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A DIRECT DECOMPOSITION
OF THE MEASURE ALGEBRA

OF A LOCALLY COMPACT ABELIAN GROUP

par N. Th. VAROPOULOS

0. Introduction and notations.

For any locally compact space X, let M(X) denote the Banach
space of all complex bounded Radon measures on X. We shall in general
follow N. Bourbaki [1] for measure theory.

For any two Radon measures on X (JL and v we shall write p-lv
if they are mutually singular and |A «: v if [ [A [ is absolutely continuous
with respect to |v . We shall say that B C M(X), a subspace, is a
(complex) band in M(X), if (3 6 B => (fi j3 G B and if {^ [3; (3 € B}
is the intersection of M(X) with a real band (cf. [I], ch. II). For
{pa € M(X)}^ we denote by | j3a;a € AJ C M(X) the (complex)
band generated in M(X) by {iia}^A Le* ^le intersection of all (com-
plex) bands containing {jia; a € A}. Also for B, Bi, Ba bands in M(X)
and [A £ M(X) we write :

BiJLB2<———XVMBi, VMB2 ==> PI-L^)

[Jt-l-B < >|jji|±B

B l= [m € M(X);w±B}
Let us also denote :

M+ == M+ (X) = [m € M(X); m ̂  0}
M, = M '̂X) === [m 6 M(X); V^c 6 X [x] is w-null}

A = A(X) =M,1(X)
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M^== M^(X) === M+ (X) n Mc(X)
If Q is a Borel subset let us denote :

B(Q) = (m 6 M(X); X\Q is w-null}

which is a band in M(X).

Now we shall denote by G, in general, an additive locally compact
abelian group, and follow freely well-established and standardised nota-
tions for it. E.g. we shall denate by 0 = Oo its zero element; for P,
Q C G and n G Z (the integers) we shall denote :

P + Q = {^ + y; ;c € P, y € Q} C G
Inl

nP=[sgn(n) 2 x,; X ) ^ P 1^7^N)CG
j^i

Gp(P) =Gp {;c;;c 6 P}

Also we shall denote by G the dual group of G and for any
p, € M(G), p, will denote the Fourier transform of (A. We let then (cf. [4],
5.6.9.) :

Mo(G)=={w€M(G); ^(X)-^-^O, X € G} C M,(G) C M(G).
Finally for any commutative Banach algebra R, we denote by

R == R + 1 C the Banach algebra we obtain by adjoining the identity
to R and also :

t N »
R2 == j £ Xj?^ Yf | N ̂  1; \j £ C (the complex numbers); x^ y^ € R(

(y==i )
Also we shall denote by JTl(R) its maximal ideal space and by

2(R) C JTl(R) its Shilov boundary.

We shall not state here the main results obtained in this paper,
which are concerned with a direct decomposition of the algebra M(G),
because they cannot be explained in a few words. We shall however state
an application of our results.

THEOREM N. F. (Non Factorisation). — For any non discrete, locally
compact abelian group G :

(i) Mc/M? is a non separable Banach space.
(ii) MQ/M§ is an infinite dimensional Banach space.
(iii) // further G is metrisable then Mo d W
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The material of this paper is devided:
§ 1. We give some elementary algebraic and geometric results on

independent subsets of a group G.
§ 2. We give some measure theoretic results on perfect, independent

subsets of a locally compact group G.
§ 3. We obtain a direct decomposition of M(G), which is the main

result of the paper.
§ 4. We give some application of § 3.

1. Algebraic and geometric results on independent sets.

DEFINITION 1.1.

A subset P c G of an abelicfn group will be called strongly mde^
pendent if, for all N, positive integer, any family of N distinct points of
P, [pj e P}JLi and any family of N integers, [n^ € Z}^=i, such that

N
S HJ pj = OQ, we must have {nj x\ x € P} === OG for 1 ̂  ; ̂  N.
j^i

For the rest of this paper, without further comments, we shall
reserve the letter P for a strongly independent, perfect, metrisable subset
of the locally compact abelian group G. We introduce here some more
notations which will be kept fixed for the rest of the paper.

Let m, k G Z, m ̂  0, k ̂  0 and g € G, we denote then :

Q^= 5 Pj, P,==P ( l ^ j ^w) for m ^ l ,
and:

(ji),n : Qn, -> G defined by (D^ [(pj)fLi] = ^ps € G

(o^ then induces (cf [I], ch. V, § 6):

<^=M(QJ-^M(G).

Let also:

R& = U [o) = (Ps)^i € Qm; Pi^ = Pis = - = PiJ
l̂ <!a<... <l^m

m ̂  k ̂  2 (union over Fs);
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D^ (g) = [0) = (R î £ Qm; Pfc = ̂ ]

for
m^k^l ;

set also for convenience:

R^ = 0 for A: > m ̂  0, or k = 1.

