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ON TOTAL REALITY OF MEROMORPHIC
FUNCTIONS

by Alex DEGTYAREV, Torsten EKEDAHL, Ilia ITENBERG,
Boris SHAPIRO & Michael SHAPIRO (*)

Abstract. — We show that, if a meromorphic function of degree at most four
on a real algebraic curve of an arbitrary genus has only real critical points, then it
is conjugate to a real meromorphic function by a suitable projective automorphism
of the image.

Résumé. — On montre que, si tous les points critiques d’une fonction méro-
morphe de degré au plus quatre sur une courbe algébrique réelle de genre arbitraire
sont réels, alors la fonction est conjugée à une fonction méromorphe réelle par un
automorphisme projectif approprié de l’image.

1. Introduction

Let γ : CP1 → CPn be a rational curve in CPn. We say that a point
t ∈ CP1 is a flattening point of γ if the osculating frame formed by
γ′(t), γ′′(t), . . . , γ(n)(t) is degenerate. In other words, flattening points of
γ(t) = (γ0(t) : γ2(t) : · · · : γn(t)) are roots of the Wronskian

W (γ0, . . . , γn) =

∣∣∣∣∣∣∣∣∣
γ0 . . . γn

γ′0 . . . γ′n
. . .

γ
(n)
0 . . . γ

(n)
n

∣∣∣∣∣∣∣∣∣ .
In 1993 B. and M. Shapiro made the following claim which we will refer

to as rational total reality conjecture.
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Conjecture 1.1. — If all flattening points of a rational curve CP1 →
CPn lie on the real line RP 1 ⊂ CP1 then the curve is conjugate to a real
algebraic curve under an appropriate projective automorphism of CPn.

Notice that coordinates γi of the rational curve γ are homogeneous poly-
nomials of a certain degree, say d. Considering them as vectors in the
space of homogeneous degree d polynomials we can reformulate the above
conjecture as a statement of total reality in Schubert calculus, see [7], [14]-
[12], [17]. Namely, for any 0 6 d < n let t1 < t2 < · · · < t(n+1)(d−n) be
a sequence of real numbers and r : C → Cd+1 be a rational normal curve
with coordinates ri(t) = ti, i = 0, d. Denote by Ti the osculating (d − n)-
dimensional plane to r at the moment t = ti. Then the above rational total
reality conjecture is equivalent to the following claim.

Conjecture 1.2 (Schubert calculus interpretation). — In the above
notation any (n+1)-dimensional subspace in Cd+1 which meets all (n+ 1)×
(d− n) subspaces Ti nontrivially is real.

It was first supported by extensive numerical evidences, see [14]-[12], [17]
and later settled for n = 1, see [4]. The case n > 2 resisted all efforts for
a long time. In fall 2005 the authors were informed by A. Eremenko and
A. Gabrielov that they were able to prove Conjecture 1.1 for plane rational
quintics. Just few months later it was completely established by E. Mukhin,
V. Tarasov, and A. Varchenko in [8].

Their proof reveals the deep connection between Schubert calculus and
theory of integrable systems and is based on the Bethe ansatz method in
the Gaudin model. More exactly, conjectures 1 and 2 are reduced to the
question of reality of (n+1)-dimensional subspaces of the space V of poly-
nomials of degree d with given asymptotics at infinity and fixed Wronskian.
Choosing a base in such a subspace we get the rational curve CP1 → CPn,
whose flattening points coincide with the roots of the above mentioned
Wronskian. The subspaces with desired properties are constructed explic-
itly using properties of spectra of Gaudin Hamiltonians. Namely, relaxing
the reality condition these polynomial subspaces are labeled by common
eigenvectors of Gaudin Hamiltonians, one-parameter families of commut-
ing linear maps on some vector space, H1(x), . . . ,Hn+1(x) : V → V . The
subspace, labeled by an eigenvector, is the kernel of a certain linear dif-
ferentail operator of order n+1, assigned to each eigenvector of the Hamil-
tonians. The coefficents of that differentail operator, are the eigenvalues
of the Hamiltonians on that eigenvector. It turns out that in the case of
real rooted Wronskians Gaudin Hamiltonians are symmetric with respect
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to the so-called tensor Shapovalov form, and thus have real spectra. More-
over, their eigenvalues are real rational functions. This fact implies that the
kernels of the above fundamental differential operators are real subspaces
in V which concludes the proof.

