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A CONSTRUCTIVE PROOF OF THE DENSITY
OF ALGEBRAIC PFAFF EQUATIONS WITHOUT

ALGEBRAIC SOLUTIONS

by S. C. COUTINHO (*)

Abstract. — We present a constructive proof of the fact that the set of alge-
braic Pfaff equations without algebraic solutions over the complex projective plane
is dense in the set of all algebraic Pfaff equations of a given degree.

Résumé. — Nous présentons une preuve constructive du fait que l’ensemble
des équations de Pfaff sans solutions algébriques sur le plan projectif complexe
est dense dans l’ensemble de toutes les équations algébriques de Pfaff d’un degré
donné.

1. Introduction

The computation of first integrals is an important topic in the theory
of ordinary differential equations, and also in its applications to mechanics
and physics. Various methods have been devised to compute such integrals.
Of these, the one introduced by G. Darboux [7] in 1870, for equations of
the first order and the first degree, in dimension two, has proved particu-
larly effective. Indeed, as Prelle and Singer showed in [13], this leads to a
procedure that can be used to compute elementary first integrals for such
equations. The key to Darboux’s method is the existence of a large enough
set of algebraic curves invariant under the equation one wishes to solve.

Unfortunately, as Jouanolou showed in [8, Théorème 1.1, p. 158], first or-
der equations of degree n > 2 rarely have any invariant curves whatsoever.

Keywords: Pfaff equation, singularity, algebraic solution.
Math. classification: Primary: 11R04, 37F75, 34M45; Secondary: 32S65.
(*) I wish to thank the referee for many comments that greatly improved the presentation
of the paper. During the preparation of this paper I was partially supported by grants
from CNPq and Pronex (commutative algebra and algebraic geometry).
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Jouanolou’s result can be easily stated in the language Pfaff equations,
as follows. Let Pn be the vector space of algebraic Pfaff forms of degree
n over the complex projective plane P2. Since two Pfaff forms that differ
by a nonzero constant multiple define the same equation, the set of Pfaff
equations can be identified with P(Pn).

Theorem 1.1. — The set of algebraic Pfaff equations of degree n > 2
over P2 that do not have an algebraic solution is dense in P(Pn).

For the definition of the degree of a Pfaff equation see section 2.
Jouanolou’s proof of this result has two parts. First, he uses basic geometry
of projective varieties to show that the set of Pfaff equations without alge-
braic solutions is either empty or dense in P(Pn). Then he gives an explicit
example of an equation without algebraic solutions. The hardest part of
the proof consists in showing that the given equation does not have any
algebraic solutions. Since then, several different proofs of the same result
have appeared, for example [2, Theorem, p. 900], [11, section 3.2, p. 224],
[10] and [12].

In this paper we present a new, constructive proof, of Theorem 1.1. By
that we mean a proof that allows one to construct an explicit example of an
equation without algebraic solutions in any neighbourhood of Pn. Indeed,
given such a neighbourhood, we construct an example of a Pfaff equation
with coefficients in the field of gaussian numbers, that does not have any
algebraic solutions. The construction is explicit and can be implemented as
an algorithm. Our approach is arithmetical, and the equations we construct
are very similar to Jouanolou’s example when reduced modulo a certain
prime.

2. Pfaff equations over the projective plane

In this section we discuss some basic facts about Pfaff equations over the
projective plane P2 = P2(C). Let n > 0 be an integer, and denote by x,
y and z the homogeneous coordinates of the projective plane P2. A Pfaff
form of P2 is a 1-form Ω = Adx + Bdy + Cdz, where A, B and C are
nonzero homogeneous polynomials of degree n + 1 that satisfy the identity
xA+yB+zC = 0. A Pfaff equation is an equivalence class of nonzero Pfaff
forms modulo multiplication by nonzero constants. A singularity of Ω is a
common zero of A, B and C. We denote the set of singularities of Ω by
Sing(Ω). If Sing(Ω) is finite then Ω is saturated.

ANNALES DE L’INSTITUT FOURIER



PFAFF EQUATIONS WITHOUT ALGEBRAIC SOLUTION 1613

A nonconstant homogeneous polynomial F ∈ C[x, y, z] is an algebraic
solution of Ω if there exists a 2-form Θ such that

(2.1) Ω ∧ dF = FΘ.