Let us also denote by k(P)==k^2 the smallest positive integer n
such that {nx, x £ P} = Oo, if such an integer exists; otherwise set
k = + oo. We shall call k = k(P) the torsion of P. If k < + oo we
shall denote by Z (mod k) the integers modulo k, and for n £ Z let
n (mod A:) be its class. K k == + oo for convenience we set

Z (mod k)=Z and for n € Z, n (mod Jfe) = n.

We now introduce:

DEFINITION 1.2.

We shall call reduced sum (on P, a strongly independent subset
of G with torsion k) a formal expression £ ria pa, where A is a,

a^A

possibly empty, finite index set, where

ria € Z (mod k) and ria ̂  0 (mod k),

and where the points (pa £ P)a^A are ^lstmct'
We shall then say that two reduced sums :

30t== 2 maXa and 9t == 2 h^y^
a^A. 0 ^ B

are equivalent, and write 90t ^ 9t, if there exists a (1-1) correspondence,
y : A —> B, between A and B such that:

n^(a) == ma y^w == Xa 9 a 6 A.

We shall almost always abuse the above definition and its notations, in
various obvious ways. So we shall say, for instance, that

2 wjp,e0, W y 6 Z ( l ^ j ^ M )
i ^ y ^ M

(the summation being taken, of course, for the group addition and the
empty sum being interpreted as Oo) is a reduced sum, when we really
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mean that £ [wa (mod k)] pa is a reduced sum. Similarity we
a^Z;l^M>

shall say that two reduced sums

2 Wj py (w^ € Z) and £ n^ ̂  (^ 6 Z)
l^^M l^^N

are equivalent when

S [w<x (mod k)} pa ^ S [713 (mod k)] q^
^ 00 ; l^M) 0^ {^Z ; l^M}

observe that then
S mj pj = S n^y £ G.

l ^ J^M l^^^N

We state now the fundamental:

LEMMA 1.1.

Every x £ Gp(P) can be expressed as a reduced sum (on P) in a
unique way, up to equivalence.

Proof.

The only point to prove is that if:

3TO = 2 nijpj and 91 == £ n, q/ (wy, ny € Z)
i^y^M i ^ y ^ N

are two reduced sums such that:

S mj pj == S njqf e. G then SK — 91.
l^^M 1^<N

If M = 0 the above is simply a restatement of the definition of strong
independence. Thus we proceed by induction on M and we observe that
if M ̂  1 then 2 mj pj is also a reduced sum and :

l^j^M-l

2 mjpj-= S Ujqj—mMpM. (1.1)
l^^M-l l^J^N

Therefore there exists S /a Xa (la € Z) a reduced sum such that
o^A

{ ^ ; a e A } c { W ^ M ; 1 ^ 7 ^ N }
and

2 mjpjz= S fa ^-a. (1.2)
l^J^M-1 a^A
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Therefore if we use the inductive hypothesis on (1.2) and the fact that
PM i {Ps\ 1 ̂  / ̂  M — 1} it follows that there exists 1 ̂  Jo ̂  N such
that ^o==^M and n^(mod k) = m^(mod k), and that, combined with
(1.1) and the inductive hypothesis, proves the inductive step.

LEMMA 1.2.

Let PCG be a strongly independent subset of G -with torsion
k = k (P) ̂  2 (possibly k = + oo). And let m, n € Z, m > n ̂  0
w ̂  1; amfter ^ £ G. Then if ^Gp(P) we Aov<? mP^g + nP =^.
// on the other hand g e Gp(P) and if g = 2 y^ (^ £ P; r £ D

r^r
is the reduced sum expression of g then:

(i). // k > m > n then :

o)m1 (w P n n P) == 0.

(ii). // m> n, m^ k then :

^^(mPnnP) CR^
(iii). // k > w an^ ^ ̂  OG ^̂ n :

(o^ l(mPn^+nP)C U U D^(^)
r^r i^^w

(iv). // m^k and g ̂  Oo rAw :

(rim^WPn^ + MP)CR^U U U Djn(^)
r^r l^j^m

(In the above inequalities, and in general, -we assume that if
k == k(P) = + oo then k > n for all n € Z).

Prw/.

(i) [respectively : (ii)]. Let us make the contradictory hypothesis that
there exists an element:

(^)i^<m € co^mPnnP)
[respectively : (pf) ̂ ^ e ^(wP n nP) \ RS»]

Then there exists (^ 6 P ; 1 ̂  7 ̂  n) such that:
2 pj = 2 ^y (empty sums being interpreted as Oe)

l̂ w l̂ n
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By the hypothesis then we see that there exists two reduced sums:

Jll == 2 maXa and 91 == £ npyp
Ot^A 0^B

(wa, ̂ € Z ; a € A ; p e B )
such that:

2 mctXa== 2 Py == 2 ^ == 2 ^yp (1.3)
o^A l^^w l̂ ^n 0^B

2 Wa == m > n ̂  2 n3 ; 1 < Wa < <: (a € A); 1 < np < Jfc (6 £ B)
(1.4)

Then (1.3) and Lemma 1.1 imply that JTl — 91 which is not compa-
tible with (1.4), and provides the required contradiction.