Meanwhile two different generalizations of the original conjectures (both
dealing with the case n = 1) were suggested in [5] and [3]. The former
replaces the condition of reality of critical points by the existence of sepa-
rated collections of real points such that a meromorphic function takes the
same value on each set. The latter discusses the generalization of the total
reality conjecture to higher genus curves.

The present paper is the sequel of [3]. Here we prove the higher genus
version of the total reality conjecture for all meromorphic funtions of degree
at most four.

For reader’s convenience and to make the paper self-contained we in-
cluded some of results of [3] here. We start with some standard notation.

Definition. A pair (C, σ) consisting of a compact Riemann surface C and
its antiholomorphic involution σ is called a real algebraic curve. The set
Cσ ⊂ C of all fixed points of σ is called the real part of (C, σ).

If (C, σ) and (D, τ) are real curves (varieties) and f : C → D a holomor-
phic map, then we denote by f the holomorphic map τ ◦ f ◦ σ. Notice that
f is real if and only if f = f .

The main question we discuss below is as follows.

Main Problem. Given a meromorphic function f : (C, σ) → CP1 such
that

i) all its critical points and values are distinct;
ii) all its critical points belong to Cσ;

is it true that f becomes a real meromorphic function after an appropriate
choice of a real structure on CP1?

Definition 1.3. — We say that the space of meromorphic functions
of degree d on a genus g real algebraic curve (C, σ) has the total reality
property (or is totally real) if the Main Problem has the affirmative answer
for any meromorphic function from this space which satisfies the above
assumptions. We say that a pair of positive integers (g, d) has a total reality
property if the space of meromorphic functions of degree d is totally real
on any real algebraic curve of genus g.

Notice that the existence of real meromorphic functions with all real (and
closely located) critical points on real curves of positive genus was recently
proved by B. Osserman in [10].

TOME 57 (2007), FASCICULE 6
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The following results were proven in [3] (see Theorem 1 and Corollary 1
there).

Theorem 1.4. — The space of meromorphic functions of any degree
d which is a prime on any real curve (C, σ) of genus g which additionally
satisfies the inequality: g > d2−4d+3

3 has the total reality property.

Corollary 1.5. — The total reality property holds for all meromor-
phic functions of degrees 2, 3, i.e. for all pairs (g, 2) and (g, 3).

The proof of Theorem 1.4 is based on the following observation. Consider
the space CP1 × CP1 equipped with the involution s : (x, y) 7→ (ȳ, x̄)
which we call the involutive real structure (here x̄ and ȳ stand for the
complex conjugates of x and y with respect to the standard real structure
in CP1). The pair Ell = (CP1×CP1, s) is usually referred to as the standard
ellipsoid, see [6]. (Sometimes by the ellipsoid one means the set of fixed
points of s on CP1 × CP1.) The next statement translates the problem of
total reality into the question of (non)existence of certain real algebraic
curves on Ell.

Proposition 1.6. — For any positive integer g and prime d the total
reality property holds for the pair (g, d) if and only if there is no real
algebraic curve on Ell with the following properties:

i) its geometric genus equals g;
ii) its bi-degree as a curve on CP1 × CP1 equals (d, d);
iii) its only singularities are 2d− 2 + 2g real cusps on Ell and possibly

some number of (not necessarily transversal) intersections of smooth
branches.

Extending slightly the arguments proving Proposition 1.6 one gets the
following statement.

Proposition 1.7. — The total reality property holds for all real mero-
morphic functions, i.e. for all pairs (g′, d′) if and only if for no pair (g, d),
d > 1 there exists a real algebraic curve on Ell satisfying conditions i) - iii)
of Proposition 1.6.

The main result of the present paper obtained using a version of Propo-
sition 1.6 and technique related to integer lattices and K3-surfaces is as
follows.

