(Lζ , Lζ′)), as an identity between

constant functions on µ−1({q}). It therefore follows from vi) in Proposi-
tion 5.5 that

(8.1) σq(Lq
ζ , L

q
ζ′) = −q(ch(ζ, ζ ′)), ζ, ζ ′ ∈ N.

We now show that each of the reduced phase spaces Mq = µ−1({q})/Th

can be identified with the G-homogeneous space G/H ' ((T/Th)×N)/ι(P )
discussed in Remark 7.3. Moreover, if c(N×N) ⊂ th, then (8.1) corresponds
to the description of the variation of the cohomology class of the symplectic
form of the reduced phase spaces in Duistermaat and Heckman [14].

Let x ∈ µ−1({q}), and write

Hx = {(t, ζ) ∈ T × P | tτζ ∈ Tx}.

Because Tx is a closed Lie subgroup of Th, Hx is a closed Lie subgroup of
H, see (7.11), and G/Hx is a compact G-homogeneous space. The mapping
Ax : (t, ζ) 7→ t · eLζ (x) : G→M induces an embedding αx from G/Hx into
M , with image equal to µ−1({q}). This exhibits µ−1({q}) as a compact and
connected smooth submanifold of M , and actually as a G-homogeneous
space. The pull-back to G/Hx of the symplectic form σ is given by the
formula (7.14), in which δx = δ′x = 0.

Because Th/Tx ' H/Hx, the mapping αx induces a T/Th-equivariant
diffeomorphism βx from G/H = (G/Hx)/(H/Hx) onto the reduced phase
space Mq = µ−1({q})/(Th/Tx). Because the dimension of µ−1({q}) jumps
down if q ∈ ∆ moves into a lower-dimensional orbit type stratum, it is quite
remarkable that nevertheless the reduced phase spaces Mq for all q ∈ ∆
are isomorphic to the same space G/H in a natural way. In this model
the principal Th/Tx-fibration µ−1({q}) →Mq corresponds to the principal
H/Hx-fibration G/Hx → G/H, in which Th/Tx ' H/Hx is a torus.

If c(N ×N) ⊂ th, then the Chern class of the principal H/Hx-fibration
πx : G/Hx → G/H, which is an element of H2(G/H, (H/Hx)Z) is equal
to ψ∗c, in which c ∈ H2(N/P, TZ) is the cohomology class corresponding
to the antisymmetric bilinear form c introduced in Proposition 5.5, and
ψ is the projection from G/H onto (G/H)/(T/Th) ' N/P . Therefore, in
the case that c(N × N) ⊂ th, formula (8.1) shows that the variation of
the cohomology class of the symplectic form of the reduced phase spaces is
equal to the cohomology class −c of the curvature form.
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8.3. The Th-fixed point set modulo Tf

The action of the Hamiltonian torus Th on M has fixed points, which are
the x ∈M such that µ(x) is equal to a vertex v of the Delzant polytope ∆,
if µ : M → ∆ ⊂ th

∗ denotes the momentum mapping of the Hamiltonian
Th-action as in (5.4). Let v be a vertex of ∆. Because Tx = Th for every x ∈
µ−1({v}), the reduced phase space µ−1({v})/Th at the level v, introduced
in Subsection 8.2, is equal to µ−1({v}). Because the reduced phase spaces
are connected, the µ−1({v}), where v ranges over the vertices of ∆, are
the connected components F of the fixed point set MTh of the Th-action
in M . Because in this subsection we want to find invariants of the T -
action, disregarding the symplectic structure, we use the notation F for
the connected components of MTh , instead of µ−1({v}).

Note that each F is a global section of the fibration δ : M → G/H '
((T/Th) × N)/ι(P ) of M by Delzant submanifolds. Using Morse theory
with the Hamiltonian functions of infinitesimal Th-actions as Bott-Morse
functions, this may lead to useful information about the topology of M in
terms of the connected components F of MTh .

Let Tf be a complementary torus to Th in T . Because the action of
Tf is free, we have the principal Tf-fibration M → M/Tf, and because
the actions of Tf and Th commute, we have an induced action of Th on
M/Tf. The manifolds F/Th are the connected components of the fixed
point set (M/Tf)Th of the Tf-action in M/Tf. The fibration δ : M → G/H '
((T/Th)×N)/ι(P ) induces a fibration

M := M/Tf → (G/H)/Tf ' (Tf ×N)/ι(P ))/Tf ' N/P

by Delzant manifolds, of which each connected component F := F/Tf of
the Th-fixed point set is a global section, diffeomorphic to N/P .

Let x ∈ F , and write y = Tf · x ∈ F . The tangent action of Th on the
normal space Ny := Ty M/TyF to F can be identified with the tangent
action of Th on the tangent space of the Delzant manifold through x. It
follows from the local model in Lemma 2.10, with H = Tx = Th, h = th,
and m = dh := dimTh, that Ny has a direct sum decomposition into Th-
invariant two-dimensional linear subspaces Ej

y, 1 6 j 6 dh, a complex
structure on each Ej

y, and a corresponding Z-basis Yj , 1 6 j 6 dh of the
integral lattice (Th)Z in th, such that the tangent action of eY , Y ∈ th on
Ny corresponds to the multiplication with e2π i Y j

in Ej
y, if Y =

∑n1
j=1 Y

jYj .
Although for their existence we referred to the local model in Lemma 2.10
for our symplectic T -space, all these ingredients are uniquely determined in
terms of the linearized action of Th on the normal bundle N of F := F/Tf
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in M := M/Tf, up to a permutation of the indices j. That is, disregarding
the symplectic structure.

For each j, the Ej
y, y ∈ F , form a complex line bundle Ej over F ' N/P ,

and the normal bundle N of F in M is the direct sum of the complex line
bundles Ej , 1 6 j 6 dh.

Any smooth complex line bundle L over a smooth manifold B has a
Chern class, which is defined as follows. Let C× denote the multiplicative
group of the nonzero complex numbers. The transition functions of local
trivializations define a 1-cocycle of germs of smooth C×-valued functions,
and the bundle L is classified by the sheaf (= Čech) cohomology class
γ ∈ H1(B,C∞(·,C×)) of the 1-cocycle of the transition functions. Because
the sheaf C∞(·,C) is fine, the short exact sequence

0 → Z → C∞(·,C) e2π i
→ C∞(·,C×) → 1

induces an isomorphism δ : H1(B,C∞(·,C×) → H2(B,Z), and the Chern
class of the complex line bundle L over B is defined as the cohomology class
c(L) := δ(γ) ∈ H2(B,Z). With these definitions, we have the following

conclusions.

Proposition 8.1. — Let the cjh ∈ Λ2N∗, 1 6 j 6 dh, be defined by

ch(ζ, ζ ′) =
dh∑
j=1

cjh(ζ, ζ ′)Yj , ζ, ζ ′ ∈ N.

Let 1 6 j 6 dh. Viewing cjh as an element of H2(N/P,R) ' H2(F ,R) as in
Corollary 3.10, we have that cjh is equal to the image in H2(F ,R) under the
coefficient homomorphism H2(F ,Z) → H2(F ,R), of the Chern class c(Ej)
of the complex line bundle Ej over F ' N/P .

If M is T -equivariantly diffeomorphic to Mf×Mh, in which Th acts only
on Mh with isolated fixed points, and Tf acts only on Mf and freely, then
ch = 0, and we have the conclusions c) and a) in Lemma 7.5.

Proof. — Because the vector fields Lζ , ζ ∈ N , are invariant under the
action of T , hence under the action of Th and Tf, they are intertwined by the
projection M → M := M/Tf to uniquely determined Th-invariant smooth
vector fields on M , which we also denote by Lζ . The identity iii) in Propo-
sition 5.5 leads to the identity [Lζ , Lζ′ ] = ch(ζ, ζ ′)M for vector fields on
M . Because the Lζ are Th-invariant, their flows leave each connected com-
ponent F of the Th-fixed point set M

Th invariant, and their linearizations
define automorphisms of the normal bundle N of F in M which commute
with the linearized action of Th on N . Therefore these automorphisms leave
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each of the complex line bundles Ej invariant, and the corresponding infin-
itesimal automorphisms define vector fields on Ej which we again denote
by Lζ . Because the Lζ are lifts of the constant vector fields ζ on N/P , we
conclude that N 3 ζ 7→ Lζ is a T-invariant connection in Ej , where T is the
unit circle in C. Because the cohomology class in H2(N/P,R) ' H2(F ,R)
of the negative of the curvature form is equal to the image of c(Ej) in
H2(F ,R) under the coefficient homomorphism H2(F ,Z) → H2(F ,R), the
first statement in the proposition follows from the combination of the above
discussions with the identifications in Remark 5.7 and Remark 5.8, and the
general facts about Chern classes of complex line bundles as for instance
in Bott and Tu [8, pp. 270, 267, 72, 73].

For the second statement assume that M = Mf ×Mh, in which Th acts
only on Mh and has isolated fixed points, and Tf acts freely on Mf. Then
M := (Mf ×Mh)/Tf = (Mf/Tf) ×Mh, in which Th only acts on the sec-
ond component. It follows that the connected components of M

Th are of
the form F = (Mf/Tf) × {x}, in which x ranges over the isolated fixed
points of the Th-action on Mh, and the normal bundle N of F in M is
Th-equivariantly isomorphic to (Mf/Tf) × TxMh. This shows that each of
the complex line bundles Ej is trivial, which implies that c(Ej) = 0 and
therefore cjh = 0 in view of the first statement in the proposition. Because
this holds for every 1 6 j 6 dh, it follows that ch = 0. �

8.4. A universal covering of M

In Proposition 8.2 below, we describe an explicit universal covering of
the manifold M by a Cartesian product M̃ of a vector space and the
Delzant manifold Mh, which leads to an explicit description of the fun-
damental group of M . In Remark 8.4 we recover Corollaire 6.16 of Benoist
[6], which states that the universal cover of a compact connected symplec-
tic T -manifold with coisotropic principal orbits is (tf × Th)-equivariantly
symplectomorphic to the Cartesian product of a symplectic vector space
and a Delzant manifold.

Let εl, 1 6 l 6 dN := dimN , be a Z-basis of the period group P in N .
If ζ, ζ ′ ∈ N have coordinates ζl, ζ ′l with respect to this basis, then we write

(8.2) b(ζ, ζ ′) :=
∑
l<l′

ζlζ
′
l′c

ll′ , cll
′
:= c(εl, εl′).