(iii) [respectively: (iv)]. Let:

(^)î m ew^wpn^+nP)
[respectively : (^) ,̂  e (^(mP H ̂  + nP) \ RS»]

what we have to prove is that:

{Ph 1 ̂  /< rn} n [gr ; r £ F} ̂  0 (1.5)
We suppose that (1.5) is not satisfied and proceeded to obtain a contra-
diction.

Now there exists (^ € P ; 1 ̂  7 < n) such that:

S ^ — 2 Yr^r = 2 ^ € G (1.6)
l ^y^w r^r l^$n

Also by the hypothesis there exists two reduced sums
JH = 2 ma Xa and 91 = 2 ^ ̂  (ma, n p € Z ; a € A ; 3 £ B )

a^ 0^B

such that:

2 maXa= 2 Py; {^a; a G A} c { f t ; 1 ̂ 7<w};
a^A l^^<w

2 n0y3= 2 ^ (1.7)
0^B l^y^n

2 Wa = w ̂  n ̂  2 np ; 1 ̂  wa < * (a € A) ; 1 ̂  ̂  < k (p € B)
^A ^B (1.8)
Now since (1.5) is supposed to be false by the contradictory hypothesis,
we see using (1.7) that:

2 maXa —— 2 Yr^r
o^A r^r
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is a reduced sum, and this fact, combined with Lemma 1.1 and (1.6),
(1.7) and (1.8), implies that 2 ma = S np and that F = 0, which

c^A 0^B

contradicts the fact that g^Oo, and this complets the proof of the
Lemma.

2. Measure theoretic results on independent sets.

In this paragraph again, as we have already said, P will denote
a strongly independent, perfect, metrisable subset of the locally compact
group, with torsion k = k (P) (possibly k == + oo). We have:

LEMMA 2.1.

// pi, v € M^ (G) and are such that:
(i) supp [iCwP.

(ii) supp v C ̂ P.
(iii) All sets {g + m' P ; g € G, 0 ̂  w' < m} are ^-null.
(iv) All sets {g + n' P ; ^ € G, 0 ̂  n' < n} ̂  v-n^/.
TTwi oH 5-̂  (^ + rP , g € G, 0 ̂  r ̂  w + n, te, r) ̂  (OG, w + n)}
ar̂  [x * v'nuli

Proof.

Let jl £ M+(QJ; v € M+(Qn) such that (Up) = [x and o)n(v) = v
be fixed once and for all. Then we have, of course, d)w+n ([1 ® v) = a * v,
and from (iii) and (iv) we deduced:

(iii)' For all g e G and 1 ̂  j ̂  m we have [X [Din (g)] = 0 ;

(iv)' For all g € G and 1 ̂  j ̂  n we have v [1% (g)} = 0.

Let us also denote for 0 ̂  r ̂  m + n and g € G :

Ar^ = (On^n KW + w) P Q ̂  + rP].

We see then that to prove the Lemma it suffices to prove that for all
1 ̂  r ̂  m + n and g C G :

(8, r) ̂  (OG, w + n) => gi ® v (Ar^) = 0. (2.1)
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And applying Lemma 1.2 we see that to prove (2.1) it suffices
to show:

(a) For all g € G and 1 ̂  j < m + n we have pi ® v [Dm+n (g)} •==. 0

(p) For all choice of (^JLi such that 1 ̂  /i < fc < ... ̂  < w + n

we have

[1 ® V {[(0 = (P^A^ € Qm+n ; P î = Piz = - = P^]} = 0.

Condition (?) is vacuous unless k ̂  m + n.

P/w/ ^ (a).

(ai) If 1 ̂  7 ̂  m the result follows from (iii)';

(02) If m + 1 ̂  j ̂  m + n the result follows from (iv)'.

Proof of (p).

(pi) If li ̂  m < Jfc the result follows from an easy application of
Fubini's theorem combined with (iii)' and (iv)'.

(^2) If k ̂  w [respectively: w + 1 ̂  /i] the result follows from
condition (iii) [respectively : (iv)] and the fact that [k x , x £ P} = Oo .

And that completes the proof of the Lemma.

