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THE DRINFELD MODULAR JACOBIAN J;(N)
HAS CONNECTED FIBERS

by Sreekar M. SHASTRY

ABSTRACT. — We study the integral model of the Drinfeld modular curve X1 (n)
for a prime n € Fy[T]. A function field analogue of the theory of Igusa curves
is introduced to describe its reduction mod m. A result describing the universal
deformation ring of a pair consisting of a supersingular Drinfeld module and a point
of order n in terms of the Hasse invariant of that Drinfeld module is proved. We
then apply Jung-Hirzebruch resolution for arithmetic surfaces to produce a regular
model of X7 (n) which, after contractions in the special fiber, gives a regular model
with geometrically integral fiber over n. Thus the mod n component group of Ji (n)
is trivial, i.e. Ji(n) has connected fibers.

RESUME. — Nous étudions le modele intégral de la courbe modulaire X1 (n) de
Drinfeld pour un élément irreductible n € Fy[T]. Un analogue du corps de fonctions
de la théorie des courbes d’Igusa est introduit pour décrire sa réduction mod n. Un
résultat décrivant ’anneau universel de déformation d’une paire se composant d’un
module de Drinfeld supersingulier et d’un point d’ordre n en termes de l'invariant
de Hasse de ce module de Drinfeld est prouvé. Nous appliquons alors la résolution de
Jung-Hirzebruch afin que les surfaces arithmétiques produisent un modele régulier
de X1(n) qui, apres des contractions dans la fibre spéciale, donne un modele régulier
tel que la fibre au-dessus de n est géométriquement intégre. Ainsi, la réduction mod
n du groupe des composants de Ji(n) est triviale, c’est-a-dire les fibres de Ji(n)
sont connexes.

1. Introduction

Let n € A := F,[T] be a monic prime polynomial and X;(n) g, (1) be
the smooth projective curve associated to the moduli problem of classifying
pairs consisting of a Drinfeld module over an F,(7T')-scheme and a nowhere
vanishing point of its n-torsion. Let Jq(n) JF,(T) be its Jacobian. The goal
of this paper is to prove

Keywords: Component groups, Drinfeld modular curves, Igusa curves.
Math. classification: 11F52, 14H40, 14105, 11G09.



1218 Sreekar M. SHASTRY

THEOREM 8.5. — The closed fiber of the Néron model of Jy(n) over
A(ny has trivial geometric component group.

As is well known (see [2, 9.6/1]), to prove this it suffices to show that there
exists a regular proper model of X;(n),r, (1) over A(,) with geometrically
integral special fiber. This is the approach we take.

We will study Drinfeld’s integral model of X;(n) over A, defined by
means of Drinfeld level structures; it is regular in the stack sense but the
coarse modular curve X;(n) has some singularities. To analyze these sin-
gularities we will cover the special fiber by moduli problems specific to
characteristic n, namely by function field analogues of the Igusa curves as
developed in the case of classical modular curves in [21].

An outline of the paper is as follows: In Section 2 we fix our conven-
tions for Drinfeld modules over schemes and define the relative Frobenius
and Verschiebung morphisms of a Drinfeld module. The existence of the
Verschiebung depends in an essential way on the canonical generator of
the prime ideal (n) provided by the monic polynomial n. Section 3 re-
views results (with some proofs) from [5] about the deformation theory of
formal modules, especially the crucial fact 3.13(ii) which is implicit in [5,
§4]. Following [21], the regularity of the moduli scheme of Drinfeld mod-
ules together with a point of order n and an auxiliary rigidifying étale level
structure is proved in Section 4. In Section 5 we study the moduli problems
specific to characteristic n and prove a result expressing the local ring at a
supersingular point in terms of the roots of the Hasse invariant; this result
will enable us to give in Section 6 an explicit presentation for the local ring
in terms of local rings along the components of the special fiber (where the
special fiber has the expected type: two components whose underlying re-
duced schemes cross transversally at the supersingular points). In Section 7
we identify the unique nonregular point on X;(n) to be that point corre-
sponding to (¢, P) such that ¢ has j-invariant 0 and P = 0 is a generator
of the kernel of Frobenius. This is a cyclic quotient singularity and we use
the Jung-Hirzebruch resolution as developed for arithmetic surfaces in [3]
to resolve this singularity in Section 8. Contractions in the special fiber of
the Jung-Hirzebruch resolution then yield the sought regular model with
integral special fiber.

A remark on the title of this paper: it really means that the Néron model
of Ji(n) over IP’]%Q — 00 has connected fibers. Of course, in this geometric
setting, one can form the Néron model over all of Pi but the component
group at the place co is highly nontrivial; in fact the results of [5] show
that it may be described in terms of automorphic forms. See [29, Lemma
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Ji(n) HAS CONNECTED FIBERS 1219

12]. However, co is not part of the moduli problem of Drinfeld modules and
here plays the role of the archimedean place of QQ, whence our title.

Acknowledgments. The problem taken up in this paper was mentioned
in the introduction to [3]. In that paper the parallel problem for classical
modular curves is solved.

This paper is essentially the author’s Michigan Ph.D. thesis. He would
like to express his sincere gratitude to his adviser Brian Conrad, under
whose direction this work was completed. He is also grateful to Tong Liu
for many helpful discussions. Finally, the author would like to mention
the manuscripts [23] and [30] which were of great aid while studying the
seminal paper [5].

2. Frobenius and Verschiebung

DEFINITION 2.1. — Let A be any ring. An A-module scheme is a pair
(G, @) consisting of a commutative group scheme G over an A-scheme S
and a map ¢ : A — Endg(G) of rings such that the induced map ¢ :
A — Endgg(wgs) coincides with the composite A — H°(S,0s) —
Endgg(wgs). Here wgys is the conormal sheaf % /.92 where .9 is the
ideal sheaf along the zero section of G. See [27, §1].

Let C be a proper smooth geometrically connected curve over the finite
field F, of characteristic p, oo € € a closed point, and write C—oo = Spec A.
Denote by ords (a) the valuation at oo of a € A.

For an invertible sheaf & on a scheme S, we write E := Spec Sym &V for
the associated line bundle over S, so that E(U) = &(U) for U C S open.
We will use the following definition of a Drinfeld module over an A-scheme
S (see [22, pp. 6-8] for the equivalence with other definitions). Let E{r}
be the the noncommutative ring P, E®(1-4)(8).7% where 7 stands for
the gth power Frobenius mapping. Multiplication in this ring is given by
;T ;T = (0 ® a?qg)ﬂ”.

DEFINITION 2.2. — A Drinfeld A-module of rank r over an A-scheme
S is given by a line bundle E over S together with a ring homomor-
phism ¢ : A — E{7} such that ¢F = ZZ’L(S) a;(a)t? where m(a) :=
—r deg(00)ordas(a), m(q)(a) is a nowhere vanishing section of E®(1=m(@),
and o coincides with the map x : A — H°(S, Os) giving the structure
of an A-scheme to S.

TOME 57 (2007), FASCICULE 4



1220 Sreekar M. SHASTRY

A Drinfeld A-module over S is clearly an A-module scheme over S.

DEFINITION 2.3. — An isogeny of Drinfeld modules is a finite homo-
morphism of A-module schemes.

Example 2.4. — For a Drinfeld A-module E over S and a nonzero a € A,
#F : E — E is an isogeny of Drinfeld modules over S.

A Drinfeld module will be denoted simply as E/g with associated invert-
ible sheaf & and with the choice of A being clear from the context. When
S is the spectrum of a local ring R, we sometimes will omit mention of
and just write ¢, to stand for a ring homomorphism ¢ : A — R{7} as
above. In this case, we will also write ¢} for the additive polynomial with
coefficients in R corresponding to ¢,.

Suppose that x has as kernel a maximal ideal n. In this case we say that
S is of characteristic n and write S/F,,, where F,, := A/n. The map x will
also be called the characteristic morphism.

In the sequel we will only be interested in the case C = ]P’Ilpq,oo =(1:0),
and r = 2 so A = F,[T] and a Drinfeld module over an A-scheme S
is determined by ¢% = x(T) + au7 + aar? with oy € E®1-9(S) ay €
E®(1’q2)(5). Note that as as is nonvanishing, we have E®¢° ~ E.

Fix a monic prime polynomial n € Fy[T] of degree d.

LEMMA 2.5. — Given ¢/, where k is a field of characteristic n we have

either ¢, = (ag + -+ + o774 With ag # 0, or else ¢, = azqr?.

Proof. — For all a € A, ¢padn, = dpng since ¢(A) is a commutative sub-
ring of k{7}. As x(n) = 0 we have ¢, = br" + (higher terms) for some
b # 0,7 > 0. Equating the terms of lowest degree in ¢,¢, = ¢,d, we
have x(a)br” = br"x(a) for all @ € A. Hence x(a) = x(a)? for all a so
X(A) =T, Ck is fixed by 7. Therefore d = [F,, : Fy] divides . O

Remark 2.6. — Let 9" be the category for which an object is a Drinfeld
module of rank r over an A-scheme. In [22, 1.5.1], it is shown that 9" is a
Deligne-Mumford stack and that the natural morphism of stacks 9" —
Spec A is smooth of relative dimension r» — 1. In particular, the functor
of deformations of a given Drinfeld module over a field k& to artin local
R-algebras with residue field k (where R is complete noetherian local A-
algebra with residue field k) is prorepresented by a power series ring in
r — 1 variables over R (see [26, 2.5.(1)]).

PROPOSITION 2.7. — Given E/g, where S is an A-scheme of character-
istic n. Then ¢, = (g + -+ + agqrd) e in B{7}.

ANNALES DE L’INSTITUT FOURIER
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Proof. — We may assume that S = Spec R is affine and that the under-
lying bundle of F is trivial. Further, it suffices to check the assertion over
the subalgebra of R generated by x(A) and the coefficients of ¢r so we
may take R to be noetherian. Fix a coefficient a; of 7; in ¢, with i < d.
Now, a; = 0 if and only if its images in all localizations at a maximal ideal
is zero. Thus we may assume that R is a complete noetherian local ring
with maximal ideal m and residue field k. As R/m? is artinian for all s > 0,
E ®g R/m® is uniquely a pullback of ®,, where the latter is the univer-
sal equicharacteristic deformation of ¢ := E ®g k, and where D ~ k[t].
Hence it suffices to prove the assertion of the proposition for ®,5. But D
is an integral domain so this follows from 2.5 by passing to its fraction
field. O

2.8. For a scheme S over F,,, let 7@ be the “absolute ¢g?-Frobenius” which
is by definition the identity on topological spaces and the ¢%th power
on structure sheaves. For a Drinfeld module E/g, we define the relative
Frobenius Fp /g (or just F) by the diagram:

Td

E Em

NN

Td

Evidently, E;g) is a Drinfeld module.