In this case we also say that the curve C = Z(F ) ⊂ P2 is invariant under Ω.
Let Uz be the open set of P2 defined by z 6= 0 and let ω be the deho-

mogenization of Ω with respect to z. If πz : Uz → C2 is the map given by
πz[x : y : z] = (x/z, y/z), then Ω = zkπ∗z(ω), where k is chosen so as to
clear the poles of π∗z(ω). Moreover, if f is the dehomogenization of a homo-
geneous polynomial F ∈ C[x, y, z], and assuming that F is not a constant
multiple of a power of z, then F is an algebraic solution of Ω if and only if

(2.2) ω ∧ df = fθ,

where θ is the dehomogenization of Θ. An f that satisfies (2.2) is also called
an algebraic solution of ω. Thus, if our aim is to study algebraic solutions,
we can switch between Pfaff forms over P2 and 1-forms over Uz

∼= C2.
For reasons that will become clear later it is preferable to state our results

in terms of 1-forms over C2. Thus, let ω = adx + bdy, where a, b ∈ C[x, y].
Note that if Ω is as above, then

a(x, y) = A(x, y, 1) and b(x, y) = B(x, y, 1).

It follows from the relation xA + yB + zC = 0, that

(2.3) a = yh + a0 and b = −xh + b0,

where h is a homogeneous polynomial of degree n, and a0 and b0 are poly-
nomials of degree at most n. The number n is called the degree of ω, and
also of Ω. Note that, if h 6= 0, then

n = deg(a)− 1 = deg(b)− 1.

Consider now the space Pn of Pfaff forms of degree n, which corresponds
to the nonzero triples (A,B, C) of homogeneous polynomials of degree n+1
that satisfy the identity xA + yB + zC = 0. It follows from the discussion
above that Pn can be identified with the set of nonzero (h, a0, b0) where
h is homogenous of degree n and a0 and b0 are polynomials of degree at
most n. Thus, Pn ∪ {0} is isomorphic to the affine C-space of dimension
(n + 1)(n + 3).

The question whether h is zero or nonzero is quite significant for us,
because if it is zero the line at infinity is invariant under Ω. Therefore, in
this case, the Pfaff form always has an algebraic solution. This explains
why we always assume that h 6= 0. Note, however, that any Pfaff form of
Pn can be easily approximated by one with h 6= 0.
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For our purposes it is more convenient to think of the elements of Pn as
corresponding to 1-forms ω = adx + bdy, such that a and b are given by
(2.3). In particular, if ω is a generic element of Pn then gcd(a, b) = 1; so that
its homogenization Ω is saturated. A singularity of ω is a common zero of
a and b. The set of all the singularities of ω is denoted by Sing(ω). Because
we are assuming that ω is saturated, it follows from Bézout’s theorem that
this is a finite set. Although, Sing(ω) need not be equal to Sing(Ω), the
two sets coincide if Sing(Ω) has empty intersection with the line at infinity
L∞. Indeed, in this case, every zero of A and B is also a zero of C because
xA + yB + zC = 0. From now on, we assume that the coordinates of P2

have been chosen so that Sing(Ω) ∩ L∞ = ∅ for the Pfaff form Ω that is
under consideration.

The following result was first stated and proved (for Pfaff equations over
Q) in [4, Theorem 3.1]. Since our main construction is based on it, we
include a sketch of its proof. As usual, the ring of gaussian integers will be
denoted by Z[i] and its quotient ring by Q[i].

Theorem 2.1. — Let a0, b0 be polynomials of degree at most n in
Q[i][x, y]. Suppose that h ∈ Q[i][x, y] is a nonzero homogeneous polynomial
of degree n, and write

a = hy + a0 and b = −hx + b0.

If the ideal (a, b)∩Q[i][x] is generated by a polynomial of degree n2 +n+1
that is irreducible over Q[i], then ω = adx+bdy does not have any algebraic
solutions in P2.

Proof. — Since we are assuming that (a, b) ∩ Q[i][x] is generated by a
polynomial of degree n2 + n + 1, irreducible over Q[i], it follows that the
polynomial of Q[i][x] whose roots are the x-coordinates of the points in
Sing(ω) is irreducible of degree n2 + n + 1 over Q[i]. However, the Pfaff
form Ω, obtained by homogenizing ω, has at most n2 + n + 1 singularities
on P2. Therefore, all the singularities of Ω lie in C2 and have multiplicity
one.

