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BERNSTEIN-SATO POLYNOMIALS AND SPECTRAL
NUMBERS

by Andréa G. GUIMARÃES & Abramo HEFEZ (*)

Abstract. — In this paper we will describe a set of roots of the Bernstein-Sato
polynomial associated to a germ of complex analytic function in several variables,
with an isolated critical point at the origin, that may be obtained by only knowing
the spectral numbers of the germ. This will also give us a set of common roots of
the Bernstein-Sato polynomials associated to the members of a µ-constant family
of germs of functions. An example will show that this set may sometimes consist
of all common roots.

Résumé. — Dans cet article nous décrivons un ensemble de racines du polynôme
de Bernstein-Sato associées à un germe de fonction analytique à plusieurs varia-
bles complexes, avec un point critique isolé à l’origine, qui peuvent être obtenues
en connaissant seulement les nombres spectraux du germe. Ceci nous donnera aussi
un ensemble de racines communes aux polynômes de Bernstein-Sato associées aux
membres d’une famille à µ-constant de germes de fonctions. Un exemple nous
montrera que cet ensemble peut parfois donner toutes les racines communes.

1. Introduction

Let On be the ring C{x1, . . . , xn} of germs of holomorphic functions at
the origin of Cn. Given f ∈ On, it is well known (cf. [1] and [2]) that there
exist a non-zero polynomial b(s) ∈ C[s] and a differential operator P (s),
holomorphic in x1, . . . , xn and polynomial in s and in ∂/∂x1, . . . , ∂/∂xn,
such that

P (s)f(x)s+1 = b(s)f(x)s
.

The monic generator bf (s) of the ideal of such polynomials b(s) is the
Bernstein-Sato polynomial (or, simply, the Bernstein polynomial) of the

Keywords: Bernstein polynomial, Spectral numbers, Gauss-Manin connection and
Brieskorn lattice.
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germ f . Since bf (s) is always divisible by s+1, we will consider the reduced
Bernstein polynomial b̃f (s) = bf (s)/(s + 1).

Malgrange, in [11], proved that, when f has an isolated critical point at
the origin and f(0) = 0, the roots of bf (s) are rational numbers. In fact, he
reinterpreted the reduced Bernstein-Sato polynomial as the minimal poly-
nomial of a linear operator on some quotient of Brieskorn lattices, proving,
as a consequence, that if α is a root of b̃f (s), then exp(−2π

√
−1α) is an

eigenvalue of the monodromy of the Gauss-Manin connection associated to
f , which, by Brieskorn’s Monodromy Theorem (cf. [4]), is a root of unity.
Afterwards, Kashiwara in [8], using resolutions of singularities, proved the
rationality of the roots of bf (s) for any f .

Associated to a given f , vanishing and with an isolated critical point at
the origin, there are µ rational numbers, called the spectral numbers of f ,
which are known to be topological invariants; that is, they are constant
along any µ-constant deformation of f (cf. [16]). It is also known that for
each root of b̃f (s) there is a spectral number such that the sum of the two
numbers is an integer. In general, it is only possible to give bounds on these
integers (see [15]). In this paper we will show that, for such f , a large set
of spectral numbers already determines a corresponding set of roots of the
Bernstein-Sato polynomial of f .

Several other authors contributed to this subject (eg. [3], [14], [13], [18],
[5], [6], [10], [7]). In particular, some of them have already considered the
connection among the roots of b̃f (s) and spectral numbers. For example,
M. Saito, in [14], exhibits a well determined set of spectral numbers such
that the symmetric of each element of this set, subtracted by 1, is a root
of b̃f (s). In [7], a set of spectral numbers containing Saito’s one was found
with the same property as above, but in the particular case of a two variable
function f with isolated critical point at the origin and finite monodromy.