Before proceeding any further, let us recall that for invertible sheaves
LM on a scheme S over F,, (regarded as S-group schemes) we have

Homg g (L, .4) = H(S,P M @0, L")
n=0

or equivalently: homomorphisms of S-group schemes correspond bijectively
to Os-linear maps .4~ — D.>0 £2(=P") Tn the case where .¥ = .# =
& is the invertible sheaf underlying a Drinfeld module E over S, we see that
E{r} is contained in H°(S, @,>06%17P").

Now, by 2.7, we may define the Verschiebung V by

V::ad+~o+a2d7'd

(notation as in 2.7). Since ag4; € E@1=a" (S).77 for 0 < j < d, V cor-
responds to an Og-linear map &~ — @j%(éa@qd)@qj and hence to a

homomorphism E(™ — E of S-group schemes.

TOME 57 (2007), FASCICULE 4



1222 Sreekar M. SHASTRY

LEMMA 2.9. — F: E — E™ and V : E™ — E are isogenies of
Drinfeld modules over S.

Proof. — There is an 1somorphlsm EM = E Qe rd Og———p®d
given by s ® a ~ i’ s®a° By means of this isomorphism we see that
if pf = Z;"(g) a;j(a)r? then ¢P™ + A — E®4"{7} is given by

m(a)
an 67" =37 o)

§=0
That F is an isogeny of Drinfeld modules follows from the equation
Foof =¢f" FeEM{r).

Finiteness of V follows from the fact that asg is nonvanishing. That V
is A-equivariant follows from the calculation in E{7r}:

G2V F=¢l ¢f = ¢f ¢E =V .F.¢f =V.¢E" .F.

Since F = 77 is not a right zero divisor in the noncommutative ring E{7}
we may cancel it to obtain ¢ -V =V - ¢¥(") as required. (|

COROLLARY 2.10. — We have the commutative diagram

\/\

_—
n) ¢E(") E

F

and 0 ker F E[n]
module schemes.

ker V 0 is an exact sequence of A-

Proof. — The commutativity of the diagram is clear. That the sequence
is exact follows from the fact that the corresponding map Oyerv — O
is finite locally free (hence faithfully flat) because the top coefficient of V
is nonvanishing. O

DEFINITION 2.11. — A Drinfeld module ¢ ;;, over an algebraically closed
field of characteristic n is supersingular if ¢[n](k) = 0, or equivalently by
2.5, ¢n = (unit) - 72%. Otherwise ¢y, is called ordinary. A Drinfeld module
E,sr, is called ordinary if all of its geometric fibers are ordinary.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 2.12. — Given E,g/r, so that we have ¢& = (g + -+ +
agqt?) - 7% we define the Hasse invariant to be the coefficient

ag € E¥179(S).

Remark 2.13. — Observe that Tgt(V) € Hom(LieE™, LieE) =
Homg, (61", &) is given by ag € E®1=9°(S) so that this definition is com-
pletely  analogous to the corresponding notion for elliptic
curves [21, 12.4.1].

See also [8, §5]. The Hasse invariant is a modular form of weight ¢% — 1
in the sense of [13, 1.14].

PRrROPOSITION 2.14. — The following are equivalent:
(i) E/S/F,, is ordinary.
(ii) ker V is étale over S.

(iii) The Hasse invariant is nonvanishing.

Proof. — Since ker V is finite locally free over S it is étale if and only if
all of its geometric fibers are étale and so we can take S to be the spectrum
of an algebraically closed field. Now, by the functoriality of the connected-
étale sequence for commutative group schemes over S we see that we have a
connected-étale sequence in the category of A-module schemes, and hence
we have the following diagram with rows and columns exact sequences of
A-module schemes:

0 0 0
0 — (ker F)° ker F (ker F)¢* —— 0
0 —— (E[n])° Eln] (E[n)* ——0
0 — (ker V)° ker V (ker V)¢t —— 0
0 0 0

(here, and in the sequel, we denote the connected component of a group
scheme G by G°). Since (ker F)¢* = 0 we have (i) <= (ii).
(ii) < (iii) follows from the Jacobi criterion. O

TOME 57 (2007), FASCICULE 4



1224 Sreekar M. SHASTRY

3. Some facts from the Deformation Theory of Drinfeld
modules and formal O-modules

3.1. Let O := E(n),W = 65, 7 a uniformizer of W, k an algebraic
closure of F,, (so W ~ Ek[r]), and K := FracO.

Let € be the category of artin local W-algebras with residue field k,
R € €. A deformation of a Drinfeld module ¢, to R is a pair (E, i) /g where
E/p is a Drinfeld module over R and i is an isomorphism E ®p k——¢.

3.2. Let 5/3 be a deformation of ¢/, with R € € and let m be the
maximal ideal of R. Let f be an automorphism of ¢~s /g Which reduces to
the identity mod m. Then we claim that f is the identity. To see this, write
fe(R{r})* as f =1+ p with p € m{r}. We will show p = 0.

Let us first check that € m. We have (1 + 1) - ¢ = ¢ - (1 + 1) hence
[ Ga = do - for all a € A. Write ¢, = ¢ + (lower order terms), p =
b7® + (lower order terms) where we have chosen a such that m” = 0. Then
we have ¢7"b7® = br®ct” with b € m,c € R*. Hence b =0 and p € m.

To see that = 0, suppose ¢ =0 mod m’. Then for all a € A we have

o (14 1) = Ga + px(a) = (14 ) - Gu = fu + jidg mod mI ™,
Hence 1+ = 0 mod m/*! and therefore i = 0 € R. It follows that f is the
identity.

Alternatively the claim follows from an application of the theory of rel-

ative schematic density [15, 11.10.1.(d)] to the prime to char k torsion of
¢ /R, as is done to prove the analogous assertion for abelian schemes.

3.3. Given a Drinfeld module ¢/, let 2 be the functor from € to sets
given by Z(R) := the set of isomorphism classes of deformations of ¢ ;, over
R. Then 2 is prorepresented by Wt] (see 2.6), which comes equipped with
a universal formal deformation ® of ¢,;. Let m be an ideal of A divisible
by at least two primes and suppose m is prime to n. Let Y := Y (m) 4 be
the (fine) moduli scheme classifying Drinfeld modules with a full level m
structure, and write E for the universal Drinfeld module over Y.

As k is of characteristic n and m is prime to n we may, by the topological
invariance of étale morphisms, identify the universal deformation ring Wt]
with ﬁyw’y. Here, ¢/, corresponds to a point y € Y (k) which we identify
with a closed point of Y. Then the restriction of E to Spec ﬁy‘%y provides
an algebraization of ®.

Also recall that the deformation ring of ¢/, coincides with the defor-
mation ring of its divisible formal O-module ¢[n*°] ([5, 5.4]) and, as k is

ANNALES DE L’INSTITUT FOURIER
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algebraically closed, there are up to isomorphism only two possibilities for
¢[n>°] ([5, 1.7]) namely

the unique formal O-module
of height one x K/0

the unique formal O-module
of height two

“ordinary”

o] =
“supersingular”

where K /O refers to the constant formal group Spf), H k (notation as in
[6, 1.4.2]). K/O

3.4. We continue to use the notation O = A\(n) so that n € A gives rise to
a uniformizer m € Q. Let R be a complete noetherian local O-algebra with
residue field k. By [27, 1.4] there is an equivalence between the category of
connected 7w-divisible groups over R and the category of formal O-modules
of finite relative dimension over R such that [r] is an isogeny. In particular,
if ®,p is a deformation of a supersingular ¢, then by the connected-étale
sequence ®[n°°] is connected and hence corresponds to G,r = Spfg R[],
the latter being a one-dimensional formal O-module of height 2. We will
write P < xz(P) for the bijection ®[n*°](R) < G(R) = mgr where mp is an
O-module via the power series defining G. See also [28, 2.2, Prop. 1].

The shape of the universal formal deformation.

The main result of this subsection, 3.13.(ii), is implicit in [5, §4]. We follow
in this subsection the exposition of Yasufuku [30].

3.5. Let O be any ring and consider the functor which assigns to an
O-algebra R the set of formal O-module structures on Spfp R[X]. It is
represented by

Ag = O[Fi]‘,@k(’l“)|i,j,k > 1,re O]/j

where the variable I';; corresponds to the coefficient of X*Y” in the uni-
versal formal O-module F(X,Y) € Ao[X,Y], ©k(r) corresponds to the
coefficient of X* in [r]p.X € Ap[X] for r € O, and J is the ideal expressing
the relations imposed by the formal module axioms.

LEMMA 3.6. — Ao has a natural gradation such that I';; has degree
i+ 7 — 1, ©r(r) has degree k — 1, and the set of elements of degree zero
may be identified with O C Ag. ]

For a positive integer n let ¥(n) be £ if n > 1 and n is a power of the prime
¢, v(n) := 1 otherwise, and let C,,(X,Y") be the polynomial ﬁ((X—i—Y)”—
X"—Y") € Z|X,Y]. Note that C,,(X,Y) is primitive. Indeed, suppose that

TOME 57 (2007), FASCICULE 4



1226 Sreekar M. SHASTRY

some prime p divided all of the coefficients of C,,(X,Y). If n is a power
of p then p? divides all of the coefficients of (X 4+ Y)® — X™ — Y. Then
m™ =m mod p? for all positive integers m, which is impossible. If n = pr

with > 1 prime to p, then p ‘ (;) , which again is impossible.

PROPOSITION 3.7. — Let I C Ao be the ideal generated by elements
of positive degree and put 710 == Ao /I?; it is again a graded ring. As an
O-module the graded piece of degree n —1 in 710, call it 71871, is generated
by the symbols {V,—1,0,—1(r)}rco subject to the relations

(3.7.1) (r" = D)yn—1 = v(n)0n_1(r)
(3.7.2) 9n—1(7“ + ’I"I) — en—l(r) - Hn—l(r/) = Cn(rv Tl)’yn—l
(3.7.3) POn—1(r") +1"0n—1(r) = On_1(rr’)

where v,_1 is defined by > T, X'Y"" = ~, 1C,(X,Y) in 718_1 and
0,—1(r) := the image of ©,,(r) in A}~".