At this stage it will be necessary to introduce some more notations:

A mapping a : Qm -» Qm will be called a symmetry operation of Qm»
if there exists s = s (a) € ®m the symmetric group of m elements, such
that:

o [(pj)/li] = (^)Ai € Qm with ^ = ̂ ' (w ̂  1)
/ -> 75 being the action of the permutation s £ (Sm .

We shall denote the set of symmetry operations of Qm by £„», in
(1-1) correspondence with @w. Each a € 2w induces a : M(Qw) -» M(Qw)
a symmetry operation of M (Qm)'

A (complex) band B C M (Qm) will be called symmetric if

o (B) c B (a € £J ;

we denote by 2?w the set of all symmetric bands of M(Qw). For
B C M (Qm) a band we denote by:
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B^ = 0 S=|S(p); P G B ; a6M
BCS^

LEMMA 2.2.

// B C M (Qn») is a band and m ̂  2 r/^n:

(i) /^, y C M (wP) c M (G), x « y and y £ o)^ (B) fA^ x £ &n (B);
w particular 0^ y € (^» (B).

(ii) u^o),. [B (R^)} n M+ (QJ C B (R^)

MO),. [B (Q^ \ R^)]} n M+ (QnO C B (Q^ \ RSO.

(in) // a, P 6 B (Q^ \ RgJ n M+ (QJ and a^ (a) « a>^ (g), then
a6JpP=|a(p); a £24.

(iv) // [^ e B (Qw \ Rw)}^ ^ a /awffy o/ measures such that for
all y £ 0 (Sw (y^) ̂  0 r/î n /̂î r^ ^^^^j a family

{5^ € B (Q^ \ RS») nlY^ H M+ (QJ}^<*

^MCA that for all cp € ® (Sw (5<<>) = (Sm (70), ^sf ^MC/I rAar ^ for
y, (p € ® o)m (y^) ̂  a)m (Y^) ^^n 80 ̂  5 .̂

(v) // B is symmetric and B C B (Q^ \ R^) r/î n a>^ (B) is a band of
M (mP) C M (G).

Proof.

(i) It is an immediate consequence of the fact that B C M (Qw) is
a band (cf. [I], ch. V, § 6, n° 3).

(ii) It is an immediate consequence of Wm^m (RS»)] = RS» which
follows from Lemma 1.1.

(in) and (iv) We consider o)w the restriction of (Ow to Qm \ R^ :
(o^:Q^\R&-^mP.

Then Q^ \ R^ is « un espace polonais » (cf. [2], § 6, No. 1, Prop. 2 and
§ 2, No. 9, Prop. 16).

Also applying Lemma 1.1 we see that the conditions of the « Borel
cross section theorem » (cf. [2], § 6, No. 8) are verified for the equivalence
relation on Q^ \ R^ : x — y <=> co^ (x) = o^ (y). From that we see that
we can split Qn, \ R^ = U A, (A, c Qm \ Rm Borel subset; r e ®m)

r^® m
into w ! Borel subsets such that:
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(a) r -^ s < > Ar n A, == 0.

(p) If a e 2m and j == 5- (a) e @m is the associated permutation then
a (Ar) = Ars (rs being the group product in ©„,).

(y) For each s £ ©„ there exists b,: ̂  (Q^ \ R§») -^ A, a Borel
function with (o^ a fc, = 1 and fc, o (^ j ̂ ) = 1 (1 being the identity
mapping of a space) (Cf. [2], § 6, No. 7 and § 2, No. 10, Prop. 17).

Now let ^ £ M (Q^\R^) be arbitrary; with the above decomposi-
tion of the space Q^ \ R^ we associate the orthogonal (Riesz-Lebesgue)
decomposition of a:

p. = Z (A, with [x, € B (A,)
^

Observe then that if a € £^ and ^ = j (a) £ ©^ is the correspond-
ing permutation we have for any r £ ©^ (using the identification between
the spaces A< (r £ @J induced by the equivalence relation —) :

[a (|ji)]r = [Ara-i.

We also denote in general by :

^ = 2 a([x).
°-̂ .n

Using these notations and observations we see that if a, P £ M+ (QJ
are as in (iii) we have for all r £ ®m:

(S,, [TO = Z ^ (p,) = ̂  (p) » ̂  (a) » ̂  (a,)
^©w

From that using the Borel isomorphisme between Ar and

o)^ (Q^ \ R^), induced by CD^ j and br, as in (y) we see that:
Ay.

ar « (jS^r and therefore also a « ̂  etp|^ and that proves (iii).

Also just above, if {^ £ M (QJ}<^ is a family as in (iv) we have
for any fixed r £ ©w and all y £ $ :

(U(Y^)r]= 2 ^ [(yA] = o)̂  (y^) ̂  0
^@m

and thus using the Borel isomorphisme co^ | <->br we see that this
' Ar

implies that (yi )r ̂  0 (y £ 0). It suffices then to set 8<o = ^0 )r (<p C ®)
to obtain (iv).
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(v). It is an immediate consequences of (i), (ii) and (iv), and of the
definition of the band (cf. [I], ch. II).

