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A MINIMAL SET OF GENERATORS FOR THE
RING OF MULTISYMMETRIC FUNCTIONS

by David RYDH

Abstract. — The purpose of this article is to give, for any (commutative) ring
A, an explicit minimal set of generators for the ring of multisymmetric functions
TSd

A(A[x1, . . . , xr]) =
(
A[x1, . . . , xr]⊗Ad

)Sd as an A-algebra. In characteristic
zero, i.e. when A is a Q-algebra, a minimal set of generators has been known
since the 19th century. A rather small generating set in the general case has also
recently been given by Vaccarino but it is not minimal in general. We also give
a sharp degree bound on the generators, improving the degree bound previously
obtained by Fleischmann.

As Γd
A(A[x1, . . . , xr]) = TSd

A(A[x1, . . . , xr]) we also obtain generators for di-
vided powers algebras: If B is a finitely generated A-algebra with a given surjection
A[x1, x2, . . . , xr]→ B then using the corresponding surjection Γd

A(A[x1, . . . , xr])→
Γd

A(B) we get generators for Γd
A(B).

Résumé. — Soit A un anneau commutatif arbitraire. Nous exhibons un en-
semble minimal et explicite de générateurs de l’anneau des fonctions multisymé-
triques TSd

A(A[x1, . . . , xr]) et obtenons, par conséquent, une borne stricte sur le
degré des générateurs. Dans le cas où la caractéristique de A est égale à zéro, un tel
ensemble est connu depuis le 19ème siècle. Dans le cas général par contre, il n’exis-
tait jusque-là qu’une borne, généralement non stricte, sur le degré des générateurs,
et un ensemble, généralement non minimal, de générateurs.

1. Introduction

Let k be a field of characteristic zero. Explicit generators for the ring
of multisymmetric functions

(
k[x1, . . . , xr]⊗kd

)Sd have been known since
the nineteenth century, cf. [22, 10]. At the end of the same century non-
constructive methods began to appear, in particular Hilbert’s basis theo-
rem [8]. An easy consequence of this theorem is that if a finite group G

Keywords: Symmetric functions, generators, divided powers, vector invariants.
Math. classification: 13A50, 05E05, 14L30, 14C05.



1742 David RYDH

acts linearly on a polynomial ring over a field k and |G| is invertible in k,
then the invariant ring is finitely generated, cf. [24, §57]. In particular, we
may deduce that

(
k[x1, . . . , xr]⊗kd

)Sd is finitely generated without finding
explicit generators.

The first result on the finiteness of the invariant ring of a group action
in characteristic p was given by Noether [16]. Her argument is essentially
the following: Let A be a noetherian ring and G = {g1, g2, . . . , gm} a finite
group acting on B = A[x1, . . . , xn]. Let C = A[e11, e12, . . . , enm] ⊆ B where
eij is the jth elementary symmetric function in g1(xi), g2(xi), . . . , gm(xi).
The A-algebra C is finitely generated and hence noetherian. As B is finite
over C and C ⊆ BG ⊆ B it follows that BG is finite over C and thus
finitely generated as an A-algebra. In particular

(
A[x1, . . . , xr]⊗Ad

)Sd is
finitely generated for any noetherian ring A.

The abstract methods partly removed the need for explicit generators.
However, interest in effective answers reappeared in the end of the twenti-
eth century. One of the first results in this direction was given by Campbell,
Hughes and Pollack [2] who showed that the ring of multisymmetric func-
tions can be generated by elements of degree 6 max

(
d, rd(d − 1)/2

)
. In

characteristic 0, the explicit generators have degree 6 d.
Some years later Fleischmann [5, Thm. 4.6] improved this degree bound

to 6 max
(
d, r(d− 1)

)
and also showed [5, Thm. 4.7] that this was the best

possible if A = Fp and d = ps, cf. Corollary 8.7. Vaccarino [23, Thm. 1] then
used this result to give explicit generators, cf. Theorem 7.9. Fleischmann’s
degree bound is, however, not always sharp and the corresponding gener-
ating set is not minimal.

For any positive integer n and prime p we let

Qp(n)(t) = ast
s + as−1t

s−1 + · · ·+ a0 ∈ N[t]

where asas−1 . . . a0 is the representation of n in base p. We will prove the
following theorem, cf. Theorem 7.19:

Theorem. — Let A be any ring and r, d > 1 positive integers. The ring
of multisymmetric functions

(
A[x1, . . . , xr]⊗Ad

)Sd is minimally generated
as an A-algebra by the elements

ek(xα) = (xα)⊗k ⊗ 1⊗d−k + · · ·+ 1⊗d−k ⊗ (xα)⊗k

where ek is the kth elementary symmetric function on d variables and
(k, α) ∈ {1, 2, . . . , d}×(Nr \0) are such that gcd(α) = 1 and either k|α| 6 d

or there is a prime p, not invertible in A, such that

Qp(kα1) + Qp(kα2) + · · ·+ Qp(kαr) 6 Qp(d).
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THE RING OF MULTISYMMETRIC FUNCTIONS 1743

It is then easy to obtain the following sharp degree bound, cf. Corol-
lary 8.8:

Corollary. — Let A be any ring and r, d > 1 positive integers. For
any prime p we let ap and bp be defined by Qp(d)(t) = apt

bp + . . . . The ring
of multisymmetric functions is then generated by the elements of degree at
most

max
{

d, max
p

(
(ap + r − 1)pbp − r

)}
where the maximum is taken over every prime p not invertible in A. Further,
every generating set contains an element attaining this bound.

The ring of multisymmetric functions is usually described as the sym-
metric tensors of the polynomial ring in r variables

TSd
A(A[x1, . . . , xr]) :=

(
A[x1, . . . , xr]⊗Ad

)Sd .

Another, functorially more well-behaved, description of the multisymmetric
functions is given by the ring of divided powers Γd

A(A[x1, . . . , xr]) which
is canonically isomorphic with the ring of multisymmetric functions. For
any A-algebra B there is a canonical homomorphism Γd

A(B) → TSd
A(B)

which is an isomorphism when A is of characteristic 0 or B is a free A-
module but not in general [12]. If B → C is surjective then Γd

A(B) →
Γd

A(C) is surjective but TSd
A(B) → TSd

A(C) need not be [12]. Thus, a set
of generators for Γd

A(A[x1, . . . , xr]) = TSd
A(A[x1, . . . , xr]) will give a set of

generators for Γd
A(B) for any finitely generated A-algebra B but not for

TSd
A(B) in general. These issues are also discussed in [21].
From yet another slightly different viewpoint we can describe the multi-

symmetric functions as follows: Let V be a vector space over a field k and
G a group acting linearly on V . Then G also acts on the dual space V ∗

and on the functions on V , i.e. the ring k[V ] = S(V ∗). The invariants of G

are the invariant elements of k[V ], i.e. the subring k[V ]G. The set of vector
invariants [25] of G is the invariant subring k[V r]G ⊆ k[V r] where G acts
on V r = V ⊕ V ⊕ · · · ⊕ V by σ(v1, v2, . . . , vr) = (σv1, σv2, . . . , σvr). The
symmetric functions are the invariants of the symmetric group on d letters
Sd acting by permutations on V = kd. The multisymmetric functions are
the vector invariants of the same action.

Closely related to the question of generators of the ring of multisymmet-
ric functions is the question of which relations these generators satisfy. In
characteristic 0 the relations between the generators were thoroughly stud-
ied by Junker [9, 10, 11] in the nineteenth century. More recently, Vaccarino
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1744 David RYDH

gave in [23, Thm. 2] relations for his set of generators mentioned above. In
this article however, we will not discuss the relations that the generators
satisfy.

We begin with some notation in §2 and a somewhat technical combinato-
rial result, Main Lemma 2.10, which will be used in the proof of the main
theorem in the last section. We recall the definition of polynomial laws
in §3, the algebra of divided powers ΓA(M) in §4, and the multiplicative
structure of Γd

A(B) in §5. In the rest of the article we will only consider
Γd

A(B) for B free over A and as mentioned above, in this case Γd
A(B) coin-

cides with the symmetric tensors TSd
A(B), see 5.2. The reader, if inclined

so, may replace Γd
A(B) with TSd

A(B), γk
A(x) with x⊗Ak, interpret × as the

shuffle product and forget about divided powers altogether. The important
results of §§4-5 used in the sequel are Formula 5.3 describing the multipli-
cation in Γd

A(B) and the surjective homomorphism ρe
d : Γe

A(B) � Γd
A(B)

for e > d defined in paragraph 5.5. The homomorphism ρe
d allows us to lift

relations in Γd
A(B) to relations in Γe

A(B) which will be useful in §7. We
also use the convenient shorthand notation 1k for γk

A(1) or 1⊗Ak.
In §6 we establish some notation and well known facts about the mul-

tisymmetric functions Γd
A(A[x1, x2, . . . , xr]) = TSd

A(A[x1, x2, . . . , xr]). In
the central section §7 a minimal set of generators for the ring of mul-
tisymmetric functions Γd

A(A[x1, x2, . . . , xr]) is found in Theorem 7.19 for
an arbitrary ring A. Several applications of this theorem is then given
in §8. A sharp bound on the total degree of any generating set is given in
Corollary 8.8, improving [5, Thm. 4.6]. In Corollary 8.10, the cases when
Γd

A(A[x1, x2, . . . , xr]) is generated by the elementary multisymmetric poly-
nomials is determined as has previously been done by Briand [1, Thm.
1].