Theorem 1.8. — The total reality property holds for all meromorphic
functions of degree 4, i.e. for all pairs (g, 4).
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The structure of the note is as follows. Section 3 contains the proofs of
Propositions 1.6 and 1.7, and reduction of Theorem 1.8 to the question of
nonexistence of a real curve D on Ell of bi-degree (4, 4) with eight real cusps
and no other singularities. The nonexistence of such a curve D is shown
in Section 6, the necessary notions and facts related to integral bilinear
forms and K3-surfaces being introduced in Sections 4 and 5, respectively.
Section 7 contains a number of remarks and open problems.

2. Acknowledgements

The authors are grateful to A. Gabrielov, A. Eremenko, R. Kulkarni,
B. Osserman, V. Tarasov, A. Vainshtein, and A. Varchenko for discussions
of the topic. The third, fourth and fifth authors want to acknowledge the
hospitality of MSRI in Spring 2004 during the program ’Topological meth-
ods in real algebraic geometry’ which gave them a large number of valuable
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3. Reduction

If not mentioned explicitly we assume below that CP1 is provided with
its standard real structure.

Assume now that (C, σ) is a proper irreducible real curve and f : C → CP1

a non-constant meromorphic function. It defines the holomorphic map

C (f,f)−→ CP1 × CP1

and if CP1 × CP1 is given the involutive real structure s : (x, y) → (ȳ, x̄)
then it is clearly a real map. The following result is proved in [3].

Proposition 3.1. —
(1) The image D of the curve C under the map (f, f) is of type (δ, δ)

for some positive integer δ and if ∂ is the degree of the map C → D
we have that d = δ∂, where d is the degree of the original f .

(2) The function f is real for some real structure on CP1 precisely when
δ = 1.

(3) Assume that C is smooth and all the critical points of f are real.
Then all the critical points of ψ : D̃ → CP1, the composite of the
normalization map D̃ → D and the restriction of the projection of
CP1 × CP1, are real.

TOME 57 (2007), FASCICULE 6
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The image of C under the real holomorphic map (f, f) is a real curve
so that D is a real curve in CP1 × CP1 with respect to its involutive real
structure, i.e. a real curve on the ellipsoid Ell. Any such curve is of type
(δ, δ) for some positive integer δ since the involutive real structure permutes
the two degrees.

By a cusp we mean a curve singularity of multiplicity 2 and whose tangent
cone is a double line. It has the local form y2 = xk for some integer k > 3
where k is an invariant which we shall call its type. A cusp of type k gives
a contribution of d(k− 1)/2e to the arithmetic genus of a curve. A cusp of
type 3 will be called ordinary.

If C is a curve and p1, . . . , pk are its smooth points then consider the
finite map π : C → C(p1, . . . , pk) which is a homeomorphism and for which
OC(p1,...,pk) → π∗OC is an isomorphism outside of {p1, . . . , pk} such that
the image of the map OC(p1,...,pk),π(pi) → OC,pi

is the inverse image of C
in OC,pi

/m2
pi

. In other words, C(p1, . . . , pk) has ordinary cusps at all points
π(pi).

Then π has the following two (obvious) properties.

Lemma 3.2. —
(1) A holomorphic map f : C → X which is not an immersion at all

the points p1, . . . , pk factors through π.
(2) If C is proper, then the arithmetic genus of C(p1, . . . , pk) is k plus

the arithmetic genus of C.

Now it is easy to derive Proposition 1.6 from Proposition 3.1. Indeed, if a
meromorphic function f : C → CP1 of a prime degree d with all 2g+2d−2
real critical points can not be made real then its image under (f, f̄) in
CP1×CP1 is the real curve on Ell with 2g+2d−2 real cusps and no other
singularities different from intersections of smooth branches. (Intersections
of smooth branches in the image might occur and are moreover necessary
to produce the required genus.) Vice versa, assume that such a curve D ⊂
CP1 × CP1 which is real in the involutive structure does exist. Let D̃ be
the normalization of D, and consider the natural birational projection map
µ : D̃ → D. Define f : D̃ → CP1 as a composition D̃ → D → CP1, where
the last map is induced by the projection of CP1 ×CP1 on the first factor.
It remains to notice that all 2g + 2d− 2 critical points of f are real while
f can not be made real by Proposition 3.1. �

Similar arguments show the validity of Proposition 1.7. Indeed, assume
that there exists a meromorphic function φ of some degree d′ on a real
curve C′ of some genus g′ violating the total reality conjecture. Let D′ ⊂
CP1 × CP1 be the image curve of bi-degree (d, d) obtained by application
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of the map (φ, φ̄) to C′ and let D̃′ be the normalization of D′. Let µ′ :
D̃′ → D′ be the canonical birational map and, finally, let φ : D̃′ → CP1

be the composition of µ′ and the projection of CP1 × CP1 on its first
factor. Then φ has degree d and all the critical points of φ are real by
Proposition 3.1(3). Note that if f is not conjugate to a real function by a
Möbius transformation the same holds for φ as well. Hence, φ : D̃′ → CP1

also violates the total reality conjecture. The image of D̃′ (φ,φ)−→ CP1 × CP1

coincides with D′, and the map µ′ : D̃′ → D′ is birational. So D′ satisfies
the assumptions i)-iii) of Proposition 1.6 for g = g(D̃′) and d = δ > 1,
see Proposition 3.1. Indeed, the map C′ → D′ lifts to a map C′ → D̃′

of degree δ = d′/d with only simple ramifications whose number by the
Riemann-Hurwitz formulas is 2g(C′)−2−δ(2g(D̃′)−2). Hence the number
of critical points of f that are the preimages of cusps of D′ can be computed
as K = 2g(C′)− 2+2d′− (2g(C′)− 2− δ(2g(D̃′)− 2)). Note that each cusp
has as preimages exactly δ critical points. Finally we compute the number
of cusps of D′ as 1

δK = 2g(D̃′)− 2 + 2d.
And conversely, exactly as in the above proof given a curve D′ ⊂ CP1 ×

CP1 satisfying the assumptions i)-iii) of Proposition 1.6 we get a mero-
morphic function violating the total reality conjecture by composing the
birational projection µ′ from the normalization D̃′ to D′ with the projection
of D′ on the first coordinate in CP1 × CP1. �

Now we can start proving Theorem 1.8. Using a version of Proposition 3.1
we reduce the case of degree d = 4 to the existence problem of a real curve
on the ellipsoid Ell = (CP1×CP1, s) of bi-degree (4, 4) with 8 ordinary real
cusps and no other singularities. Indeed, we have three possibilities for the
image D of C under the map (f, f̄). Namely, D might have bi-degrees (1, 1),
(2, 2), or (4, 4). In the first case f can be made real. In the second case, by
Proposition 3.1, the projection on the first factor will give a map from the
normalization D̃ of D. The arithmetic genus pa(D) = 1, and the geometric
genus g(D̃) of the normalization D̃ does not exceed 1. Let h̃ : C → D̃ be
the lift of h : C → D. Note that if pi ∈ C is a critical point of f then
either its image h(pi) is a cusp of D or pi is a ramification point of h̃. The
ramification divisor R(h̃) = 2g(C) + 2− 4g(D̃). The number of cusps of D
does not exceed 1, whereas the number of distinct critical points of f is
2g(C) + 6. Note that any cusp has two critical points of f as preimages.
Therefore, we must have 1

2

(
2g(C) + 6−

(
2g(C) + 2− 4g(D̃)

))
6 1 which

is impossible.
We are hence left with the case when D has bi-degree (4, 4). The only

case when 2 · 4 − 2 + 3g(C) 6 9 for g(C) > 0 is the case of g(C) = 1. If
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all the critical points p1, . . . , p8 of f : C → CP1 are real, then we get a
birational map C(p1, . . . , p8) → D and as then both C(p1, . . . , p8) and D
have arithmetic genus 9, this map is an isomorphism. Hence D is a curve
with 8 ordinary real cusps and no other singularities. To finish the proof of
Theorem 1.8 we have to show that such curves do not exist. This is done
in §6 below; the necessary notation and techniques are introduced in §4
and §5.