3. The direct decomposition of M (G).

We introduce some more notations. Let us denote by:

Ti = M,(P) == [m £ M,(G); supp m C P}
and by:

T. == Ti ® Ti... ® T i w ii... ̂  ii

the tensor product of Ti with itself n times [5]. Also for any 6 £ T[, the
dual space of Ti, we can identify 6 W = 9 ® 6 ® . . . ® 6 (n times) with an
element of (Tn)' the dual space of Tn. We then denote by :

Sn=Tn/ n Ke^9n

QW

which is also a Banach space.

Finally for any collection (B«)^ of Banach spaces we shall denote
by:

B= © Ba={6=(^)^A€ n Ba; £ \\ba\\^< + 00}
a^A a^A a^A

which for the norm

||(^A||= 2 II^H^
a^A

becomes a Banach space; the direct Banach sum of the (Ba)a^A-
We then observe that

T= © Tn and S = © $„
n^l n^l

can be given a natural Banach algebra structure for which the natural
projection:

p : T->S

becomes a Banach algebra surjective homomorphisme [: for tm € T^
and tn € Tn we define tm'tn= tm® tn € Tw+n and the extend by
bilinearity and continuity. We then observe that Kerp is an ideal of T
and so we can define a multiplication in S.]
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Now the natural identification

Ti=Mc(P)^M(G)
induces a mapp

Tn-^M(G)
and also a mapp :

T : T->M(G)

which is easily seen to be a Banach algebra homomorphisme. Finally if
we tensor T with i: A(G)—>M(G) the natural injection we obtain:

T C = < ® T : A®T->M(G)

also a Banach algebra homomorphisme. Observe now that we can iden-
tify canonically and isometricaly A(G) ® T as a Banach space with the
direct Banach sum (cf. [5] exposes n08 1 and 4) :

A ® T == © 6gC®Tn
g^Q-.n^l

and let us denote:

n^n^r^T and ^ = ̂ G te€G,n^l)IVg^W In

We now state:

LEMMA 3.1.

(i) For any g € G and n ̂  1; I m nS is a (complex) band in
M(G).

(n) II==Iw^cMc(G); and n is a band of M(G).

(iii) // g/ C G, ^ € Z n;^ 1 awf ^61 mn^ for j == 1, 2;
rt<w :

tei, wi) ̂  to, ^2) ^=> ^i -i- ^2
(iv) I = Me n n1 = [m £ Mc(G); V y € n, y ± w} w an ideal of

M(G)

(v) KerT==KerpcT.

To prove the Lemma (and in general) as we have already said, we
shall preserve all the notations already introduced in § 1 and § 2. Before
starting with the proof we make some :
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Remarks.

(3.i) We can identify T^ with a complex symmetric band of
M(Qw) by the natural isometric injection :

cp,n: T^->M(QJ.

To see that we just have to observe that for all x £ Tm there exists a
family (^eMc^P))^! such that

x^ ® Li(P;|jij)=Li(Q^; ® )̂
l^^w l^^w

(cf. [5] exposes n08 4, 5, 6) and to remark that the natural injection of
Li(Qw; ® p»y) into M(Qw) is isometric. Observe also that then

1^<W

TCm = (5m o Cpw (m ̂  1).

(3.ii) For all g € G, m^l^l and ^ € T^ c M(QJ (for the
above identification) the sets Rw and Dm (g) are r^-null subsets of Qw.
This is a simple consequence of FubinTs theorem applied to the product
space Qm, and of the definition of Mc(P).

(3.iii) Observe that for all g € G and n ̂  1
I m Tin = 8g * I m Tin.

Proo/ o/ Lemma 3.1.
(i) By remark (3.iii) we may assume that g =. OQ, and using then

remark (3.i) we see that our result is a consequence of Lemma 2.2 (v).

(ii) and (iii). By remark (3.iii) again, in the proof of (iii) we may
assume that gi •=. Oo and ni ̂  712 (it suffices to translate the two
spaces, and interchange them between themselves if need be). Then from
Lemma 1.2 since (OQ, ni) =^ (gs, ^2)9 we have :

(^(niPn^+^P) CRn^U U U D^te,);
r^r l<^n^

gr € G, cardr < + oo and from that, and remark (3.ii) it follows
then that for any x € I m Tini the set g2 + ns P is ^c-null and since :

y € I m ̂ :—> supp y C ̂ 2 + ri2 P
we have jc ± y and that completes the proof of (iii). Now to prove (ii)
it suffices to set n\ = n > 0 and ns == 0 in the above argument and
obtain:

x^Im^S and 8 € A -=> x JL 8 (3.1)
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(iv) Since by remark (3.iii) 11 and thus also I are translation inva-
riant it suffices that we prove that I is an ideal in Mc(G) and for that
it suffices that we prove :

^, v e Mof-(G), ^±n ==> t j i *v±n 0.2)
We claim that in fact it suffices to prove (3.2) making the extra assumption

(A) There exists m,n e Z; w ^ l n^\ such that:
(Ai) suppjiCwP;
(As) supp v C n P;
(As) All the sets [g +w'P; g € G, 0 ̂ m'< m] are u-null;
(AQ All the sets [g + n' P; g £ G, 0 ̂  n' < n} are v-null.