Proof. — In Ay, if a monomial of total degree n— 1 in I and © does not
contain a variable of degree n — 1, then it must be a product of at least
two positive-degree variables. These monomials of degree n—1 vanish when
we mod out by I?, so as an O-module 718_1 is generated by the images of
Ty n—i and ©,,(r); these images satisfy the formal O-module identities.

To obtain v,_1, let F,, = Zfim,iXiY”*i over 710. Then we have
F.,(X,Y) = Fo,(Y,X) and F,(X,0) = F,(0,X) = 0. Now look at the
polynomial degree n part of the identity F(F(X,Y),Z) = F(X,F (Y, Z))
where, as before, the universal formal O-module over Ay is noted F'. On
the left side, if we consider the contribution from a positive degree coef-
ficient (degree as an element of 710) of the outer F', then we cannot have
a contribution from a positive degree coefficient of the inner F'. Hence, in
degree n, the left side is F,(X +Y,Z) + F,(X,Y). A similar computation
for the right side gives the equality

Fo(X +Y,2) + Fu(X,Y) = Fu(X,Y + Z) + F,(Y, 2).

By [18, 1.6.6] F,(X,Y) = 7,-1C,(X,Y) for some 7,_1 € 710. Thus v,,_1
has degree n — 1 in Ag since C,,(X,Y") has coefficients in Z. It follows that
the module generated by the {I'; ,—;} is generated by ~v,_1.

The relations (3.7.1)-(3.7.3) will follow from looking at the formal group
identities, as follows. Write [r] for [r]r and look at the terms of poly-
nomial degree n in F([r].X,[r].Y) = [r].F(X,Y). We get F,(rX,rY) +

ANNALES DE L’INSTITUT FOURIER
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Op—1(M) X" 4+ 0, 1(r)Y" =0,_1(r)( X +Y)" +rF,(X,Y), so
(r" =) y—1Ch(X,Y) =0, 1 () (X +Y)" = X" =YY"
=Oh_1(r)v(n)Cp(X,Y).
This gives the (3.7.1) since C,(X,Y) € Z[X,Y] is primitive. Similarly,
comparing T"-coeflicients in the identities [r + '].(T) = F([r].T,[r'].T)
and [r].([r'].T) = [r'].T finishes the proof of proposition. O
For the rest of this section we take O to be the ring of integers of a

nonarchimedean local field, with uniformizer 7, and residue field of size gq.

PRrROPOSITION 3.8. — For n a power of q there is an isomorphism of
O-modules /1” 1_= 4. More precisely, there exists a free generator u €
A1 such that Op_1(r) =" u forall 7 € O and yp—1 = £ - u.

Remark 3.9. — In characteristic p the proposition implies that v,,_1 =
0; this is to be expected since in equal characteristic the underlying formal
group of any formal O-module is G, [18, 21.1.14].

Proof. — Consider the map of sets 6 : 0 — 71%_1, 7~ O 1 (1) =: 0(1).
We will first show that 71’5_1 is generated by 6(w) by showing that M :=
71’571/(‘).0(@ vanishes. For A\ € 71"71 write A for its image in M. For any
r € O we have r0(m) +7"0(r) = 9(r77) = 0(mr) = 70(r) +r"0(m) by (3.7.3),
so in M we must have 0(7r) = 7"0(r) = 70(r). Hence (7" — m)0(r) = 0
and since 777! — 1 is a unit in O we have

() m0(r) = 0(rm) =0

for all r € O. Before proceeding, we note that (3.7.3) gives 6(1) = 0. Now,
using (3.7.2) we have

0p) = Culp—=1,1)yn-1+0(p—1)+0(1)
= Culp—1,D)V-1+Cn(p—2,1)yn-1 +6(p—2) +0(1)

= (Chlp—1,1)+Chlp—2,1)+ -4+ Cn(1,1))yn-1

= @' =1y
where for the last equation we have used that v(n) = pand ), C,,(p—i,1) =
p"~1—11is a telescoping sum. Thus by (*) we have 0 = 0(p) = (p" ' —1)7,—1
so that 7¥,-1 = 0 since the residual characteristic of O is p and hence p"~!—1
is a unit. Using (*) and (3.7.2) we see that §: O 0 7178*1 LM is an
additive map factoring through O — O/7. Now r" —r € (7) C O for all
r € O since n is a power of ¢ = #0/m and therefore by (3.7.3) and (*),
0:0/(r) — M is an O/(r)-derivation and hence is zero. On the other
hand, since 7,7 = 0, (3.7.1) implies that 6 is surjective and hence M = 0.
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Using the three equations of 3.7 we get a well defined map 718_1 — 0
of O-modules by v,_1 ~ £ and 6(r) ~ ’TLT_’ Since 6(7) is sent to the
unit 777! — 1 this homomorphism is surjective. It is an isomorphism since
Ap~" is generated by (m). Thus u := (7”1 —1)71¢(x) is sent to 1 via this
isomorphism and the proof is complete. O

PROPOSITION 3.10. — There is an isomorphism O[gy, g2, ...]—— Ao
of graded O-algebras, where deg g; = 1.

Proof. — The proof is given in [5, §4]. For our purposes we simply note
that the map is defined by sending g,,_1 to a lift in A¢ of the generator u
of Zg_l. O

Recall that the formal O-module G, over an O-algebra is defined by
F(X,Y)= X +Y with the action of r € O given by [r]. X :=rX.

DEFINITION 3.11. — A one-dimensional formal O-module F of height
h over a field k over O/(w) is normal (with respect to the choice of )
provided that F,» C k and

(1) [x]p.X = X"

(2) F(X,Y) e Fu[X,Y] and [r]p.X € Fu[X] for allr € O

(3) F =G, (mod poly. deg. q").

Remark 3.12. — Any formal O-module over a separably closed field over
O/(m) is isomorphic to a normal one by [5, 1.7].

PROPOSITION 3.13. — Let G be a formal O-module over @/(W) of
height h.

(i) The functor of isomorphism classes of deformations of G to complete
Eo\etherian local @—algebras with residue field 6;/ () is represented by
Om[[tl, . ,thfl]].

(ii) If G is normal then the universal deformation G may be taken such
that the coefficient of X7 in [r]g.X is equal to (79’ =1 — 1)t; for j =
1,...,h—1.

Proof. — Note first that if G is normal then the map ¥ : Olg;] —
6;/(70 inducing G sends g; to 0 for i < ¢" — 1.

An O-algebra map f: Olg;] — 6‘;[[&, ..oy tp—1] is defined by

f(ggiz1) = t; 1<j<h-1
flg;)) =0 1<j<q"—1andj+1+#power of q
flg;) = lift of ¥(g;) to O™ otherwise

Let G be the resulting formal O-module over @[[tl, ...yth—1]. Then (i)
is proved in [5, 4.2] by reducing to the case that G is normal and showing
that G is the universal deformation.
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For (ii), it suffices—by the definition of f—to show that under the map
Ao = O[Fij, @k(r)]%(‘)[gl,gg, .. ]

O, () is sent to (md' 1 — 1)ggi—1- This follows from 3.8 and the proof
of 3.10. g

Remark 3.14. — From part (ii) of the proposition it follows that two
deformations G1, G2 of a given normal formal O-module G over O /() are
isomorphic as deformations if and only if the coefficients of X, X9..., X "

in [7]q,.X and [7]q,.X coincide.

Remark 3.15. — Let ® ;[ be the universal equicharacteristic deforma-
tion of a supersingular Drinfeld module ¢ over an algebraically closed field &
of characteristic n. Since [7]g[,,].X coincides with the additive polynomial
corresponding to ®,, € k[t]{r}, the coefficient of X" in [T]@[nee).X is equal
to Hasse invariant of ®. This in turn is equal to the image of (qu_l — 1)t
under @ﬂt]] — k[t]. As k[t] is of characteristic n, this image is —¢ and
thus the Hasse invariant “has simple zeros.” Cf. [8, 5.6], [21, 12.4.3], and
the proof of 5.4 below.

4. I'1(n)-structures

DEFINITION 4.1. — A I'i(n)-structure on a Drinfeld module E,g is
a map of (abstract) A-modules ¢ : F, — E[n](S) such that G, :=
> .cr, [L(2)] is an A-submodule scheme of E[n] (and hence G, < E[n| as
relative effective Cartier divisors on E/S).

4.2. By abuse of language, both ¢ and «(1) € E(S) will be referred to as
a “point of order n.” We will often denote «(1) by P.

Given E/g, let /s be the functor which assigns to an S-scheme 7' the
set of I'i(n)-structures on E/p.

PROPOSITION 4.3. — The functor .#gs is represented by a closed sub-
scheme of E[n]. If n is invertible on S, i.e. if the structure map S — Spec A
factors through Spec A[n™'], then A s is étale over S.

Proof. — Clearly, the functor H which sends an S-scheme T to
Homa-mod (Fy, E(T')) is represented by E[n], and .#p /s is a subfunctor
of H. Let o™V : F,, — Ex(H) be the universal homomorphism and put
Gouniv 7= Y cp [@™V(2)]. Then by [21, pp.14-15] there is a closed sub-
scheme J C H which is universal for the conditions: (i) G,wmiv < Eg[n] as
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Cartier divisors on Fy/H, (ii) Gauniv is a commutative subgroup scheme
of Ey[n]. Hence .4 /s is a subfunctor of J.

Let 8 : F,, — Ej[n] be the universal object over J, with associated
divisor D := Y [#(#)]. Consider the diagram

E+—D

L

J

Make the base extension D — J to get a section A

ED<—)D><JD

| A

D

Then ./ ,s x ;D is represented by the closed subscheme of D which is uni-
versal for [¢:(A)] < Dp (that this condition is representable is [21, 1.3.4]).
This is the condition that Dp be A-invariant; note that the cotangent con-
dition in the definition of an A-module scheme is automatically satisfied
since it is satisfied on F and hence on any closed subgroup scheme on which
A acts, so we need only check A-invariance to represent the condition of
being an A-module subscheme.

