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BAKER DOMAINS FOR NEWTON’S METHOD

by Walter BERGWEILER,
David DRASIN & James K. LANGLEY (*)

Abstract. — For an entire function f let N(z) = z−f(z)/f ′(z) be the Newton
function associated to f . Each zero ξ of f is an attractive fixed point of N and is
contained in an invariant component of the Fatou set of the meromorphic function
N in which the iterates of N converge to ξ. If f has an asymptotic representation
f(z) ∼ exp(−zn), n ∈ N, in a sector | arg z| < ε, then there exists an invariant com-
ponent of the Fatou set where the iterates of N tend to infinity. Such a component
is called an invariant Baker domain.

A question in the opposite direction was asked by A. Douady: if N has an
invariant Baker domain, must 0 be an asymptotic value of f? X. Buff and J.
Rückert have shown that the answer is positive in many cases.

Using results of Balašov and Hayman, it is shown that the answer is negative
in general: there exists an entire function f , of any order between 1

2
and 1, and

without finite asymptotic values, for which the Newton function N has an invariant
Baker domain.

Résumé. — Pour une fonction entière f soit N(z) = z − f(z)/f ′(z) la fonc-
tion de Newton associée à f . Chaque zéro ξ de f est un point fixe attractif de N
et appartient à une composante invariante de l’ensemble de Fatou de la fonction
méromorphe N dans laquelle les itérées de N convergent vers ξ. Si f a une repré-
sentation asymptotique f(z) ∼ exp(−zn), n ∈ N, dans un secteur | arg z| < ε, alors
il existe une composante invariante de l’ensemble de Fatou de N dans laquelle les
itérées de N tendent vers l’infini. Une composante avec cette proprieté est appelée
un domaine invariant de Baker.

Une question dans la direction réciproque a été posée par A. Douady : si N a un
domaine invariant de Baker, est-ce que 0 doit être une valeur asymptotique de f ?
X. Buff et J. Rückert ont démontré que la réponse est affirmative dans beaucoup
de cas.

En utilisant des résultats de Balašov et Hayman, on prouve que la réponse est
négative en général : il existe une fonction entière f , d’ordre arbitraire entre 1

2
et

1, et sans valeurs finies asymptotiques, pour laquelle il existe un domaine invariant
de Baker de la fonction de Newton N .

Keywords: Baker domain, Newton’s method, iteration, Julia set, Fatou set, asymptotic
value.
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1. Introduction and result

Let f be an entire function. Newton’s method for finding the zeros of f

consists of iterating the function

N(z) := z − f(z)
f ′(z)

.

If ξ is a zero of f , then N(ξ) = ξ and |N ′(ξ)| < 1, so there is an N -
invariant domain U containing ξ in which the iterates Nk of N converge
to ξ as k →∞. (Here N -invariance of U means that N(U) ⊂ U .)

There may also be N -invariant domains in which the iterates of N tend
to ∞. A simple example is given by f(z) = P (z) expQ(z) where P and Q

are polynomials, with Q nonconstant. Then N is rational. Moreover, in the
terminology of complex dynamics, the point at ∞ is a fixed point of N of
multiplier 1, and the iterates of N tend to ∞ in the Leau petals associated
to this fixed point.

If f does not have the above form, then N is transcendental; see [2]
for an introduction to the iteration theory of transcendental meromorphic
functions. A maximal N -invariant domain where the iterates of N tend to
∞ is called an invariant Baker domain.

A simple example (cf. [3]) is given by functions f for which f(z) ∼
exp(−zn) as z →∞ in some sector | arg z| < ε. Then

N(z) = z + (1/n + o(1))z1−n

and this implies that Nk|U →∞ as k →∞ for some N -invariant domain U

containing all sufficiently large positive real numbers. Note that f(x) → 0
as x → +∞, x ∈ R. Thus 0 is an asymptotic value of f , the positive real
axis being an asymptotic path. Figuratively speaking one might say that
Newton’s method believes that there is a zero of f at +∞, and thus it
yields a domain U containing all sufficiently large positive real numbers
such that Nk(z) → +∞ for z ∈ U as k →∞.