Indeed the family

^ (P)={^+ r P; ^ € G , r^O}

generates a Raicov system of sets (cf [3] and [8], § 6) thus :

I(P)={;c€M(G); VRG^KP) is .c-nuU}
is an ideal of M(G). Therefore we may assume that [A and v as in (3.2)
are orthogonal to I(P). It is an easy matter then to verify, taking into
account the translation invariance of II also Lemma 1.2, that any (A and
v as in (3.2) and orthogonal to I (P) can be decomposed into denu-

oo oo

merable orthogonal sums a == S i^ and v = S \j of components
f^i j==i

which after appropriate translation satisfy (A). (For some m, n depending
on the component of course).

Now with the assumption (A) on y. and v holding for some
m, n € Z m ̂  1, n ̂  1; we see at once :

(a) p. * v J-1 m nf if g € G, r > m + n (cf. proof of (iii) above).
(P) [A * v ± I m TCr̂  if g € G, r <m + n by Lemma 2.1 and (A).
(y) [A * v ± I m nfn+n if ^ € G, gj^OQ either by Lemma 2.1
and (A) or by the proof of (iii) above. Thus it only remains for us to
verify:

(5) (A * v ± I m n^n.

We proceed to prove (5). Towards that for the projections :

o).n: M(QJ->M(mP),
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(rin: M(QJ-»M(nP),

^ +n : M(Q^+n) -^ M [(m + n) P]

We choose some jji G M+(Qw) and v € M+(Qn) such that: &m(y.) = [A;
o)n(v) == v therefore also d)w+n(p. ® v) == [A * v and p. JL T^. Now to
prove (5) we must show that for all t £ T^+n we have [A * v JL TCw+n(0;
and to see that last fact it suffice to prove :

6 € M+ (Q^+n); (Sm+n(6) « ̂  * V => 6 JL T^+n (3.3)

But since p. JL T^ we have :

[1 ® V ± T^+n = T^ ® Tn C M(Q^+n) (3.4)

and since Wm+n(y' ® v) ^=: p, * v we see from Lemma 2.2 that:

6€M+(Q^n); co,n+n(9) « [x * v =» 6 £ 1 ( 1 ® VIs +B(R^+n).

But B (R^+n) ± Tm+n ; and since T^+n == T^+n we see that:
[i®v ±T^+^=^ t p l ^ v j ^ ^ T ^ + n

thus by (3.4) we have:

JFl®^ + B(R^+n)±T^+n

and that combined with (3.5) proves (3.3) and complets the proof.

(v) Taking (iii) into account we see that to prove (v) it suffices
to prove that for all n £ Z n ̂  1

Ker Tin = 0 Ker e^Tn
e^T,

We prove this in two stages:

(a) Ker ^ == 0 Ker^ (n ̂  1)
/ectDc^'

(P) H Ker^ = n KerO" (n ̂  1)
/^dDc^' o^^'

To prove (a) and (p) we fix n C Z n ̂  1 once and for all.

(a) Let ^ € Ft Ker /w and set for all X 6 G
/^(PX:^'

/ ,==xi £C(P)
Then we have:

0 = (X , f i ) === ( X , X O0)n> = <7ln(JC), X ) = [̂  W]"(X) (3.6)
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and X being arbitrary we deduce that nn (x) == 0 and x € Ker Tin . Con-
versely let x 6 Ker ̂  c Tn. Then for all / £ C (P) there exists ^ a
bounded function on nP c G ((?/ can in fact be assumed Borelian, but
this is not essential) such that:

^IQ V R 2 - ^'^IQ ^,22"Sn \ n̂ ^n \ Kn

and since by remark (3.iii) R^ is an ;c-null set we have for all / e C (P):

< X, /n ) = < X, ̂ f o (On) == < Tin (̂ ), (p/ ) == 0

therefore also x 6 Q Ker /w. And that complets the proof of (a).
/^C(P)cT,

(P) We shall prove that:

0 Ker^C H Ker 6"
/^C(P)CT; e^

the inclusion the other way is obvious. Towards that let us fix

x € H Ker fn and prove that x £ U Ker 8^
/ ^C(P)CT^ ^TI

Now it is well-known that for any [x € M(P) the unit ball of
C (P) (C L00 (P ; [A)) is dence in the unit ball of L°° (P ; (A) for the weak
topology a [L00 (P ; p.); Li (P ; (A)]. From that it follows by decomposing
Me (P) == © Li (P ; p^) into orthogonal bands, that the unit ball of
C (P) (C [Me (P)]') is dence in [M, (P)]i' the unit ball of [Me (P)]' = T/,
for the weak topology a (T^; Ti).