Now, as D is finite locally free over J C E[n|, .4 s is represented by a
closed subscheme of J, as on [21, p. 14].

To see that .#p /s is étale over S if n is invertible on S, we argue as
follows. Define @Q = E[n] — {0} so that Q is étale. Let g : A5 — Q
be the map ¢ ~» ¢(1). By descent theory (see [17, Exp. VIII, 5.4]), ¢ is an
isomorphism if and only if it is after an fpqc base change T' — S. Take
T to be the finite étale cover E[n] — S so that E possesses a full level n
structure over 7', i.e. an isomorphism F&2—"— F[n].

By means of the level structure, we see that the map g has the effect
of sending an injection ¢ : F,, — F$? to (1) € F$2 — 0. Hence g is an
isomorphism over T, as claimed. O

4.4. Let m be an ideal of A divisible by at least two primes, so that there
exists a fine moduli space Y (m) for the functor of isomorphism classes of
Drinfeld modules over A-schemes with full level m structure. Now assume
that m is prime to n and let E be the universal Drinfeld module over
Y (m). Then Yi(n,m) := Mgy m) is a fine moduli space for the functor
of isomorphism classes of triples consisting of a Drinfeld module over an
A-scheme, a point of order n, and a full level m structure. We remark that
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if we restricted ourselves to A[n~!]-schemes, then the moduli problem for
Drinfeld modules with a point of order n would be representable.

To ease notation, put Y; := Y1(n,m), ¥ := Y(m). By 4.3, the obvious
map 7 : Y1 — Y is a finite map of A-schemes and its restriction over
A[n~1] is étale.

Regularity.
PROPOSITION 4.5. — Y, is a regular surface and 7w : Y1 — Y is flat.

Proof. — This is Deligne’s homogeneity principle [21, p. 130 fI.]. The
argument must be modified in several places to make it work in the function
field setting, and various aspects of the proof will be needed later on. Details
are given for the reader’s convenience.

We may work over A,y by 4.3 and by the regularity of Y (m) [5, Cor. p.
577). Define

U:={y €Y |Vz —y, 0y, is regular and is flat over Oy, }.

Now 7 is proper, hence closed, and the nonregular locus in Y; is closed
since Y, is excellent [14, 7.8.6(iii)] as is the nonflat locus [25, 24.3], so that
U is the complement of the union of two closed sets, hence open. Further,
U contains the generic fiber of Y since 7 is generically étale. Thus, to show
U =Y it is enough to show that U contains every closed point of Y,
(since the closed points are dense in the latter). We say y € Yy, is ordinary
or supersingular according as the corresponding Drinfeld module ¢ 5, is
ordinary or supersingular.
Let yo € Yr, be a closed point. Grant for now the following assertions:

(i) yo € U if and only if .#g w4 is regular and is flat over W[t]. Here,
as in 3.3, ® is the universal deformation over Wt] of ¢ ®(y,) k(¥o)-
(ii) If yo is a supersingular point then .#g /. is regular and is flat over

Wt].

For arbitrary E/g, it is clear that .#f; /s depends only on E[n®], i.e. given
E,E' over S and an isomorphism E[n>]—— E'[n>°], we have an isomor-
phism A p/s—— Mg /5. Now, as Mgy, depends only on ®[n], hence
only on ¢[n°], which in turn depends only on whether ¢ is ordinary or su-
persingular, we see that U contains all ordinary points or none, and likewise
contains all supersingular points or none.

As there exist only finitely many supersingular points [12, 4.2], and Yf,
is smooth (2.6), every neighborhood of a supersingular point contains ordi-
nary points. Since U is open, it therefore suffices to check that U contains
a supersingular point. This is so by (ii).
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Proof of (i). Recall that if A — B is a finite local homomorphism of
noetherian local rings, then B is flat over A <— B is flat over A <= Bsh
is flat over A" [EGA IV, 18.8.10]. Also, B is regular <= B is regular
<= B! is regular [16, 18.8.3]. Hence, we see that Oy, , is regular and is

flat over Oy, <= ﬁ’;lllx is regular and is flat over ﬁ;hy

Next, for any scheme X of finite type over A, there are natural bijections
between X (k), the set of pairs (xg, k(xg) — k) where 2y a closed point of
X, and the set of closed points of x € Xy with residue field k. Here k is

—

an algebraic closure of F,,. Under this bijection, we have é)\XW,x ~ ﬁgg%;
indeed, both are initial objects in the category of complete noetherian local
Ox z,-algebras with residue field k(x).

Fix yo € Y and y € Yy over it. Then, by the preceding, y is in U if and
only if for all x € Y1,y over y, ﬁ%/w,x is regular and is flat over ﬁAyW,y.
As Y1,w — Y is finite, we have

I Spec 0y, o = Y1/w Xviy Spec Oy, -

T—yY

The latter scheme is isomorphic to .#g/y[;) by means of the identification
of E/éyw,y with @y . This proves (i).

Proof of (ii). Suppose ¢, is supersingular, and let Spec D denote the finite
Wt]-scheme .#Zgwq. Then Ay wig(k) is a singleton so that D is a
complete local ring.

The map Spec D — Spec WTt] has dense image since it is finite étale
and surjective upon inverting n. Being finite it is closed and hence surjec-
tive. Therefore dim D > 2. Hence to show D is regular it suffices to show
mp is generated by two elements. We will use the following fact: Let D be a
complete local W-algebra with residue field k, f,g € mp. Then m = (f, g)
if and only if for every artin local W-algebra R and every £ : D — R
such that £(f) = £(g) = 0, £ factors through k. [Proof. To prove sufficiency
(necessity being clear), let D := D/(f,g),m = m/(f,g). Let & be the pro-
jection D — E/ﬁi. By assumption, each of these factors through k& and
as D is complete we see that the resulting map & : D — D factors through
k = D/m. Hence m = (f,g).]

Returning to the proof of (ii), let ¥ := ® @y, D and « be the universal
I'1(n)-structure on ¥, so that (¥,p,c,id) is the universal object for the
functor which sends R € € to the set of isomorphism classes of deformations
of (¢,0) over R. Such a deformation is by definition a triple (E, 3,1),p
where (E,4) /g is a deformation of ¢/, and i (necessarily) carries 3 ® k to
the unique point of order n on ¢, namely 0.
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Put P := a(1) € ¥[n](D) C ¥[n>|(D). Because ¢, is supersingular,
U[n®] is a formal O-module and ¥[n>°](D) = mp with O-module structure
from ¥[n>°] as discussed in 3.4. Let 2(P) € mp be the image of P under
the above identifications.

Write ¢ € D for the image of ¢t under W[t] — D. Then we will use the
above claim to show that mp = (z(P),t). So let £ : D — R be such that
&(t) = &(x(P)) = 0, and let (E,5,i) be the pullback of (¥, «,id). Then
what we want to show is that (E,,i) comes from (¢,0,id) by extension
of scalars k — R.

It is enough to show that E and 3 are constant since otherwise we would
have distinct isomorphisms E—"—¢ ®}, R, contradicting 3.2.

Now, as &£(z(P)) = 0 € R it is clear that 3 is the zero map so that
>_r, [0] = Spec R[z]/ 24" is an A-submodule scheme of E [n]. In other words,

21" divides ¢ (2) so that ¢ has no linear term and x(n) = 9o¢Z = 0 where
X : A — R is the characteristic morphism. But F is induced from W] via
the composite W[t] — D — R, so x(n) = 0 implies that the uniformizer
of W is sent to zero in R and since ¢ is sent to zero by assumption, we see
that W[t] — R factors through k. Thus F is constant, as required.®)
Finally, the map W[t] — D is flat since it is a finite map between

regular rings of the same dimension [1, V.3.6]. |
Remark 4.6. — Let z be a point of Y1/, such that the corresponding

pair (¢, P) has P =0, and write &, := 0y, 1,2 The above proof provides
a surjection Wz, t] — 0, the kernel of which is a principal ideal with
generator that is part of a regular system of parameters of Wx,t].

5. Igusa Curves

DEFINITION 5.1. — Given E,g/r, we define functors from (schemes/S)
to (sets) by

Fpis: T ~  {v:Fp — En)(T) | Y[u(z)] = ker F},
Vs T ~ {0:F, — EMN)(T) | S[u(2)] = ker V}.

Elements of Vg, 5(T) are called Igusa structures on E .

(1 The argument in this paragraph is easier than the corresponding argument in [21];
the very definition of Drinfeld module gives that n (and hence the uniformizer of W) is
sent to zero in R, whereas for elliptic curves this is proved by a more difficult argument
in [21, 5.3.3,5.3.4].
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The functor #g,5 (resp. ¥g/g) is represented by a closed subscheme of
E[n] (resp. EM[n]) by [21, 1.3.5, 1.6.5]. In the case of Fp, 5 we will need
the following explicit description.

PROPOSITION 5.2. — Fp /g is equal to Spec (Symﬁsé”v)/(gv)@qd_l)
as closed subschemes of E.

Proof. — Choose m € A prime to n. Then T := E[m] — S is finite
étale and has a section, hence descent data with respect to this cover is
effective; we may assume without loss that E is endowed with a full level
m structure over S. Let Y := Y (m)/r, and E be the universal Drinfeld
module over Y. It suffices to prove the assertion for E. As E carries an
étale level structure over Y it has nonvanishing sections and therefore the
underlying line bundle of E is isomorphic to the trivial bundle over Y so
that we may identify ker F with Spec Oy [X]/qu. Write & for Fgy.

Put Z := Spec Oy [X]/X?"~!. We claim that the closed immersion de-
fined by % < kerF, ¢ ~ (1) factors through Z < kerF. To see this,
consider (1) € (kerF)(B), for an Og-algebra B. Since Y [t(z)] = kerF
we have [[,cp (u —1(2)) = u?” in the polynomial ring Blu] and hence
[Lepx (u—1(2) = w1’ 1. Evaluating at u = ¢(1) we see that +(1)7"~1 = 0.

Thus we have a closed immersion g : % — Z. To show ¢ is an isomor-
phism it suffices to show it is an isomorphism after making the fpqc base
change Y, — Y, where k :=T,,. As ¢®k is globally defined, it is enough to
show it is an isomorphism locally. So fix a closed point y € Y}, correspond-
ing to the Drinfeld module ¢ ;. By 3.12, we may assume without loss that
¢[n>°]° is a normal formal O-module.