4. Discriminant forms

A lattice is a finitely generated free abelian group L supplied with a
symmetric bilinear form b : L ⊗ L → Z. We abbreviate b(x, y) = x · y
and b(x, x) = x2. A lattice L is even if x2 = 0 mod 2 for all x ∈ L. As
the transition matrix between two integral bases has determinant ±1, the
determinant detL ∈ Z (i.e., the determinant of the Gram matrix of b in
any basis of L) is well defined. A lattice L is called nondegenerate if the
determinant detL 6= 0; it is called unimodular if detL = ±1.

Given a lattice L, the bilinear form can be extended to L⊗Q by linearity.
If L is nondegenerate, the dual group L∨ = Hom(L,Z) can be identified
with the subgroup{

x ∈ L⊗Q
∣∣ x · y ∈ Z for all x ∈ L

}
.

In particular, L ⊂ L∨. The quotient L∨/L is a finite group; it is called the
discriminant group of L and is denoted by discrL or L. The discriminant
group L inherits from L⊗Q a symmetric bilinear form L⊗L → Q/Z, called
the discriminant form, and, if L is even, its quadratic extension L → Q/2Z.
When speaking about the discriminant groups, their (anti-)isomorphisms,
etc, we always assume that the discriminant form (and its quadratic exten-
sion if the lattice is even) is taken into account. One has #L = |detL|; in
particular, L = 0 if and only if L is unimodular.

In what follows we denote by U the hyperbolic plane, i.e., the lattice
generated by a pair of vectors u, v (referred to as a standard basis for U)
with u2 = v2 = 0 and u · v = 1. Furthermore, given a lattice L, we denote
by nL, n ∈ N, the orthogonal sum of n copies of L, and by L(p), p ∈ Q,
the lattice obtained from L by multiplying the form by q (assuming that
the result is still an integral lattice). The notation nL is also used for the
orthogonal sum of n copies of a discriminant group L.

Two lattices L1, L2 are said to have the same genus if all localizations
Li ⊗ Qp, p prime, and Li ⊗ Q are pairwise isomorphic. As a general rule,
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it is relatively easy to compare the genera of two lattices; for example, the
genus of an even lattice is determined by its signature and the isomorphism
class of the discriminant group, see [9]. In the same paper [9] one can find a
few classes of lattices whose genus is known to contain a single isomorphism
class.

Following V. V. Nikulin, we denote by `(L) the minimal number of gen-
erators of a finite group L and, for a prime p, let `p(L) = `(L⊗Zp). (Here
Zp stands for the cyclic group Z/pZ.) If L is a nondegenerate lattice, there
is a canonical epimorphism Hom(L,Zp) → L⊗ Zp. It is an isomorphism if
and only if rankL = `p(L).

An extension of a lattice L is another lattice M containing L. An ex-
tension is called primitive if M/L is torsion free. In what follows we are
only interested in the case when both L and M are even. The relation be-
tween extensions of even lattices and there discriminant forms was studied
in details by Nikulin; next two theorems are found in [9].

Theorem 4.1. — Given a nondegenerate even lattice L, there is a
canonical one-to-one correspondence between the set of isomorphism classes
of finite index extensions M ⊃ L and the set of isotropic subgroups K ⊂ L.
Under this correspondence one has M =

{
x ∈ L∨

∣∣ x mod L ∈ K
}

and
discrM = K⊥/K.

Theorem 4.2. — Let M ⊃ L be a primitive extension of a nondegener-
ate even lattice L to a unimodular even lattice M . Then there is a canonical
anti-isometry L → discrL⊥ of discriminant forms; its graph is the kernel
K ⊂ L ⊕ discrL⊥ of the finite index extension M ⊃ L ⊕ L⊥, see Theo-
rem 4.1. Furthermore, a pair of auto-isometries of L and L⊥ extends to
an auto-isometry of M if and only if the induced automorphisms of L and
discrL⊥, respectively, agree via the above anti-isometry of the discriminant
groups.