So for any 0 € Ti there exists a net {/. C C (P) C Ti}peN such that:
ll^llc(p) ̂  ll9!!^ ; fv v"?N 9 for the ^P010^ ^ (Ti; Ti) for that net it
follows that: fi ̂  8" for the weak topology a (Tn ; Tn) (e.g. use the
explicit expression of elements of Tn; cf [5], exposes n08 5 et 6). Thus
since (x, fS ) = 0 (v € N) we obtain ( x, B") = 0 and 8 being arbitrary
we see that we have in fact proved the required result that

x € 0 Ker 8'*.
e^

with this, the proof of Lemma 3.1 is complete.

Now using Lemma (3.1) (v) we see that T induces an injection
7 : S -> M (G) which if tensored with ( • A -> M (G) gives:

* = i ® / : A ® S -> M (G).
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And Lemma 3.1 implies then that k identifies topologically A ®S with
II = Im n == Im k. We are now able to state:

THEOREM D (DECOMPOSITION).

To every P, perfect, metrisable strongly independent subset of G,
there corresponds a canonical topological and algebraic identification of
the Banach algebra A (G) ® S "with a closed subalgebra n C M (G).

Then 11 is a band of M (G), and I === II1 H Me (G) is an ideal of
M (G), and we have the direct and orthogonal (Riesz-Lebesgue) de-
compositions:

D(P): M,(G)=II©I; M ( G ) = L © I ; L = A ( G ) © I I

The closed subalgebra L C M (G) can then be identified, topolo-
gically and algebraically in a canonical fashion with the Banach algebra
A(G)®S.

Remark (3 iv).

The identification of L and A ®S is obtained by:

L = A © I I ^ A © ( A ® S ) £ - A ® ( S © I C ) = A ® S .

4. Applications.

For our applications we shall need to couple Theorem D with the
following previous result of ours [8].

If G is a non discrete locally compact abelian group then:

(i) There exists P C G a perfect, metrisable strongly independent
subset.

(ii) If in addition G is metrisable we may assume that P is as in (i)
and such that:

Mo (P) == [m € Mo (G); supp m C P} ̂  {0}.
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Remark.

(4.i) In [8] we prove Theorem R(ii); (i) follows from that by
considering a metrisable non discrete subgroup H C G (cf. [4], 2.4, 2.5.2).

(4.ii) If P is as in (i) then Me (P) is a nom separable Banach space.
This is seen using simple arguments of general topology and Radon
measure theory (cf. [8] Lemma 7.1 and Remark (7.iii)).

(4.iii) If P is as in (ii) then Mo (P) is an infinite dimensional Banach
space, since for any [JL £ Mo (P) (C Me (P))

Mo (P) D Li (P, (A).

Application I .

Proof of Theorem N.F.

To see parts (i) and (iii), and the special case of part (ii) when G is
metrisable, of the Theorem N.F., it suffices to combine Theorem D,
Theorem R, Remarks (4.ii) and (4.iii) and the simple observation that
(A ® S)2 C A ® S is a direct summand such that:

A ® S = (A ® S)2 © [A ® Me (P)].

(We use also the fact that Mo (G) is a translation invariant band.)

Now to prove part (ii) of Theorem N.F. for a general non discrete
locally compact abelian group we consider H C G a compact subgroup
such that G/H is metrisable and non discrete (cf. [9], § 1, p. 450). Then
the natural projection p : G -> G/H induces (cf. ]1[, ch. V, § 6) a Banach
algebra homomorphisme p : M (G) -> M (G/H) such that

^(Mo(G))=Mo(G/H)

(that last point is immediate since H is compact (cf. [I], ch. VII).)
From that we see at once that since Mo (G/H) / [Mo (G/H)]2 is infinite
dimensional so is Mo (G) / (Mo (G))2 which complets the proof.

Before giving our next application we make:

Remark (4.iv) It is trivial to verify that if Ri and Ra are two
commutative Banach algebras with identity then we can identify cano-



140 N. TH. VAROPOULOS

nically JTl (Ri ® R2) = JH (Ri) X JU (Ra); for that identification, it is

seen at once that 2 (Ri) X 2 (Ra) C 2 (Ri ® R2).

