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MIXED HODGE STRUCTURE OF AFFINE
HYPERSURFACES

by Hossein MOVASATI

Abstract. — In this article we give an algorithm which produces a basis of
the n-th de Rham cohomology of the affine smooth hypersurface f−1(t) compatible
with the mixed Hodge structure, where f is a polynomial in n + 1 variables and
satisfies a certain regularity condition at infinity (and hence has isolated singulari-
ties). As an application we show that the notion of a Hodge cycle in regular fibers
of f is given in terms of the vanishing of integrals of certain polynomial n-forms
in Cn+1 over topological n-cycles on the fibers of f . Since the n-th homology of
a regular fiber is generated by vanishing cycles, this leads us to study Abelian in-
tegrals over them. Our result generalizes and uses the arguments of J. Steenbrink
for quasi-homogeneous polynomials.

Résumé. — Dans cet article nous donnons un algorithme qui produit une base
du n-ième groupe de cohomology de De Rham de l’hypersurface affine lisse f−1(t)
compatible avec la structure de Hodge mixte, où f est un polynôme en n + 1
variables et satisfait une condition de régularité à l’infini (en particulier, il a des
singularités isolées). Comme application nous montrons que la notion de cycle de
Hodge dans une fibre régulière de f est donnée par l’annulation des intégrales de
certaines n-formes polynomiales dans Cn+1 sur des n-cycles topologiques dans les
fibres de f . Puisque l’homologie de degré n d’une fibre régulière est engendrée
par les cycles évanescents, cela conduit à étudier des intégrales abéliennes obte-
nues en intégrant sur ceux-ci. Notre résultat généralise et utilise les arguments de
J. Steenbrink pour les polynômes quasi-homogènes.

0. Introduction

To study the monodromy and some numerical invariants of a local holo-
morphic function f : (Cn+1, 0) → (C, 0) with an isolated critical point at 0,
E. Brieskorn in [3] introduced a OC,0 module H ′ and the notion of Gauss-
Manin connection on H ′. Later J. Steenbrink [28], inspired by P. Deligne’s

Keywords: Mixed Hodge structures of affine varieties, Gauss-Manin connection.
Math. classification: 14C30, 32S35.



776 Hossein MOVASATI

theory of mixed Hodge structures (see [5] and two others with the same ti-
tle) on algebraic varieties defined over complex numbers and W. Schmid’s
limit Hodge structure (see [25]) associated to a fibration with projective
manifolds, introduced the notion of the mixed Hodge structure for a germ
of a singularity f . A different construction of such a mixed Hodge structure
was also given by A. Varchenko in [32] using the asymptotic of integrals of
holomorphic forms over vanishing cycles.

In the case of a polynomial f in Cn+1, on the one hand the n-th coho-
mology of a regular fiber carries Deligne’s mixed Hodge structure and on
the other hand we have the Brieskorn module H ′ of f which contains the
information of the n-th de Rham cohomology of regular fibers. The varia-
tion of mixed Hodge structures in such situations is studied by Steenbrink
and Zucker (see [30]). In this article we define two filtrations on H ′ based
on the mixed Hodge structure of the regular fibers of f . At the beginning
my purpose was to find explicit descriptions of arithmetic properties of
Hodge cycles for hypersurfaces in projective spaces. Such descriptions for
CM-Abelian varieties are well-known but in the case of hypersurfaces we
have only descriptions for Fermat varieties (see [27]). As an application we
will see that it is possible to write down the property of being a Hodge
cycle in terms of the vanishing of certain integrals over cycles generated by
vanishing cycles. Such integrals also appear in the context of holomorphic
foliations/differential equations (see [19, 20] and the references there). The
first advantage of this approach is that we can write some consequences of
the Hodge conjecture in terms of periods (see the example at the end of
this Introduction and §7). We explain below the results in this article.

Let α = (α1, α2, . . . , αn+1) ∈ Nn+1 and assume that the greatest common
divisor of all the αi’s is one. We consider C[x] := C[x1, x2, . . . , xn+1] as a
graded algebra with deg(xi) = αi. A polynomial f ∈ C[x] is called a quasi-
homogeneous polynomial of degree d with respect to the grading α if f is a
linear combination of monomials of the type xβ := xβ1

1 xβ2
2 · · ·xβn+1

n+1 , α·β :=∑n+1
i=1 αiβi = d. For an arbitrary polynomial f ∈ C[x] one can write in a

unique way f =
∑d

i=0 fi, fd 6= 0, where fi is a quasi-homogeneous poly-
nomial of degree i. The number d is called the degree of f . Set Sing(f) :={