The general case M ⊃ L splits into the finite index extension L̃ ⊃ L and
primitive extension M ⊃ L̃, where

L̃ =
{
x ∈M

∣∣ nx ∈ L for some n ∈ Z
}

is the primitive hull of L in M .
A root in an even lattice L is a vector r ∈ L of square −2. A root system

is an even negative definite lattice generated by its roots. Recall that each
root system splits (uniquely up to order of the summands) into orthogonal
sum of indecomposable root systems, the latter being those of types Ap,
p > 1, Dq, q > 4, E6, E7, or E8, see [2]. A finite index extension Σ ⊂ Σ̃ of
a root system Σ is called quasi-primitive if each root of Σ̃ belongs to Σ.

TOME 57 (2007), FASCICULE 6
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Each root system that can be embedded in E8 is unique in its genus,
see [9]. In what follows we need the discriminant group discr A2 =

〈
− 2

3

〉
:

it is the cyclic group Z3 generated by an element of square − 2
3 mod 2Z.

5. K3-surfaces and ramified double coverings of CP1 × CP1

A K3-surface is a nonsingular compact connected and simply connected
complex surface with trivial first Chern class. From the Castelnuovo–
Enriques classification of surfaces it follows that all K3-surfaces form a
single deformation family. In particular, they are all diffeomorphic, and the
calculation for an example (say, a quartic in CP3) shows that

χ(X) = 24, h2,0(X) = 1, h1,1(X) = 20.

(see, for instance, [1]). Hence, the intersection lattice H2(X; Z) is an even
(since w2(X) = KX mod 2 = 0) unimodular (as intersection lattice of any
closed 4-manifold) lattice of rank 22 and signature −16. All such lattices are
isomorphic to L = 2E8⊕3U. In particular, the quadratic space H2(X; R) ∼=
L⊗ R has three positive squares; for a maximal positive definite subspace
one can choose the subspace spanned by the real and imaginary parts of the
class [ω] of a holomorphic form ω on X and the class [ρ] of the fundamental
form of a Kähler metric on X. (We identify the homology and cohomology
via the Poincaré duality.)

A real K3-surface is a pair (X, conj), where X is a K3-surface and conj :
X → X an anti-holomorphic involution., i.e., a real structure on X. The
(+1)-eigenlattice ker(1 − conj∗) ⊂ H2(X; Z) of conj∗ is hyperbolic, i.e., it
has one positive square in the diagonal form over R. This follows, e.g.,
from the fact that ω and ρ above can be chosen so that conj∗[ω] = [ω̄] and
conj∗[ρ] = −[ρ].

Let Y = CP1 × CP1 and let C ⊂ Y be an irreducible curve of bi-degree
(4, 4) with at worst simple singularities (i.e., those of type Ap, Dq, E6,
E7, or E8). Then, the minimal resolution X of the double covering of Y
ramified along C is a K3-surface. Recall that the standard ellipsoid is the
pair Ell = (Y, s) where s is the anti-holomorphic involution s : Y → Y ,
s : (x, y) 7→ (ȳ, x̄). If C is s-invariant, the involution s lifts to two different
real structures on X, which commute with each other and with the deck
translation of the covering X → Y . Choose one of the two lifts and denote
it by conj.

Let `1, `2 ∈ H2(X; Z) be the pull-backs of the classes of two lines belong-
ing to the two rulings of Y . Then `21 = `22 = 0 and `1 · `2 = 2, i.e., `1 and `2
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span a sublattice U(2), and conj∗ acts via

`1 7→ −`2, `2 7→ −`1.

Each (simple) singular point of C gives rise to a singular point of the double
covering, and the exceptional divisors of its resolution span a root system
in H2(X; Z) of the same type (A, D, or E) as the original singular point.
These root systems are orthogonal to each other and to `1, `2; denote
their sum by Σ. If all singular points are real, then conj∗ acts on Σ via
multiplication by (−1).

Lemma 5.1. — The sublattice Σ ⊂ H2(X; Z) is quasi-primitive in its
primitive hull.

Proof. — Let r /∈ Σ be a root in the primitive hull of Σ. Since, obviously,
Σ ⊂ PicX and H2(X; Z)/PicX is torsion free, one has r ∈ PicX. Then, the
Riemann-Roch theorem implies that either r or −r is effective, i.e., it is
realized by a (−2)-curve in X (possibly, reducible), which is not contracted
by the blow down (as r /∈ Σ). On the other hand, r is orthogonal to `1
and `2. Hence, the curve projects to a curve in Y orthogonal to both the
rulings, which is impossible. �

6. The calculation

Lemma 6.1. — The lattice Σ = 3A2 has no non-trivial quasi-primitive
extensions.