This defines a bilinear mapping b : N×N → l such that c(ζ, ζ ′) = b(ζ, ζ ′)−
b(ζ ′, ζ). We have ζ, ζ ′ ∈ P if and only if ζl, ζ ′l ∈ Z for all l. Therefore
c(P × P ) ⊂ TZ, see Lemma 7.1, implies that b(P × P ) ⊂ TZ.
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Let x ∈ Mh. For each 1 6 l 6 dN we choose X l ∈ t such that τεl(x) =
eXl

. Then (7.9) implies that, for each ζ ∈ P ,

(8.3) τζ := τζ(x) = eb(ζ,ζ)+ζlX
l

,

where in the second term in the exponent we use Einstein’s summation
convention.

Let Tf be the complementary torus to the Hamiltonian torus Th in T

which has been used in Proposition 5.5. Finally, let Zj , 1 6 j 6 df :=
dimTf, be a Z-basis of the integral lattice (Tf)Z in the Lie algebra tf of
Tf. For any X ∈ t we denote by Xh and Xf the th-component and the tf-
component of X, respectively. With these notations, we have the following
conclusions.

Proposition 8.2. — The lattice Γ := (Tf)Z×P is a group with respect
to the multiplication defined by

(8.4) (B′, β′)(B, β) = (B +B′ − bf(β, β′), β + β′) (B, β), (B′, β′) ∈ Γ.

Let M̃ := (tf×N)×Mh. Let (B, β) ∈ Γ act on M̃ by sending ((Z, ζ), x) to
((Z ′, ζ ′), x′), where

Z ′ = Z +B − βlX
l
f + bf(β, β)/2 + cf(β, ζ)/2, ζ ′ = ζ + β,

x′ = (ech(β,ζ)/2(τ−β)h) · x.(8.5)

This defines a proper and free action of Γ on M̃ , and the mapping

(8.6) Ã : ((Z, ζ), x) 7→ eZ · eLζ (x) : M̃ →M.

is a universal covering of M with the action of Γ on M̃ as the covering
group.

Let x ∈ Mh and let π1(M,x) be the fundamental group of M with
base point x. For any homotopy class [γ] of a closed loop γ based at x, let
ιx([γ]) be the element of Γ of which the action on M̃ is equal to the covering
transformation defined by γ. Let γj be the closed loop etZj ·x, 0 6 t 6 1,
and let δl be the closed loop based at x which consists of etL

εl (x), 0 6 t 6 1,
followed by e(1−t)Xl ·x, 0 6 t 6 1. Then the isomorphism ιx : π1(M,x) ∼→ Γ
is uniquely determined by the condition that ιx([γj ]) = (Zj , 0), 1 6 j 6 df,
and ιx([δl]) = (0, εl), 1 6 l 6 dN .

Proof. — Let y ∈ M . The surjectivity of the mapping A in (7.10), see
Proposition 7.2, implies that there exist t ∈ T , ζ ∈ N , x ∈ Mh, such
that y = t · eLζ (x). We have t = thtf with th ∈ Th and tf ∈ Tf, and
subsequently there exists Z ∈ tf such that tf = eZ . Because (th)M commutes
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with (tf)M ◦eLζ and leaves Mh invariant, it follows that y = Ã((Z, ζ), th ·x),
which proves that the mapping Ã is surjective.

Let Ã((Z, ζ), x) = Ã((Z ′, ζ ′), x′). The injectivity of the mapping α in
Proposition 7.2 implies that there exist (s,−β) ∈ H such that (eZ′

, ζ ′) =
(eZ , ζ)(s,−β)−1 and x′ = (sτ−β)·x. In view of (7.5) and (7.11), this implies
that β ∈ P , sτ−β ∈ Th, eZ′

= eZ s−1 ec(β,ζ)/2, ζ ′ = ζ+β, and x′ = s ·τ−β ·x.
In view of sf

−1 = (τ−β)f and (8.3) with ζ = −β, the Tf-part and the Th-part
of the equation for Z ′ mean that

Z ′ ∈ Z − βlX
l
f + bf(β, β)/2 + cf(β, ζ)/2 + (Tf)Z

and sh = ech(β,ζ)/2, respectively.
It follows that the fibers of Ã are the Γ-orbits, if we let (B, β) ∈ Γ act

on M̃ as in (8.5). Note that ζ ′ = ζ implies that β = 0, and then Z ′ = Z

implies that B = 0. Therefore the action of Γ on M̃ is free, which implies
that it is effective, in the sense that the mapping from Γ to the set of
diffeomorphisms of M̃ is injective.

There is a group structure on Γ for which the action of Γ is a group
action, a homomorphism from Γ to the group of diffeomorphisms of M̃ , if
and only if the composition of the actions of two elements of Γ is an action
of an element of Γ. The effectiveness of the action implies that if this is the
case, then the group structure on Γ for which this holds is unique.

If we let (B′, β′) act on (8.5), then we arrive at ((Z ′′, ζ ′′), x′′), in which

Z ′′ = Z +B − βlX
l
f + bf(β, β)/2 + cf(β, ζ)/2

+B′ − β′lX
l
f + bf(β′, β′)/2 + cf(β′, ζ + β)/2

= Z +B +B′ − bf(β, β′)

− (β + β′)lX
l
f + bf(β + β′, β + β′)/2 + cf(β + β′, ζ)/2,

ζ ′′ = ζ + (β + β′), and

x′′=ech(β′,ζ+β)/2 ·(τ−β′)h ·ech(β,ζ)/2 ·(τ−β)h ·x=ech(β+β′,ζ)/2 ·(τ−(β+β′))h ·x.

Here we have used that c(β′, β) = b(β′, β) − b(β, β′) in the equation for
Z ′′. Furthermore, in the equation for x′′ we have used (7.8) and the fact
that if β, β′ ∈ P , then c(β′, β) ∈ TZ, hence ch(β′, β) ∈ (Th)Z, and therefore
ech(β′,β) = 1. This proves that Γ is a group with respect to the multi-
plication defined by (8.4), and that (8.5) defines a group action of Γ on
M̃ .

Because the action of Γ on M̃ is obviously proper and free, we conclude
that Ã is a covering with covering group equal to the action of Γ. Because
M̃ is simply connected as the Cartesian product of a vector space and the
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simply connected Delzant manifold Mh, see Lemma 6.4, M̃ is a universal
covering of M .

It follows from general facts about universal coverings, see for instance
Greenberg [19, Sec. 5], that ιx is an isomorphism from π1(M,x) onto Γ.
Finally Ã maps the curve ((tZj , 0), x), 0 6 t 6 1, which runs from ((0, 0), x)
to ((Zj , 0), x), to γj . Furthermore Ã maps the curve ((0, tεl), x), 0 6 t 6 1,
followed by the curve ((−tX l

f, 0), e−tXl
h ·x), 0 6 t 6 1, which runs from

((0, 0), x) to

((−X l
f, ε

l), e−Xl
h ·x) = (0, εl) · ((0, 0), x),

to δl. This shows that ιx([γj ]) = (Zj , 0) and ιx([δl]) = (0, εl). Because the
elements (Zj , 0), 1 6 j 6 df, and (0, εl), 1 6 l 6 dN , together generate Γ,
this proves the last statement in the proposition. �

Viewing tf as an additive group, the connected commutative Lie group
U := tf×Th acts on M̃ , where (Z ′, t) ∈ U sends ((Z, ζ), x) to ((Z+Z ′, ζ), t ·
x). The covering map Ã : M̃ →M intertwines the U -action on M̃ with the
T -action on M via the covering homomorphism ε : (Z ′, t) 7→ eZ′

t : U → T ,
in the sense that Ã(u · p) = ε(u) · Ã(p) for every p ∈ M̃ and u ∈ U .

Corollary 8.3. — The fundamental group of M is isomorphic to the
set (Tf)Z × P , with the group structure defined by (8.4). This group is
commutative if and only if c(P × P ) ⊂ (Th)Z.

The first homology group H1(M,Z) of M with coefficients in Z is iso-
morphic to ((Tf)Z/Θ) × P , in which Θ denotes the additive subgroup of
(Tf)Z which is generated by the elements cf(β, β′), such that β, β′ ∈ P . The
first Betti number dim H1(M,R) is equal to dimM − 2 dimTh − rank Θ.

Proof. — A straightforward computation shows that (B, β)−1 = (−B −
b(β, β)f,−β), that

(B, β)−1(B′, β′)(B, β) = (B′ + cf(β′, β), β′),

and that the commutator (B′, β′)−1(B, β)−1(B′, β′)(B, β) is equal to (cf(β′,
β), 0). Therefore the subgroup of Γ = (Tf)Z × P generated by the commu-
tators is equal to Θ× {0}, and Γ is commutative if and only if Θ = {0} if
and only if c(P × P ) ⊂ TZ ∩ th = (Th)Z.

The canonical homomorphism π1(M,x) → H1(M,Z) is surjective with
kernel equal to the subgroup of π1(M,x) generated by the commutators,
see Greenberg [19, Th. 12.1]. This induces an isomorphism from ((Tf)Z ×
P )/(Θ × {0}) = ((Tf)Z/Θ) × P onto H1(M,Z). Finally the universal co-
efficient theorem, cf. Greenberg [19, Th. 29.12] implies that for any prin-
cipal ideal domain R, in particular for R = R, H1(M,R) is isomorphic to
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H1(M,Z)⊗Z R. Therefore

dim H1(M,R) = df−rank Θ+dN = dimT−dimTh−rank Θ+dim l−dimTh,

which is equal to dimM − 2 dimTh − rank Θ in view of Lemma 2.3. �

It follows that the rank of Θ is a purely topological feature of M , disre-
garding both the T -action and the symplectic structure on M . Note that
the generators of Γ mentioned in Proposition 8.2 were defined in terms of
the action of Tf and the Lεl , where the latter were defined in terms of both
the T -action and the symplectic form on M .

Remark 8.4. — The symplectic form Ã∗σ on the universal covering M̃ =
tf×N×Mh is given by (7.14), in which a, δa, δ′a are replaced by ((Z, ζ), x),
((δZ, δζ), δx), ((δ′Z, δ′ζ), δ′x), respectively, with Z, δZ, δ′Z ∈ tf. We view
the linear form

µ(x)ch(·, ζ) : δζ 7→ µ(x)(ch(δζ, ζ))

on N := (l/th)∗ as an element of ((l/th)∗)∗ ' l/th ' l ∩ tf. Let Ψ : Ñ → Ñ

be defined by

Ψ : ((Z, ζ), x)=((Z+µ(x)ch(·, ζ)/2, ζ), x), ((Z, ζ), x) ∈ M̃=(tf×N)×Mh.

Then Ψ is a diffeomorphism from M̃ onto M̃ , and the symplectic form
ν := Ψ∗(Ã∗σ) on Ñ is given by

νa(δa, δ′a) = σt(δZ, δ′Z) + δζ(δ′Zl)− δ′ζ(δZl) + (σh)x(δx, δ′x).