Finally we briefly discuss the relation between the generators of the ring
of multisymmetric polynomials and the Chow scheme in Remark 8.11.

Acknowledgement. — I would like to thank D. Laksov for introducing
me to divided powers and for many suggestions and comments. Thanks
also to F. Vaccarino for reading an early manuscript and pointing out some
references. Finally I thank the referee for several valuable comments.

2. Multi-indices, multinomials and a combinatorial result

Notation 2.1. — We let N be the set of non-negative integers 0, 1, 2, . . .

ANNALES DE L’INSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 1745

Notation 2.2. — For a multi-index ν ∈ N(I) we let

((ν)) =
(
|ν|
ν

)
=

(
∑

α να)!∏
α (να!)

be the multinomial coefficient of ν. In particular ((a, b)) =
(
a+b

a

)
.

Notation 2.3. — For i ∈ I we let ei ∈ N(I) be the multi-index such that

(ei)α =

{
0 if α 6= i

1 if α = i.

Definition 2.4. — For n ∈ Q and p a prime we let ordp(n) be the
order of n at p, i.e. ordp(n) is defined by n = ±

∏
p prime pordp(n).

Definition 2.5. — For n ∈ N we let Qp(n)(t) = ast
s +as−1t

s−1 + · · ·+
a0 ∈ Z[t] be the polynomial with coefficients 0 6 ak 6 p − 1 such that
Qp(n)(p) = n, i.e. asas−1 . . . a0 is the presentation of n in base p. If α ∈ Nn

then we let Qp(α) =
∑n

k=1 Qp(αk).

Definition 2.6. — If P (t), Q(t) ∈ Z[t] are polynomials then P > Q

means that P (n) > Q(n) for all sufficiently large n.

Lemma 2.7. — Let n ∈ N and α ∈ N(I). We have that

(i) ordp(n!) = 1
p−1

(
n−Qp(n)(1)

)
.

(ii) ordp ((α)) = 1
p−1

(
Qp(α)(1)−Qp

(
|α|
)
(1)
)
.

(iii) ordp ((psα)) = ordp ((α)).

Proof. — (i) is easily verified, (ii) is an immediate consequence of (i) and
(iii) follows from (ii). �

Lemma 2.8. — Let α ∈ N(I). We have three inequalities

ordp ((α)) > 0 Qp(α)(1) > Qp

(
|α|
)
(1) Qp(|α|) > Qp(α)

and equality in any of these inequalities holds if and only if the sum
∑

i∈I αi

can be computed in base p without carrying, i.e if and only if Qp(|α|) =
Qp(α).

Proof. — The first inequality is obvious as ((α)) is a positive integer. It
is further easily seen that the two last inequalities hold and with equality if
and only if the sum

∑
i∈I αi can be computed in base p without carrying.

The second inequality is a multiple of the first by Lemma 2.7 (ii) and thus
ordp ((α)) = 0 if and only if Qp(|α|) = Qp(α). �

TOME 57 (2007), FASCICULE 6



1746 David RYDH

Definition 2.9. — Fix a positive integer r and let M∗ = Nr \ {0}. We
will identify β ∈M∗ with the monomial xβ = xβ1

1 xβ2
2 . . . xβr

r . In particular,
we identify ei ∈ M∗ with xi. Given a multi-index α ∈ M∗ and an integer
d < |α| we let Sα,d be the set of ν ∈ N(M∗) such that there is a decom-
position xα =

∏
β∈M∗

(
xβ
)νβ and such that |ν| > d. That is, the elements

of Sα,d are factorizations of xα in at least d + 1, not necessarily different,
non-trivial monomials.

Main Lemma 2.10. — Given a multi-index α ∈M∗, an integer d < |α|
and a prime p, we let s = ordp gcd(α). Then there exists a ν ∈ Sα,d such
that

ordp
ps((ν))
|ν|

= 0

if and only if Qp(α) > Qp(d).

Proof. — First note that ordp

(
ps((ν))/|ν|

)
is always non-negative. In

fact, there exists a β ∈ M∗ such that νβ > 0 and ordpνβ 6 s, and
((ν))/|ν| = ((ν − eβ))/νβ . We will prove the lemma in several steps:

I) Reduction to the case where s = 0. Assume that s > 0 and let ν ∈ Sα,d.
If p does not divide ν then define ν′, ν′′, ν̃ ∈ N(M∗) by

ν′β =
⌊

νβ

p

⌋
and ν̃ = p(ν′ + ν′′)

where ν′′ is chosen such that

|ν̃| = p

⌈
|ν|
p

⌉
and

∑
β∈M∗

ν̃ββ =
∑

β∈M∗

νββ = α.

Then ν̃ ∈ Sα,d since |ν̃| > |ν| > d + 1. To see that such a ν′′ exists, let
α′′ = α/p −

∑
β∈M∗ ν′ββ and q = d(|ν| − p|ν′|)/pe 6 |α′′|. Then choose

β1, β2, . . . , βq ∈M∗ such that α′′ = β1 +β2 + · · ·+βq and let ν′′ =
∑

i eβi
.

Now as ordp

(
|ν|!/|ν|

)
= ordp

(
|ν̃|!/|ν̃|

)
and ordp(ν!) = ordp

(
(pν′)!

)
6

ordp(ν̃!) we obtain that

ordp
((ν))
|ν|

= ordp
|ν|!
|ν|ν!

> ordp
|ν̃|!
|ν̃|ν̃!

= ordp
((ν̃))
|ν̃|

and thus

min
ν∈Sα,d

ordp
ps((ν))
|ν|

= min
pµ∈Sα,d

ordp
ps((pµ))
|pµ|

= min
pµ∈Sα,d

ordp
ps−1((µ))

|µ|

ANNALES DE L’INSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 1747

by Lemma 2.7 (iii). Let pµ ∈ Sα,d. If we let α′ = α/p and d′ = bd/pc then
µ ∈ Sα′,d′ as p|µ| > d + 1 implies that |µ| > d(d + 1)/pe = d′ + 1. Thus

min
pµ∈Sα,d

ordp
ps−1((µ))

|µ|
= min

µ∈Sα′,d′
ordp

ps−1((µ))
|µ|

.

Finally Qp(α) > Qp(d) if and only if Qp(α′) > Qp(d′) and we conclude
step I) by induction on s.

II) Reduction to the case where ν =
∑r

i=1 δiexi + exγ with δ ∈ Nr and
γ ∈ M∗. From step I) we can assume that p - α and hence p - ν. If we
choose β0 such that p - νβ0 then

ordp
((ν))
|ν|

= ordp ((ν − exβ0 )).

For every β ∈M∗ choose i(β) ∈ {1, 2, . . . , r} such that βi(β) > 0 and let

ν′ =
∑

β∈M∗

νβexi(β) − exi(β0) .

Then |ν′| = |ν| − 1 and ordp ((ν′)) 6 ordp ((ν − exβ0 )). Finally if we let
ν′′ = ν′ + exγ with xγ ∈ M∗ such that

∑
β∈M∗ ν′′ββ =

∑
β∈M∗ νββ = α

then |ν′′| = |ν| and

ordp
((ν′′))
|ν′′|

= ordp
((ν′′ − exγ ))

ν′′γ
6 ordp ((ν′)) 6 ordp

((ν))
|ν|

.

Let Tα,d = {δ ∈ Nr : δ < α, |δ| > d}.

III) ordp ((ν))/|ν| = ordp ((δ)) for some δ ∈ Tα,d. From the previous
step we can assume that ν =

∑r
i=1 δiexi + exγ . If |γ| > 2, i.e. xγ 6= xj for

some j then
((ν))
|ν|

=
((δ1, δ2, . . . , δr, 1))

δ1 + δ2 + · · ·+ δr + 1
= ((δ)).

Otherwise xγ = xj and ν =
∑r

i=1 αiexi . As p - α by step I), there is an k

such that p - αk and we can write ν =
∑r

i=1 δ′iexi
+ exk

where δ′ = α− ek.
Then

ordp
((ν))
|ν|

= ordp ((ν − exk
)) = ordp ((δ′)).

IV) minν∈Sα,d
ordp ((ν))/|ν| = minδ∈Tα,d

ordp ((δ)). From step III) it
follows that

min
ν∈Sα,d

ordp
((ν))
|ν|

> min
δ∈Tα,d

ordp ((δ)).

For any δ ∈ Tα,d we let γ = α − δ and ν =
∑

i δiexi + exγ ∈ Sα,d. As
ordp ((ν))/|ν| = ordp ((δ))− ordp(νγ) 6 ordp ((δ)) this concludes step IV).