(That last inclusion in fact is never strict, and we have always

2 (Ri) X 2 (R2) = 2 (Ri ® Ra); but that last point is not quite trivial and
will not be needed).

Application n.

(i) For any P C G using the decomposition D (P) we can identify
canonically 3Vi (A ® S) with a closed subset of 311 [M (G)].

(ii) Using Remark (4.iv) we can identify canonically
3VL (A ® S) === r X JH (S)

where r is the Bohr compactification of G.

(iii) We leave it to the reader to verify that every 9 € [Me (P)]i' (for
notation cf. Proof of Lemma 3.1 (v)) induces canonically a multiplicative
linear form on S. (9 induces canonically a multiplicative linear form 9 °° on
T == © Tn by setting 9°° = © 9ro, we have to verify that

n^l n^l

Ker900 D Kerp which is immediate). The above correspondence defines
a topological canonical identification between 3VL (S) and [Me (?)][ (The
unit ball [Me (P)K is topologised with the weak topology a (T{, Ti)).

(iv) We have JH (S) = 2 (S) and thus, by Remark (4.iv),

JH(A®S)=2(A®S) .

We do not give detailed verification of the above statements (and
in particular no proof of (iv)) because they were proved directly in the
particular case k (P) == + oo (and G an I-Group) by A. B. Simon [6], [7].
So we are confident that the reader after consulting [7] will have no
difficulty to fill in the gaps for himself.

There are a number of other applications that can be obtained by
specialising P, we shall examine them in a future publication. At this stage
we content ourselves (preserving all our previous notations) to state, and
give only a few indications of the proof a particularly simple one:
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Application III.

Let G be a compact metrisable abelian group and P be a Kronecker
or a Kp ([4] 5.1.2) subset then:

(i) Mo (G) C I.

(ii) The decomposition D (P) induces canonically a direct decompo-
sition:

M/Mo = L © (I/Mo).

(iii) If G is a non discrete locally compact abelian group the natural
involution [JL —> [x* = p. (— x) of M (G) induces an involution in M/Mo
for which it becomes a non symmetric algebra.

Indication of Proof.

(i) ~> (ii) -» (iii) almost trivially.

Proof of (i): Taking into account Remark (3.iii) and Lemma 3.1 and
also the fact that Mo (G) is a translation invariant band, we see that
suffices to show that Im Tin H Mo (G) = {0} for n ̂  1 (For n == 1 this
fact is well-known cf. [4], 5.6.10).

Now let x € Tn be such that that nn (x) == ^ € Mo (G) and let us
assume that P is a Kronecker set. Then if / € C (P) and \f\ 5== 1 approxi-

.A.

mating uniformly / on P by a net of characters (Xp € G)vey such that
Xv —> oo, we see that (cf. equation (3.6)) (x, /n) = 0. From that it can be

y ^ N
deduced that [A = TCn (x) = 0 (cf. Proof of Lemma 3.1 (v). We use the
fact that {/ 6 C (P); [/[ == 1} is dence in [Me (P)K for the topology
aCH;Ti)).

One major disadvantage of the decomposition D (P) is that if
k(P)> 2 it is not symmetric (not stable by the involution p, —> y.* = p,(—x)
of the algebra M (G) i.e. I* ̂  I and n* ̂  n (if * (P) = 2 then it is
symmetric since P === — P). This can be amended at once, if both P
and — P are considered at the same time. More explicitly, let the de-
compositions associated to P and — P be:

D(P) :M,(G)=n©I; M ( G ) = L © I ; L ^ A © S
D(—P):M,(G)==II-©I-; M(G)=L-©I-; L--A©S-
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then we have:
n* = n-; i* = i-; L* = L-

and we have:

THEOREM Da (SYMMETRIC DECOMPOSITION).

The subalgebra K = L • L~ c M (G)is a closed symmetric sub-
algebra and if k(P) > 2 it can be identified topologically and algebraically,

in a canonical fashion with A®S®S- . A Iso we have a direct and
orthogonal (Riesz-Lebesgue) decomposition:

D,(P): M(G)=K©J

where 3 is an ideal (for that last fact when k (P) = + oo and G an I-
group, cf. [6]).

The proof of Theorem D, is very similar to that of Theorem D, and
does not involve any new ideas; the details however are much more
complicated and tedious to expose, since furthermore the main application
of D, (P) (for the important special cases of I-groups) has been obtained
directly in [7]; writting down the proof of Theorem D^ would serve no
great purpose, and anyway, is a task beyond the literary capacity of the
author.

I should like to finish up by expressing my gratitude to the C.N.R.S.
for supporting this research financially, and to the Departement des
Mathematiques de la Faculte des Sciences d'Orsay, that offered to me
for the second year running its generous hospitality.
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