In the present work, more precisely in Theorem 3.3, we extend the above
quoted result of [7], without any restriction on the monodromy or on the
number of variables of f , with the only assumption of isolated critical point.
As an application, in Corollary 3.5, we get a set of common roots of the
Bernstein-Sato polynomials of all members in a µ-constant family of germs
of functions vanishing at the origin and with an isolated critical point there.
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2. Brieskorn Lattices and Bernstein Polynomials

In what follows f will always be in the maximal ideal of On and with an
isolated critical point at the origin. We denote by

J(f) = (∂f/∂x1, . . . , ∂f/∂xn)

the Jacobian ideal of f in On, whose C-codimension is Milnor’s number µ.
Let Ωm = Ωm

Cn,0 be the On-module of germs of holomorphic m-forms at
the origin of Cn. Consider (cf. [4] or [10])

H ′′ = Ωn/df ∧ dΩn−2,

H ′ = df ∧ Ωn−1/df ∧ dΩn−2.

It follows immediately from the above definitions that, as C-vector spaces,

H ′′/H ′ ' Ωn/
(
df ∧ Ωn−1

)
' On/J(f).

TheOn-modules H ′′ and H ′ are endowed with a structure of C{t}-module,
defining

t[w] = [fw], ∀[w] ∈ H ′′.

The C-linear isomorphism

∇ : H ′ −→ H ′′

[df ∧ w] 7→ [dw]

satisfies Leibniz rule, with respect to the C{t}-module structure, so it ex-
tends uniquely to a meromorphic connection

∂t : H ′′ ⊗C{t} K −→ H ′′ ⊗C{t} K,

where K is the field of fraction of C{t} (cf. [12]). The set H = H ′′ ⊗C{t} K
is called the Gauss-Manin system and the operator ∂t is called the Gauss-
Manin connection, associated to f .

The connection ∂t is regular and dimKH = µ (cf. [4]). Notice that H ′

and H ′′ are lattices in H (i.e., free C{t}-submodules of H which generate
H over K).

Since the connection is regular, the lattices H ′ and H ′′ may be saturated
with respect to ∂tt as follows:

H̃ ′′ =
∑
k>0

(∂tt)
k
H ′′ and H̃ ′ =

∑
k>0

(∂tt)
k
H ′.

One can prove that tH̃ ′′ = H̃ ′ (cf. [11]).
It was shown in [11] that the minimal polynomial of the C-endomorphism

−∂tt : H̃ ′′/H̃ ′ → H̃ ′′/H̃ ′, induced by −∂tt : H̃ ′′ → H̃ ′′, is the reduced
Bernstein polynomial of f .
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For α ∈ Q, set

VαH =
⊕

α6β<α+1

C{t}Cβ , V>αH =
⊕

α<β6α+1

C{t}Cβ ,

where Cβ = {v ∈ H; ∃l ∈ N, (−∂tt + β + 1)l
v = 0}, and

Grα
VH = VαH/V>αH.

Then V defines a decreasing filtration on H, called the V-filtration, that
has the following properties (cf. [13] and [14]):
(2.1) H =

⋃
α VαH and VαH is a lattice of H.

(2.2) t(VαH) ⊂ Vα+1H and ∂t(VαH) ⊂ Vα−1H.
(2.3) If v ∈ VαH, then hv ∈ VαH, for all h ∈ On.
(2.4) The operator (−∂tt + α + 1) is nilpotent on Grα

VH ∼= Cα.
If N ⊂ M are lattices of H, then the V-filtration on H induces a V-

filtration on M by intersection, i.e.,

VαM = (VαH) ∩M, V>αM =
(
V>αH

)
∩M ;

and on the quotient M/N by the expressions

Vα (M/N) = (VαM + N) /N, V>α (M/N) =
(
V>αM + N

)
/N.

It is easy to check that

Grα
VM =

VαM

V>αM
' VαM + V>αH

V>αH
, Grα

V (M/N) ' Grα
VM

Grα
VN

.

A number α ∈ Q, is called a spectral number of f of multiplicity d(α), if

d(α) := dimCGrα
V (H ′′/H ′) > 0.