The question arises whether an entire function f must always have 0 as
an asymptotic value if N has an invariant Baker domain. This question was
raised by A. Douady and has been brought to our attention by J. Rückert.
It has been shown by X. Buff and J. Rückert [4] that the answer to this
question is positive in situations much more general than those given above.
However, we shall show that this is not always the case.

Theorem. — There exists an entire function f without finite asymp-
totic values such that N(z) = z−f(z)/f ′(z) has an invariant Baker domain.

ANNALES DE L’INSTITUT FOURIER
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Moreover, f can be chosen to be of any preassigned order strictly between
1
2 and 1.

We explain the basic idea of the construction. Using functions of the type
introduced by S. K. Balašov [1], in §2 we construct an entire function f of
order less than 1 (and in fact of any preassigned order strictly between 1

2

and 1) which satisfies
f(z) ∼ q

√
z

for some integer q and some branch of the q-th root as z → ∞ in the
spiralling region

S :=
{
reic log r+iθ : r > 1, |θ| < θ0

}
,

where c := π/ log(q− 1) and 0 < θ0 < π. Here the relation between c and q

is such that S is invariant under z 7→ −pz where p := q− 1. We show in §3
that

f ′(z)
f(z)

∼ 1
qz

so that

N(z) = z − f(z)
f ′(z)

∼ −pz.

In fact, we have an explicit error estimate in this asymptotic equality,
which yields that S contains an N -invariant domain in which the iterates
of N tend to ∞. Hence N has an invariant Baker domain. Finally we show
in §4, using the Denjoy-Carleman-Ahlfors Theorem, that f has no finite
asymptotic values.

2. The construction of f

Let (ak) be a sequence of complex numbers tending to infinity. For r > 0
let n(r) be the number of ak, taking account of repetition, in |z| 6 r. Let

ρ := lim sup
r→∞

log n(r)
log r

.

Equivalently, ρ is the exponent of convergence of the sequence (ak). It is
well known that the canonical product Π whose zeros are the ak has order
ρ; that is,

ρ = lim sup
r→∞

log log M(r, Π)
log r

TOME 57 (2007), FASCICULE 3



806 Walter BERGWEILER & David DRASIN & James K. LANGLEY

where M(r, Π) := max|z|=r |Π(z)| is the maximum modulus. There are
standard results concerning the asymptotic behavior of Π if all ak lie on
one ray and

(2.1) n(r) ∼ ∆rρ

for some ∆ > 0 as r →∞. These results have been extended by Balašov [1]
to the case where the ak lie on a logarithmic spiral, say

(2.2) ak ∈
{
reic log r : r > 1

}
,

where c > 0. We quote only a simplified version of Balašov’s result [1,
Theorem 1], as this suffices for our purposes.

Lemma 1. — Let (ak) be a sequence satisfying (2.1) and (2.2). Suppose
that ρ is not an integer. Let Π be the canonical product formed with the
ak. Then

lim
r→∞

log Π(reic log r+iθ)
rρ

= −2πi∆ exp (iρθ/(1 + ic))
1− exp (i2πρ/(1 + ic))

for 0 < θ < 2π and a suitable branch of the logarithm, the convergence
being uniform for ε 6 θ 6 2π − ε if ε > 0. In particular,

lim
r→∞

log |Π(reic log r+iθ)|
rρ

= −2π∆ Re
(

i exp (iρθ/(1 + ic))
1− exp (i2πρ/(1 + ic))

)
(2.3)

=: h(θ).

Now let 1
2 < ρ < 1 and ∆ > 0. Choose p ∈ N such that

(2.4) µ :=
ρ

1 + c2
:=

ρ

1 + (π/ log p)2
>

1
2
,

thus defining c := π/ log p. Note that since 1
2 < µ < ρ < 1 we have c < 1

and hence p > exp(π) > 23. Let (ak) be a sequence satisfying (2.1) and (2.2)
and let Π be the canonical product formed with the ak so that (2.3) holds.

A series of elementary modifications of Π will produce the function f of
our theorem.

A computation shows that

h(0) = −2π∆ Re
(

i

1− exp (i2πρ/(1 + ic))

)
=

2π∆ exp(2πµc)
|1− exp (i2πρ/(1 + ic))|2

sin(2πµ).