The hypothesis also implies that the absolute Galois group G of Q[i] acts
transitively on the first coordinates of the singularities of ω. Hence, it also
acts transitively on the singularities themselves. Thus, by the Baum-Bott
Theorem, the eigenvalues of the 1-jets of ω at each one of its singularities,
have an irrational ratio. This implies that a singular point of an algebraic
solution of ω must be a node.

Now consider an algebraic curve C ⊂ C2 invariant under ω. The absolute
Galois group G acts on C and leaves ω invariant. In particular, the image
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Cσ of C under σ is also an algebraic curve invariant under ω. Thus, if C

is not defined over a finite extension of Q[i], then ω has infinitely many
algebraic invariant curves; hence it has a first integral by [8, Théorème 3.3,
p. 102]. Since this integral is defined over Q[i], we have obtained an invariant
curve with coefficients in Q[i]. Otherwise, C is defined over a finite algebraic
extension of Q[i]. Hence, there are only finitely many Cσ, for σ ∈ G, and
their union is an invariant algebraic curve of ω with coefficients in Q[i].
Whatever the case, we end up with an algebraic curve defined over Q[i]
and invariant under ω. Therefore, from now on, we may assume that C

itself is defined over Q[i].
By [8, Proposition 4.1, p. 126], C must contain, at least, one singularity

of ω. But G acts transitively on Sing(ω) and stabilizes C; so it must contain
all the singularities of ω. Moreover, since the separatrices of ω are smooth
and transversal at all of its singular points, it follows that C is either a
smooth curve, or a singular curve with n2 + n + 1 nodes. We must show
that both these cases lead to a contradiction.

Let d be the degree of the curve C. If C is smooth, then by [1, Proposition
4, p. 532],

d(n + 2) = d2 + n2 + n + 1,

which is not possible. Otherwise, C has n2 +n+1 nodes, so that, d = n+2
by [1, Proposition 4, p. 532 and Proposition 7, p. 536]. However, by Bézout’s
Theorem,

d(d− 1) >
∑

p∈Sing(C)

mp(mp − 1),(2.4)

where mp is the multiplicity of C at the singular point p. Since the curve
is nodal, mp = 2. Taking this into (2.4), together with d = n + 2, we find
that

(n + 2)(n + 1) > d(d− 1) > 2(n2 + n + 1);

which holds only for n 6 1. This establishes the final contradiction and
concludes the proof of the theorem. �

The proof of Theorem 2.1 depends on the irreducibility over Q[i] of the
set of singular points of the Pfaff equation. An irreducibility argument also
plays a key rôle in the extension of Jouanolou’s result to all smooth pro-
jective varieties obtained in [3]. However, in that paper, it is the universal
singular set that turns out to be irreducible; namely, the set of pairs whose
first coordinate is a Pfaff equation ω, and whose second coordinate is a
singularity of ω; see [3, Proposition 2.4, p. 122].

TOME 57 (2007), FASCICULE 5
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3. Reduction modulo p

The constructive proof of Theorem 1.1 that we give in section 4 consists
in writing, for any given open set U of Pn, an explicit Pfaff form without
algebraic solution that is contained in U . In order to prove that this Pfaff
equation does not have algebraic solutions we use Theorem 2.1. This leaves
the problem of how one checks the hypotheses of Theorem 2.1 for a Pfaff
form that, no matter how carefully constructed, must be quite generic. To
get around this problem we use reduction modulo p, as explained in this
section.

We begin with a property of prime numbers. Let n > 1 be an integer.
We say that a prime p is n-good if

(1) p ≡ 3 (mod 4), and
(2) every prime divisor of n2 + n + 1 divides p2 − 1.

Lemma 3.1. — There are infinitely many n-good primes for every n > 2.

Proof. — Let Q be the square-free factorization of n2+n+1, and consider
the arithmetic progression

Pk = (2Q + 1) + 4Qk, where k is a positive integer.