Clearly E[n>]/ 53/,64, is the universal equicharacteristic deformation of
the divisible formal O-module ¢[n*>°],, and we may identify ﬁAy,wy with
k[t] as before.

Now, over k[t] we have . — Z — F := E[n>]° and Fy[y is the
universal equicharacteristic deformation of the formal O-module ¢[n>°]°.
Fix an identification of O with F,[x].

There is a formal O-module G over k[t] such that

[ﬂ'}G.X = [W]F.X,

[€lg.X =(X for ( € F,, C F,[n]
and an isomorphism F———G of deformations by 3.14 (here X is the
coordinate of the formal group G,/k[t] on which O acts via [7]F, [7]c—

recall that any formal O-module has as underlying formal group the formal
additive group since we are in characteristic p [18, 21.1.14]).
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As .# and Z are closed subschemes of the formal scheme F' to show .# —
Z is an isomorphism it suffices to show that the induced map .#(B) —
Z(B) is an isomorphism for B an artinian k[t]-algebra.

The isomorphism F—=—@ preserves the (¢?—1)th roots of zero, i.e. pre-
serves Z, and in G we see that an element ¢ € % (B), i.e. a generator of
ker F C E[n], satisfies

x'=Jx-wn= ] &-I[eu1)

2€Fy CEF) CFy, [7]

= TIx = o) = X't — oy,
¢

Hence giving ¢ € . (B) is the same as giving a (¢? — 1)th root of zero in
B, or in other words, an element of Z(B). O
LEMMA 5.3. — If E/g is ordinary then Vg /g is étale over S.

Proof. — In this case, ker V5 is an étale A-module scheme over S. We
have
VE/s(+) = Isoma _mod.sch. (Fn, ker V)(-)
and the latter sheaf is obviously (formally) étale. O

Write Y := Y (m)g,,, let E be the universal Drinfeld module over Y, and
let ¥ = %E/Y

PROPOSITION 5.4. — Vg vy is regular and is flat over Y. In particular,
it is smooth over F,,.

Proof. — ¥ is étale over Y°'4 by the lemma and so we are reduced to
studying what happens near a supersingular point.

Let yo be a supersingular point of Y and zy € ¥ the unique point over
it. Let x,y be points of ¥, Y} over xg,yo where k = F,,. As in the proof
of 4.5, Oy ., is regular and is flat over Oy, if and only if 5«,/,&.@ is regular
and is flat over ﬁAyk g

Now ﬁyk g~ E[t] is regular and of dimension one and therefore flatness
of the finite ring extension ﬁyk gy — @yk » follows if the latter is regular
and of dimension one.

Let ¢, be the supersingular Drinfeld module corresponding to y € Yy so
that the universal equicharacteristic deformation ®/k[t] of ¢ is identified
with E/ﬁyk y, as usual. We have %, ®g,, ﬁyk w = Yok =: Spec D for D
a finite (hence complete) local (since ¢/, is supersingular) 5yk’y—algebra.

We claim that if E is a Drinfeld module over a separably closed field
K of characteristic n then there exists an Igusa structure on F, so that
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Ve/k (K) # @. Indeed, if E is ordinary then ker V is isomorphic to [F,, and
this isomorphism provides the Igusa structure. On the other hand, if F is
supersingular then 0 is a generator of ker V.

Let us show that Spec D — Speck[t] is surjective. It is finite, hence
closed. On the other hand, the image contains the dense open Spec k((t))
since there exist Igusa structures on ®/k((t))sep. Thus dimD > 1 and
therefore to show D is regular it suffices to show that mp is principal.

Let Wp := ® @[y D; it carries the universal Igusa structure, call it «.
Then (¥,«),p prorepresents the functor which assigns to an artin local
k-algebra R with residue field k the set of isomorphism classes of triples
(E,B,i: E®pk——-¢) where E is a deformation of ¢ over R, 3 is an
Tgusa structure on E, and 4 is an isomorphism which carries 3 to the unique
Igusa structure on ¢.

Let P := (1) € (ker V)(D) € E™[n](D) and z be the coordinate of the
formal O-module U™ [n>°],, We will show that mp = (z(P)).

As in the proof of 4.5 it is enough to show that for all £ : D — R such
that {(x(P)) = 0, the induced triple & (¥,a) =: (E,(3,i)/r is constant.
Fix such an R and &. As before, it will suffice to show that F and 3 are
constant. We may assume that ¢[n°] is normal by 3.12.

By definition of ¥, to show E is constant, it is enough to show that under
the composite k[t]——D——R the element ¢ is sent to 0 € R.

Write G/ for the formal O-module E[n>]. Since {(x(P)) = 0 we have
that ker(V : E(™) — E) is generated by 0 € R, hence 3 is constant. Since
the equations defining the Cartier divisors ker V and } ; [0] differ by a
unit multiple, we obtain the equations

agX 4+ ag X = (unit) - x7

But then, by 3.15, the image of —t in R is ag = 0 so that E is a constant
deformation, as required. O

Note that since the k-algebra D is a one-dimensional regular local ring

with parameter z(P), we may identify D with k[z(P)].

THEOREM 5.5. — Let k be an algebraically closed field of characteristic
n and suppose given a supersingular ¢, such that ¢ is monic in 7. Let
®/k[t] be the universal equicharacteristic deformation of ¢. Then there is
an isomorphism of k[t]-schemes

Yo /i) = Spec k[tl/(qdfl)]].

ANNALES DE L’INSTITUT FOURIER



Ji(n) HAS CONNECTED FIBERS 1237

Proof. — We use the notations D, (¥, a)/p, P = a(1) as in the previous
proof. As before, ¢[n>°], (™ [n>°] may be taken to be normal formal O-
modules. Let F, G be the formal O-modules ¥[n>], ¥(™)[n>] over D. Write

[7]r.X = agXT 4t g X7
e X =al X7 4. 4 ol x 7"
Identify O with F,,[7] and define a formal O-module G’ over D by
[C]G’-X = [C]GX for(eF, C ]Fn[ﬂ']]
(o X = al X9 4 X0 = (—)7" x9* + x
where —t € D comes from the k[t]-algebra structure on D. Since o =
724 we see that G’ is also a deformation of ¢(™[n>]. By 3.14 there is an
isomorphism of formal O-modules 7 : G———G".
Now observe that D is regular local hence a domain and P € D is

nonzero (because G is not a constant deformation by the proof of 5.4).
Writing 2(P) € (ker V)(D) C G(D) = mp as in 3.4, we have
(

e .Q (where Q :=n(P) #0)
_t)quqd + Qq“

—tQ + qu)qd

and hence Q = #1/(a'=1),

Thus 7 induces an isomorphism D = k[z(P)]——[t!/(a"~1D)] over k[t].
g

Remark 5.6. — By 3.15, the Hasse invariant of ®/k[t] is given by —t.
Since k is algebraically closed, 5.5 says that in a formal neighborhood of a
supersingular point, giving a generator of the kernel of Verschiebung is the
same as giving a (¢ —1)th root of the Hasse invariant. This is analogous to
the result [21, 12.8.2] which identifies the moduli problem of prescribing a
generator of the kernel of the Verschiebung of an arbirary elliptic curve with
the moduli problem of prescribing a (p — 1)th root of the Hasse invariant
of that elliptic curve.

COROLLARY 5.7. — The Igusa curve ¥g,y is an étale ) -torsor over
Yord  fully ramified over the supersingular points. Moreover, it is geomet-
rically connected.
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Proof. — The first assertion is clear; the second is proved precisely as in
[21, p. 364]. O

6. Reduction mod n

The goal of this section is to determine the structure of the local ring at
a supersingular point (of characteristic n) of Xj(n) in terms of the local
rings along the irreducible components passing through that point. This
will be accomplished by applying the Crossings Theorem [21, 13 1.3].

For this section we fix the notations: O = A (), W = (f)nr Te W
the uniformizer, Y = Y (m),4, E the universal Drinfeld module over Y,
Y1 = Yi(n,m)sa, 7 : Y1 — Y is the natural map, k a field such that
F, C k C F, and all supersingular points of Y are k-rational (so that
k D Fpe by [8, 5.3], where we abusively write F,2 := Fp2a), # = Ty, ®
k,V = Y&y, ®k, z a supersingular point of Y1, and ¢ the Drinfeld module
corresponding to z.

PROPOSITION 6.1. — If 2 is a supersingular point of Y ;. then 5yl/k .
k[, yﬂ / fv where the complete local rings along the irreducible components
are ﬁgf .~ kfx,y]/f and ﬁy/ . =~ kf[z,y] /v, respectively.

Proof. — We have the map from .% (resp. ¥) to Yy, defined by (¢, ) ~
(6,1) (vesp. (¢,1) ~ (¢(™, 1), where we have suppressed the auxiliary étale
level m structure from the notation. Going through the list of hypotheses
of the Crossings Theorem:

(1) Y is smooth over k as m is prime to n.

(2) 7 is finite flat by 4.5.

(3) If k = F,, then by 4.6 we have ﬁAyl,z ®k = k[z(P),t]/(one equation).
If k is a finite extension of IF,,, let O’ be the unique unramified extension of ©
with k as its residue field®) | let ®,/k[t] be the universal equicharacteristic
deformation of ¢, and let ®/0’[t] be an algebraization of the universal
formal deformation of ¢ to artin local O’-algebras with residue field & (see
2.6).

Then our local scheme ., /1,4] is equal to 4 /o[y @k which is in turn
equal to

Spec two-dimensional complete regular local 1
P O’-algebra with residue field k

@) @ plays the role of the Witt ring W (k) in our characteristic p setting.

ANNALES DE L’INSTITUT FOURIER



Ji(n) HAS CONNECTED FIBERS 1239

But such an 0’-algebra is of the form O[x,y]/f for some f € m — m2.
Now tensoring with k, we see that our local ring has the form

k[z,y]/(one equation).

(4) Tt is clear that for each supersingular point of Y there exists a unique
k-rational closed point of # (resp. ¥') lying over it.

(5) Finite flatness of .# — Y, /;, follows from its explicit description; for
¥ — Y11 flatness follows from regularity. We check finiteness in (7).