That is, (M̃, ν) is equal to the Cartesian product of a symplectic vector
space (tf ×N,σtf×N ) and the Delzant manifold (Mh, σh). Here

σtf×N ((δZ, δζ), (δ′Z, δ′ζ)) = σt(δZ, δ′Z) + δζ(δ′Zl)− δ′ζ(δZl).

Because Ψ is (tf×Th)-equivariant, we have recovered Benoist [6, Cor. 6.16],
in which the “cocycle c” is equal to our σt.

9. The classification

9.1. Invariants

The model in Proposition 7.2, of a compact connected symplectic man-
ifold (M,σ) with an effective symplectic action of a torus T of which the
principal orbits are coisotropic submanifolds of (M,σ), has been described
in terms of the following ingredients.

Definition 9.1. — Let T be a given torus. A list of ingredients for T
consists of:
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1) An antisymmetric bilinear form σt on the Lie algebra t of T .
2) A subtorus Th of T , of which the Lie algebra th is contained in

l := kerσt.
3) A Delzant polytope ∆ in th

∗ with center of mass at the origin.
4) A discrete cocompact subgroup P of the additive subgroup N :=

(l/th)∗ of l∗.
5) An antisymmetric bilinear mapping c : N×N → l with the following

properties.
5a) For every ζ, ζ ′ ∈ P , the element c(ζ, ζ ′) ∈ l ⊂ t belongs to the

integral lattice TZ in t, the kernel of the exponential mapping
exp : t → T .

5b) For every ζ, ζ ′, ζ ′′ ∈ N we have that

ζ(c(ζ ′, ζ ′′)) + ζ ′(c(ζ ′′, ζ)) + ζ ′′(c(ζ, ζ ′)) = 0.

6) An element τ of the space T which has been defined in (7.19).

Remark 9.2. — Regarding the Delzant polytope ∆ in 3) in Defini-
tion 9.1, we have a corresponding Delzant manifold (Mh, σh), which is
a 2 dimTh-dimensional compact connected symplectic manifold, equipped
with an effective Hamiltonian Th-action on (Mh, σh), for which ∆ is equal
to the image of the momentum map.

In 5b), ζ ∈ N is viewed as a linear form on l which vanishes on th, so
ζ(c(ζ ′, ζ ′′)) is a real number.

The ingredient 6), the holonomy invariant, has been introduced in Sub-
section 7.5. As explained there, the space T to which it belongs can have
a non-Hausdorff quotient topology.

Definition 9.3. — Let M be a compact and connected smooth mani-
fold, σ a symplectic form on M , and T a torus acting effectively on (M,σ)
by means of symplectomorphisms and with coisotropic principal orbits. The
list of ingredients of (M,σ, T ), as in Definition 9.1, consists of:

i) σt(M,σ, T ) is the antisymmetric bilinear form σt on t as defined in
Lemma 2.1.

ii) Th(M,σ, T ) is the Hamiltonian torus Th, the unique maximal sta-
bilizer subgroup Th for the T -action on M , see Remark 3.12 and
Lemma 3.6.

iii) ∆(M,σ, T ) is the image ∆ = µ(M) of the momentum map µ : M →
th
∗ of the Th-action on (M,σ), which is Hamiltonian, cf. Corollary

3.11, where we eliminated the translational ambiguity by putting
the center of mass of ∆ at the origin. ∆ is a translate of the Delzant
polytope ∆p in Proposition 3.8.
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iv) P (M,σ, T ) is the period group P defined in Lemma 10.12 with
Q = M/T , V = l∗, and N = (l/th)∗, which according to Proposition
3.8 is a discrete cocompact additive subgroup of N .

v) c(M,σ, T ) is the antisymmetric bilinear mapping c : N × N → l

defined in Proposition 5.5.
vi) τ(M,σ, T ) is the holonomy invariant of (M,σ, T ), the element τ of

T defined in (7.20).

Note that all the ingredients in Definition 9.1 are defined only in terms of
the torus T .

Theorem 9.4. — Let T be a torus. The list of ingredients of (M,σ, T ) is
a complete set of invariants for the compact connected symplectic manifold
(M,σ) with effective symplectic T -action with coisotropic principal orbits,
in the following sense. If (M ′, σ′) is another compact connected symplectic
manifold with effective symplectic T -action with coisotropic principal or-
bits, then there exists a T -equivariant symplectomorphism Φ from (M,σ, T )
onto (M ′, σ′, T ) if and only if the list of ingredients of (M,σ, T ) is equal to
the list of ingredients of (M ′, σ′, T ).

Proof. — The property 5a) in Definition 9.1 follows from Remark 5.8,
and also from Lemma 7.1. Equation 5b) in Definition 9.1 is the equa-
tion (5.5).

Suppose that Φ is a T -equivariant symplectomorphism from (M,σ, T )
onto (M ′, σ′, T ). We will check that the ingredients of (M,σ, T ) and (M ′,

σ′, T ) are the same. In other words, the ingredients are invariants of the
symplectic T -spaces.

If X,Y ∈ t, then the T -equivariance of Φ implies that Φ∗XM ′ = XM

and Φ∗YM ′ = YM . In combination with σ = Φ∗σ′, this implies in view of
Lemma 2.1 that

σt(M,σ, T )(X,Y ) = σ(XM , YM ) = (Φ∗σ′)(Φ∗XM ′ ,Φ∗YM ′)

= Φ∗(σ′(XM ′ , YM ′)) = Φ∗(σt(M ′, σ′, T )(X,Y ))

= σt(M ′, σ′, T )(X,Y ),

where we have used in the last equation that σt(M ′, σ′, T )(X,Y ) is a
constant on M ′. This proves that σt(M,σ, T ) = σt(M ′, σ′, T ). The T -
equivariance of Φ implies that TΦ(x) = Tx for every x ∈ M , and therefore
Th(M ′, σ′, T ) = Th(M,σ, T ).

In combination with Φ∗σ′ = σ, the T -equivariance of Φ implies that the
l∗-valued closed basic one-form σ̂ defined in Lemma 3.1 is equal to Φ∗σ̂′.
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It follows that Φ induces an isomorphism of locally convex polyhedral l∗-
parallel spaces fromM/T ontoM ′/T . In view of Proposition 3.8 this implies
that P (M ′, σ′, T ) = P (M,σ, T ) and that ∆(M ′, σ′, T ) is a translate of
∆(M,σ, T ) in th

∗. Because both ∆(M ′, σ′, T ) and ∆(M,σ, T ) have their
center of mass at the origin, it follows that ∆(M ′, σ′, T ) = ∆(M,σ, T ).

The T -equivariant symplectomorphism Φ maps an admissible connection
as in Proposition 5.5 to an admissible connection as in Proposition 5.5 with
(M,σ, T ) replaced by (M ′, σ′, T ). It follows that c(M ′, σ′, T ) = c(M,σ, T )
in view of Remark 5.7 and τ(M ′, σ′, T ) = τ(M,σ, T ) in view of Subsec-
tion 7.5. This proves the “only if” part of the theorem.

For the “if” part, the completeness of the invariants, we observe that
the manifold Mmodel := G ×H Mh and the T -invariant symplectic form
σmodel on Mmodel, see Proposition 7.2 and Proposition 7.4, are defined in
terms of the ingredients 1) – 6) in Definition 9.1, and the elements τζ ,
ζ ∈ P . Let x ∈ M and choose an admissible connection for (M,σ, T )
as in Proposition 5.5. Then τ(M ′, σ′, T ) = τ(M,σ, T ) implies in view of
Subsection 7.5 that there exist x′ ∈ M ′ and a choice of an admissible
connection for (M ′, σ′, T ) as in Proposition 5.5, such that the holonomy
τ ′ζ(x

′), ζ ∈ P , defined by this connection and with the initial point x′, is
equal to τζ = τζ(x), ζ ∈ P . Therefore the model for (M ′, σ′, T ) in Proposi-
tion 7.2, with (M,σ, T ) replaced by (M ′, σ′, T ), can be chosen to be equal
to the model for (M,σ, T ) in Proposition 7.2. This implies the existence
of a T -equivariant symplectomorphism α′ from (Mmodel, σmodel, T ) onto
(M ′, σ′, T ), and it follows that Φ := α′ ◦α−1 is a T -equivariant symplecto-
morphism from (M,σ, T ) onto (M ′, σ′, T ). �

Remark 9.5. — Because ∆(M ′, σ′, T ) = ∆(M,σ, T ), the point x′ ∈M ′

in the last paragraph of the proof of Theorem 9.4 can be chosen such that
µ′(x′) = µ(x), where µ and µ′ denote the momentum maps of the Hamil-
tonian Th-actions on (M,σ) and (M ′, σ′), respectively. This implies that
there is a Th-equivariant symplectomorphism Φh from the Delzant subman-
ifold of (M,σ) through x onto the Delzant submanifold of (M ′, σ′) through
x′, which maps x to x′. Using Φh in order to identify both Delzant man-
ifolds with (Mh, σh, Th), under which identifications x and x′ are mapped
to the same point of Mh, we conclude that Φ(x) = x′, if Φ is the T -
equivariant symplectomorphism from (M,σ, T ) to (M ′, σ′, T ), described in
the last paragraph of the proof of Theorem 9.4.

Let Aut(M,σ, T ) denote the automorphism group of (M,σ, T ), the set
of all T -equivariant symplectomorphisms from (M,σ, T ) to (M,σ, T ). Each
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Φ ∈ Aut(M,σ, T ) induces a transformation ΦM/T of M/T , which is an iso-
morphism of l∗-parallel spaces, and therefore of the form p 7→ p+ ν(Φ) for
a unique element ν(Φ) ∈ N/P . The mapping ν : Φ 7→ ν(Φ) is a homomor-
phism from the group Aut(M,σ, T ) to the torus N/P . Using the previous
paragraph with M ′ = M and σ′ = σ and using Subsection 7.5, it can be
proved that ν(Aut(M,σ, T )) is equal to the set of ζ ′+P ∈ N/P , for which
there exists an α ∈ Sym such that ec(ζ,ζ′) = eαζ for all ζ ∈ P , where it is
sufficient to satisfy these equations for all ζ in a Z-basis of P .

Using this one can prove that ν(Aut(M,σ, T )) is a Lie subgroup of N/P
with Lie algebra equal to c0, the space of all elements of N which are
equal to zero on the span of c(N × N). Actually, Lζ is an inifinitesimal
symplectomorphism if and only if ζ ∈ c0. In general ν(Aut(M,σ, T )) need
not be a closed subgroup of the torus N/P , and it neither needs to be
connected, but it has countably many connected components.

The kernel of the homomorphism ν from Aut(M,σ, T ) to N/P consists
of the group
AutT (M,σ, T ) of all T -equivariant symplectomorphisms Φ : (M,σ, T ) →

(M,σ, T ) which preserve all the T -orbits. This group can be analyzed start-
ing from Remark 4.3.

9.2. Existence

The following existence theorem completes the classification.