Since gcd(2Q + 1, 4Q) = 1, it follows from Dirichlet’s Theorem on primes
in arithmetic progressions that there are infinitely many primes of the form
Pk. Moreover, Pk ≡ 3 (mod 4); while

P 2
k − 1 = (Pk − 1)(Pk + 1) = 4Q(2k + 1)(Q(2k + 1) + 1),

is divisible by Q. Therefore, each prime of the form Pk is n-good. �

Recall that p ≡ 3 (mod 4) if and only if x2 + 1 is irreducible modulo p.
Hence,

Zp[i] = Zp[x]/(x2 + 1),

is a field for such a p. If a ∈ Z[i], its image in Zp[i] will be denoted by a.
Before we prove the main theorem of this section we need a technical

lemma concerning resultants.

Lemma 3.2. — Let n > 2 be an integer and let a0 and b0 be polynomials
of degree at most n in Z[i][x, y]. If h ∈ Z[i][x, y] is homogeneous of degree
n, and h(0, y) 6= 0, then

deg(Resy(hy + a0,−xh + b0)) 6 n2 + n + 1.

ANNALES DE L’INSTITUT FOURIER
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Proof. — To simplify the notation, let

a = hy + a0 and b = −xh + b0.

Since xa + yb = xa0 + yb0, it follows that

Resy(xa, b) = Resy(xa0 + yb0, b),

by [5, Exercise 7, p. 76]. But by [5, Exercise 3, p. 73],

Resy(xa, b) = Resy(x, b)Resy(a, b) = xnResy(a, b),

because b has degree n with respect to y. Thus,

n + deg(Resy(a, b)) = deg(Resy(xb0 + ya0, b)) 6 (n + 1)2,

since both xa0 + yb0 and b have total degree at most n + 1. Therefore,

deg(Resy(a, b)) 6 (n + 1)2 − n = n2 + n + 1,

as required. �

Theorem 3.3. — Let n > 2 be an integer, p an n-good prime, and
ζ ∈ Z[i] a number whose residue modulo p generates the group of nonzero
elements of Zp[i]. Suppose that a0 and b0 are polynomials of degree at
most n in Z[i][x, y], and that h ∈ Z[i][x, y] is homogeneous of degree n with
h(0, y) 6= 0. If

(1) h ≡ xn (mod p);
(2) b0 ≡ yn (mod p); and
(3) a0 ≡ −ζ (mod p);

then the Pfaff form of P2 induced by ω = (hy + a0)dx + (−xh + b0)dy does
not have an algebraic solution.

Proof. — As we did in the previous proof, let

a = hy + a0 and b = −xh + b0,

and write
I = (a, b) ∩Q[x].

By the definition of resultant, the polynomial R = Resy(b, a) belongs to I.
Now, if

(3.1) R is irreducible of degree n2 + n + 1,

then, by Theorem 2.1, the Pfaff form of P2 induced by adx + bdy does not
have any algebraic solutions, as required. Therefore, we need only prove
that the resultant R satisfies (3.1). This is where we use reduction modulo p.

TOME 57 (2007), FASCICULE 5
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We begin by computing the reduction R of R modulo p. Reducing modulo
p the Sylvester matrix that corresponds to (b, a), we obtain

S =



−1 0 · · · xn+1 · · · 0 · · · 0 0 0
0 −1 0 · · · xn+1 0 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · −1 0 · · · 0 0 0 xn+1

0 0 · · · xn −ζ 0 0 · · · 0 0
0 0 · · · 0 xn −ζ 0 · · · 0 0
0 0 · · · 0 0 xn −ζ · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · xn −ζ


.

Thus,
R = Resy(b, a) = det(S) = (−1)n+1(xn2+n+1 − ζ

n
),

which is a polynomial of degree n2 + n + 1 in Zp[i][x]. Moreover, by [9,
Theorem 16, p. 221], the polynomial xn2+n+1− ζ

n
is irreducible in Zp[i] as

long as ζ
n

is not a q-th root in Zp[i] for any prime factor q of n2 + n + 1.
We prove this last fact.

Assume, by contradiction, that there exists β ∈ Zp[i] such that ζ
n

= βq,
with q a prime factor of n2 + n + 1. Then,

(ζ
n
)(p

2−1)/q = (βq)(p
2−1)/q = 1.