TOME 57 (2007), FASCICULE 6
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V) The minimum of
{
ordp ((δ))

}
δ∈Tα,d

is attained for a δ with |δ| = d.
This follows immediately from the fact that ordp ((δ)) > ordp ((δ−ei)) if i

is chosen such that ordp(δi) is minimal.
VI) Conclusion. Let δ ∈ Nr such that |δ| = d and δ < α. Lemma 2.8

shows that ordp ((δ)) = 0 if and only if Qp(δ) = Qp

(
|δ|
)

= Qp(d). It is
then easily seen that there exists a δ < α such that Qp(δ) = Qp(d) if and
only if Qp(α) > Qp(d). �

3. Polynomial laws and symmetric tensors

We recall the definition of a polynomial law [18, 19].

Definition 3.1. — Let M and N be A-modules. We denote by FM the
functor

FM : A–Alg → Sets, A′ 7→ M ⊗A A′.

A polynomial law from M to N is a natural transformation f : FM → FN .
More concretely, a polynomial law is a map fA′ : M ⊗A A′ → N ⊗A A′

for every A-algebra A′ such that for any homomorphism of A-algebras
g : A′ → A′′ the diagram

M ⊗A A′ fA′ //

idM⊗g

��

N ⊗A A′

idN⊗g

��

M ⊗A A′′ fA′′ // N ⊗A A′′

◦

commutes. The polynomial law f is homogeneous of degree d if for any
A-algebra A′, the corresponding map fA′ : M ⊗A A′ → N ⊗A A′ is such
that fA′(ax) = adfA′(x) for any a ∈ A′ and x ∈ M ⊗A A′. If B and C are
A-algebras then a polynomial law from B to C is multiplicative if for any
A-algebra A′, the corresponding map fA′ : B ⊗A A′ → C ⊗A A′ is such
that fA′(xy) = fA′(x)fA′(y) for any x, y ∈ B ⊗A A′.

Notation 3.2. — Let A be a ring and M and N be A-modules (resp. A-
algebras). We let Pold(M,N) (resp. Poldmult(M,N)) denote the polynomial
laws (resp. multiplicative polynomial laws) M → N which are homogeneous
of degree d.

Notation 3.3. — Let A be a ring and M an A-algebra. We denote the
dth tensor product of M over A by Td

A(M). We have an action of the
symmetric group Sd on Td

A(M) permuting the factors. The invariant ring
of this action is the set of symmetric tensors and is denoted TSd

A(M). By

ANNALES DE L’INSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 1749

TA(M) and TSA(M) we denote the graded A-modules
⊕

d>0 Td
A(M) and⊕

d>0 TSd
A(M) respectively.

3.4 Shuffle product. — When B is an A-algebra, then TSd
A(B) has a nat-

ural A-algebra structure induced from the A-algebra structure of Td
A(B).

The multiplication on TSd
A(B) will be written as juxtaposition. For any

A-module M , we can equip TA(M) and TSA(M) with A-algebra struc-
tures compatible with the grading. The multiplication on TA(M) is the
ordinary tensor product and the multiplication on TSA(M) is called the
shuffle product and is denoted by ×. If x ∈ TSd

A(M) and y ∈ TSe
A(M) then

x× y =
∑

σ∈Sd,e

σ (x⊗A y)

where Sd,e is the subset of Sd+e such that σ(1) < σ(2) < · · · < σ(d) and
σ(d + 1) < σ(d + 2) < . . . σ(d + e).

4. Divided powers

All of the material in this section can be found in [18] and a good expo-
sition is [4, §2].

4.1. — Let A be a ring and M an A-module. Then there exists a graded
A-algebra, the algebra of divided powers, denoted ΓA(M) =

⊕
d>0 Γd

A(M)
equipped with maps γd : M → Γd

A(M) such that, denoting the multi-
plication with × as in [4], we have that for every x, y ∈ M , a ∈ A and
d, e ∈ N

Γ0
A(M) = A, and γ0(x) = 1(4.1)

Γ1
A(M) = M, and γ1(x) = x(4.2)

γd(ax) = adγd(x)(4.3)

γd(x + y) =
∑

d1+d2=d γd1(x)× γd2(y)(4.4)

γd(x)× γe(x) = ((d, e))γd+e(x).(4.5)

Using (4.1) and (4.2) we will identify A with Γ0
A(M) and M with Γ1

A(M).
If (xα)α∈I is a family of elements of M and ν ∈ N(I) then we let

γν(x) = ×
α∈I

γνα(xα)

which is an element of Γd
A(M) with d = |ν| =

∑
α∈I να.

4.2 Functoriality. — ΓA(·) is a covariant functor from the category of
A-modules to the category of graded A-algebras [18, Ch. III §4, p. 251].

TOME 57 (2007), FASCICULE 6
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4.3 Base change. — For any A-algebra A′ there is a natural isomorphism
ΓA′(M ⊗A A′) → ΓA(M)⊗A A′ taking γd(x⊗A 1) to γd(x)⊗A 1 [18, Thm.
III.3, p. 262]. This shows that γd is a homogeneous polynomial law of degree
d.

4.4 Universal property. — The map HomA

(
Γd

A(M), N
)
→ Pold(M,N)

given by f 7→ f ◦ γd is an isomorphism [18, Thm. IV.1, p. 266].

4.5 Basis. — If (xα)α∈I is a family of elements of M which generates M ,
then the family

(
γν(x)

)
ν∈N(I) generates ΓA(M). If (xα)α∈I is a basis of M

then
(
γν(x)

)
ν∈N(I) is a basis of ΓA(M) [18, Thm. IV.2, p. 272].

4.6 Exactness. — The functor ΓA(·) is a left adjoint [18, Thm. III.1,
p. 257] and thus commutes with any (small) direct limit. It is thus right
exact [7, Def. 2.4.1] but note that ΓA(·) is a functor from the category of A-
modules to the category of graded A-algebras and that the latter category
is not abelian. By [7, Rem. 2.4.2] a functor is right exact if and only if
it takes the initial object onto the initial object and commutes with finite
coproducts and coequalizers. Thus ΓA(0) = A and given an exact diagram
of A-modules

M ′
f

//

g
// M

h // M ′′

the diagram

ΓA(M ′)
Γf

//

Γg
// ΓA(M) Γh // ΓA(M ′′)

is an exact sequence of A-algebras and

ΓA(M ⊕M ′) = ΓA(M)⊗A ΓA(M ′).

The latter identification can be made explicit [18, Thm. III.4, p. 262] as

Γd
A(M ⊕M ′) =

⊕
a+b=d

(
Γa

A(M)⊗A Γb
A(M ′)

)
γd(x + y) =

∑
a+b=d

γa(x)⊗ γb(y).

This makes ΓA(M ⊕M ′) =
⊕

a,b>0 Γa,b
A (M ⊕M ′) into a bigraded algebra

where Γa,b
A (M ⊕M ′) = Γa

A(M)⊗A Γb
A(M ′).

4.7 Exactness of Γd
A(·). — If M � N is a surjection then it is easily

seen from the explicit generators of Γd(N) in 4.5 that Γd
A(M) � Γd

A(N) is
surjective. This does, however, not imply that Γd

A(·) is right exact. In fact,
in general it is not since we have that Γd

A(M ⊕M ′) 6= Γd
A(M)⊕ Γd

A(M ′).
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4.8 Filtered direct limits. — The functor Γd
A(·) commutes with filtered

direct limits. In fact, if (Mα) is a directed filtered system of A-modules
then ⊕

d>0

Γd
A( lim−→

A–Mod

Mα) = lim−→
A–Alg

⊕
d>0

Γd
A(Mα) =

= lim−→
A–Mod

⊕
d>0

Γd
A(Mα) =

⊕
d>0

lim−→
A–Mod

Γd
A(Mα).

The first equality follows from the exactness of Γ described in paragraph 4.6
and the second from the fact that a filtered direct limit in the category
of A-algebras coincides with the corresponding filtered direct limit in the
category of A-modules [7, Cor. 2.9].

4.9 Γ and TS. — The homogeneous polynomial law M → TSd
A(M) of

degree d given by x 7→ x⊗Ad = x⊗A · · · ⊗A x corresponds by the universal
property 4.4 to an A-module homomorphism Γd

A(M) → TSd
A(M). This

extends to an A-algebra homomorphism ΓA(M) → TSA(M), where the
multiplication in TSA(M) is the shuffle product defined in paragraph 3.4,
cf. [18, Prop. III.1, p.254].

When M is a free A-module the homomorphisms Γd
A(M) → TSd

A(M)
and ΓA(M) → TSA(M) are isomorphisms of A-modules respectively A-
algebras [18, Prop. IV.5, p. 272]. More generally, these homomorphisms
are isomorphisms when M is a flat A-module, see [3, 5.5.2.5, p. 123], or
when A is a Q-algebra, see [18, Ch. III, Cor., p. 256]. This is also discussed
in [21].