Theorem 9.6. — Every list of ingredients as in Definition 9.1 is equal
to the list of invariants of a compact connected symplectic manifold (M,σ)
with effective symplectic T -action with coisotropic principal orbits as in
Theorem 9.4.

Proof. — A straightforward verification shows that, for any antisymmet-
ric bilinear mapping c : N ×N → l, (7.1) turns g := t×N into a two-step
nilpotent Lie algebra, and that (7.5) defines a product in G := T ×N for
which G is a Lie group with g as its Lie algebra.

Choose an element τ ∈ Homc(P, T ) such that τ = (expA) · τ , see (7.19).
Because the τζ , ζ ∈ P , satisfy (7.18), it follows that (7.11) defines a closed
Lie subgroup H of G, and that (7.12) defines a smooth action of H on
the Delzant manifold Mh. Here we have used a choice of a complementary
torus Tf to Th, which will be kept fixed in the remainder of the proof.

Because H is a closed Lie subgroup of G, its right action on G is proper
and free, and therefore the action of H on G×Mh, for which h ∈ H sends
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(g, x) to (gh−1, h · x), is proper and free. The orbit space M := G ×H

Mh has a unique structure of a smooth manifold such that the canonical
projection πM : G×Mh →M is a principal H-bundle. Because G and Mh

are connected, M is connected as the image of the connected set G ×Mh

under the continuous mapping πM . The projection (g, x) 7→ g induces a
G-equivariant smooth fibration ψ : M → G/H with fiber Mh, the fiber
bundle induced from the principal fiber bundle G → G/H by means of
the action of H on Mh. See [15, Sec. 2.4]. Because P is cocompact in N ,
the base space G/H is compact, and because the fiber Mh is a compact
Delzant manifold, it follows that M is compact.

On G × Mh we define the smooth two-form ω by (7.14). (Note that
we cannot use the equation ω = A∗σ here, because we do not have the
symplectic form σ on the manifold M yet, we are in the process of defining
it.) In (7.14) we have used a choice of a linear projection X 7→ Xl from t

onto l, which will be kept fixed in the remainder of the proof.
We first verify that ω is closed. The part

σt(δt, δ′t) + δζ((δ′t)l)− δ′ζ((δt)l)

of (7.14) is closed, because it is defined by a constant two-form on T ×N .
For the part

ϕζ(δζ, δ′ζ) := δζ(c(δ′ζ, ζ)/2)− δ′ζ(c(δζ, ζ)/2)

of (7.14), it follows from (5.7) that (dϕ)(δζ, δ′ζ, δ′′ζ) is equal to the cyclic
sum over δζ, δ′ζ, δ′′ζ of δ′ζ(c(δ′′ζ, δζ)/2)− δ′′ζ(c(δ′ζ, δζ)/2), which is equal
to zero because of 5b) in Definition 9.1.

If Ah : (t, x) 7→ t · x : Th ×Mh → Mh denotes the action of Th on Mh,
then the part

(σh)x(δx, (δ′th)M (x))− (σh)x(δ′x, (δ′th)M (x)) + (σh)x(δx, δ′x)

of (7.14) is equal to the pull-back of Ah
∗σh by means of the mapping

p : ((t, ζ), x) 7→ (th, x) : (T ×N)×Mh → Th ×Mh.

This part of (7.14) is closed, because d(p∗(Ah
∗σh)) = p∗(d(Ah

∗σh)) =
p∗(Ah

∗(dσh)) = 0.
The remaining part of (7.14) is

− µ(x)(ch(δζ, δ′ζ)) + (σh)x(δx, ch(δ′ζ, ζ)Mh(x))/2

− (σh)x(δ′x, ch(δζ, ζ)Mh(x))/2.

Because the action of Th on Mh is Hamiltonian with momentum mapping µ,
we have for every Y ∈ th that (σh)x(δx, YMh(x)) is equal to the derivative
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of x 7→ µ(x)(Y ) in the direction of δx. If we apply this to Y = ch(δ′ζ, ζ)/2,
then we obtain that the remaining part of (7.14) is equal to dγ, in which
the one-form γ is defined by

γ((t,ζ),x)((δγ, δζ), δx) = µ(x)(ch(δζ, ζ))/2.

Because d(dγ) = 0, this completes the proof that dω = 0.
The element (b, β)∈H sends ((t, ζ), x) to ((t̃, ζ̃), x̃) with t̃= tb−1 ec(ζ,β)/2,

ζ̃ = ζ − β, and x̃ = (bτβ)h · x. Therefore the tangent map of the action of
(b, β) sends ((δt, δζ), δx) to ((δ̃t, δ̃ζ), δ̃x) with δ̃t = δt+ c(δζ, β)/2, δ̃ζ = δζ,
and δ̃x = Tx((bτβ)h)Mhδx. Because δt + c(δζ, ζ)/2 = δ̃t + c(δ̃ζ, ζ̃)/2, and
because ((bτβ)h)Mh is a symplectomorphism on Mh which leaves µ and
infinitesimal Th-actions invariant, it follows that the two-form ω defined by
(7.14) is H-invariant.

The condition that ωa(δa, δ′a) = 0 for every δ′a ∈ Ta(G×Mh) is equiv-
alent to δζ = 0 (take δ′ζ = 0, δ′x = 0, and let δ′t range over l ∩ tf), δt ∈ l

(take δ′ζ = 0, δ′x = 0, and let δ′t range over tf, where we use that we
already have δζ = 0), δx+(δth)Mh(x) = 0 (take in the remaining equation
(7.14) δ′ζ = 0, δ′t = 0 and let δ′x range over TxMh), and finally δt ∈ th,
because the fact that the Th-orbits in Mh are isotropic now implies that
−δ′ζ(δt) = 0 for all δ′ζ ∈ (l/th)∗. It follows that the kernel of ωa is equal
to Ta(H · a) = ker(TaπM ).

The conclusion is that ω is a basic two-form for the action ofH onG×Mh,
which implies that there is a unique smooth two-form σ on M = G×H Mh

such that ω = πM
∗σ. Because πM

∗(dσ) = d(πM
∗σ) = dω = 0 and at

every point the tangent mapping of πM is surjective, we have that dσ = 0.
Furthermore σ is nondegenerate at every point, because the kernel of ω is
equal to the kernel of the tangent mapping of πM at every point. Therefore
σ is a symplectic form on M .

On G × Mh we have the action of s ∈ T which sends ((t, ζ), x) to
((st, ζ), x). This action clearly leaves ω invariant, and it follows that the
induced action of T on M := G×HMh leaves σ invariant. The tangent vec-
tors to the orbits in G×Mh are the ((δs, 0), 0), δs ∈ t, and if we substitute
these as δ′a in (7.14) then we obtain

σt(δt, δs) + δζ((δs)l) + (σh)x(δx, (δsh)Mh(x)).

Requiring that this is equal to zero for all δs ∈ t is equivalent to δζ = 0 (let
δs range over l ∩ tf), δt ∈ l (let δs range over tf and use that δζ = 0) and
δx is symplectically orthogonal to Tx(Th · x). If x ∈ (Mh)reg, then the last
condition implies that δx = YMh(x) for a unique Y ∈ th. This shows that
the principal orbits of the T -action are coisotropic submanifolds of (M,σ).
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We now verify that the invariants of the compact connected symplectic
manifold (M,σ) with symplectic T -action with coisotropic principal orbits
are the ingredients in Definition 9.1 we started out with.

If we substitute δζ = δ′ζ = 0 and δx = δ′x = 0 in (7.14), then we get
σt(δt, δ′t), which shows that the pull-back of σ to the T -orbits is given
by σt.

If s ∈ T and ((t, ζ), x) are such that

((st, ζ), x) = (b, β) · ((t, ζ), x) = ((tb−1 ec(ζ,β)/2, ζ − β), (bτβ)h · x)

for some (b, β) ∈ H, then β = 0, b = s−1, and x = sh
−1 · x. Because

(b, 0) ∈ H implies that (s−1)f = bf = 1, it follows that s ∈ Th and s ·x = x.
This shows that Th(M,σ, T ), the maximal stabilizer subgroup of the T -
action on M , see Remark 3.12, is equal to Th.

The action of the subtorus Th of T on M = G×H Mh is induced by the
action of Th on the second factor Mh of G×Mh. It follows that the action
of Th on M is Hamiltonian with image of the momentum mapping equal to
a translate of ∆. This proves that ∆(M,σ, T ) is equal to a translate of ∆,
and therefore equal to ∆ if we add a suitable constant to the momentum
mapping.

Because M/T = ((T ×N)×H Mh)/T ' (N/P )× (Mh/Th) ' (N/P )×∆,
we have that P (M,σ, T ) = P .

For each ζ ∈ N , the infinitesimal action of (0, ζ) ∈ g on M defines a
smooth vector field Lζ on M . If the vector fields Lh,η on Mh are lifts of
η ∈ C ' th

∗ ' (l/l ∩ tf)∗ as in Proposition 5.5 with (M,σ, T ) replaced by
(Mh, σh, Th), then the vector field ((0, 0), Lh,η) is intertwined by πM with
a unique vector field Lη on M , and the Lη, Lζ together form a collec-
tion of lifts of η, ζ as in Proposition 5.5, with c replaced by c(M,σ, T ) in
Proposition 5.5, iii). It now follows from (7.1) that c(M,σ, T ) = c.

Finally, if ζ ∈ P , then (τζ−1, ζ) ∈ H, and therefore

(0, ζ) ·H · ((0, 0), x) = H · ((0, ζ), x) = H · ((0, ζ)((τζ−1, ζ)−1, x)

= H · ((τζ , 0), x) = τζ ·H · ((0, 0, x),

which implies that τ(M,σ, T ) = τ . �

According to Theorem 9.4, the symplectic manifold (M,σ) is unique up
to T -equivariant symplectomorphisms. In particular the dimension of M is
determined in terms of the ingredients in Definition 9.1. Lemma 2.3 implies
that dimM = dimT + dim l.

In the language of categories, see MacLane [35], Theorem 9.4 and The-
orem 9.6 can be summarized as follows.
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Corollary 9.7. — Let T be a torus. Let M denote the category of
which the objects are the compact connected symplectic manifolds (M,σ)
together with an effective symplectic T -action on (M,σ) with coisotropic
principal orbits, and the morphisms are the T -equivariant symplectomor-
phisms. Let I denote the set of all lists of invariants as in Definition 9.1,
viewed as a category with only the identities as morphisms.

Then the assignment ι in Definition 9.3 defines a full functor of categories
from M onto I. Furthermore, the proper class M/∼ of isomorphism classes
in M is a set, and the functor ι : M→ I induces a bĳective mapping ι/∼
from M/∼ onto I.