Since ζ generates Zp[i] by hypothesis, it follows that q must divide n, which
is impossible because gcd(n, n2 + n + 1) = 1. Therefore, R is irreducible
over Zp[i] of degree n2 + n + 1.

In particular, we have that

deg(R) > deg(R) = n2 + n + 1.

However, by Lemma 3.2, the opposite inequality also holds. Hence,

deg(R) = deg(R) = n2 + n + 1.

Since R is also irreducible, we conclude that R itself is irreducible. This
shows (3.1) and completes the proof of the theorem. �

4. Proof of Theorem 1.1

Given a set V of Pn, open with respect to the analytic topology, we can
choose an element in V of the form α/g, with

α = (hy + a0)dx + (−hx + b0)dy,

ANNALES DE L’INSTITUT FOURIER
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where a0 and b0 are polynomials of degree less than or equal to n in
Z[i][x, y], 0 6= h ∈ Z[i][x, y] is homogeneous of degree n, h(0, y) 6= 0, and g

is a nonzero integer.
By Lemma 3.1, there are infinitely many n-good primes. Let p be one of

them and choose ζ ∈ Z[i] such that ζ generates the group of units of Zp[i].
Define,

ĥ = xn + pkh

â0 = −ζ + pka0

b̂0 = yn + pkb0,

and
α̂k = (ĥy + â0)dx + (−xĥ + b̂0)dy.

By Theorem 3.3, α̂k does not have any algebraic solutions. On the other
hand,

α

g
−

(
α̂k

1 + pgk

)
=

η

1 + pgk
(4.1)

where

η = (y(h− gxn) + a0 + gζ)dx + (−x(h− gxn) + b0 − gyn)dy.

Since η does not depend on k, it follows from (4.1) that
α̂k

1 + pk
→ α

g
when k →∞.

Therefore, α̂k/(1 + pgk) ∈ V , for k � 0; which completes the proof of the
theorem.

5. An algorithm

Recall from section 2 that the space Pn of Pfaff forms of degree n > 2
can be identified with the set of nonzero triples (h, a0, b0), where h is a
homogeneous polynomial of degree n and a0, b0 have degree at most n.
Thus

Pn ∪ {0} ∼= R(n+2)(2n+3)

under the identification given above. In particular, the norm ‖·‖∞ is defined
in Pn, and every Zariski subset of Pn is closed under the topology defined
by this norm.

We finish with an algorithm, based on the proof of Theorem 1.1 given in
the previous section, that explicitly computes a 1-form without algebraic
solutions in a neighbourhood of any given 1-form with coefficients in Q[i].
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Algorithm 5.1. — Given an integer L > 2 and a 1-form α = α/g,
where α = (hx + a0)dx + (−hy + b0)dy has coefficients in Z[i], g ∈ Z, and
h(0, y) 6= 0, the algorithm computes a 1-form α̂ and a nonzero integer β,
such that:

• ‖α− α̂/β‖∞ < 1/L and
• the Pfaff form of P2 obtained by homogenizing α̂ does not have any

algebraic solutions.
Step 1: Let n = deg(α).
Step 2: Factor n2 +n+1 and let Q be the product of its prime factors

taken with multiplicity one.
Step 3: Choose a prime p in the arithmetic progression (2Q+1)+4Qk,

where k > 1 is an integer.
Step 4: Choose ζ ∈ Z[i], such that ζ is a primitive root of unity in

Zp[i], and an integer

m >
L

g2p
sup {‖h− gyn‖∞, ‖a0 − gζ‖∞, ‖b0 − gyn‖∞}

Step 5: Set

ĥ = xn + mph,

â0 = −ζ + mpa0,

b̂0 = yn + mpb0,

and return
(ĥy + â0)dx + (−xĥ + b̂0)dy

1 + mpg
.

This algorithm has been implemented in the computer algebra system
Axiom, see [6]. Experiments have shown that the required primes in the
arithmetic progression at Step 3 occur at such large numbers, that it is
better to run a simple-minded search for an adequate p among all the
primes of the form 4n + 3. Axiom is available for download from

http://page.axiom-developer.org/zope/Plone;
while the implementation of the algorithm can be found at

htt://www.dcc.ufrj.br/˜collier/folia.html.
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