4.10. — Let d1, d2 ∈ N. There is a canonical homomorphism

ρd1+d2
d1,d2

: Γd1+d2
A (M) → Γd1

A (M)⊗A Γd2
A (M)

given by the homogeneous polynomial law x 7→ γd1(x)⊗ γd2(x) of degree
d1 + d2 and the universal property 4.4. In particular

ρd1+d2
d1,d2

(
γν(x)

)
=

∑
ν(1)+ν(2)=ν

|ν(i)|=di

γν(1)
(x)⊗ γν(2)

(x).

5. Multiplicative structure of Γd
A(B)

When B is a not necessarily commutative and unitary A-algebra then
the multiplication of B induces a multiplication on Γd

A(B) which we will
denote by juxtaposition [19, (II)]. In particular γd(x)γd(y) = γd(xy) and
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this makes γd into a multiplicative polynomial law homogeneous of de-
gree d. Unless otherwise stated we will assume that B is a (commutative
and unitary) A-algebra. The unit in Γd

A(B) is γd(1) and will be denoted by
1d in the sequel.

5.1 Universal property. — Let B and C be A-algebras. Then the map
HomA–Alg

(
Γd

A(B), C
)
→ Poldmult(B,C) given by f → f ◦ γd is an isomor-

phism [19, Thm.]. Also see [4, Prop. 2.5.1].
5.2 Γ and TS. — The homogeneous polynomial law B → TSd

A(B) of
degree d given by x 7→ x⊗Ad = x ⊗A · · · ⊗A x is multiplicative. The ho-
momorphism ϕ : Γd

A(B) → TSd
A(B) in paragraph 4.9 is thus an A-algebra

homomorphism. It is an isomorphism when B is a free A-module, or more
generally when B is flat over A, since it is then an isomorphism of A-
modules by 4.9.

This A-algebra homomorphism is studied in [21] and need neither be
injective nor surjective. In particular it is shown that if x ∈ ker ϕ then
xd! = 0 and if y ∈ TSd

A(B) then yd! ∈ im ϕ. Further, the corresponding
morphism of schemes

Symd
Spec(A)

(
Spec(B)

)
:= Spec

(
TSd

A(B)
)
→ Spec

(
Γd

A(B)
)

is a universal homeomorphism. An example due to Lundkvist [12] shows
that

(
Γd

A(B)
)
red

→
(
TSd

A(B)
)
red

is not always an isomorphism. The in-
duced morphism between seminormalizations

(
Γd

A(B)
)
sn
→
(
TSd

A(B)
)
sn

,
however, is an isomorphism as shown in [21].

Formula 5.3 (Multiplication formula [19, Eq. (3)]). — Let (xα)α∈I be
a family of elements in B and let µ, ν ∈ N(I) with d = |µ| = |ν|. Then we
have the following identity in Γd

A(B)

γµ(x)γν(x) =
∑

ξ∈Nµ,ν

γξ(x(1)x(2)) =
∑

ξ∈Nµ,ν

×
(α,β)∈I×I

γξαβ (xαxβ)

where Nµ,ν is the set of multi-indices ξ ∈ N(I×I) such that
∑

β∈I ξαβ = µα

for every α ∈ I and
∑

α∈I ξαβ = νβ for every β ∈ I.

5.4. — The homomorphism ρd1+d2
d1,d2

of 4.10 was given by the homogeneous
polynomial law B → Γd1

A (B) ⊗A Γd2
A (B) defined by x 7→ γd1(x)⊗ γd2(x).

As this is a multiplicative law we get a homomorphism of A-algebras

ρd1+d2
d1,d2

: Γd1+d2
A (B) → Γd1

A (B)⊗A Γd2
A (B).

Further, given an A-algebra retraction ε : B → A of the structure homo-
morphism A → B we get a homomorphism

Γd1+d2
A (B) → Γd1

A (B)⊗A Γd2
A (B) → Γd1

A (B)⊗A Γd2
A (A) ∼= Γd1

A (B)
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which we will denote ρd1+d2
d1,ε .

5.5. — If B =
⊕

k>0 Bk is a graded A-algebra with B0 = A then we have
a canonical augmentation B → B0 = A. The corresponding homomorphism
Γd1+d2

A (B) → Γd1
A (B) given by 5.4 will be denoted ρd1+d2

d1
. If (xα)α∈I is a

family of generators of B+ =
⊕

k>1 Bk as an A-module, then by 4.5 the
family

(
γν(x)× 1d−|ν|)

ν∈N(I),|ν|6d
generates Γd

A(B). If e > d

ρe
d

(
γν(x)× 1e−|ν|) =

{
γν(x)× 1d−|ν| if |ν| 6 d

0 if |ν| > d.

Thus ρe
d is surjective.

Remark 5.6 (Geometrical interpretation of ρ). — If A = k is an alge-
braically closed field, then the k-points of Spec

(
Γd

k(B)
)

= Symd
k

(
Spec(B)

)
correspond to the zero-cycles of degree d on Spec(B). Similarly, for any
reduced A′ it is possible to describe the A′-points of Spec

(
Γd

A(B)
)

as fam-
ilies of zero-cycles of degree d on Spec(B) parameterized by Spec(A′) [20].
The homomorphism ρd1+d2

d1,d2
defined in 5.4 corresponds to a morphism of

schemes

Spec
(
Γd1

A (B)
)
×A Spec

(
Γd2

A (B)
)
→ Spec

(
Γd1+d2

A (B)
)

describable as the addition of two families of cycles of degrees d1 and d2

respectively.
A retraction ε : Γ1

A(B) = B → A gives a family of zero-cycles of degree 1.
The homomorphism ρe

d,ε corresponds to the addition of a family of cycles of
degree d with e−d times the family of cycles corresponding to ε. When B =
A[x1, x2, . . . , xn] with its natural grading, then the canonical retraction on
the zeroth graded part corresponds to the constant family of zero-cycles
which is the origin in every fiber. The homomorphism ρe

d is the addition of
a family of cycles of degree d with e− d times this constant family.

6. Elementary symmetric polynomials and power sums

6.1. — If B = A[x] is the polynomial ring in one variable, then Γd
A(B) ∼=

TSd
A(B) is isomorphic to the ring of symmetric polynomials in d variables

A[x1, x2, . . . , xd]Sd . It is well known that the ring of symmetric polynomials
in d variables is the polynomial ring over A in the elementary symmetric
functions e1, e2, . . . , ed. The elementary symmetric functions correspond to
the elements ek = γk(x) × 1d−k in Γd

A(B). We also let e0 = 1 = 1d and
ek = 0 for all k > d.
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6.2. — We have another distinguished set of symmetric polynomials in
d variables, the power sums. Let pk = xk

1 + xk
2 + · · · + xk

d for k ∈ N. This
corresponds to the element pk = xk × 1d−1. Note that

p0 = 11 × 1d−1 = ((1, d− 1))1d = d.

Expressed in Γd
A(B), the Newton identities relating ek and pk become

(6.1)
∑

a+b=k
a>0,b>0

(−1)bpaeb + (−1)kkek = 0, k = 1, 2, . . . .

By induction these give the Waring formula, expressing pk as a polynomial
in e1, e2, . . . , ek. Conversely, if k! is invertible we obtain a formula expressing
ek in p1, p2, . . . , pk. Thus if A is purely of characteristic 0, i.e. a Q-algebra,
then Γd

A(B) = A[e1, e2, . . . , ed] = A[p1, p2, . . . , pd].
6.3. — Fix an integer r > 1 once and for all and let B = A[x1, x2, . . . , xr]

be the polynomial ring in r variables. The rest of the paper will be devoted
to the study of the ring of multisymmetric polynomials Γd

A(B) = TSd
A(B).

6.4. — The analogues of the elementary symmetric polynomials are the
elementary multisymmetric polynomials eα given by

eα = γα(x)× 1d−|α| =
(

r
×

i=1
γαi(xi)

)
× 1d−|α|

for α ∈ Nr such that |α| 6 d and eα = 0 otherwise. The elementary
multisymmetric polynomials which only depend on one set of variables, i.e.
such that αi = k for some i and zero otherwise with 1 6 k 6 d, are called
primitive.

6.5. — Similarly as in the 1-dimensional case, we define the multisym-
metric power sum pα as

pα = xα × 1d−1 =

(
r∏

i=1

xαi
i

)
× 1d−1

with α ∈ Nr. As before, the pα’s with αi = k for some i and zero otherwise
with 1 6 k 6 d, are called primitive.

6.6. — When r > 1 it is no longer true that Γd
A(B) is a polynomial ring.

It is however easily seen that Γd
A(B) = TSd

A(B) has relative dimension rd

over A, i.e. Symd
Spec(A)

(
Spec(B)

)
:= Spec

(
TSd

A(B)
)

is equidimensional of
relative dimension rd over Spec(A), cf. [6, Def. 13.3.2, Err. 35]. In fact
TSd

A(B) ↪→ Td
A(B) is finite and the latter ring has relative dimension rd. A

transcendence basis for Γd
A(B) over A is given either by the primitive ele-

mentary multisymmetric functions or the primitive multisymmetric power
sums.