Proof. — It follows from Theorem 9.4 that ι : M→ I is a functor, which
moreover induces an injective mapping from M/∼ to I. The surjectivity
of ι, hence of ι/∼, follows from Theorem 9.6. �

Remark 9.8. — Let Tf be a complementary torus to Th in T . If M is
T -equivariantly diffeomorphic to Mf ×Mh, in which Th acts only on Mh

with isolated fixed points, and Tf acts freely on Mf, then c(N×N) ⊂ tf. See
Proposition 8.1. Conversely, if this condition is satisfied, then Lemma 7.5
implies the stronger statement that (M,σ, T ) is T -equivariantly symplec-
tomorphic to the Cartesian product of a symplectic manifold (Mf, σf, Tf)
with a free symplectic Tf-action and a Delzant manifold (Mh, σh, Th).

Let c in 5) in Definition 9.1 be such that c(ζ, ζ ′) /∈ tf for some ζ, ζ ′ ∈ N . If
(M,σ, T ) is as in Theorem 9.6, then M is not T -equivariantly diffeomorphic
to Mf ×Mh, in which Tf acts freely on Mf and Th acts only on Mh and
with isolated fixed points. Therefore such (M,σ, T ) are counterexamples
to Benoist [6, Th. 6.6], if in [6, Th. 6.6] the word “isomorphic” implies
“equivariantly diffeomorphic”.

There exists c in 5) in Definition 9.1, such that for every choice of a
complementary torus Tf to Th in T we have c(ζ, ζ ′) /∈ tf for some ζ, ζ ′ ∈ N .
For instance, if dimN > 2 and Th 6= {1}, then there exists a nonzero
antisymmetric bilinear mapping c from N × N to th, which maps P × P

into the integral lattice (Th)Z in the Lie algebra th of Th. Such a c satisfies
5b) because every ζ ∈ N is a linear form on l which vanishes on th, and
it satisfies 5a) by assumption. On the other hand c(ζ, ζ ′) /∈ tf as soon as
c(ζ, ζ ′) 6= 0.

Remark 9.9. — Let Th = {1} and σt = 0, that is, the action of T is free,
dimM = 2 dimT , and the orbits are Lagrangian submanifolds of (M,σ).
In this case the admissible connections are just the smooth T -invariant
infinitesimal connections for the principal T -bundle π : M → M/T '
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t∗/P over the torus t∗/P , as in Remark 5.7. The first step in the proof of
Proposition 5.5 consists of the construction of an infinitesimal connection
for the principal T -bundle M over the torus t∗/P , of which the curvature
form is a constant two-form on the torus t∗/P . In this construction the
symplectic form did not enter, and the principal T -bundle M over t∗/P

can be constructed from the ingredients 4), 5), 6), in which condition 5a)
is kept, but condition 5b) is dropped.

However, if one has a T -invariant symplectic form σ on M for which the
T -orbits are Lagrangian, then (5.5), that is 5b), holds. In combination with
Theorem 9.6, we conclude that this principal T -bundle M over t∗/P admits
a T -invariant symplectic form for which the T -orbits are Lagrangian, if and
only if 5b) holds. This interpretation of condition 5b) was suggested to us
by Yael Karshon.

If dimN > 3, then there exist antisymmetric bilinear mappings c : t∗ ×
t∗ → t for which 5b) does not hold, and it follows that the principal T -
bundle over t∗/P defined by g does not admit a T -invariant symplectic
form for which the T -orbits are Lagrangian.

Remark 9.10. — A slightly different approach to the classification would
be to allow morphisms (Φ, ι) : (M,σ, T ) → (M ′, σ′, T ′), in which Φ is a
symplectomorphism from (M,T ) onto (M ′, σ′), ι is an isomorphism of Lie
groups from T onto T ′, and Φ intertwines the T -action on M with the
T ′-action on M ′ in the sense that Φ(t ·x) = ι(t) ·Φ(x) for every x ∈M and
t ∈ T .

The isomorphisms between tori are classified by the choices of Z-bases
in the integral lattices. For instance if we fix a Z-basis e′i, 1 6 i 6 d :=
dimT ′ = dimT , of T ′Z, then the mapping which assigns to a Z-basis ei,
1 6 i 6 d, of TZ the isomorphism ι : T → T ′ such that the tangent mapping
of ι at the identity element maps ei to e′i, is a bĳective mapping from the set
of Z-bases of TZ onto the set of isomorphisms from T onto T ′. In turn the
set of Z-bases in TZ is in bĳective correspondence with the group GL(d,Z)
of all d×d-matrices with integral coefficients and determinant equal to ±1.

This can be applied in particular to T ′ = Rd/Zd, with e′i, 1 6 i 6 d, equal
to the standard basis of Rd. If we also choose a Z-basis εl, 1 6 l 6 dimN ,
in P , then the ingredients 1) – 6) in Definition 9.1 are determined by their
coefficients with respect to these bases. Furthermore the groups G and H

are identified with Rd/Zd × RdN and Rdh/Zdh × ZdN , respectively. This
would lead to a presentation of the model in coordinates, except for the
Delzant manifold (Mh, σh, Th). Such a model looks even more explicit than
the one in Proposition 7.2.
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The disadvantage of this approach is that the invariants are given by
coefficient matrices, which are determined uniquely only up to the action
on these matrices of the changes of Z-bases. Also the notations become
quite a bit heavier if we write out our objects in coordinates.

10. V -parallel spaces

In this section we define the notion of a V -parallel space, and prove that
every straight line complete, connected and locally convex V -parallel space
is isomorphic to the Cartesian product of a closed convex subset of a vector
space and a torus.

Definition 10.1. — Let V be an n-dimensional vector space. A V -
parallel space is a Hausdorff topological space Q, together with an open
covering Qα, α ∈ A, of Q and homeomorphisms ϕα from Qα onto subsets
Vα of V such that, for every α, β ∈ A for which Qα ∩Qβ 6= ∅, the mapping

(10.1) x 7→ ϕα(x)− ϕβ(x) : Qα ∩Qβ → V

is locally constant. A subset U of Q is a V -parallel space with the ϕα

replaced by their restrictions to U ∩Qα. If W is another vector space and
R is another W -parallel space, then Q×R is a V ×W -parallel space in an
obvious way.

The V -parallel space Q is called locally convex if the Vα are convex
subsets of V . The locally convex V -parallel space Q is called locally convex
polyhedral if for every α ∈ A there is a convex open subset V ′α of V and
there are finitely many linear forms v∗α,i 1 6 i 6 m, on V , such that

(10.2) Vα = {v ∈ V ′α | v∗α,j(v) > 0 for every 1 6 j 6 m}.

Remark 10.2. — If we have (10.2) with linearly independent linear forms
v∗α,j , and (10.1) is replaced to the weaker condition that for every α, β ∈ A
the mapping ϕα ◦ ϕ−1

β is a diffeomorphism, then Q is a “manifold with
corners” as defined for instance in Mather [37, §1]. If the Vα are open
subsets of V and (10.1) is relaxed to the condition that for every α, β ∈
A the mapping ϕα ◦ ϕ−1

β is locally an affine linear transformation, the
composition of a linear mapping and a translation, then Q is a “manifold
with affine covering” as in Auslander and Markus [4, p. 141] or a “locally
affine manifold” as in Auslander [3].

If on the other hand we have (10.1) and (10.2) with Vα = V for all α ∈ A,
then Q is called an “affine space modelled over V ” in geometry. In order
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to avoid confusion about the interpretation of the term “affine”, we have
replaced the term “affine” by “parallel”, where the latter word reminds of
a parallelism, which is defined as a global frame in the tangent bundle, or
equivalently a trivialization of the tangent bundle.

Definition 10.3. — Let V and W be finite-dimensional vector spaces,
Q and R a locally convex V -parallel and W -parallel spaces with charts ϕα,
α ∈ A and ψβ , β ∈ B, respectively. If L is a linear mapping from W to
V , then an L-map from R to Q is a continuous map f : R → Q such that
for each β ∈ B and α ∈ A and each subset U of Rβ ∩ f−1(Qα) such that
ψβ(U) is a convex subset of W , we have that

(10.3) ϕα(f(p))− ϕα(f(q)) = L(ψβ(p)− ψβ(q)) for all p, q ∈ U.

With such maps as morphisms, the locally convex parallel spaces form a
category. In particular two locally convex parallel spaces are called isomor-
phic if there exists an L-map from the first one to the second one, which
is a homeomorphism and for which the linear mapping L is bĳective.

If R = I is an interval in R, and L : R → V a linear mapping determined
by the vector L(1) = v, then an L-map γ : I → Q is called a motion in
Q with constant velocity v. In this situation the equation (10.3) takes the
form

(10.4) ϕα(γ(t)) = ϕα(γ(s)) + (t− s)v

for all s, t in any interval J ⊂ I such that ϕα(J) ⊂ Qα.

Definition 10.4. — Let Q be a locally convex V -parallel space. Q will
be called straight line complete if, for any motion γ : I → Q in Q with
constant velocity v defined on a non-empty interval I with b := sup I <∞,
there exists a point q ∈ Q such that γ(t) converges to q in Q as t ↑ b.

Note that if C is a convex subset of a finite-dimensional vector space V ,
then the V -parallel space C is straight line complete if and only if C is
a closed subset of V . Proof: if C is not empty, then the relative interior
relint(C) of C is not empty, and for every c ∈ relint(C) and d in the closure
of C in V we have that c+ t(d− c) ∈ relint(C) for every 0 6 t < 1. See [49,
Th. 6.2 and Th. 6.1].

Our goal is to prove that every straight line complete, connected and
locally convex V -parallel space is isomorphic to the product of a closed
convex subset of a vector space and a torus. See Theorem 10.13 below for
the precise statement. We begin the proof with a sequence of lemmas.

Lemma 10.5. — Let Q be a locally convex V -parallel space, as in Def-
inition 10.1, and let v ∈ V . If γ : I → Q and δ : J → Q are motions
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in Q with constant velocity v, and γ(s) = δ(s) for some s ∈ I ∩ J , then
γ(t) = δ(t) for all t ∈ I ∩ J .

Proof. — Let K = {t ∈ I ∩ J | γ(t) = δ(t)}. Then K is a closed subset
of I ∩ J , because γ and δ are continuous.

Suppose s ∈ K. Because the Qα, α ∈ A, form a covering of Q, there
exists an α ∈ A such that γ(s) = δ(s) ∈ Qα. Because Qα is open in Q and
γ and δ are continuous, H := γ−1(Qα)∩ δ−1(Qα) is an open neighborhood
of s in I ∩ J . For every t ∈ H we have

ϕα(γ(t)) = ϕα(γ(s)) + (t− s)v = ϕα(δ(s)) + (t− s)v = ϕα(δ(t)),

hence γ(t) = δ(t) because ϕα is injective. Therefore H ⊂ K, and we have
proved that K is also an open subset of I ∩ J . Because I ∩ J is connected,
it follows that K = ∅ or K = I ∩ J . �

Corollary 10.6. — Let Q be a locally convex V -parallel space, q ∈ Q,
and let γ : I → Q be a motion in Q with constant velocity v, such that
b := sup I <∞ and there exists a sequence tj such that tj ↑ b and γ(tj) → q

as j →∞. Then γ(t) → q as t ↑ b.
In particular it follows that if Q is compact, then Q is straight line

complete.