(6) We have that Zreq (resp. #eq) is a smooth curve over k by 5.2
(resp. 5.7).

(7) The maps from .# and ¥ to Y/, are maps of finite Y;-schemes and
are therefore finite. By the moduli interpretation these maps are monic (in
the sense of category theory) and hence are closed immersions.

(8) Consider the map of Y;?*d-schemes: Ford[]y°ord — H‘fﬁ. To check

it is an isomorphism we may assume that k = F,,. From (7) it suffices to
check surjectivity; let z be a k-point of H(l’r/(}c corresponding to (¢, ¢). If ¢ is
zero, then by the sequence of 2.10 we have that ), [t(a)] is ker F' which
is in the image of % — Y, ;. If ¢ is nonzero, then z is the image of the
point of ¥ corresponding to the pair (¢(*/™, ). Here $(*/™) is the Drinfeld
module over k defined as follows: write ¢7 = x(T) + a7 + az72. Then

d d
qﬁg/") = X(T)—Fo&/q T—|—a;/q 72,

Thus we may apply the Crossings Theorem to conclude the proof of the
proposition. (|

By 4.6 we see that if z € Y, ;i (k) has point of order n equal to zero then
we have a surjection W[z, t] — @UW with kernel a principal ideal
generated by an element g that is part of a regular system of parameters
of WJz,t] and such that ¢ = fv mod 7. Note that now 2 and ¢ have
deformation theoretic interpretations as in 4.5.

PROPOSITION 6.2. — Suppose z € Y, ,w (k) corresponds to a pair con-
sisting of a Drinfeld module with point of order n equal to zero. Then for
q? > 2 we have

d .
29~z ordinary,
g mod 7w = a_q .
x9 ~tv  z supersingular.

Proof. — Since .% and ¥ only meet at supersingular points, the explicit
description of % (5.2) gives g = 29°~1 mod 7 when z is ordinary.

Suppose z is supersingular. Let us first show that ¢ is not a formal param-
eter of 5«;/,,3 = k[z,t]/v. By 5.5 there is an isomorphism of k[t]-algebras
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klz,t] /v ~ k[[tl/(qd_l)ﬂ; t is obviously not a formal parameter of the latter
ring since ¢ > 2.

On the other hand, k[x,t]/v is formally smooth so that v(x,t) = azx +
bt + - -+ with not both a,b equal to zero; t is a formal parameter of this
ring if and only if k[z]/v(z,0) ~ k, which is to say v(z,0) = ax +--- with
a # 0. Hence a = 0 and k[t]/v(0,t) ~ k so that {x,v} is a regular system

1

of parameters of k[z,t], and g = 291y mod m, as required. |

Remark 6.3. — 1If ¢? = 2,i.e. A=TFy[T] and n =T or T—1, then J;(n)
has trivial component group by [9, 5.11]®) since in this case X1 (n) = Xo(n).

COROLLARY 6.4. — Hie/‘}c has smooth irreducible components that are
all geometrically irreducible and cross transversally at supersingular points.
Furthermore, the supersingular points are the only nonsmooth points on

e

7. Nonregular points on the coarse modular curve

This section is devoted to the determination of the nonregular points on
the coarse modular curve.

7.1. Let us recall some facts from [8, §5] on Drinfeld F,[T]-modules over
an algebraically closed field k: (1) Aut(¢) is either F; or qug according
as j(¢) # 0 or j(¢) = 0; we may identify Aut(¢) with a subgroup of
E* C (k{r})*. (2) If k is of characteristic n then j = 0 is supersingular if
and only if d = degn is odd and moreover

d—1
g <qq2__11> +1 dodd,
#{supersingular j-invariants in k} =
¢t -1

5 d even.
g —1

7.2. We define Yi(n),4 to be the quotient of Y;(n,m) by the natural
action of GLy(A/m). It is the coarse moduli space for pairs consisting
of a Drinfeld module and a point of order n. There is a finite® map

(3) which says: The component group at n of Jy(n) is cyclic of order Z;i:i or q::ll
according as d is even or odd.

) 1n [5, p. 587] (see also [23, 4.2.3]) it is shown that j : Y (nm) — A} is a finite map
for m prime to n. Clearly j : Y (nm) — Al, factors through j : Y1(n) — AL, Yi(n) is
a quotient of Y (nm) by a finite group action, and everything in sight is noetherian so
that j : Y1(n) — Al is also a finite map.
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j: Yi(n) — Y(1) = A} = SpecA[j] which sends a pair (¢,.),g to
j(¢) € R. Here, if ¢ is a Drinfeld module over R then the j-invariant is
defined by

q+1

dr = x(T) + BT+ a? ~ (j ~ ) € AL (R).

As Y4 is regular (4.5), the quotient Y7(n) is normal, and being finite
over Aj, we may define X;(n),4 by “normalizing near co” as in [21, 8.6.3].

By standard arguments (use [21, Theorem, p. 508] and the fact [5, §9]
that Drinfeld’s compactification X (I) of the moduli space of Drinfeld mod-
ules with full level I structure is smooth over A[I~1]) X;(n) is smooth over
A[n~1] and hence any nonregular point of X;(n) is a closed point in the
special fiber of X3 (n)/A(n).

Again we write O = j(n), W = 0,k = F,. For y € Yi(n),w a closed
(k-rational) point and z € Y,y a point over y we have isomorphisms (see
[3,3.1.1], [4, 1.8.2.1.))

0, =0y, .~ %,

- ~ HAut(z
ﬁyl(")/wﬂ! ~ 0, o )’

where Z. is the deformation ring of the pair (¢, P), corresponding to z
and Aut(z) is the automorphism group of (¢, P). Observe that if P € ¢(k)
is nonzero then Aut(z) is trivial: any automorphism is given by a scalar
u € k* and if uP = P, then v = 1. By 4.5 we conclude that Yi(n),w is
regular at points along 7°™. So suppose that z corresponds to (¢,0) k>
i.e. z is a closed point of .7 — Y, ;.

In order to determine when 53/1(71) Jwoy is regular we will use the following
theorem. See [3, 2.3.9].

THEOREM 7.3 (Serre). — Let R be a regular noetherian local ring with
maximal ideal m and residue field k. Let G be a finite subgroup of Aut(R)
and write RC for the local ring of G-invariants. Assume

(i) The characteristic of k is prime to #G,

(ii) G acts trivially on k, and

(iii) R is a finitely generated R%-module.

Then RY is regular if and only if the image of G' in Aut(m/m?) is gener-
ated by pseudo-reflections. (For a finite dimensional vector space V over a
field, an element o € GL(V) is called a pseudo-reflection if rank(1—c) < 1.)

In particular, if R as above is moreover two-dimensional and G is cyclic,
the subring RS is regular if and only if the generator of G has a nonzero
fixed point in Cot R := m/m?.
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The action of Aut(z) on ﬁAyl Jw= 18 the abstract one coming from the

identification of ﬁ%/w@ with Z,; in terms of moduli, g € Aut(z) acts on
the left by (E,§,i1) ~ (E, 3,g01).

PROPOSITION 7.4. — There is a unique nonregular point on Y1(n) w,
namely the point z corresponding to (¢,0) with j(¢) = 0.

Proof. — Immediate from Serre’s theorem and the following lemma. O

LEMMA 7.5. — (i) Cot %, ~ k.x & k.t compatibly with the action of
Aut ¢.

(ii) There is a canonical isomorphism k.xz ~ Cotg¢. Hence u € Aut ¢ C
k* acts as the scalar u on the line k.x.

(iii) The element u € Aut ¢ C k* acts as u'~7 on k.t.

Proof. — (i) Let Z be the functor which assigns to an artin local k-
algebra R with residue field k the set of isomorphism classes of deformations
(E,B,1) /g of (¢,0). Then Z(kle]) is the equicharacteristic tangent space of
R, so Cot Z, = D(kl[e])V.

Let 2, be the subfunctor which classifies those (E, 3,1)/r such that E ~
¢ Qi R is the constant deformation. Let Z; be the subfunctor of & which
classifies those (E, (,4),/ such that (3 is the zero map. Clearly Z(k[e])" =
Cot k[z] = k.x and 2, (k[e])¥ = Cot k[t] = k.t. As Do(k[e]) N 21 (k[e]) =0
by the proof of 4.5, (i) follows.

(ii) By Cotg¢ we mean the cotangent space to the underlying G, k=
Spec k[X] with A-module structure coming from ¢. We have a natural map

Po(kle]) — Tato(p[n]” @y ke])
(¢ @ kle], B,4) ~ B(1)

which is an isomorphism being a nonzero linear map between one-dimen-
sional vector spaces over k. Now

Tgt0(¢[n]° ® k[ED = Homk[s]—alg(ﬁgﬁ[n]o ® k[g]v k[{-:]) = Tgto¢

where the last equality follows since ¢[n]° = Spec k[X]/X?" with a = d or
2d (chark = n) and ¢* > 2. This proves (ii).

(iii) This will be proved with the aid of the Kodaira-Spencer isomorphism
of [10]. Namely, we will show the Kodaira-Spencer map is Aut ¢-equivariant
and then compute the Aut ¢ action on its target. This amounts to unrav-
eling the definitions. The reader may want to skip ahead to 7.6.

Most of this proof does not require the assumption A = F,[T7], and we will
drop this assumption until further notice. We need some notation. Let m C
A be prime to n and divisible by at least two primes, Y := Y(m)/A[mflh
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y € Y a closed point, y* : Oy — k := k(y) the corresponding ring map,
¢ /1, the corresponding Drinfeld module, and x : A — k its characteristic
morphism.

Let 7 be the tangent sheaf of Y/A[m™!]. Then, as usual, we identify

T(y) = Fy/my Ty = DerA[m*I](ﬁYa k) = Homi[m—l]_alg(ﬁY, kle])

with the bijection being given by X < (b~ y*(b) + X (b)) where X is a
derivation and Hom" consists of those maps reducing to y* mod ¢.