ANNALES DE L’INSTITUT FOURIER



THE RING OF MULTISYMMETRIC FUNCTIONS 1755

It is well known and often (falsely) attributed to Weyl [25] that when A

is purely of characteristic 0 then Γd
A(B) is generated by the pα’s (or the

eα’s) with |α| 6 d. This result will also follow from Theorem 7.19 which
gives generators for Γd

A(B) for arbitrary A, cf. Corollary 8.4. For a brief
outline of the classical proofs, see paragraph 7.1.

The Newton identities have a generalization to the multisymmetric case
which has long been known, cf. [10, §4]. Recall that eα = 0 if |α| > d.

Proposition 6.7 (Multisymmetric Newton identities). — Let δ ∈ Nr

then ∑
α+β=δ

α∈Nr\0, β∈Nr

(−1)|β|((α))pαeβ + (−1)|δ||δ|eδ = 0.

Proof. — The multisymmetric identities easily follow from the usual
Newton identities by polarization : Let A′ = A[u1, u2, . . . , ur]. In Γd

A′(A
′[t])

we have the usual Newton identities. Using the homomorphism A′[t] →
A′[x1, x2, . . . , xr] defined by t 7→ u1x1 +u2x2 + · · ·+urxr we obtain identi-
ties in Γd

A′(A
′[x1, x2, . . . , xr]). Equating the coefficients of uδ will then give

the requested identity. For details see [25, Ch. II §3]. �

Corollary 6.8. — If d! is invertible in A then the two subrings of
Γd

A(B), generated by (pα)|α|6d and (eα)|α|6d respectively, coincide.

Proof. — Repeated use of Proposition 6.7 with |δ| 6 d allows us to ex-
press pβ with |β| 6 d as a polynomial in (eα)α6β and eβ as a polynomial
in (pα)α6β . In fact, all coefficients of the involved identities are 6 |δ|! 6 d!
and hence invertible. �

Definition 6.9 (Basis). — Let M be the monomials in B and M∗ =
M\ {1}. For ν ∈ N(M) ' N(Nr) we let

zν = γν(x) = ×
α∈Nr

γνα(xα) ∈ ΓA(B)

By paragraph 4.5 these elements form a basis of ΓA(B). A basis for Γd
A(B)

is then
(
zν

)
ν∈N(M),|ν|=d

or written differently
(
zν × 1d−|ν|)

ν∈N(M∗),|ν|6d
.

Definition 6.10 (Multidegree). — Let the multidegree mdeg : M→
Nr be defined by mdeg(xα) = α. We have a Nr-grading on B given by

B =
⊕
α∈Nr

Bα =
⊕
α∈Nr

Axα.
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This grading on Γ1
A(B) = B induces in a natural way a Nr-grading on the

A-algebra ΓA(B) such that

mdeg
(
zν

)
=
∑

α∈Nr

ναα.

We let Γd
A(B)α be the A-module generated by the basis elements zν , |ν| = d

of multidegree α. This makes Γd
A(B) =

⊕
α∈Nr Γd

A(B)α into a Nr-graded
A-algebra as is easily seen from Formula 5.3.

The total degree is the sum of the degree in every variable, e.g. the total
degree of zν is

∑
α∈Nr να|α|.

Remark 6.11. — The multisymmetric polynomials eα and pα both have
multidegree α.

Definition 6.12. — We let Γd
A(B)〈α〉 = A

[
Γd

A(B)β,β<α

]
be the sub-

algebra of Γd
A(B) generated by elements of multidegree strictly less than α.

Definition 6.13. — The length of an element f ∈ Γd
A(B) is the small-

est integer ` such that f = g × 1d−` for some g ∈ Γ`
A(B).

Definition 6.14. — Let P(A) be the set of primes p ∈ N such that
p · 1A ∈ A is not invertible.

Remark 6.15. — If A is purely of characteristic 0, i.e. a Q-algebra, then
P(A) = ∅. If A is a local ring with residue field of characteristic p > 0 or
A is an algebra over a field of characteristic p > 0 then P(A) = {p}. If A

is a Z(p)-algebra then P(A) ⊆ {p}.

7. Generators for the ring of multisymmetric polynomials

As before we let A be any ring, r > 1 a fix integer and B = A[x1, . . . , xr].
In this section we will prove the main theorem of this paper 7.19 in which
a minimal generating set of Γd

A(B) ∼= TSd
A(B) as an A-algebra is given for

any ring A.
7.1 Classical proof in characteristic zero. — In characteristic zero, it can

be proved [10, 15, 25, 14] that the elementary multisymmetric functions
(eα)|α|6d generate the A-algebra Γd

A(B) as follows:
1) Any multisymmetric function is a polynomial in the multisymmet-

ric power sums (pα)α∈Nr , see [22, pp. 15–16], [10, §5] or [14, Lemma
1]. As any element of length 1 is a sum of multisymmetric power
sums, this can easily be proved using induction on the length.
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2) The pα:s can be expressed in the elementary multisymmetric func-
tions (eα)|α|6d and vice versa, see [10, §4], [14, Lemma 2–3] or
Proposition 6.7.

When r = 1 step 2 is given by the classical Newton identities (6.1).
7.2 Proof in arbitrary characteristic. — The proof will roughly follow the

same line as in characteristic zero but a much more careful treatment is
required in arbitrary characteristic.

Let gk,α = γk(xα)× 1d−k where xα ∈ B is a monomial and 1 6 k 6 d is
an integer. We will first show in Proposition 7.3 that Γd

A(B) is generated
as an A-algebra by (gk,α)(k,α)∈C0 where

C0 = {(k, α) : 1 6 k 6 d, α ∈ Nr \ 0}.

Using an analogue, Proposition 7.5, of the Newton identities, we will then
show in Corollary 7.6 that if gcd(α) is invertible in A then gk,α together
with elements of strictly smaller multidegree generate every element of
multidegree kα. We can therefore choose a subset C of C0 such that every
multidegree kα occurs once in C and (gk,α)(k,α)∈C generates Γd

A(B):
(i) If every prime is invertible in A, we can let C be the subset of C0

with k = 1. This then gives the same generating set as obtained in
step 1) of paragraph 7.1.

(ii) If k is a field of characteristic p > 0 and A is a k-algebra or a local
ring with residue field k, we can choose C as the pairs (k, α) with
k = ps, s ∈ N and p - α.

(iii) For general A we can choose C as the subset of C0 such that
gcd(α) = 1.

The difficult part is then to get a characterization of the multidegrees for
which the corresponding generators are generated by elements of smaller
multidegree. The main ingredient is a careful study, Proposition 7.15, of
the possible relations between the elementary multisymmetric functions
and multiples of the generators of Corollary 7.7. This is the analogue of the
second step of 7.1. Using this ingredient and Main Lemma 2.10, an explicit
minimal generator set is obtained in Theorem 7.19.

We begin with the following proposition which appears as [26, Cor. 4.5 b)]
and [23, Cor. 2.3].

Proposition 7.3. — Γd
A(B) is generated as an A-algebra by elements

of the form γk(xα)× 1d−k where xα is a monomial in B and 1 6 k 6 d.

Proof. — We will use induction on the length, see Definition 6.13, and
prove that every element of the basis

(
zν × 1d−|ν|)

ν∈N(M∗),|ν|6d
can be
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written as a sum of products of elements γk(xα) × 1d−k. The length of
an element u = zν × 1d−|ν| is ` = |ν|. If u is not in the collection of the
proposition then u = zν1 × zν2 × 1d−` for some non-zero ν1, ν2 ∈ N(M∗)

such that ν = ν1 + ν2. Using Formula 5.3 we can then write

u = zν1 × zν2 × 1d−|ν1|−|ν2|

=
(
zν1 × 1d−|ν1|

)(
zν2 × 1d−|ν2|

)
−

∑
µ∈N(M∗)

|µ|<`

cµzµ × 1d−|µ|

for some cµ ∈ N. As this is a sum of products of terms of length < ` we
can conclude by induction. �

7.4. — The classical Newton identities (6.1) show that for xα ∈ B and
m 6 d

γ1(xmα)× 1d−1 + (−1)mmγm(xα)× 1d−m ∈ Γd
A(B)〈mα〉.

We will now slightly generalize this in the following proposition. Recall
from paragraph 5.5 that for e > d we have a surjection ρe

d : Γe
A(B) →

Γd
A(B) such that if ν ∈ N(M∗)

ρe
d

(
zν × 1e−|ν|) =

{
zν × 1d−|ν| if |ν| 6 d

0 if |ν| > d.

In particular, basis elements of length > d are mapped to zero.

Proposition 7.5 (Generalized Newton relations). — Let xα ∈ B and
k, m be positive integers such that k 6 d. Then

γk(xmα)× 1d−k − (−1)km−kmγkm(xα)× 1d−km ∈ Γd
A(B)〈kmα〉

if km 6 d and
γk(xmα)× 1d−k ∈ Γd

A(B)〈kmα〉

if km > d.