Proof. — Up to automorphism of 3A2, the discriminant group discr 3A2

cong 3
〈
− 2

3

〉
has a unique isotropic element, which is the sum of all three

generators. Then, for the corresponding extension Σ̃ ⊃ Σ one has discr Σ̃ =〈
2
3

〉
, i.e., Σ̃ has the genus of E6. Since the latter is unique in its genus

(see [9]), one has Σ̃ ∼= E6. Alternatively, one can argue that, on one hand,
an imprimitive extension of 3A2 is unique and, on the other hand, an
embedding 3A2 ⊂ E6 is known: if 2A2 is embedded into E6 via the Dynkin
diagrams, the orthogonal complement is again a copy of A2. �

Lemma 6.2. — Up to automorphism, the lattice Σ = 8A2 has two non-
trivial quasi-primitive extensions Σ̃ ⊃ Σ; one has `3(Σ̃) = 6 or 4.

Proof. — We will show that there are at most two classes. The fact
that the two extensions constructed are indeed quasi-primitive is rather
straightforward, but it is not needed in the sequel.
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Let S = discr Σ ∼= 8
〈
− 2

3

〉
be the discriminant group, and let G be the

set of generators of S. The automorphisms of Σ act via transpositions of G
or reversing some of the generators. (Recall that the decomposition of a
definite lattice into an orthogonal sum of indecomposable summands is
unique up to transposing the summands.) For an element a ∈ S define its
support supp a ⊂ G as the subset consisting of the generators appearing
in the expansion of a with a non-zero coefficient. Since each nontrivial
summand in the expansion of an element a ∈ S contributes − 2

3 mod 2Z
to the square, a is isotropic if and only if #supp a = 0 mod 3; in view
of Lemma 6.1, such an element cannot belong to the kernel of a quasi-
primitive extension unless #supp a = 6. (Indeed, if #supp a = 3, then
a belongs to the discriminant group of the sum Σ′ of certain three of the
eight A2-summands of Σ, and already Σ′ is not primitive, hence, not quasi-
primitive.)

All elements a ∈ S with #supp a = 6 form a single orbit of the ac-
tion of AutΣ, thus giving rise to a unique isomorphism class of quasi-
primitive extensions Σ̃ ⊃ Σ with `3(discr Σ̃) = 6. Consider the extensions
with `3(discr Σ̃) = 4, i.e., those whose kernel K is isomorphic to Z3 ⊕ Z3.
Up to the action of AutΣ the generators g1, . . . , g8 of S and two elements
a1, a2 generating K can be chosen so that

a1 = g1 + . . .+ g6

and

a2 = (g1 + . . .+ gp − gp+1 − . . .− gp+q) + σ

where σ = 0, g7, or g7 + g8, and p > q > 0 are certain integers such
that p + q = #(supp a1 ∩ supp a2) 6 6. Since supp a1 and supp a2 are
two six element sets and #(supp a1 ∪ supp a2) 6 8, one has p + q > 4.
Furthermore, since a1 · a2 = 2

3 (p− q) mod Z = 0, one has p− q = 0 mod 3.
This leaves three pairs of values: (p, q) = (2, 2), (3, 3), or (4, 1). In the first
case, (p, q) = (2, 2), one does obtain a quasi-primitive extension, unique
up to automorphism. In the other two cases one has #supp (a1 − a2) = 3
and, hence, the extension is not quasi-primitive due to Lemma 6.1 (cf. the
previous paragraph).

Note that, in the only quasi-primitive case (p, q) = (2, 2), for any pair a1,
a2 of generators of K one has

(6.1) supp a1 ∪ supp a2 = G and #(supp a1 ∩ supp a2) = 4.