Proof. — There exists α ∈ A such that q ∈ Qα, and an index i such that
γ(tj) ∈ Qα for all j > i. It then follows from (10.4) that

ϕα(γ(tj)) = ϕα(γ(ti)) + (tj − ti)v.

Taking the limit for j →∞, we obtain that ϕα(q) = ϕα(γ(ti)) + (b− ti)v.
In view of the convexity of Vα we have that ε(t) := ϕα(γ(t))+(t−ti)v ∈ Vα

for all t ∈ [ti, b]. The curve δ := ϕα
−1 ◦ ε is a motion with constant velocity

v in Q such that δ(ti) = γ(ti), and it follows from Lemma 10.5 that δ = γ

on [ti, b[. Because δ is continuous on [ti, b] and δ(b) = q, the conclusion is
that γ(t) → q as t ↑ b. �

Let s ∈ R and p ∈ Q. Let Γv
s,p denote the set of all motions γ in Q

with constant velocity v, which are defined on an interval Iγ in R such that
s ∈ Iγ and γ(s) = p. Then it follows from Lemma 10.5 that the γ ∈ Γv

s,p

have a common extension γv
s,p to the union Iv

s,p of all the intervals Iγ ,
γ ∈ Γv

s,p. Iv
s,p is an interval in R and γv

s,p : Iv
s,p → Q is a motion in Q with

constant velocity v, the unique maximal motion γ : I → Q with constant
velocity v such that s ∈ I and γ(s) = p.

Definition 10.7. — D is the set of all (v, p) ∈ V ×Q such that 1 ∈ Iv
0,p.

We write p+ v = γv
0,p(1) when (v, p) ∈ D. Note that p+ v ∈ Q when p ∈ Q
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and v ∈ V , whereas v + w ∈ V when v, w ∈ V . For every p ∈ Q we write
Dp = {v ∈ V | (v, p) ∈ D}.

Lemma 10.8. — Assume that the locally convex V -parallel space Q is
straight line complete, see Definition 10.1 and Definition 10.4. Then, insofar
as defined, the mapping (v, p) 7→ p + v is an action of the additive group
(V,+) on Q, in the following sense.

i) For every p ∈ Q we have (0, p) ∈ D and p+ 0 = p.
ii) If (v, p) ∈ D then (−v, p+ v) ∈ D and (p+ v) + (−v) = p.
iii) If (v1, p) ∈ D and (v2, p + v1) ∈ D, then (v1 + v2, p) ∈ D and

(p+ v1) + v2 = p+ (v1 + v2).

Proof. — The statements i) and ii) follow immediately from the defini-
tions. Our proof of iii) is surprisingly long.

In order to prove iii), assume that (v1, p) ∈ D and (v2, p+ v1) ∈ D.
Let L be the linear mapping from R2 to V which sends e1 = (1, 0) to v1

and e2 = (0, 1) to v2. For any s1, s2 ∈ R, let C(s1, s2) denote the convex
hull of (s1, 0), (1, 0), and (1, s2) in R2, which is a solid triangle.

Let I denote the set of all s1 ∈ [0, 1] for which there exists 0 < s2 6 1
and an L-map f : C(s1, s2) → Q such that f(s1, 0) = p+ s1v1. Note that if
s1 ∈ I, then [s1, 1] ⊂ I. Note also that for every (t1, t2), (t′1, t

′
2) ∈ C(s1, s2),

[0, 1] 3 u 7→ f(t1 + u(t′1 − t1), t2 + u(t′2 − t2))

is a motion in Q with constant velocity L(t′1 − t1, t
′
2 − t2) = (t′1 − t1)v1 +

(t′2 − t2)v2, hence ((t′1 − t1)v1 + (t′2 − t2)v2, f(t1, t2)) ∈ D and

f(t′1, t
′
2) = f(t1, t2) + ((t′1 − t1)v1 + (t′2 − t2)v2).

If we apply this with (t1, t2) = (s1, 0), then we see that f is uniquely
determined by the formula

(10.5) f(t1, t2) = (p+ s1v1) + ((t1 − s1)v1 + t2v2),

where ((t1−s1)v1+t2v2, p+s1v) ∈ D for every for every (t1, t2) ∈ C(s1, s2),
which in turn implies that

(p+ s1v1) + ((t′1 − s1)v1 + t′2v2) = ((p+ s1v1) + ((t1 − s1)v1 + t2v2))

+ ((t′1 − t1)v1 + (t′2 − t2)v2),(10.6)

where ((t1 − s1)v1 + t2v2, p+ s1v), ((t′1 − s1)v1 + t′2v2, p+ s1v) and ((t′1 −
t1)v1 +(t′2− t2)v2, (p+ s1v1)+ ((t1− s1)v1 + t2v2) all belong to D for every
(t1, t2), (t′1, t

′
2) ∈ C(s1, s2).

Let i1 denote the infimum of I, which implies that ]i1, 1] ⊂ I. We will
show that this implies that i1 ∈ I, which means that I = [i1, 1]. Because
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trivially 1 ∈ I, we may assume that 0 6 i1 < 1. Because (i1v1, p) ∈ D,
there exists an α ∈ A such that p + i1v1 ∈ Qα. Because the mapping
t 7→ p + tv is continuous from Iv1

0,p to Q, there exists an s1 ∈ ]i1, 1] ⊂ I

such that p + s1v1 ∈ Qα. Because s1 ∈ I, there exists 0 < s2 6 1 and an
L-map f : C(s1, s2) → Q such that f(s1, 0) = p+ s1v1. Note that for each
u ∈ [0, 1] we have

c(u) := (s1, 0) + u((1, s2)− (s1, 0)) ∈ C(s1, s2).

Because f is continuous, there exists 0 < u 6 1 such that f(c) ∈ Qα, if we
write c := c(u). Because p+ i1v1, p+ s1v1, and f(c) all belong to Qα, the
points ϕα(p + i1v1), ϕα(p + s1v1), and ϕα(f(c)) all belong to the convex
subset Vα of V , which implies that their convex hull Bα in V is contained in
Vα. Let B be the convex hull of (i1, 0), (s1, 0), and c in R2. The L-map from
B onto Bα which sends (s1, 0) to ϕα(p+ sv1), followed by ϕα

−1, defines an
L-map e from B to Q such that e(s1, 0) = p+ s1v1.

Because of the uniqueness of L-maps which map (s1, 0) to p + s1v1,
see (10.5), we have that e = f on B ∩ C(s1, s2), and therefore e and f

have a common extension g : B ∪ C(s1, s2) → Q. In order to prove that
g is an L-map, we observe that the property of being an L-map is local,
and because e and f are L-maps on the open subsets B \ C(s1, s2) and
C(s1, s2) \B of B and C(s1, s2), respectively, we have that g is an L-map
on (B \C(s1, s2)) ∪ (C(s1, s2) \B) = (B ∪C(s1, s2)) \ (B ∩C(s1, s2)). On
the other hand, if r ∈ B ∩ C(s1, s2), then there are neighborhoods B0 and
C0 of r in B and C(s1, s2), respectively, such that ϕα(e(p)) − ϕα(e(r)) =
L(p− r) when p ∈ B0 ∩ e−1(Qα) and ϕα(f(q))−ϕα(f(r)) = L(p− r) when
q ∈ C0 ∩ f−1(Qα). It follows that

ϕα(g(p))− ϕα(g(q)) = (ϕα(g(p))− ϕα(g(r))) + (ϕα(g(r))− ϕα(g(q)))

= (ϕα(e(p))− ϕα(e(r))) + (ϕα(f(r))− ϕα(f(q)))

= L(p− r) + L(r − q) = L(p− q),

which implies (10.3) with f replaced by g.
Let d be the intersection point of the straight line through (1, 0) and

(1, s2), and the straight line through (i1, 0) and c. A straightforward cal-
culation shows that d = (1, s′2), with

s′2 :=
u(s1 − i1) + u(1− s1)
s1 − i1 + u(1− s1)

s2 6 s2.

Because c is lying on the straight line between (i1, 0) and d, it follows
that the convex hull C(i1, s′2) of (i1, 0), (1, 0) and d is equal to to the union
of the convex hull B of (i1, 0), (s1, 0), c, and the convex hull F of the points
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(i1; 0) (s1; 0) (1; 0)
d


(0; 0)
Figure 10.1. The union of C(s1, s2) and C(i1, s′2).

(i1, 0), c, (1, 0), and d. Because the latter four points all lie in B∪C(s1, s2),
it follows that C(i1, s′2) ⊂ B ∪ C(s1, s2). Because the restriction of g to
S(i1, s′2) is an L-map such that g(s1, 0) = p+ s1v1, hence

g(i1, 0) = (p+ s1v1) + (i1 − s1)v1 = p+ i1v1

in view of (10.5) with f replaced by g, it follows that i1 ∈ I.
Now suppose that i1 > 0. With α ∈ A such that p + i1v1 ∈ Qα, there

exists 0 6 s1 < i1 such that p + s1v1 ∈ Qα. The same reasoning as above
with i1 and s1 interchanged, where we use that i1 ∈ I, leads to the conclu-
sion that s1 ∈ I, in contradiction with the definition i1 = inf I of i1. We
conclude that i1 = 0, or 0 ∈ I, which means that there exists 0 < s2 6 1
and an L-map f from C(0, s2) to Q such that f(0, 0) = p.

Define J as the set of all s2 ∈ [0, 1] for which there exists an L-map
f from C(0, s2) to Q such that f(0, 0) = p, and write s := supJ . The
uniqueness of the L-maps f from C(0, s2) to Q such that f(0, 0) = p, see
(10.5), where s2 ranges over J , implies that these L-maps have a common
extension to the union C over all s2 ∈ J of the triangles C(0, s2). We denote
this common extension to C also by f .

The closure of C in R2 is equal to C(0, s), and the (relative) interior
relint(C(0, s)) of C(0, s) is non-empty and contained in C. Choose c0 ∈
relint(C(0, s)) ⊂ C. For any c ∈ C(0, s) and 0 6 t < 1 we have that
c0 + t(c− c0) ∈ relint(C(0, s)) ⊂ C, and the straight line completeness of Q
implies that there exists a point q ∈ Q such that f(c0 + t(c − c0)) → q as
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t ↑ 1, see Definition 10.4. Because q = f(c) if c ∈ C, we may write q = f(c)
for any c ∈ C(0, s).