Proof. — Using the homomorphism ρe
d defined in paragraph 5.5 with

e > km we can assume that km 6 d. Further using the homomorphism
Γd

Z(Z[t]) → Γd
A(A[t]) → Γd

A(B) where the second map is induced by A[t] →
B, mapping t to xα, it is enough to show that

γk(tm)× 1d−k − (−1)km−kmγkm(t)× 1d−km ∈ Γd
Z(Z[t])〈km〉.

Since Γd
Z(Z[t]) is a polynomial ring in e1(t), . . . , ed(t), where ei(t) = γi(t)×

1d−i, we can write ek(tm) uniquely as a polynomial in e1(t), . . . , ekm(t).
Clearly, all terms of this polynomial will be in Γd

Z(Z[t])〈km〉 except the
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term ekm(t). To determine the coefficient of ekm(t) we tensor with Q. The
classical Newton identities, equation (6.1), show that

e1

(
(tm)k

)
+ (−1)kkek(tm) ∈ Γd

Q(Q[tm])〈km〉

e1(tkm) + (−1)kmkmekm(t) ∈ Γd
Q(Q[t])〈km〉

and thus ek(tm) = (−1)km−kmekm(t) + Γd
Z(Z[t])〈km〉. �

Corollary 7.6. — Let xkα ∈ B be a monomial with gcd(α) invert-
ible in A. Then the subalgebra A

[
Γd

A(B)β,β6kα

]
⊆ Γd

A(B) is generated by
Γd

A(B)〈kα〉 together with, if k 6 d, the element γk(xα)× 1d−k.

Proof. — Follows immediately from Propositions 7.3 and 7.5. �

Corollary 7.7. — Γd
A(B) is generated as an A-algebra by the elements(
γk(xα)× 1d−k

)
(k,xα)∈C

where C ⊆ {1, 2, . . . , d} ×M∗ is one of the collections

C1 = {(k, xα) : gcd(α) · 1A invertible, k product of primes in P(A)}
C2 = {(k, xα) : gcd(α) = 1}.

Proof. — If we let C = {1, 2, . . . , d}×M∗ be the full set of indices (k, xα)
then the corresponding set of elements

{
γk(xα)×1d−k

}
is a generating set

of Γd
A(B) by Proposition 7.3. That C1 and C2 also give generating sets of

Γd
A(B) follows from Corollary 7.6. �

Remark 7.8. — Both generating sets of Corollary 7.7 have exactly one
generator of each multidegree in Nr \ 0. If A = Z then the two collec-
tions C1 and C2 coincide. In [23, pf. of Thm. 1] Vaccarino gives a proof of
Corollary 7.7 with the second collection using a slightly different version of
Proposition 7.3. As it is sometimes convenient to also have the first collec-
tion we will use either collection. Besides, all proofs work equally well with
both collections.

Theorem 7.9 ([23, Thm. 1]). — The ring of multisymmetric functions
Γd

A(A[x1, x2, . . . , xr]) ∼= TSd
A(A[x1, x2, . . . , xr]) is generated as an A-algebra

by γk(xα)×1d−k where (k, xα) ∈ {1, 2, . . . , d}×M∗ is such that gcd(α) = 1
and the total degree |mdeg

(
γk(xα)×1d−k

)
| = k|α| is less than or equal to

max
(
d, r(d− 1)

)
.

Proof. — We repeat the proof in [23]. A result of Fleischmann [5, Thm.
4.6], cf. Corollaries 8.6 and 8.7, shows that Γd

A(B) is generated by the
elements of total degree 6 max

(
d, r(d− 1)

)
. The theorem then follows

from Corollary 7.7 using the second collection. �
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Remark 7.10. — As mentioned in the introduction, the generating set
of Theorem 7.9 is not minimal. We will proceed to find a minimal subset
of either the first or second collection of Corollary 7.7 which generates
Γd

A(B). Such a minimal subset is then unique. In fact, as the generators of
both collections are homogeneous and each multidegree occurs exactly once,
any minimal subset of C which generates Γd

A(B) consists of the elements
γk(xα)× 1d−k such that γk(xα)× 1d−k /∈ Γd

A(B)〈kα〉.

Remark 7.11. — To determine if γk(xα)× 1d−k /∈ Γd
A(B)〈kα〉 it will be

useful to lift this relation to a relation in Γn
A(B) where n is an integer such

that n > k|α|, cf. the proof of Theorem 7.19. In several of the following
results involving xα we will therefore use Γn

A(B) instead of Γd
A(B) with an

n such that n > k|α|.

Remark 7.12. — Let xα ∈M∗ and choose n ∈ N such that |α| 6 n. The
multisymmetric Newton identities, Proposition 6.7, show that in Γn

A(B)

(7.1) ((α))pα(x) + (−1)|α||α|eα(x) ∈ Γn
A(B)〈α〉.

If |α| divides ((α)), the image of |α| in A is not a zero divisor, and the LHS
of relation (7.1) belongs to |α|Γn

A(B)〈α〉, then we obtain the relation(
|α| − 1

)
!

α1! . . . αr!
pα(x) + (−1)|α|eα(x) ∈ Γn

A(B)〈α〉.

For arbitrary α and A this relation is not true, but we will show that there
exist similar relations between γk(xα)×1d−k and ekα(x). We will first show
that if such a relation exists then it is unique.

Proposition 7.13. — Let xkα be a monomial in B such that gcd(α) is
invertible in A and n > k|α|. Let a ∈ A be such that

aγk(xα)× 1n−k ∈ Γn
A(B)〈kα〉.

Then a = 0.

Proof. — Let A′ � A be any lifting of A to a ring of characteristic 0,
e.g. A′ = Z[(Ta)a∈A], and let I = ker(A′ � A) and B′ = A′[x1, x2, . . . , xr].
We have an induced surjection Γn

A′(B
′) � Γn

A′(B
′) ⊗A′ A ∼= Γn

A(B). Let
a′ ∈ A′ be a lifting of a. Then

a′γk(xα)× 1n−k +
∑

ν∈N(M)

|ν|=n

iνzν ∈ Γn
A′(B

′)〈kα〉

for some iν ∈ I. Since Γn
A′(B

′)〈ka〉 is graded by multidegree, taking the part
with multidegree kα we obtain by Corollary 7.6

(7.2) (a′ + i)γk(xα)× 1n−k ∈ Γn
A′(B

′)〈kα〉
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with i ∈ I. The homomorphism B′ = A′[x1, x2, . . . , xr] � A′[t], taking xj

to t for every 1 6 j 6 r, induces a homomorphism Γn
A′(B

′) � Γn
A′(A

′[t]) ∼=
A′[e1(t), e2(t), . . . , en(t)] which applied to equation (7.2) gives

(a′ + i)γk(t|α|)× 1n−k ∈ Γn
A′(A

′[t])〈k|α|〉.

Thus by the generalized Newton relations of Proposition 7.5 it follows that

(a′ + i)|α|ek|α|(t) ∈ Γn
A′(A

′[t])〈k|α|〉.

As Γn
A′(A

′[t])〈k|α|〉 = A′[e1(t), e2(t), . . . , ek|α|−1(t)] and Γn
A′(A

′[t]) is a poly-
nomial ring we see that (a′ + i)|α| = 0. But the integer |α| is not a zero
divisor in A′ by construction. Hence a′ + i = 0 and a fortiori a = 0. �

As an immediate corollary of Proposition 7.13 we see that the generators
of total degree 6 d in any of the collections of Corollary 7.7 are contained
in the minimal generating subset:

Corollary 7.14. — Let xkα ∈ M∗ then γk(xα) × 1d−k /∈ Γd
A(B)〈kα〉

if k|α| 6 d.

We now establish relations of the kind mentioned in Remark 7.12.

Proposition 7.15. — Let f1, f2, . . . , fs ∈ M∗ be non-trivial monomi-
als in B and `1, `2, . . . , `s positive integers such that f `1

1 . . . f `s
s = xkα with

g = gcd(α) invertible in A and let n > k|α|. Then m = ((`))kg
|`| ∈ Z and

a = m/g ∈ A is the unique element in A such that

(7.3) γ`(f)× 1n−|`| − (−1)|`|−kaγk(xα)× 1n−k ∈ Γn
A(B)〈kα〉.

Proof. — The existence and uniqueness of a follow from Corollary 7.6
and Proposition 7.13 respectively. Proposition 7.5 shows that

γ`(f)× 1n−|`| − (−1)|`|−k′agγk′(xα′)× 1n−k′ ∈ Γn
A(B)〈k′α′〉

with k′ = kg and α′ = α/g. Replacing α with α′ and k with k′ we can thus
assume that g = 1.