Since the universal Drinfeld module over Y has trivial bundle it is given
by a ring homomorphism ® : A — Oy {7}. Fix X € J(y). We obtain a
deformation ¢"% of ¢ over k[e] by means of the composite

A2 oy {7} S k()

so that 5’7)‘ = ¢ + enx where nx is defined® as follows: let X (¢) be a ~»
X(¢)(a) :== X X(i(a))7" if o = ;50 ai(a)7’. We then write 7x(a) :=
X(8)(a). _

Then (¢"%,id) /i) is a “standard” deformation of ¢ (in the sense that
the special fiber isomorphism is the identity with respect to the projec-
tion kle] — k). Recall that u € Aut¢ acts on 2;(k[e]) on the left by
(¢,i) ~ (¢, u o). Now any deformation over k[e] is isomorphic to a stan-
dard deformation; we claim that the Aut ¢ action on standard deformations
is given by u.(¢"%,id) ~ (¢*x*"" id). To see this compute in k[e]{r}:
u(¢p+enx) = (¢ +eunxu~')u. Thus the action of Aut ¢ on .7, is given by
X ~ ux X where unxu™' =: Nuex.

Now, the Oy-linear Kodaira-Spencer isomorphism [10, 6.11]

KS: T —"sHome, (H (D), Hi(®))

is defined as the composite

X~ KS(X) 1 Hi (@) — Hip (9)—s Hig (8) s H (D).

See [10] and [11] for the definitions and basic properties of these groups.
For our purposes, we only need that

- H}(®), Hiz(®) are by definition subquotients of the module D(®)
where the latter is defined to be the A-bimodule of F,-linear deriva-
tions of A into

N (@) = { [F,-linear morphisms of Y-group schemes }
’ a:® — G,y such that Lie(a) =0 ’

®) nx is most naturally regarded as an element of D, (¢), the module of reduced deriva-
tions. See [10, 3.8,6.12].
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- D(®), H?(®), Hji are compatible with base change [11, 4.5],

- Har(®) splits as H; (®) & H; (D),

- for ¢ = ® ®g, k there is an Aut ¢-equivariant isomorphism from
Hi(¢) to the one-dimensional vector space k.(¢ — x),

- the Gauss-Manin connection acts as Vx (> v;7%) := > X (v;)7?

The space Hj;(¢) is naturally isomorphic to the module of strictly-
reduced derivations, which we will identify explicitly below in the case
A = F,[T]. By definition, Aut ¢ acts on D(¢) and its subquotients H; (¢)
by multiplication on the right.

We make Homy, (H7 (¢), H3(¢)) into a left Aut ¢-module by defining, for
u € Auté, (ux*h)(2) := h(z.u).u=t. Now 2;(kle]) = 7 (y) is a left Aut ¢-
module, and to show K.S is Aut ¢-equivariant it suffices to check that

ux KS(X) (¢ — X) = usx = unxu™"

We compute:

ux KS(X)(¢—x) = (KS(X)((¢ — x)-u)u™"
= KS(X)(u.(¢ — x)).u"" since u commutes with ¢
u.(KS(X)(¢ — x)).u* since KS(X) is k-linear
= unxu_l

as required.

It is clear that u acts on Hy(¢) as the scalar u € k™. Henceforth we take
A = TF,[T], so H3(¢) is canonically isomorphic to the module of strictly
reduced derivations, where the latter by definition consists of those o €
D(¢) ~ Derg, (A, 7.k{T}) ([10, 3.2,3.3]) such that deg, 0, < 2(—ords(a))
for all nonzero a € A or equivalently some nonzero a by [10, 3.9]. Taking
a =T we see that Hj(¢) is the one-dimensional vector space spanned by
7. As the action is on the right and 7u = u97, u € Aut ¢ acts as the scalar
u4, and hence acts on the left on Homy (Hj (¢), H;(¢)) as the scalar u! 7.
Therefore Aut ¢ acts(® by the same scalar u' =9 on Cot k[t] = k.t and (iii)
is proved. O

The foregoing settles the determination of the nonregular points on
Y1(n),w. That those are all of the nonregular points is guaranteed by

PROPOSITION 7.6. — Xl(n)/A(n) is regular along its cusps.

Proof. — In this proof, all modular curves will be over A(,). Write
Spec A(y = {n,s} with n the generic point and s the closed point. The

(6)N.B.: the action on cotangent spaces is not the contragredient representation but
rather the transpose action on the right.
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map X;(n) — Xo(n) is the quotient by the natural faithful action of a
group of order prime to p, viz. FY /FX. We will apply the following form
of Abhyankar’s Lemma: Let R be a regular local ring with fraction field
K, K'/K a finite Galois extension with group G, R’ the integral closure
of R in K'. Let @w be part of a regular system of parameters of R and
suppose that R.w is the unique height one prime ramified in R, and that
this ramification is tame. Then R’ is regular. See [7, Appendix A1.11].

We will use the following facts:

(a) Xo(n) is regular along its cusps [9, p. 17].

(b) The cusps 0 and oo have distinct specializations in Xo(n)s [9, p. 13].

Let 2z € Xi(n) be a cuspidal closed point and let z € Xo(n) be its
image, so that R := Ox, (). is a regular two-dimensional local ring. Write
R' := Ox,(n),» and let p C R be a height-one prime corresponding to
the point ¢ € Xo(n). Then by (b) and [24, Ch. 8, 3.4.b.] ¢ is either the
generic point of an irreducible component of Xy(n)s or else is a uniquely
determined cuspidal closed point of X¢(n),. Suppose the latter. By [20,
2.3] X1(n), — Xo(n), is unramified along the cusps so that in this case
p is unramified in R'.

Now suppose ( is the generic point of an irreducible component C' C
Xo(n)s. If C is the component classifying pairs consisting of a Drinfeld
module and a cyclic étale subgroup scheme of its n-torsion, then p is un-
ramified in R’ since the component of X;(n)s above C' is ¥ which is étale
over C. We conclude that the only height-one prime of R which is ramified
in R’ is the one corresponding to the generic point ¢ of the component
C' C Xo(n) classifying connected cyclic subgroups. Now R is regular local
hence a UFD so that the height-one prime p is principal with generator w,
say. We claim that w is part of a regular system of parameters of R: this
follows since R/w is itself regular, being the local ring of the smooth curve
C ~ IF’]%” [9, 5.3] at co. We have assembled all of the facts needed to apply
Abhyankar’s Lemma. O

8. Resolution

Write O = j(n),W = @,k = F,, m for a uniformizer of W, and
SpecW = {n,s}. Let Cp,Cy C X;i(n)s be the components correspond-
ing to &#,¥ in X1(n,m)s

LEMMA 8.1. — mult Cp = % and mult Cy = 1.
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Proof. — % and ¥ have multiplicities ¢¢ — 1 and 1 respectively by 6.2.
Let &', £ be the generic points of %, Cr respectively, ve/, ve the correspond-
ing discrete valuations on the function fields of Xi(n,m)w, X1(n),w.
Then we have mult.# = ve/(7) = egr /¢ - mult Cr. But the local rings at
the respective generic points are related by ﬁAg = ﬁA?,Ut(g) and Aut(§) = F
so, by [21, p. 509], e /e = #IF ;"

The case of Cv is similar. O

By [3, 2.3.4, p. 341] we may linearize the Aut-action to obtain

) Py Wxo, toﬂ/(xgd_lto — ) supersingular
- Wzo, to]]/(a;gd_1 —m) ordinary

with the Aut(z)-action on Cot %, exactly as in 7.5. Note that z¢ and ¢y
do not have deformation theoretic interpretations as the coordinate of the
point of order n and the deformation parameter of the underlying Drinfeld
module, respectively. But we no longer need these interpretations.

DEFINITION 8.2. — Let X' be a normal curve over a the spectrum S of
a discrete valuation ring. Assume that S is excellent or that X’ has smooth
generic fiber. Let s € S be a closed point of residual characteristic p > 0 and
let ' € X be a closed point such that X has at most two (geometric) ana-
lytic branches at x’. Say that x’ is a tame cyclic quotient singularity if there
is an integer N > 1 prime to p, a unit r € (Z/NZ)*, eﬂ:lgltegers my >0,
mb > 0 satisfying m{ = —rm} mod N such that ﬁg?’,z’ is isomorphic

to the subalgebra of puy (k(s)sep)-invariants in 05 [t], ]/ (752 — 7)
under the action t) ~» (t},th ~ ("th.

8.3. In order to employ the Jung-Hirzebruch resolution of [3], we re-
quire a presentation of the singularity on X;(n) as a tame cyclic quotient
singularity.

By (*) and [3, 2.3.4, p. 345] we have

qd_
5 W[[x,t]}/(xfllt —7) supersingular
z -
Wz, t]]/(acqfl1 — ) ordinary.

We will apply the following special case of results from [3].

THEOREM 8.4. — With the notations and assumptions of 8.2, suppose
that ' € X! has a tame cyclic quotient singularity with parameters N and
r, where we represent r € (Z/NZ)* by the unique positive integer less than
N, and assume that k(s) is separably closed. Consider the Jung-Hirzebruch
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continued fraction expansion

with integers b; > 2 for all j.

Xj

Figure 8.1. Fiber of the minimal regular resolution of «' over k(x')sep.

Then the minimal regular resolution of X" along x' has fiber over k(z')sep
whose underlying reduced curve looks like the chain of E;’s shown in Fig-
ure 1, where:

(a) all intersections are transverse with E; ~ Pi(x,)sep;

(b) E;.E; = —b; < —1 for all j;

(c) Ey is transverse to the strict transform X/| of the global algebraic
irreducible component X through x' with multiplicity m}, and likewise
for Ey and the component )Z'é with multiplicity m) in the case of two
analytic branches. (The case X!, = X| can happen, and there is no X} in
the case of one analytic branch (i.e. when m4 =0).)

(d) Write p; for the multiplicity of E; in the fiber of X'™¢ over k(z')sep.
Ifr > 1 then A > 1 and the u;’s are the unique solution to the equation

b —1 H1 i
-1 bz -1 O 125 0
-1 b3 -1 M3 0

0 —1 by —1| | 0

—1 by Hx my

To apply this we split into two cases corresponding to the different pre-
sentations in 8.3.
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t
(j = 0 supersingular, d odd) We have 0. A (ﬁf )A‘”(Z) here
Aut(z) := Aut(2)/Fy ~ p,y1(Fp), where we identify Aut(z) with g,
via Aut(z) = IF(JXQ > u~ ut™9 =: ( € Aut(z), so that ¢ € Aut(z) acts on

~FX
Cot 0.° by x~» ("ta,t ~ (t.
-1
We take t] = t,ty = x,my = L=,

(Z/NZ)* in the notation of 8.2,8.4.