For any c ∈ C(0, s) there is an α ∈ A such that q = f(c) ∈ Qα. There
exists 0 6 T < 1 such that f(c0 + t(c − c0)) ∈ Qα for every T 6 t < 1,
hence

ϕα(f(c0 + t(c− c0))) = ϕα(f(c0 + T (c− c0))) + (t− T )L(c− c0)

for every T 6 t < 1. Because f is continuous on C, these conclusions will
still hold if c is replaced by c′ ∈ C(0, s) sufficiently close to c, and it follows
that f(c′) ∈ Qα and

ϕα(f(c′)) = ϕα(f(c0 + T (c′ − c0))) + (1− T )L(c′ − c0)

if c′ ∈ C(0, s) is sufficiently close to c. Again using that f is continuous on
C, this formula shows that the extension f : C(0, s) → Q of the L-map
f : C → Q to the closure C(0, s) of C is continuous, and therefore it is an
L-map. It follows that s ∈ J , or equivalently J = [0, s].

If s < 1 then the previous argument leading to i1 = 0, with v1 and v2
replaced by v1 + sv2 and (1 − s)v2, respectively, shows that there exists
s < s′ 6 1 and an L-map f ′ from the convex hull C ′ of (0, 0), (1, s), and
(1, s′) to Q, such that f ′(0, 0) = p. The uniqueness of L-maps which send
(0, 0) to p, see (10.5), yields that f ′ = f on C ′ ∩ C(0, s), which implies
that f and f ′ have a common extension f ′′ to C(0, s) ∪ C ′ = C. As in the
argument leading to i1 = 0, we have that f ′′ is an L-map, and because
f ′′(0, 0) = p it follows that s′ ∈ J , in contradiction with the definition
s = supJ of s.

We arrive at s = 1, or equivalently 1 ∈ J , which means that there is an
L-map f : C(0, 1) → Q such that f(0, 0) = p. Now (10.6) with (s1, s2) =
(0, 1), (t1, t2) = (1, 0) and (t′1, t

′
2) = (1, 1) implies that (v1 + v2, p) ∈ D and

p+(v1 + v2) = (p+ v1)+ v2. This completes the proof of the statement iii)
in the lemma. �

Lemma 10.9. — Let Q be a straight line complete and locally convex
V -parallel space. Let p ∈ Q, and let Dp be defined as in Definition 10.7.
Then Dp is a closed and convex subset of V , and the mapping v 7→ p + v

is a local homeomorphism from Dp onto an open subset of Q.

Proof. — Let v, w ∈ Dp, that is, (v, p) ∈ D and (w, p) ∈ D. It fol-
lows from ii) in Lemma 10.8 that (−v, p + v) ∈ D, and then from iii) in
Lemma 10.8 with v1, p and v2 replaced by −v, p + v and w, respectively,
that (w− v, p+ v) ∈ D and (p+ v) + (w− v) = p+ (v+ (w− v)) = p+w.
This implies in view of Definition 10.7 that for each t ∈ [0, 1] we have
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(t(w − v), p + v) ∈ D. Using Lemma 10.8 with v1 and v2 replaced by v

and t(w − v), respectively, we obtain that (v + t(w − v), p) ∈ D, that is,
v+ t(w−v) ∈ Dp for every t ∈ [0, 1]. This shows that Dp is a convex subset
of V .

Let v ∈ Dp, w ∈ V , and v+ tw ∈ Dp for all 0 6 t < 1. As in the previous
paragraph we obtain that (tw, p + v) ∈ D and γ : t 7→ p + (v + tw) =
(p+v)+tw is a motion with constant velocity w in Q. Because Q is straight
line complete, it follows that there exists q ∈ Q such that (p + v) + tw

converges to q as t ↑ 1. In other words γ has a continuous extension to
a curve γ : [0, 1] → Q, which again is a motion with contant velocity
w and satisfies γ(1) = q. According to Definition 10.7 this means that
(w, p+v) ∈ D, which in combination with (v, p) ∈ D and iii) in Lemma 10.8
with v1 and v2 replaced by v and w, respectively, implies that (v+w, p) ∈ D,
that is v +w ∈ Dp. This shows that the convex subset Dp of V is a closed
subset of V , see Definition 10.4.

We will now prove that the mapping v 7→ p + v is a homeomorphism
from a neighborhood of 0 in Dp onto a neighborhood of p in Q. There
exists α ∈ A such that Qα is a neighborhood of p in Q. We will first prove
that the translate Vα − ϕα(p) of Vα over the vector −ϕα(p) is contained
in Dp. Indeed, if v ∈ V , ϕα(p) + v ∈ Vα, then the convexity of Vα implies
that ϕα(p) + tv ∈ Vα for every t ∈ [0, 1]. The continuity of ϕα

−1 implies
that t 7→ ϕα

−1(ϕα(p) + tv) is a motion in Q which has constant velocity
v and is equal to p at t = 0, which shows that (v, p) ∈ D. Note that in
passing we have proved that ϕα(p+ tv) = ϕα(p) + tv for all 0 6 t 6 1, and
in particular ϕα(p+ v) = ϕα(p) + v

We next claim that Vα−ϕα(p) is a neighborhood of 0 in Dp. If this would
not be the case, then there is a sequence vj in Dp \ (Vα − ϕα(p)) which
converges to 0 in V as j →∞. Because Q is a Hausdorff space, there exists
an open neighborhood Qp of p in Q such that the closure Qp of Qp in Q

is contained in Qα. Let Ij be the set of all t ∈ I
vj

0,p such that t > 0 and
p+ tvj /∈ Qp, and write tj := inf Ij . Note that tj > 0. Because t 7→ p+ tvj

is continuous from I
vj

0,p to Q, and Q \Qp is closed in Q, we have that Ij is
a closed subset of Ivj

0,p, hence tj ∈ Ij , which implies that p+ tjvj /∈ Qp. On
the other hand we have for every 0 6 t < tj that p+ tvj ∈ Qp ⊂ Qα, hence
ϕα(p+tvj) = ϕα(p)+tvj ∈ Vα. Because vj /∈ Dp\(Vα−ϕα(p)), this cannot
happen for t = 1, which proves that tj 6 1. Because t 7→ p + tvj = γ

vj

0,p

is continuous and p + tvj ∈ Qp for every t < tj , we have that p + tjvj ∈
Qp ⊂ Qα, hence ϕα(p + tjvj) = ϕα(p) + tjvj → ϕα(p) in V , hence in Vα.
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Because ϕ−1
α is continuous, we conclude that p+ tjvj → p in Qα, hence in

Q, in contradiction with the fact that p+ tjvj /∈ Qp for every j.
Because ϕα(p+ v) = ϕα(p) + v for every v ∈ Vα − ϕα(p), the restriction

to the neighborhood Vα − ϕα(p) of 0 in Dp of the mapping v 7→ p + v is
equal to the continuous mapping v 7→ ϕα

−1(ϕα(p) + v), from Vα − ϕα(p)
onto the neighborhood Qα of p in Q, with inverse equal to the continuous
mapping q 7→ ϕα(q)− ϕα(p) from Qα onto Vα − ϕα(p).

Let v ∈ Dp. The first paragraph of the proof yielded that the translation
w 7→ w−v maps Dp onto Dp+v, and that p+w = (p+v)+(w−v) for every
w ∈ Dp. Because the mapping z 7→ (p + v) + z is a homeomorphism from
a neighborhood of 0 in Dp+v onto a neighborhood of p + v in Q, and the
translation w 7→ w− v is a homeomorphism from Dp onto Dp+v, it follows
that the map w 7→ p+w is a homeomorphism from a neighborhood of v in
Dp onto a neighborhood of p+ v in Q. �

Lemma 10.10. — Let Q be a straight line complete and locally convex
V -parallel space which in addition is connected. Then the action of V on
Q is transitive, in the sense that for any p, q ∈ Q there exists v ∈ V such
that (v, p) ∈ D and p+ v = q.

Proof. — We write p ∼ q if there exists a v ∈ V such that (v, p) ∈ D and
p+ v = q. It follows from Lemma 10.8 that ∼ is an equivalence relation in
Q. It follows from the last statement in Lemma 10.9 that the equivalence
classes are open subsets of Q. Because Q is connected, the equivalence
relation ∼ has only one equivalence class Q, which proves the transitivity
of the action. �

Lemma 10.11. — Let Q be a straight line complete, connected and
locally convex V -parallel space. For any v ∈ V , the following conditions
are equivalent.

a) There exists a p ∈ Q such that Iv
0,p = R.

b) For every p ∈ Q we have Iv
0,p = R.

Let N denote the set of all v ∈ V such that a) or b) holds. Then N is a
linear subspace of V , (N × Q) ⊂ D, and the restriction to N × Q of the
mapping (v, p) 7→ p+ v defines an action of the additive group N on Q.

Proof. — Assume that a) holds, which implies that tv ∈ Dp for every
t ∈ R. Let q ∈ Q. Because of the transitivity in Lemma 10.10, there exists
a w ∈ V such that w ∈ Dq and q + w = p. Because of iii) in Lemma 10.8
we have for every t ∈ R that w+ tv ∈ Dq, which in view of Definition 10.7
implies that s(w + tv) ∈ Dq for every 0 6 s 6 1. If for any t ∈ R and
0 < s 6 1 we replace t by t/s and take the limit for s ↓ 0, then we obtain
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in view of the closedness of Dq that tv ∈ Dq, which implies that t ∈ Iv
0,q.

Because this holds for every t ∈ R, it follows that Iv
0,q = R.

If v, w ∈ N then we have for every r, s ∈ R that rv, sw ∈ N . Moreover, we
have for every p ∈ Q that (rv, p) ∈ D, (sw, p+rv) ∈ D, hence (rv+sw, p) ∈
D in view of iii) in Lemma 10.8. If for any t ∈ R we replace r and s by tr
and ts, respectively, we obtain that Irv+sw

0,p = R, hence rv + sw ∈ N , and
we conclude that N is a linear subspace of V . Furthermore b) implies that
(v, p) ∈ D for every v ∈ N and p ∈ Q, and it follows from Lemma 10.8 that
the mapping (v, p) 7→ p+ v defines an action of N on Q. �

Lemma 10.12. — Let Q be a straight line complete and connected lo-
cally convex V -parallel space. For any v ∈ V , the following conditions are
equivalent.

i) There exists p ∈ Q such that (v, p) ∈ D and p+ v = p.
ii) For all p ∈ Q we have (v, p) ∈ D and p+ v = p.

Let P denote the set of all v ∈ V such that i) or ii) holds. Then P is a
discrete additive subgroup of the linear subspace N of V which is defined
in Lemma 10.11.