To determine the value of a it is now enough to consider the case when
A = Z as Γn

A(B) = Γn
Z(Z[x1, x2, . . . , xr])⊗Z A and a is unique. This also

shows that a is the image of an integer in Z. Multiplying both sides of
equation (7.3) with `! = `1!`2! . . . `s! we obtain(

s
×

i=1
f×`i

i

)
× 1n−|`| − (−1)|`|−ka′γk(xα)× 1n−k ∈ Γn

A(B)〈kα〉

with a′ = `!a. As B is a free A-module so is Γd
A(B) by paragraph 4.5. Thus `!

is not a zero divisor in Γn
A(B) and it is enough to verify that a′ =

(
|`|−1

)
!k.

Replacing ` and f with `′ = 1|`| and f ′ = (f1, f1, f1, . . . , fs, fs) we can thus
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assume that ` = 1|`|. Further, using Proposition 7.5 it is enough to show
that (

s
×

i=1
fi

)
× 1n−s − (−1)s−1(s− 1)!γ1(xkα)× 1n−1 ∈ Γn

A(B)〈kα〉.

This is obvious for s = 1. For s > 1 we have by induction on s that(
s
×

i=1
fi

)
× 1n−s =

(
f1 × · · · × fs−1 × 1n−(s−1)

)(
fs × 1n−1

)
−

s−1∑
i=1

f1 × f2 × · · · × fifs × · · · × fs−1 × 1n−(s−1)

= −(s− 1)(−1)s−2(s− 2)!γ1(xkα)× 1n−1 + Γn
A(B)〈kα〉

which completes the proof. �

Corollary 7.16. — Let xkα be a monomial such that g = gcd(α)
is invertible in A and let n > k|α|. Then there exists a unique element
a ∈ Z · 1A ⊆ A such that

(a/g)γk(xα)× 1n−k − ekα ∈ Γn
A(B)〈kα〉.

For every prime p ∈ P(A) we have that

ordp(a) = ordp((kα))− ordp

(
|α|
)
.

Proof. — From Proposition 7.15 it follows that a = (−1)k|α|−k((kα)) kg
k|α|

and thus that ordp(a) = ordp((kα))− ordp

(
|α|
)
. �

We are now able to completely characterize the cases in which the ele-
mentary symmetric polynomials generate all elements of total degree 6 d

in Γd
A(B).

Lemma 7.17. — Let xkα be a monomial in B such that gcd(α) is in-
vertible in A and k|α| 6 d. Then the following statements are equivalent:

(i) A
[
Γd

A(B)β,β6kα

]
⊆ Γd

A(B) is generated by Γd
A(B)〈kα〉 and ekα.

(ii) γk(xα)× 1d−k ∈ Γd
A(B)〈kα〉 + Aekα.

(iii) ordp ((kα))− ordp

(
|α|
)

= 0 for every p ∈ P(A) such that p 6 d.

Proof. — (i) ⇐⇒ (ii) by Corollary 7.6. (ii) ⇐⇒ (iii) follows from Corol-
lary 7.16. �

Proposition 7.18. — The subalgebra A
[
Γd

A(B)β,|β|6d] ⊆ Γd
A(B) is

generated by the elementary multisymmetric polynomials (eα)|α|6d where
eα = γα(x)×1d−|α|, if and only if one of the following conditions is satisfied

(i) r = 1.
(ii) r = 2 and d = 3.
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(iii) r = 2, d = 4 and 3 is invertible in A.
(iv) (d− 1)! is invertible in A.

Proof. — When r = 1 it is well known that Γd
A(B) is the polynomial ring

A[e1, e2, . . . , ed] which shows that (i) is sufficient.
By Lemma 7.17 and induction on |α| it is enough to check that

ordp ((kα))− ordp

(
|α|
)

= 0

for every monomial xkα and p ∈ P(A) such that p 6 d, k|α| 6 d and gcd(α)
is invertible in A.

If d itself is a prime in P(A) then this prime has not to be checked. In fact,
if d | kα then d = k and α = ei for some i giving ordd ((kei))−ordd(1) = 0.
If d - kα then either k|α| < d which gives ordd ((kα))−ordd

(
|α|
)

= 0−0 = 0
or k = 1 and |α| = d which gives ordd ((α))− ordd

(
|α|
)

= 1− 1 = 0. It is
thus sufficient that (d− 1)! is invertible which is condition (iv).

If a prime 2 < p < d is not invertible and r > 2 then

γ1(xp−1
1 x2

2)× 1d−1 = γ1(xα)× 1d−1

with α = (p−1)e1+2e2 is an element which is not generated by elementary
multisymmetric polynomials. In fact ordp ((α))− ordp

(
|α|
)

= 1− 0 = 1.
It is thus necessary that every prime p < d, except possibly 2, is invert-

ible. Therefore we need only consider the case where 2 is not invertible and
d > 3. If r > 3 then

γ1(x1x2x3)× 1d−1

is not generated by the eα:s as ord2 ((1, 1, 1))−ord2(1+1+1) = 1−0 = 1.
If r = 2 and d > 5 then

γ1(x3
1x

2
2)× 1d−1

is not generated by the eα:s since ord2 ((3, 2)) − ord2(3 + 2) = 1 − 0 = 1.
Finally if r = 2 and d 6 4 then ord2 ((α)) − ord2

(
|α|
)

= 0 for all α ∈
{(1, 1), (2, 1), (3, 1)} and this completes the proof of the proposition. �

We will now show the main theorem of this section. It gives a minimal
generator set for Γd

A(B) where A is any ring and improves [23, Thm. 1] also
when A = Fp and d = ps. A sharp bound on the total degree for any A is
given in Corollary 8.8.

Theorem 7.19. — Let C be one of the two collections of Corollary 7.7.
Let C̃ be the subset of C such that (k, xα) ∈ C̃ if either k|α| 6 d or Qp(kα) 6
Qp(d) for some p ∈ P(A).

The A-algebra Γd
A(B) is then generated by

(
γk(xα) × 1d−k

)
(k,α)∈C̃ and

this is a minimal set of generators.
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Proof. — By Corollary 7.7, the elements γk(xα)× 1d−k with (k, α) ∈ C
generate Γd

A(B). As every multidegree occurs exactly once in C it is clear
that we get a minimal set of generators by taking those γk(xα) × 1d−k

which cannot be written as sums of products of elements of strictly smaller
multidegree, i.e. γk(xα)×1d−k is in the minimal set if and only if γk(xα)×
1d−k /∈ Γd

A(B)〈kα〉.
If k|α| 6 d then Corollary 7.14 shows that γk(xα) × 1d−k /∈ Γd

A(B)〈kα〉.
If k|α| > d and γk(xα)× 1d−k ∈ Γd

A(B)〈kα〉 then we lift the corresponding
relation in Γd

A(B) to Γn
A(B), where n = k|α|, using the homomorphism

ρn
d : Γn

A(B) � Γd
A(B) defined in paragraph 5.5 and obtain

(7.4) γk(xα)× 1n−k =
∑

ν∈N(M∗)

d+16|ν|6n

aνzν × 1n−|ν| + Γn
A(B)〈kα〉

for some aν ∈ A. Conversely, if there exist aν ∈ A such that relation (7.4)
holds then γk(xα)× 1d−k ∈ Γd

A(B)〈kα〉. The theorem now follows from the
following lemma:

Lemma 7.20. — Let xkα be a monomial such that gcd(α) is invertible
in A. Let d and n be positive integers such that d < k|α| 6 n. Then there
exists a relation in Γn

A(B) of the form

(7.5) γk(xα)× 1n−k =
∑

ν∈N(M∗)

d<|ν|6n

aνzν × 1n−|ν| + Γn
A(B)〈kα〉

where aν ∈ A are almost all zero, if and only if Qp(kα) > Qp(d) for every
prime p ∈ P(A).

Proof. — We can assume that every term zν × 1n−|ν| has multidegree
kα. The sum is then over the set Skα,d of Definition 2.9. Proposition 7.15
gives that

zν × 1n−|ν| − cνγk(xα)× 1n−k ∈ Γn
A(B)〈kα〉

where cν = (−1)|ν|−kk((ν))/|ν|. Thus

(7.6) (1−
∑

ν∈Skα,d

aνcν)
(
γk(xα)× 1n−k

)
∈ Γn

A(B)〈kα〉

if and only if (7.5) holds. Moreover, relation (7.6) is equivalent to 1 =∑
ν aνcν in A by Proposition 7.13. If 1 =

∑
ν aνcν then for every p ∈ P(A)

there exists a ν ∈ Skα,d such that ordp(cν) = 0. Conversely, if this is
the case we can choose aν ∈ Z such that

∑
ν aνcν is invertible. By Main

Lemma 2.10 the existence of a ν such that ordp(cν) = 0 is equivalent to
Qp(kα) > Qp(d). This concludes the proof of the lemma. �
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8. Remarks and applications

Remark 8.1. — In Theorem 7.19 it is enough to consider non-invertible
primes 6 d since if p > d then Qp(kα) > Qp(d) = d for any k|α| > d.