Since dimC (H ′′/H ′) = dimCOn/J(f)) = µ, it follows that there are exactly
µ spectral numbers α1, . . . , αµ, where each αi is counted with its multiplic-
ity d(αi). In [16], Varchenko proved that the spectral numbers are invariant
in any µ-constant deformation of f .

Finally, a rational number −(α + 1) is a root of b̃f if, and only if,
Grα

V

(
H̃ ′′/H̃ ′

)
6= (0) and the multiplicity of this root is the nilpotency

degree of the action of (−∂tt + α + 1) over Grα
V

(
H̃ ′′/H̃ ′

)
(cf. [11]).

The next proposition will be fundamental for the proof of our result.

Proposition 2.1. — If h′ ∈ On is such that f − h′ ∈ J(f), then

H̃ ′ ⊂ H ′ +
∑
k>0

(∂tt)kOn[h′dx] ⊂ H̃ ′′.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Initially, observe that from the definition of H ′ it follows that

(2.6) H ′ = [J(f)dx].

�

Let z = [df ∧ ω] ∈ H ′, then by Leibniz’ rule we have

(∂tt)z = ∂t(tz) = z + t∂tz = z + t[dω] = z + [fdω] ∈ H ′ +On[fdx].

This, in view of the definition of h′ and of (2.6), yields

(∂tt)H ′ ⊂ H ′ +On[fdx] = H ′ +On[h′dx].

Now, suppose inductively that

(∂tt)iH ′ ⊂ H ′ +
i−1∑
k=0

(∂tt)kOn[h′dx].

Then one has

(∂tt)i+1H ′ ⊂ (∂tt)i(H ′ +On[h′dx]) = (∂tt)iH ′ + (∂tt)iOn[h′dx] ⊂

H ′ +
i−1∑
k=0

(∂tt)kOn[h′dx] + (∂tt)iOn[h′dx] = H ′ +
i∑

k=0

(∂tt)kOn[h′dx].

This proves that, for all i,
i∑

k=0

(∂tt)kH ′ ⊂ H ′ +
i−1∑
k=0

(∂tt)kOn[h′dx],

hence establishing the result. �

3. Roots of Bernstein-Sato Polynomials and Spectral
Numbers

In this section we will prove our main result, Theorem 3.3, in which we
describe a set of roots of b̃f (s) which may be determined by only knowing
the spectral numbers of f . As a consequence, we get a set of roots of b̃f (s)
which are invariant in a µ-constant deformation of f . Example 3.6 will show
that, in general, our result is optimal, in the sense that in some cases it
may give all common roots for the members of the family.

Proposition 3.1. — Let h′ ∈ On be such that f−h′ ∈ J(f). If [h′dx] ∈
Vα′

H̃ ′′, for some rational number α′, then

H̃ ′ ⊂ H ′ + Vα′
H̃ ′′.

TOME 57 (2007), FASCICULE 6
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Proof. — For any h′ ∈ On such that [h′dx] ∈ Vα′
H̃ ′′, we get from (2.3)

and (2.2) that ∑
k>0

(∂tt)kOn[h′dx] ⊂ Vα′
H̃ ′′.

�

On the other hand, if f − h′ ∈ J(f), it follows from Proposition 2.1 that

H̃ ′ ⊂ H ′ + Vα′
H̃ ′′.

�

Proposition 3.2. — If for some rational number α′ one has

H̃ ′ ⊂ H ′ + Vα′
H̃ ′′,

then for every spectral number α associated to f such that α < α′, the
number −(α + 1) is a root of bf .

Proof. — For every rational number α < α′, the hypothesis implies, that

VαH̃ ′ ⊂ VαH ′ + Vα′
H̃ ′′,

hence

Grα
V

(
H̃ ′

H ′

)
= (0).

So,

(3.1) Grα
V

(
H̃ ′′

H̃ ′

)
' Grα

V

(
H̃ ′′/H ′

H̃ ′/H ′

)
' Grα

V

(
H̃ ′′

H ′

)
.