The congruence in Definition 8.2 is satisfied: 1=—(q) qq _11 =—(-1) (:—g)

m) =1,N=gq+1l,r=-1=g¢qc¢

mod ¢ + 1 since d is odd.
By induction, we obtain the continued fraction expansion

N_q+1_2 1
rq 1

such that A = ¢ in the notation of 8.4.
Given « and g consider the equation

2 -1 1 «
1 2 -1 11 0
-1 2 -1 HUr—1 0

-1 2 0N B

Now the matrix on the left is the Cartan matrix A4; we find its inverse in
[19, p. 69] and compute that

(8.4.1) Wi = o+ ﬁ(ﬂ Q).

In our case, a = q T —1 8 =1sothat in particular yu; = q+1 (q (q *1) + 1)

The special fiber of the minimal resolution X (n) is shown in Figure 2(a);
we have

q
1

Intersecting with 615‘5(1 we obtain

mFéﬁed.éﬁed + u1 + 6\/.5?3(1 =0
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¢t -1
qg—1

(1{171_1
q( qg—1

Eh.

Eq

(a) d odd (b) d even
Figure 8.2. Special fiber of the minimal regular resolution of X1 (n).

where mp := mult (Cr).
But Cy.CEd = #{supersingular geometric points} — 1 so

d—1 d
~ ¢t -1 1 (q(¢" 1)
Cy.Cred = 1
Ve m q((ﬂl >+q+1< -1

qdfl_]_ qd+1_1
=q 5 —+
¢>—1 (¢—1(g+1)

qd+1+qd_q_1

¢ —1
_ (g+1)(¢" - 1)

¢ -1
_at-1
==

and hence Ced is a —1-curve. Contract it. Now we use [3, 2.1.2] which im-
plies that if X is a regular fibered surface over W, X’ = Blp(X) — X is
the contraction of an exceptional curve, C' and D are effective divisors sup-
ported in the special fiber of X and passing through a closed point P, and
C',D’ C X' are their strict transforms then C.D = C’.D’ +mult C mult D.
Hence in the blow down the image of E; is a —1-curve and so is contractible.
As all of the F;’s have self intersection —2, we may continue this process
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until we obtain the sought regular model of X;(n) with integral special
fiber.

—~Aut(z ]
(j = 0 ordinary, d even) In this case We have &, ©_ (ﬁiF

where we identify Aut(z) with p,, via Aut(z) =F5 5 u~ wi=t = €

. )Aut(z)

Aut(z), so that ¢ € Aut(z) acts on Cot oo by @~ (m,t ~ (1t

In the notation of 8.2 we take | = x,ty = t,m} = %,mé =0,N =
g+ 1,and r = =1 = g € (Z/NZ)*. The required congruence is satisfied:
qqd:11 = (—¢)(0) mod g+ 1 since d is even.

. . . . d_1
The continued fraction is as before, so by 8.4.1 (with « = 0,0 = qu)

we have p1q = 7 - qqdjll. Intersecting the special fiber of X;(n) with Cred

again, we obtain

mpCEd.Cied + g + Cy.Cid = 0.
Noticing that 5V.C~'§ed = #{supersingular geometric points} as the point
j =0 on CF is away from the crossing we compute

4 ol tric points) + ¢"—1 ¢ q¢'-1
supersingular geometric points = .
pemeiE e b S R R

¢ -1
——

:mF

SO again éﬁed is a —1-curve. Now proceed as before.
As explained in the introduction, we have proven the

THEOREM 8.5. — The Drinfeld modular Jacobian Jy(n) has connected
fibers.

Remark 8.6. — Let H C F)/Fx be a subgroup of order h. One would
like to study the intermediate curves Xpg(n) := X1(n)/H as in [3]; there
they prove in the case of the classical modular curves that the natural map
Ju(p) — Jo(p) induces an injection on mod p component groups. This is
achieved by a study of the geometry of the minimal regular resolution of
Xu(p).

In our case, in order to carry out an analogous analysis, we would need
to find a Jung-Hirzebruch continued fraction expansion for ["%hl] where by
[—h] we mean the unique positive integer less than ¢ + 1 and congruent to
—h mod ¢ + 1. This seems to be an intractable problem. The numerator
q+ 1 arises as the cardinality of Aut ¢/F for ¢ with j = 0; in the elliptic
curve case there are only finitely many automorphism groups to check, so
a case by case analysis is possible.

ANNALES DE L’INSTITUT FOURIER



[1]

2

[3]

[4

[5]

6

7

(8]
[9)

[10]

(11]

(12]
(13]

14]

(15]

(16]

(17]
(18]
(19]

20]

Ji(n) HAS CONNECTED FIBERS 1251

BIBLIOGRAPHY

A. ArrMaN & S. KLEIMAN, Introduction to Grothendieck duality theory, Lecture
Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin, 1970, ii+185 pages.

S. BoscH, W. LUTKEBOHMERT & M. RAYNAUD, Néron models, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, Berlin, 1990, x+325 pages.

B. CoNRAD, B. EDIXHOVEN & W. STEIN, “Ji(p) has connected fibers”, Doc. Math.
8 (2003), p. 331-408 (electronic).

P. DELIGNE & M. RAPOPORT, “Les schémas de modules de courbes elliptiques”,
in Modular functions of one variable, II (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), Springer, Berlin, 1973, p. 143-316. Lecture Notes in
Math., Vol. 349.

V. G. DRINFELD, “Elliptic modules”, Mat. Sb. (N.S.) 94(136) (1974), p. 594-627,
656.

J.-M. FONTAINE, Groupes p-divisibles sur les corps locaux, Société Mathématique
de France, Paris, 1977, i+262 pages.

E. FrREITAG & R. KIEHL, Etale cohomology and the Weil conjecture, Ergebnisse
der Mathematik und ihrer Grenzgebiete, vol. 13, Springer-Verlag, Berlin, 1988,
xviii+317 pages.
E.-U. GEKELER, “Zur Arithmetik von Drinfeld-Moduln”, Math. Ann. 262 (1983),
no. 2, p. 167-182.

, “Uber Drinfeldsche Modulkurven vom Hecke-Typ”, Compositio Math. 57
(1986), no. 2, p. 219-236.

, “de Rham cohomology and the Gauss-Manin connection for Drinfeld mod-
ules”, in p-adic analysis (Trento, 1989), Lecture Notes in Math., vol. 1454, Springer,
Berlin, 1990, p. 223-255.

, “de Rham cohomology for Drinfeld modules”, in Séminaire de Théorie des
Nombres, Paris 1988—1989, Progr. Math., vol. 91, Birkh&user Boston, Boston, MA,
1990, p. 57-85.

———, “On finite Drinfeld modules”, J. Algebra 141 (1991), no. 1, p. 187-203.
D. Goss, “m-adic Eisenstein series for function fields”, Compositio Math. 41 (1980),
no. 1, p. 3-38.

A. GROTHENDIECK, “Eléments de géométrie algébrique. IV. Etude locale des sché-

mas et des morphismes de schémas. 117, Inst. Hautes Etudes Sci. Publ. Math. (1965),
no. 24, p. 231.

, “Eléments de géométrie algébrique. IV. Etude locale des schémas et des

morphismes de schémas. I11.”, Inst. Hautes Etudes Sci. Publ. Math. (1966), no. 28,
p. 255.

—, “Eléments de géométrie algébrique. IV. Etude locale des schémas et des

morphismes de schémas. IV”, Inst. Hautes Etudes Sci. Publ. Math. (1967), no. 32,
p. 361.

, Revétements étales et groupe fondamental, Springer-Verlag, Berlin, 1971,
xxii+447 pages.

M. HAZEWINKEL, Formal groups and applications, Pure and Applied Mathematics,
vol. 78, Academic Press Inc., New York, 1978, xxii4+-573pp pages.

J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate
Texts in Mathematics, vol. 9, Springer-Verlag, New York, 1978, xii+171 pages.

D. JEON & C. KiM, “On the Drinfeld modular curves Xi(n)”, J. Number Theory
102 (2003), no. 2, p. 214-222.

TOME 57 (2007), FASCICULE 4



1252 Sreekar M. SHASTRY

(21]
(22]
23]
24]
[25]
[26]

27)

(28]
29]

(30]

N. Katz & B. MAZUR, Arithmetic moduli of elliptic curves, Annals of Mathematics
Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985, xiv4514 pages.
G. LAUMON, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies
in Advanced Mathematics, vol. 41, Cambridge University Press, Cambridge, 1996,
xiv+4-344 pages.

T. LEHMKUHL, “Compactification of the Drinfeld Modular Surfaces”, Unpublished.
Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math-
ematics, vol. 6, Oxford University Press, Oxford, 2002, xvi+576 pages.

H. MATSUMURA, Commutative ring theory, Cambridge Studies in Advanced Math-
ematics, vol. 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages.

M. SCHLESSINGER, “Functors of Artin rings”, Trans. Amer. Math. Soc. 130 (1968),
p. 208-222.

Y. TAcucCHI, “Semi-simplicity of the Galois representations attached to Drinfeld
modules over fields of “infinite characteristics””, J. Number Theory 44 (1993),
no. 3, p. 292-314.

J. T. TATE, “p-divisible groups”, in Proc. Conf. Local Fields (Driebergen, 1966),
Springer, Berlin, 1967, p. 158-183.

J. TEITELBAUM, “Modular symbols for Fy(T)”, Duke Math. J. 68 (1992), no. 2,
p. 271-295.

Y. YAsuruKkuU, “Deformation Theory of Formal Modules”, Unpublished, 2000.

Manuscrit recu le 30 mai 2006,
accepté le 12 octobre 2006.

Sreekar M. SHASTRY

Tata Institute of Fundamental Research
School of Mathematics

Dr Homi Bhabha Rd

Mumbai 400 005 (India)

sreekar@math.tifr.res.in

ANNALES DE L’INSTITUT FOURIER


mailto:sreekar@math.tifr.res.in

	 1.Introduction
	 2.Frobenius and Verschiebung
	 3.Some facts from the Deformation Theory of Drinfeld modules and formal O-modules
	 4.1(n)-structures
	 5.Igusa Curves
	 6.Reduction mod n
	 7.Nonregular points on the coarse modular curve
	 8.Resolution
	Bibliography