Remark 8.2. — Let us extend the definition of Qp(n) to include p = ∞
with Q∞(n) = n ∈ Z[t]. We can then replace the condition in Theorem 7.19
with: (k, α) ∈ C̃ if and only if Qp(kα) 6 Qp(d) for some p ∈ P(A) ∪ {∞}.

Remark 8.3. — We note that it immediately follows from Theorem 7.19
that if γk(xα)×1d−k is in a minimal set of generators then so is γk′(xα′)×
1d−k′ for every k′α′ < kα.

Corollary 8.4 ([10, 15, 25, 13, 14, 17]). — If d! is invertible in A

then Γd
A(A[x1, . . . , xr]) is minimally generated as an A-algebra by either

the elementary multisymmetric polynomials or the multisymmetric power
sums of total degree 6 d.

Proof. — From Theorem 7.19 and Remark 8.1 we deduce that the ele-
ments of total degree 6 d generates Γd

A(A[x1, . . . , xr]). The statement then
follows from Corollary 6.8. �

Corollary 8.5. — Let A be of equal or mixed characteristic p, i.e. p

is the only non-invertible prime in A. Then Γd
A(A[x1, . . . , xr]) is minimally

generated as an A-algebra by the elements γps

(xα) × 1d−ps

with s ∈ N
and α ∈ Nr \ 0 such that p - α and Qp(psα) 6 Qp(d) or equivalently
Qp(α) 6 Qp

(
bd/psc

)
.

Proof. — Follows immediately from Theorem 7.19 using the first collec-
tion of Corollary 7.7. �

Corollary 8.6 ([5, Thm. 4.6]). — Let A be an arbitrary ring. Then
Γd

A(A[x1, . . . , xr]) is generated as an A-algebra by γd(x1), γd(x2), . . . , γd(xr)
and the elements γk(xα) × 1d−k with kα 6 (d − 1, d − 1, . . . , d − 1). Fur-
ther, there is no smaller multidegree bound and if d = ps for some prime p

not invertible in A, then Γd
A(A[x1, . . . , xr]) is not generated by elements of

strictly smaller multidegree.

Proof. — If kαi > d and |kα| > d then Qp(kα) > Qp(d) for any prime
p which shows that γk(xα)× 1d−k is not among the minimal generators of
Theorem 7.19. On the other hand (d− 1)ei = (0, . . . , 0, d− 1, 0, . . . , 0) ∈ Nr

is the multidegree of a minimal generator and it follows that there is
no smaller multidegree bound. If d = ps then Qp

(
(d − 1, d − 1, . . . , d −

1)
)

< Qp(d) which shows that there is an element of every multidegree
6 (d− 1, d− 1, . . . , d− 1) in any generating set. �
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From Corollary 8.6 we immediately obtain:

Corollary 8.7 ([5, Thm. 4.6, 4.7]). — If A is an arbitrary ring then
Γd

A(A[x1, . . . , xr]) is generated as an A-algebra by elements γk(xα)× 1d−k

of total degree k|α| 6 max
(
d, r(d− 1)

)
. Further, this total degree bound is

sharp if d = ps for some prime p ∈ P(A).

A more careful examination of the conditions in the theorem gives a
sharp total degree bound on the generators of Γd

A(B):

Corollary 8.8. — Let d be an integer. For every prime p we let 1 6
ap 6 p− 1 and bp ∈ N be the unique integers such that d = app

bp + cp for
some 0 6 cp < pbp . For any ring A the A-algebra Γd

A(A[x1, . . . , xr]) is then
minimally generated by elements of total degree at most

max
{

d, max
p∈P(A)

(
(ap + r − 1)pbp − r

)}
and every generating set contains an element attaining this bound.

Proof. — If r = 1 then the bound becomes d and is sharp as Γd
A(A[x]) =

A[e1, e2, . . . , ed] so we will assume that r > 2. Let p be a prime not in-
vertible in A and γk(xα) × 1d−k ∈ Γd

A(B) an element of total degree
k|α| > max{d, (a− 1)pb + r(pb − 1)} where a = ap and b = bp.

If β ∈ Nr is such that |β| > (l − 1)pm + r(pm − 1) for some integer
1 6 l 6 p− 1 then there exists β′ 6 β such that Qp(β′) = ltm and we have
that

|β − β′| > (r − 1)pm − r =
(
r(p− 1)− p

)
pm−1 + r(pm−1 − 1)

> (p− 2)pm−1 + r(pm−1 − 1)

as r > 2.
We can thus find αb, αb−1, . . . , α0 such that Qp(αb) = atb, Qp(αm) =

(p− 1)tm for m < b and kα > αb + αb−1 + · · ·+ α0. This shows that

Qp(kα) > atb + (p− 1)tb−1 + (p− 1)tb−2 + · · ·+ (p− 1) > Qp(d)

and as k|α| > d we have that Qp(kα) 6= Qp(d). By Theorem 7.19 this
implies that γk(xα)× 1d−k is generated by elements of lower degree.

To show that the bound is attained, consider the element γk(xα)×1d−k

with

kα = (apb − 1, pb − 1, . . . , pb − 1), gcd(α) invertible
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which is not generated by elements of lower degree since

Qp(kα) = Qp

(
(apb − 1, pb − 1, . . . , pb − 1)

)
= (a− 1)tb + r(p− 1)tb−1 + r(p− 1)tb−2 + · · ·+ r(p− 1)

< Qp(d).

�

Remark 8.9. — The inequality

(ap + r − 1)pbp − r 6 r
(
app

bp − 1
)

6 r(d− 1)

with equality if and only if d = pbp , or r = 1 and d = app
bp , together with

Corollary 8.8 gives another proof of Corollary 8.7. Further we see that the
total degree bound max

(
d, r(d− 1)

)
is sharp if and only if r(d− 1) 6 d or

d = ps, that is if one of the following conditions is satisfied

(i) r = 1.
(ii) r = 2 and d = 2.
(iii) d = ps with p ∈ P(A).

Corollary 8.10 ([1, Thm. 1]). — Γd
A(A[x1, . . . , xr]) is generated as an

A-algebra by elementary multisymmetric polynomials if and only if one of
the following conditions is satisfied

(i) r = 1.
(ii) d! is invertible in A.
(iii) r = 2 and d = 2.
(iv) r = 2, d = 3 and 3 is invertible in A.

Proof. — If r = 1 then Γd
A(A[x1, . . . , xr]) is the polynomial ring in the

elementary polynomials so (i) is sufficient and we can assume that r > 2.
It then follows from Proposition 7.18 that every prime such that 2 < p < d

is invertible in A. If d > 2 is a prime then xd−1
1 x2

2 × 1d−1 is a sum of
products of elements of total degree 6 d if and only if d is invertible by
Theorem 7.19 since Qd

(
(d−1, 2)

)
< Qd(d). Thus it is necessary that every

prime such that 2 < p 6 d is invertible in A. On the other hand condition
(ii) is sufficient by Corollary 8.4.

This leaves the case when 2 is not invertible in A but every odd prime 6 d

is. By Proposition 7.18 we can then assume that r > 2 and d = 2 or r = 2
and d 6 4. If d = 2 and r > 3 then γ1(x1x2x3)× 1 is not generated by ele-
ments of lower degree as Q2

(
(1, 1, 1)

)
< Q2(3). If d = 4 then γ1(x3

1x
2
2)×13

is not generated by elements of lower degree as Q2

(
(3, 2)

)
< Q2(4). In

the remaining cases, r = 2 and d = 2 or d = 3, it is easily seen that
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Q2(kα) < Q2(d) implies that k|α| 6 d and we can conclude with Proposi-
tion 7.18. �

Remark 8.11. — Let k be an algebraically closed field. It can be shown
that the Chow scheme Chow0,d(Ar

k ↪→ Pr
k), parameterizing zero-cycles

of degree d in Ar
k, is isomorphic to Spec(C) where C is the subring of

Γd
k(k[x1, x2, . . . , xr]) ∼= TSd

k(k[x1, x2, . . . , xr]) generated by the elementary
multisymmetric polynomials. This gives a morphism

Symd(Ar
k) := Spec

(
TSd

k(k[x1, x2, . . . , xr])
)
→ Chow0,d(Ar

k ↪→ Pr
k)

which is an isomorphism exactly in the cases listed in Corollary 8.10.
In general it is always possible to find a projective embedding Ar ↪→ PN

such that
Symd(Ar

k) → Chow0,d(Ar
k ↪→ PN

k )

is an isomorphism. A bound on the degree of the generators of the ring
TSd

k(k[x1, x2, . . . , xr]) such as Corollary 8.6 gives an effective answer to the
embedding needed to obtain such an isomorphism.

These issues are thoroughly discussed in [21].

Remark 8.12. — The results of §§7-8 immediately generalize to the
case where B = A[(xα)α∈I ] is the polynomial ring in an infinite number
of variables. This is easily seen considering statement by statement but
as B is the filtered direct limit of finitely generated polynomial rings, it
also follows directly from the fact that Γd

A(·) commutes with filtered direct
limits as shown in paragraph 4.8.
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