As a by-product, the same relations must hold for any two independent
(over Z3) elements a1, a2 in the kernel of any quasi-primitive extension.
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Now, assume that the kernel of the extension Σ̃ ⊃ Σ contains Z3⊕Z3⊕Z3,
i.e., `3(discr Σ̃) < 4. Pick three independent (over Z3) elements a1, a2, a3 in
the kernel. In view of (6.1), the principle of inclusion and exclusion implies
that #(supp a1 ∩ supp a2 ∩ supp a3) = 2. Important is the fact that the
intersection is nonempty. Hence, with appropriate choice of the signs, there
is a generator of S, say, g1, whose coefficients in the expansions of all three
elements ai coincide. Then the two differences b1 = a1−a3 and b2 = a2−a3

belong to the kernel, are independent, and their supports do not contain g1.
This contradicts to (6.1). �

Proposition 6.3. — Let L be a lattice isomorphic to 2E8⊕3U, and let
S = Σ⊕U(2) be a sublattice of L with Σ ∼= 8A2 quasi-primitive in its prim-
itive hull. Then L has no involutive automorphism c acting identically on Σ,
interchanging the two elements of a standard basis of U(2), and having ex-
actly two positive squares in the (+1)-eigenlattice L+c = ker (1− c) ⊂ L.

Proof. — Assume that such an involution c exists. Let Σ̃ and S̃ be the
primitive hulls of Σ and S, respectively, in L, and let T = S⊥ be the
orthogonal complement. The lattice T has rank 4 and signature 0, i.e., it
has two positive and two negative squares.

Since discr U(2) = Z2 ⊕ Z2 (as a group) has 2-torsion only, the 3-
torsion parts (discr Σ̃) ⊗ Z3 and (discr S̃) ⊗ Z3 coincide. In particular,
c must act identically on (discr S̃) ⊗ Z3 (as, by the assumption, so it
does on Σ) and, hence, on (discrT ) ⊗ Z3, see Theorem 4.2. Furthermore,
due to Lemma 6.2 one has `3(discr T ) = `3(discr S̃) > 4. On the other
hand, `3(discr T ) 6 rankT = 4. Hence, `3(discrT ) = rankT = 4 and
the canonical homomorphism T∨ ⊗ Z3 → (discr T ) ⊗ Z3 is an isomor-
phism. Thus, c must also act identically on T∨ ⊗ Z3 and, hence, both
on T∨ and T ⊂ T∨. Indeed, for any free abelian group V , any involution
c : V → V , and any odd prime p, one has a direct sum decomposition
V ⊗ Zp = (V +c ⊗ Zp) ⊕ (V −c ⊗ Zp). Hence, c acts identically on V (i.e.,
V −c = 0) if and only if it acts identically on V ⊗ Zp (i.e., V −c ⊗ Zp = 0).

It remains to notice that, under the assumptions, the skew-invariant
part S−c = ker(1 + c) ∼= Σ ⊕ 〈−4〉 is negative definite. Since the total
skew-invariant part L−c has exactly one (= 3 − 2) positive square, one of
the two positive squares of T , should fall to T−c and the other, to T+c. In
particular, T−c 6= 0, and the action of c on T is not identical. �

Now we have finally reached the goal of this section.
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Theorem 6.4. — The ellipsoid Ell = (Y, s) (see §1 and §5) does not
contain a real curve C of bi-degree (4, 4) having eight real cusps (and no
other singularities).

Proof. — Any such curve C would be irreducible; hence, as in §5, it
would give rise to a sublattice 8A2⊕U(2) ⊂ L = H2(X; Z) ∼= 2E8⊕3U and
involution c = −conj∗ : L → L which do not exist due to Proposition 6.3.

�

7. Remarks and problems

I. Analogously to the total reality property for rational curves one can ask
a similar question for projective curves of any genus.

Problem 7.1. — Given a real algebraic curve (C, σ) with compact C
and nonempty real part Cσ and a complex algebraic map Ψ : C → CPn

such that the inverse images of all the flattening points of Ψ(C) lie on the
real part Cσ ⊂ C, is it true that Ψ is real algebraic up to a projective
automorphism of CPn?

The feeling is that this problem has a negative answer.
II. In recent paper [5] the authors found another generalization of the

conjecture on total reality in case of the usual rational functions.

Problem 7.2. — Extend the results of [5] to the case of meromorphic
functions on curves of higher genera.
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