But, if α is a spectral number, then

0 6= Grα
V

(
H ′′

H ′

)
⊂ Grα

V

(
H̃ ′′

H ′

)
.

This, together with (3.1), imply that

Grα
V

(
H̃ ′′

H̃ ′

)
6= 0.

Therefore, as mentioned just before Proposition 2.1, we have that−(α + 1)
is a root of bf , for all spectral number α < α′. �

Now, put

η =
n∑

i=1

(−1)i−1
xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

ANNALES DE L’INSTITUT FOURIER
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then dx =
1
n

dη, and consequently, from the definition of ∂t, we have that

(3.2) ∂t
−1[dx] =

[
1
n

df ∧ η

]
=
[

1
n

(x1fx1 + x2fx2 + · · ·+ xnfxn) dx

]
.

Theorem 3.3. — Let f ∈ On with an isolated critical point at the
origin and vanishing there. If α1 is the smallest spectral number of f , then
for every spectral number α such that α < α1 + 1, the number −(α + 1) is
a root of bf .

Proof. — It is well known that H ′′ ⊂ Vα1H ′′ (cf. [9], Lemma 3.2.7).
Hence we have [dx] ∈ Vα1H ′′. So, for h′ = f − (1/n)(x1fx1 + · · ·+ xnfxn),
we have by (3.2) and (2.2) that

[h′dx] = (t− ∂−1
t )[dx] ∈ Vα1+1H ′′ ⊂ Vα1+1H̃ ′′.

Now, the result follows from Propositions 3.1 and 3.2, where we put
α′ = α1 + 1. �

Using other methods, Saito, in [14] (Theorem 0.7), has shown that if α

is a non-positive spectral number, then −(α + 1) is a root of bf . Since one
always has α1 + 1 > 0 (cf. [9], Chap. II, (8.3.4)), then Theorem 3.3, above,
contains Saito’s result and the example below shows that in fact it may
improve it.

Example 3.4. — Let

f = x6
1 + x5

2 + x4
1x

3
2 + x4

1x
2
2 + x3

1x
3
2.

Then by means of the SINGULAR software(1) one may easily determine the
following numbers:

Spectral Numbers:

− 19
30 ,− 7

15 ,− 13
30 ,− 3

10 ,− 4
15 ,− 7

30 ,− 2
15 ,− 1

10 ,− 1
15 ,− 1

30 , 1
30 , 1

15 , 1
10 , 2

15 , 7
30 , 4

15 , 3
10 ,

13
30 , 7

15 , 19
30 .

Roots of bf of the form −(α + 1), for α a spectral number smaller
than α1 + 1 = 11

30 (Theorem 3.3):
− 11

30 ,− 8
15 ,− 17

30 ,− 7
10 ,− 11

15 ,− 23
30 ,− 13

15 ,− 9
10 ,− 14

15 ,− 29
30 ,− 31

30 ,− 16
15 ,− 11

10 ,− 17
15 ,

− 37
30 ,− 19

15 ,− 13
10 .

Roots of bf of the form −(α + 1), for α a non-positive spectral
number ([14], Theorem 0.7):

− 11
30 ,− 8

15 ,− 17
30 ,− 7

10 ,− 11
15 ,− 23

30 ,− 13
15 ,− 9

10 ,− 14
15 ,− 29

30 .

(1) www.singular.uni-kl.de
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We also point out that Hertling and Stahlke [7], Theorem 5.1, got the
same result as our Theorem 3.3, but when f belongs to C{x1, x2} and has
finite monodromy. Also, Briançon et al. [3], Proposition B.3.1.2.1.b, showed
that the same holds for f ∈ C{x1, x2} and non-degenerate with respect to
its Newton polygon.

Now, from the invariance of the the spectral numbers in a µ-constant
family (cf. [16], Theorem 2), we get the following result.