ANNALES DE L’INSTITUT FOURIER
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Since 1
2 < µ < 1 we thus have h(0) < 0. Hence there exists θ0 > 0 such

that h(θ) < 0 for |θ| < θ0. For 0 < ε < θ1 < θ0 we thus deduce from (2.3)
that there exists η0 > 0 such that

(2.5) log |Π(reic log r+iθ)| 6 −η0r
ρ for ε 6 |θ| 6 θ1,

provided r is sufficiently large.
We show that an estimate of this type also holds for |θ| < ε. In order to

do so, we use a standard estimate which in slightly different form can be
found in [6, p. 548] or [8, p. 117].

Lemma 2. — Let D ⊂ C be an unbounded domain. For r > 0 such that
the circle Cr := {z ∈ C : |z| = r} intersects D, let rθ(r) be the linear
measure of the intersection. Let θ∗(r) := θ(r) if Cr 6⊂ D and let θ∗(r) := ∞
and thus 1/θ∗(r) := 0 if Cr ⊂ D.

Suppose that u : D → [−∞,∞) is continuous in D and subharmonic in
D. Suppose also that u is bounded above on ∂D, but not bounded above
in D. Let 0 < κ < 1 and let R > 0 be such that CR intersects D. Then
B(r, u) := max|z|=r u(z) satisfies

log B(r, u) > π

∫ κr

R

dt

tθ∗(t)
−O(1)

as r →∞.

We may assume that ε in (2.5) is chosen such that 0 < ε < π/2. We
consider the spiralling domain

D :=
{
reic log r+iθ : r > 1, |θ| < ε

}
and the function

u(z) := log |Π(z)|+ η0|z|ρ.
Then u is continuous in D, subharmonic in D and bounded above on
∂D. We claim that u is also bounded above in D. Otherwise, on apply-
ing Lemma 2 and noting that θ∗(r) = 2ε we find that

log B(r, u) > π

∫ κr

R

dt

2εt
−O(1) =

π

2ε
log r −O(1) > log r

and thus
log M(r, Π) = B(r, u)− η0r

ρ > r − η0r
ρ >

r

2
for large r. This implies that the order of Π is at least 1, a contradiction.

Thus u must be bounded above in D, and this, together with (2.5),
implies that if 0 < η1 < η0, then

(2.6) log |Π(reic log r+iθ)| 6 −η1r
ρ for |θ| 6 θ1

TOME 57 (2007), FASCICULE 3
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and sufficiently large r.
Let L be the natural parametrization of the logarithmic spiral on which

the ak lie; that is, L : [1,∞) → C, L(t) = teic log t. Then Π(L(t)) → 0 as
t →∞ by (2.6). Thus there exists t0 > 1 such that |Π(L(t))| < |Π(L(t0))|
for t > t0.

The function f of our theorem will now be defined as follows. We put
z0 := L(t0) and define g0(z) := Π(z + z0). Next we put q := p + 1 and
g1(z) := g0(zq), and define σ : [0,∞) → C by σ(t) = q

√
L(t0 + t)− z0, for

some fixed branch of the root. We then define

(2.7) g2(z) :=
∫ z

0

g1(ζ)ndζ =
∫ z

0

Π(ζq + z0)ndζ,

where n ∈ N. It will follow easily that

a :=
∫

σ

g1(z)ndz

is finite for all n ∈ N, and using a result of W. K. Hayman [5, Lemma 1]
we will see that a = a(n) 6= 0 if n is sufficiently large. For such n we then
define g3(z) := g2(z)/az and note that g3 is of the form g3(z) = g4(zq) for
some entire function g4. The function claimed in the theorem is

f(z) := zg4(z)q−1.

We remark that we introduced z0 and n only to ensure that a 6= 0. In a
generic situation we could probably define g2 directly via (2.7) with z0 = 0
and n = 1.

To prove that f has the desired properties, we determine the asymptotic
behavior of the gj and f in spiralling regions similar to D. We first note
from (2.6) that if 0 < η2 < η1 and if 0 < θ2 < θ1, then

log |g0(reic log r+iθ)| 6 −η2r
ρ for |θ| 6 θ2

and sufficiently large r. This implies that if |θ| 6 θ2/q and if r is sufficiently
large, then

log |g1(reic log r+iθ)| = log |g0(rqeic log(rq)+iqθ)| 6 −η2r
qρ.