Proof. — Assume that i) holds. Lemma 10.10 implies that for any q ∈ Q
there exists u ∈ V such that q = p+ u, and therefore

q + v = (p+ u) + v = p+ (u+ v) = p+ (v + u) = (p+ v) + u = p+ u = q,

which proves ii).
If p + v = p, then it follows by induction on k that (kv, p) ∈ D and

p+ kv = p for every positive integer k, and using i), ii) in Lemma 10.8 we
obtain the same conclusions for all k ∈ Z. This implies that Z ⊂ Iv

0,p, which
in turn implies that Iv

0,p = R, because Iv
0,p is an interval in R. In view of

Lemma 10.11, we conclude that v ∈ N .
It follows that P is equal to the set of v ∈ N such that the action of

v on Q is trivial, and therefore P is an additive subgroup of N . The last
statement in Lemma 10.10 implies that P is a discrete subset of Dp, hence
of the closed subset N of Dp. �

Recall that if Q is a compact locally convex V -parallel space, then Q is
straight line complete, see Corollary 10.6.

Theorem 10.13. — Let Q be a straight line complete, connected and
locally convex V -parallel space. Let P be the period group in V defined in
Lemma 10.12. Denote by RP the R-linear span of P in V , where we note
that (RP )/P is a torus. Let C be a linear complement in V of the linear span
RP of P in V . Let p ∈ Q. Then there is a convex closed subset ∆p of C such
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that Dp = ∆p + RP . Furthermore the mapping Φp : (v, w) 7→ p+ (v + w)
defines an isomorphism of V -parallel spaces from ∆p × ((RP )/P ) onto
Q. The projection from Q onto the RP -orbit space Q/(RP ) induces an
isomorphism from ∆p, viewed as a C-parallel space, onto the V/(RP )-
parallel space Q/(RP ).

There is a collection of linear forms v∗i on V and real numbers ci, where
i runs over some index set I, such that Dp is equal to the set of all v ∈ V
such that v∗i (v) > ci for all i ∈ I. For every such collection λi, ci, the linear
subspace N of V defined in Lemma 10.11 is equal to the common kernel of
the linear forms v∗i , i ∈ I, on V .
Q is compact if and only if ∆p is compact, which implies that N = RP ,

and P is a cocompact discrete subgroup of the additive group N . If Q
is a compact connected locally convex polyhedral V -parallel space, then
∆p ' Q/(RP ) is a convex polytope in C ' V/(RP ).

Proof. — Let (v, p) ∈ D, (v′, p) ∈ D, and p + v = p + v′. It follows
from Lemma 10.8 that (−v′, p + v′) = (−v′, p + v) ∈ D, (v − v′, p) =
(v+(−v′), p) ∈ D and p+(v− v′) = (p+ v)+ (−v′) = (p+ v′)+ (−v′) = p,
which in view of Lemma 10.12 implies that v − v′ ∈ P ⊂ N .

Define ∆p := Dp ∩C. In view of Lemma 10.9, ∆p is a closed and convex
subset of C. The fact that the additive group N acts on Q, cf. Lemma 10.12,
and hence its subgroup RP acts on Q, implies that Dp = ∆p + RP .

Because v, v′ ∈ Dp and p + v = p + v′ imply that v − v′ ∈ P , and
C is complementary to RP , the mapping Φp : ∆p × ((RP )/P ) → Q is
injective. On the other hand Lemma 10.10 implies that Φp is a surjective
local homeomorphism. Because Φp is an L-map with L : C × (RP ) → V :
(w, z) 7→ w+ z, it follows that Φp is an isomorphism from ∆p × ((RP )/P )
onto Q.

The statement about N , the v∗i and the ci follows because Dp = ∆p +
(RP ) is a closed convex subset of V , and N is equal to the lineality of
Dp, the set of direction vectors of lines which are contained in Dp, cf.
Rockafellar [49, p. 65].

Finally, Q is compact if and only if ∆p×((RP )/P ) is compact if and only
if ∆p is compact. In view of N ∩C ⊂ ∆p, the latter implies that N ∩C = 0,
hence N = RP , and P is a cocompact discrete subgroup of the additive
topological group N . A convex compact subset of a vector space C which is
a locally convex polyhedral C-parallel space is a convex polytope in C. �

Remark 10.14. — Theorem 10.13 is a generalization of the theorem
of Tietze [52] and Nakajima [41] that any closed, connected, and locally
convex subset of a finite-dimensional vector space is convex. Our proof of
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Lemma 10.8 is close to the proof of Klee [29, (5.2)] of the generalization
of the Tietze-Nakajima theorem to subsets of arbitrary topological vector
spaces.

11. The symplectic tube theorem

In this section we describe the local model of Benoist [6, Prop. 1.9] and
Ortega and Ratiu [44] for a general proper symplectic Lie group action. See
also Ortega and Ratiu [45, Sec. 7.2–7.4] for a detailed proof. For Hamilton-
ian actions, such local models had been obtained before by Marle [36] and
Guillemin and Sternberg [24, Sec. 41].

Let (M,σ) be a smooth symplectic manifold and G a Lie group which
acts smoothly on (M,σ) by means of symplectomorphisms. Furthermore
assume that the action is proper, which means that for any compact subset
K of M the set of all (g,m) ∈ G×M such that (m, g ·m) ∈ K is compact
in G×M . The action of G is certainly proper if G is compact.

For every g ∈ G we will write gM : x 7→ g · x for the action of g on M .
For every element X in the Lie algebra g of G, the infinitesimal action on
M will be denoted by XM . It is a smooth vector field XM on M , the flow
of which leaves σ invariant.

It follows from the properness of the action, that for every x ∈ M the
stabilizer subgroup H := Gx := {g ∈ G | g · x = x} of x in G is a compact,
Lie subgroup of G, and the mapping Ax : g 7→ g · x : G → M induces a
G-equivariant smooth embedding

(11.1) αx : gH 7→ g · x : G/H →M

from G/H into M , with closed image, equal to the orbit G ·x of G through
the point x. Here g ∈ G acts on G/H by sending g′H to (gg′)H. The
Lie algebra h := gx of H := Gx is equal to the set of X ∈ g such that
XM (x) = 0. The linear mapping T1Ax : g → TxM induces induces a linear
isomorphism from g/h = g/gx onto gM (x) := Tx(G · x).

For the description of the symplectic form in the local model, we begin
with the closed two-form

(11.2) σG/H := (αx)∗σ

on G/H, which represents the “restriction” of σ to the orbit G · x ' G/H

through the point x. Here αx : G/H → M is defined in (11.1). The
G-invariance of σ and the G-equivariance of αx imply that σG/H is G-
invariant.
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If we identify T1H(G/H) with g/h, and p : g → g/h denotes the projec-
tion X 7→ X+h, then σG/H

1H , and therefore the G-invariant two-form σG/H

on G/H, is determined by the antisymmetric bilinear form

(11.3) σg := (T1Ax)∗σx = p∗σ
G/H
1H

on g, which is invariant under the adjoint action of H on g. It follows that
the kernel

(11.4) l := kerσg = ker((T1Ax)∗σx)

is an AdH-invariant linear subspace of g. We have h ⊂ l, because of (11.3)
and the fact that p∗σG/H

1H vanishes on the kernel h of p.
If L is a linear subspace of a symplectic vector space (V, σ), then the

symplectic orthogonal complement Lσ of L in V is defined as the set of all
v ∈ V such that σ(l, v) = 0 for every l ∈ L. The restriction to gM (x)σx of
σx defines a symplectic form σW on the vector space

(11.5) W := gM (x)σx/(gM (x)σx ∩ gM (x)),

and the mapping X + h 7→ XM (x) defines a linear isomorphism from l/h

onto gM (x)σx ∩ gM (x). The linearized action H 3 h 7→ TxhM of H on
TxM is symplectic and leaves gM (x) ' g/h invariant, acting on it via the
adjoint representation. That is, h ·XM (x) = (Adh)(X)M (x), if X ∈ g and
h ∈ H. It therefore also leaves gM (x)σx invariant and induces an action of
H = Gx on the symplectic vector space (W,σW ) by means of symplectic
linear transformations.

With l as in (11.4), we “enlarge” the vector space W to the vector space

(11.6) E := (l/h)∗ ×W,

on which h ∈ H acts by sending (λ,w) to (((Adh)∗)−1(λ), h · w).
For any action by linear transformations of a compact Lie group K on a

vector space V , any K-invariant linear subspace L of V has an K-invariant
linear complement L′ in V . For instance, if β is an inner product on V , then
the average β of β over K is a K-invariant inner product on V , and the
β-orthogonal complement L′ of L in V has the desired properties. Choose
AdH-invariant linear complements k and c of h and l in g, respectively.

Let X 7→ Xl : g → l and X 7→ Xh : g → h denote the linear projection
from g onto l and h with kernel equal to c and k, respectively. Then these
linear projections are AdH-equivariant.

If g ∈ G, then we denote by Lg : g′ 7→ gg′ : G → G the multiplication
from the left by means of g. Define the smooth one-form η# on G× E by

(11.7) η#
(g,(λ,w))((T1 Lg)(X), (δλ, δw)) := λ(Xl) + σW (w, δw +Xh · w)/2
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for all g ∈ G, λ ∈ (l/h)∗, w ∈ W , and all X ∈ g, δλ ∈ (l/h)∗, δw ∈ W .
Here we identify the tangent spaces of a vector space with the vector space
itself and (l/h)∗ with the space of linear forms on l which vanish on h.

Let E be defined as in (11.6), with l and W as in (11.4) and (11.5),
respectively. Let G ×H E denote the orbit space of G × E for the proper
and free action of H on G × E, where h ∈ H acts on G × E by sending
(g, e) to (gh−1, h · e). The action of G on G×H E is induced by the action
(g, (g′, e)) 7→ (gg′, e) of G on G × E. Let π : G ×H E → G/H denote the
mapping which is induced by the projection (g, e) 7→ g : G×E → G onto the
first component. Because H acts on E by means of linear transformations,
this projection exhibits G ×H E as a G-homogeneous vector bundle over
the homogeneous space G/H, which fiber E and structure group H. With
these notations, we have the following local normal form for the symplectic
G-space (M,σ,G).

Theorem 11.1. — If πH : G×E → G×H E denotes H-orbit mapping,
then there is a unique smooth one-form η on G×HE, such that η# = πH

∗η.
Here η# is defined in (11.7).

Furthermore, there exists an open H-invariant neighborhood E0 of the
origin in E and a G-equivariant diffeomorphism Φ from G×H E0 onto an
open G-invariant neighborhood U of x in M , such that Φ(H · (1, 0)) = x

and

(11.8) Φ∗σ = π∗σG/H + dη.

Here the mapping π : G×H E0 → G/H is induced by the projection onto
the first component, and σG/H is defined in (11.2).
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