Corollary 3.5. — Let a µ-constant family of germs of functions in On

vanishing at the origin, with an isolated critical point there, be given. Let
α1 be the smallest spectral number of the members of the family. Then
for any spectral number α such that α < α1 + 1, we have that −(α + 1)
is a common root of the Bernstein-Sato polynomials of all member of the
family.

The next example will show that this is the best result one can get in
general, without knowing any additional information about the family of
germs of functions.

Example 3.6. — Consider the µ-constant (µ = 24) family of germs:

ft = x4
1x2 + x1x

6
2 + tx3

1x
3
2.

Using the SINGULAR software, we get:
Spectral Numbers of f0 and f1 less than α1 + 1 = 8

23 :

− 15
23 ,− 12

23 ,− 10
23 ,− 9

23 ,− 7
23 ,− 6

23 ,− 5
23 ,− 4

23 ,− 3
23 ,− 2

23 ,− 1
23 , 0, 1

23 , 2
23 , 3

23 , 4
23 , 5

23 ,
6
23 , 7

23 ;

Common roots of bf0 and bf1 :

− 8
23 ,− 11

23 ,− 13
23 ,− 14

23 ,− 16
23 ,− 17

23 ,− 18
23 ,− 19

23 ,− 20
23 ,− 21

23 ,− 22
23 ,−1,− 24

23 ,− 25
23 ,− 26

23 ,

− 27
23 ,− 28

23 ,− 29
23 ,− 30

23 ;

The other roots of bf1 :
− 9

23 ,− 10
23 ,− 12

23 ,− 15
23 ;

The other roots of bf0 :
− 32

23 ,− 33
23 ,− 35

23 ,− 38
23 .

With this, we see that the only common roots of bf0 and bf1 are the
numbers given by Corollary 3.5.

The use of Propositions 3.1 and 3.2, could give more roots of Bernstein-
Sato polynomials than those obtained by Theorem 3.3, if one could find

ANNALES DE L’INSTITUT FOURIER
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an h′, with f − h′ ∈ J(f), such that [h′dx] ∈ Vα′
H̃ ′′, for some ratio-

nal number α′ larger than α1 + 1. This, in general, is very difficult to
check. However, in some circumstances this is possible. For example, when
f is non-degenerated with respect to its Newton polyhedron, Varchenko
and Khovanskii in [17] have shown that the V-filtration of [hdX] ∈ H ′′

corresponds to the Newton-order of the series x1 . . . xnh minus 1. This is
illustrated in the following example.

Example 3.7. — Consider f = X5
1 + X7

2 + X3
1X5

2 .

It is easy to verify that f is non-degenerated with respect to its Newton
polygon.

The spectral numbers of f are:
− 23

35 ,− 18
35 ,− 16

35 ,− 13
35 ,− 11

35 ,− 9
35 ,− 8

35 ,− 6
35 ,− 4

35 ,− 3
35 ,− 2

35 ,− 1
35 ,

1
35 , 2

35 , 3
35 , 4

35 , 6
35 , 8

35 , 9
35 , 11

35 , 13
35 , 16

35 , 18
35 , 23

35 .

If
h′ = f − 1

5
x1fx1 −

1
7
x2fx2 = −11

35
x3

1x
5
2,

then the Newton-order of [h′dX] is ρ([h′dX]) = 23
35 . Then, from Proposi-

tions 3.1 and 3.2, we have that the numbers of the form −(α + 1), where
α is a spectral number of f and α < 23

33 , are roots of the Bernstein-Sato
Polynomial of f . These are:

− 12
35 ,− 17

35 ,− 19
35 ,− 22

35 ,− 24
35 ,− 26

35 ,− 27
35 ,− 29

35 ,− 31
35 ,− 32

35 ,− 33
35 ,− 34

35 ,

− 36
35 ,− 37

35 ,− 38
35 ,− 39

35 ,− 41
35 ,− 43

35 ,− 44
35 ,− 46

35 ,− 48
35 ,− 51

35 ,− 53
35 .

Giving the roots − 48
35 ,− 51

35 ,− 53
35 , in addition to those given by Theorem

3.3.
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