With

S1 :=
{

reic log r+iθ : r > 1, |θ| < θ2

q

}
we thus find that

|g1(z)| 6 exp (−η2|z|qρ)

ANNALES DE L’INSTITUT FOURIER
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if z ∈ S1 is sufficiently large. Moreover, σ(t) ∈ S1 for large t, since for
suitably chosen branches of the argument we have

arg σ(t) =
1
q

arg(L(t0 + t)− z0)

=
1
q

arg L(t0 + t) + o(1)

=
c

q
log |L(t0 + t)|+ o(1)

= c log |σ(t)|+ o(1)

as t → ∞. From this it is straightforward to deduce that the integral
defining a converges for all n ∈ N. In order to show that a 6= 0 for large n,
we use the following result of W. K. Hayman [5, Lemma 1].

Lemma 3. — Let γ be a Jordan arc in C which tends to ∞ in both
directions and let g be holomorphic in a domain containing γ. Suppose
that

∫
γ
|g(z)||dz| < ∞ and that |g(z)| → 0 as z → ∞ on γ. Suppose also

that |g(z)| 6 M for z on γ, with equality for a single point z1 on γ with
g′(z1) = 0. Suppose finally that γ cannot be deformed in a neighborhood
of z1 into a curve on which |g(z)| < M . Then∫

γ

g(z)ndz 6= 0

for all sufficiently large integers n.

We remark that since g′(z1) = 0, the set {z ∈ C : |g(z)| < M} has at least
two components whose boundary contains z1. The condition that γ cannot
be deformed in a neighborhood of z1 into a curve on which |g(z)| < M

means that γ passes from one component of this set into another component
at z1.

We apply Lemma 3 with g := g1, the curve γ parametrized as γ : R → C,

γ(t) :=

{
σ(−t) if t 6 0,

σ∗(t) := e2πi/qσ(t) if t > 0,

and z1 := γ(0) = 0. Since by the choice of z0 we have

|g1(σ∗(t))| = |g1(σ(t))| = |Π(L(t0 + t))| < |Π(L(t0))| = |g1(σ(0))|

for t > 0, it follows that |g1(γ(t))| < |g1(z1)| for t 6= 0. Moreover, g′1(z1) =
g′1(0) = 0, and thus the hypotheses of Lemma 3 are satisfied. Since∫

γ

g1(z)ndz = −
∫

σ

g1(z)ndz +
∫

σ∗
g1(z)ndz =

(
−1 + e2πi/q

) ∫
σ

g1(z)ndz

TOME 57 (2007), FASCICULE 3
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we conclude from Lemma 3 that a =
∫

σ
g1(z)ndz 6= 0 for sufficiently large

values of n.
Thus g2(σ(t)) → a as t → ∞. More generally, g2(z) → a as z → ∞ in

S1. In fact, if z ∈ S1 then

g2(z)− a =
∫

τz

g1(ζ)ndζ

for any path τz joining z to ∞ in S1. For large z ∈ S1 and a suitable path
τz we find that

|g2(z)− a| 6
∫

τz

|g1(ζ)|n|dζ| 6
∫

τz

exp (−nη2|ζ|qρ) |dζ| 6 exp (−η3|z|qρ)

for some η3 > 0. It follows that if z ∈ S1 is sufficiently large, then∣∣∣∣g3(z)− 1
z

∣∣∣∣ =
|g2(z)− a|

|az|
6

exp (−η3|z|qρ)
|az|

6 exp (−η3|z|qρ) .

Now let

S2 :=
{
reic log r+iθ : r > 1, |θ| < θ2

}
.

For z ∈ S2 we have q
√

z ∈ S1 for a suitable branch. For large z ∈ S2 we
thus find that∣∣∣∣g4(z)− 1

q
√

z

∣∣∣∣ =
∣∣∣∣g3( q

√
z)− 1

q
√

z

∣∣∣∣ 6 exp (−η3|z|ρ) ;

i. e. if z ∈ S2 is sufficiently large, then

(2.8)
∣∣f(z)− q

√
z
∣∣ 6 exp (−η4|z|ρ)

for some η4 > 0 and a suitable branch.

3. Newton’s method for f

We choose θ3 with 0 < θ3 < θ2 and define

S3 :=
{
reic log r+iθ : r > 1, |θ| < θ3

}
.

Then there exists δ > 0 such that if z ∈ S3 is sufficiently large, then
the closed disk of radius δ|z| around z is contained in S2. With d(z) :=

ANNALES DE L’INSTITUT FOURIER
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f(z)− q
√

z we deduce from (2.8) that if z ∈ S3 is sufficiently large, then∣∣∣∣f ′(z)−
q
√

z

qz

∣∣∣∣ = |d′(z)|

=
1
2π

∣∣∣∣∣
∫
|ζ−z|=δ|z|

d(ζ)
(ζ − z)2

dζ

∣∣∣∣∣
6

1
δ|z|

max
|ζ−z|=δ|z|

|d(ζ)|

6
1

δ|z|
exp (−η4(1− δ)ρ|z|ρ)

6 exp (−η5|z|ρ)

for some η5 > 0. Combining this with (2.8) we find that if z ∈ S3 is
sufficiently large, then ∣∣∣∣ f(z)

f ′(z)
− qz

∣∣∣∣ 6 exp (−η6|z|ρ)

where η6 > 0. Since q = p + 1 we deduce that

(3.1) |N(z) + pz| =
∣∣∣∣z − f(z)

f ′(z)
+ pz

∣∣∣∣ =
∣∣∣∣ f(z)
f ′(z)

− qz

∣∣∣∣ 6 exp (−η6|z|ρ)

for large z ∈ S3. In particular,∣∣|N(z)| − p|z|
∣∣ 6 exp (−η6|z|ρ)

which implies that

(3.2)
∣∣ log |N(z)| − log(p|z|)

∣∣ 6 exp (−η6|z|ρ)

for large z ∈ S3. Moreover, (3.1) yields

(3.3) |arg N(z)− arg(−pz)| 6 exp (−η6|z|ρ)

for large z ∈ S3. However, c was chosen such that c log p = π, so we deduce
from (3.2) and (3.3) that∣∣ arg N(z)− c log |N(z)|

∣∣
6

∣∣ arg N(z)− arg(−pz)
∣∣ +

∣∣ arg(−pz)− c log(p|z|)
∣∣

+
∣∣c log(p|z|)− c log |N(z)|

∣∣
6

∣∣ arg(−pz)− c log(p|z|)
∣∣ + (1 + c) exp (−η6|z|ρ)

=
∣∣ arg z + π − c log p− c log |z|

∣∣ + (1 + c) exp (−η6|z|ρ)
=

∣∣ arg z − c log |z|
∣∣ + (1 + c) exp (−η6|z|ρ)

6
∣∣ arg z − c log |z|

∣∣ +
1

2|z|

TOME 57 (2007), FASCICULE 3



812 Walter BERGWEILER & David DRASIN & James K. LANGLEY

for large z ∈ S3. Since p > 23 we deduce from (3.1) that |N(z)| > 2|z| if
z ∈ S3 and if |z| is sufficiently large, say |z| > r0 > 1. Combining this with
the previous estimate, we conclude that if∣∣ arg z − c log |z|

∣∣ < θ3 −
1
|z|

,

then∣∣ arg N(z)− c log |N(z)|
∣∣ < θ3 −

1
|z|

+
1

2|z|
= θ3 −

1
2|z|

< θ3 −
1

|N(z)|
if z ∈ S3 and if |z| is large enough, say |z| > r1 > r0. This implies that

U :=
{

reic log r+iθ : r > r1, |θ| < θ3 −
1
r

}
is N -invariant. Since |N(z)| > 2|z| for z ∈ U , we have |Nk(z)| > 2k|z| for
z ∈ U and k ∈ N. Thus Nk|U →∞ as k →∞. Hence U is contained in an
invariant Baker domain of N .

4. Asymptotic values of f

Suppose that f has a finite asymptotic value, say f(z) → b ∈ C as z →∞
along a curve Γ. The function

F (z) :=
f(z)q

z

is entire since f(0) = 0. By (2.8) we have F (z) → 1 as z → ∞ along the
logarithmic spiral L while F (z) → 0 as z → ∞ along Γ. Thus F has two
finite asymptotic values. By the Denjoy-Carleman-Ahlfors Theorem (see [7,
§XI.4.5]), F has order at least 1. On the other hand, F has the same order
as f , which has been taken less than 1. This is a contradiction.

Remark. — Our method will produce examples f of any preassigned
non-integer order ρ > 1, as well as examples with more than one invariant
Baker domain. We only sketch the modifications that have to be made.

We again choose ρ and p such that (2.4) is holds. The condition µ < 1
need not be satisfied, and there may be several, say `, intervals where h(θ)
is negative and corresponding spiralling regions S1, . . . , S` where Π(z) → 0
as z →∞. It is not difficult to see that ` can be any given positive number.
For each j, let Lj be a curve starting at 0 which outside the unit circle
is a logarithmic spiral in Sj and which inside the unit circle is a straight
line from 0 to the corresponding point of the unit circle. Deforming one of
the curves Lj if necessary we may assume that there exists z0 ∈

⋃`
j=1 Lj

ANNALES DE L’INSTITUT FOURIER
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such that |Π(z0)| > |Π(z)| for all z ∈
⋃`

j=1 Lj . Defining g2 by (2.7) for
some large n and then f as in §2, we find that f(z) ∼ cj

q
√

z for some
cj 6= 0 as z → ∞ in Sj . As before, this means that N(z) ∼ −pz as
z → ∞ in Sj , j = 1, . . . , `. We thus obtain an entire function f for which
N has ` invariant Baker domains. A difference occurs in the proof that f

does not have finite asymptotic values. Here we cannot simply appeal to
the classical Denjoy-Carleman-Ahlfors Theorem, but instead use that the
function f constructed has only ` “tracts”; see [6, §8.3].

Balašov’s result takes a different form if ρ is an integer, but it seems
possible to treat this case along the same lines.
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valuable suggestions of the referee.

BIBLIOGRAPHY
[1] S. K. Balašov, “On entire functions of finite order with zeros on curves of regular

rotation”, Math. USSR Izvestĳa (1973), no. 7, p. 601-627, translation form Izv. Akad.
Nauk. SSSR, Ser. Mat. 37 (1973) no 3.

[2] W. Bergweiler, “Iteration of meromorphic functions”, Bull. Amer. Math. Soc.
(1993), no. 29, p. 151-188.

[3] W. Bergweiler, F. V. Haeseler, H. Kriete, H. G. Meier & N. Terglane, “New-
ton’s method for meromorphic functions”, in Complex Analysis and its Applications
(C. C. Yang, G. C. Wen, K. Y. Li & Y. M. Chiang, eds.), Notes Math. Ser., vol. 305,
Pitman Res., 1994, p. 147-158.

[4] X. Buff & J. Rückert, “Virtual immediate basins of Newton maps and asymptotic
values”, Int. Math. Res. Not. (2006), no. 65498, p. 1-18.

[5] W. K. Hayman, “On integral functions with distinct asymptotic values”, in Proc.
Cambridge Philos. Soc., no. 66, 1969, p. 301-315.

[6] ——— , Subharmonic functions, vol. 2, London Math. Soc. Monographs, no. 20,
Academic Press, London, 1989.

[7] R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Göttingen, Heidel-
berg, 1953.

[8] M. Tsuji, Potential theory in modern function theory, New York ed., Maruzen,
reprint by Chelsea, 1959.

Manuscrit reçu le 10 février 2006,
accepté le 6 juin 2006.

Walter BERGWEILER
Christian–Albrechts–Universität zu Kiel
Mathematisches Seminar
Ludewig–Meyn–Str. 4
24098 Kiel
(Germany)
bergweiler@math.uni-kiel.de

TOME 57 (2007), FASCICULE 3

mailto:bergweiler@math.uni-kiel.de


814 Walter BERGWEILER & David DRASIN & James K. LANGLEY

David DRASIN
Purdue University
Department of Mathematics
West Lafayette, IN 47907
(USA)
drasin@math.purdue.edu
James K. LANGLEY
University of Nottingham
School of Mathematical Sciences
NG7 2RD
(United Kingdom)
jkl@maths.nott.ac.uk

ANNALES DE L’INSTITUT FOURIER

mailto:drasin@math.purdue.edu
mailto:jkl@maths.nott.ac.uk

	 1.Introduction and result
	 2.The construction of f
	 3.Newton's method for f
	 4.Asymptotic values of f
	Bibliography