∂f
∂xi

= 0, i = 1, 2, . . . , n+ 1
}

.
Let us be given a polynomial f ∈ C[x]. We assume that f is a (weighted)

strongly tame polynomial. In this article this means that there exist natural
numbers α1, α2, . . . , αn+1 ∈ N such that Sing(g) = {0}, where g = fd is the
last quasi-homogeneous piece of f in the graded algebra C[x], deg(xi) = αi.
Looking at f as a rational function in the weighted projective space (see
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MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES 777

§1) we will see that the strongly tameness condition on f implies that
the polynomial f has isolated singularities, i.e., Sing(f) is a discrete set in
Cn+1.

We choose a basis xI = {xβ | β ∈ I} of monomials for the Milnor
C-vector space Vg := C[x]/〈 ∂g

∂xi
| i = 1, 2, . . . , n+ 1〉 and define

wi :=
αi

d
, 1 6 i 6 n+ 1, η :=

(n+1∑
i=1

(−1)i−1wixid̂xi

)
,

Aβ :=
n+1∑
i=1

(βi + 1)wi, ηβ := xβη, β ∈ I

(0.1)

where d̂xi = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1. It turns out that xI is
also a basis of Vf and so f and g have the same Milnor numbers (see §6).
We denote it by µ . We denote by C = {c1, c2, . . . , cr} ⊂ C the set of critical
values of f and Lc := f−1(c), c ∈ C. The strongly tameness condition on
f implies that the fibers Lc, c ∈ C\C are connected and the function f is
a C∞ fiber bundle on C\C (see §1). Let Ωi, i = 1, 2, . . . , n + 1 be the set
of polynomial differential i-forms in Cn+1. The Brieskorn module

H ′ = H ′
f :=

Ωn

df ∧ Ωn−1 + dΩn−1

of f is a C[t]-module in a natural way: t· [ω] = [fω], [ω] ∈ H ′. If there is no
danger of confusion we will not write the brackets. A direct generalization of
the topological argument in [10] in the case n = 1 implies that H ′ is freely
generated by the forms ηβ , β ∈ I (see Proposition 6.2 for an algebraic
proof).

Using vanishing theorems and the Atiyah-Hodge-Grothendieck theorem
on the de Rham cohomology of affine varieties (see [15]), we see that H ′

restricted to each regular fiber Lc, c ∈ C\C is isomorphic to the n-th
de Rham cohomology of Lc with complex coefficients. The Gauss-Manin
connection associated to the fibration f on H ′ turns out to be a map

∇ : H ′ → H ′
C

satisfying the Leibniz rule, where for a set C̃ ⊂ C by H ′
C̃

we mean the
localization of H ′ on the multiplicative subgroup of C[t] generated by t −
c, c ∈ C̃ (see §3). Using the Leibniz rule one can extend ∇ to a function
from H ′

C̃
to itself. Here C̃ is any subset of C containing C.

The mixed Hodge structure (W•, F
•) of Hn(Lc,C) is defined by Deligne

in [5] using the hypercohomology interpretation of the cohomology of Lc

TOME 57 (2007), FASCICULE 3



778 Hossein MOVASATI

and the sheaf of meromorphic forms with logarithmic poles. It is natural
to define a double filtration (W•, F

•) in H ′ as follows: WmH
′, m ∈ Z

(resp. F kH ′, k ∈ Z) consists of elements ψ ∈ H ′ such that the restriction
of ψ on all Lc’s except a finite number of them belongs to WmH

n(Lc,C)
(resp. F kHn(Lc,C)). In connection to the work of Steenbrink and Zucker,
we mention that on C\C we have the variation of mixed Hodge structures
Hn(Lt,C), t ∈ C\C. The Brieskorn module H ′ for a strongly tame polyno-
mial gives a free extension to C of the underlying free OC\C-module. Here
we identify coherent sheaves on C with finite modules over C[t] by taking
the global sections. Therefore, the mentioned filtrations of H ′ in this text
are given by the maximal extensions as C[t]-submodules of the Brieskorn
module. Since in our situation H ′ is freely generated of finite rank, they
are also freely generated sub-modules of H ′. Their rank is equal to to the
dimensions of the mixed Hodge structure of a regular fiber of f . Note that
we do not know yet whether Grk

FGr
W
m H ′, k ∈ Z, m = n, n + 1 are freely

generated C[t]-modules. In the same way we define (W•, F
•) of the local-

ization of H ′ over multiplicative subgroups of C[t]. In this article we prove
that:

Theorem 0.1. — Let b ∈ C\C be a regular value of f ∈ C[x]. If f is
a (weighted) strongly tame polynomial then GrW

m H ′ = 0 for m 6= n, n+ 1
and there exist a map β ∈ I → dβ ∈ N ∪ {0} and C ⊂ C̃ ⊂ C such that
b 6∈ C̃ and

(0.2) ∇kηβ , β ∈ I, Aβ = k

form a basis of Grn+1−k
F GrW

n+1H
′
C̃

and the forms

(0.3) ∇kηβ , Aβ +
1
d

6 k 6 Aβ +
dβ

d

form a basis of Grn+1−k
F GrW

n H ′
C̃

, where ∇k = ∇ ◦∇ ◦ · · · ◦ ∇ k times.

The numbers dβ and the set C̃ are calculated from a monomial basis of
the Jacobian of the homogenization of f−b (see Lemma 6.3) and hence they
are not unique and may depend on the choice of b. For a generic b one can
put dβ = d− 1 but this is not the case for all b’s (see Example 7.2). In [18]
the equality C̃ = C is shown for many examples of f in two variables and for
a suitable choice of dβ ’s. For those examples a similar theorem is proved as
above for the Brieskorn module rather than its localization. This has many
applications in the theory of Abelian integrals in differential equations (see
[11, 20]). When f = g is a quasi-homogeneous polynomial of degree d

with an isolated singularity at 0 ∈ Cn+1 our result can be obtained from

ANNALES DE L’INSTITUT FOURIER



MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES 779

J. Steenbrink’s result in [29] using the residue theory adapted to Brieskorn
modules (see Lemma 4.1, §4). In this case C = {0} and any two regular
fibers are biholomorphic. We have dβ = d − 1, ∀β ∈ I, ∇(ηβ) = Aβ

t ηβ

and so ∇kηβ = Aβ(Aβ−1)···(Aβ−k+1)
tk ηβ . In this case we get the following

stronger statement: ηβ , Aβ = k ∈ N form a basis of Grn+1−k
F GrW

n+1H
′ and

ηβ , Aβ 6∈ N,−[−Aβ ] = k form a basis of Grn+1−k
F GrW

n H ′.
One may look at the fibration f = t as an affine variety X defined over

the function field C(t) and interpret Theorem 0.1 as the existence of mixed
Hodge structure on the de Rham cohomology of X (see [15] and also [22]).
However, we note that the Brieskorn module is something finer than the
de Rham cohomology of X; for instance if we do not have the tameness
property H ′ may not be finitely generated.

One of the initial motivations for me to get theorems like Theorem 0.1
was in obtaining the property of being a Hodge cycle in terms of the van-
ishing of explicit integrals of polynomial n-forms in Cn+1. In the case n
even, a cycle in Hn(Lc,Z), c 6∈ C is called a Hodge cycle if its image in
Hn(L̂c,Z) is a Hodge cycle, where L̂c is the smooth compactification of
Lc. Since the mixed Hodge structure on Hn(Lc,C) is independent of the
compactification and the map i : Hn(L̂c,C) → Hn(Lc,C) induced by the
inclusion Lc ⊂ L̂c is a weight zero morphism of mixed Hodge structures,
this definition does not depend on the compactification of Lc. Moreover,
GrW

n Hn(Lc,C) in the case α1 = · · · = αn+1 = 1 coincides with the prim-
itive cohomology of the canonical compactification and hence, we capture
all the Hodge cycles contained in the primitive cohomology (via Poincaré
duality).

Corollary 0.2. — In the situation of Theorem 0.1, a cycle δc ∈
Hn(Lc,Z), c ∈ C\C̃ is Hodge if and only if( ∂k

∂tk

∫
δt

ηβ

)
|t=c= 0, ∀(β, k) ∈ Ih,

where Ih = {(β, k) ∈ I × Z | Aβ + 1
d 6 k 6 Aβ + dβ

d , Aβ 6∈ N, k 6 n
2 }

and {δt}t∈(C,c) is a continuous family of cycles in the fibers of f which is
obtained by using a local topological trivialization of f around c.

Note that ( ∂k

∂tk

∫
δt

ηβ

)
|t=c=

∫
δc

∇kηβ =
∑
β∈I

pβ,k(c)
∫

δc

ηβ

where ∇kηβ =
∑

β∈I pβ,kηβ , pβ,k ∈ C[t]C , and the forms ∇kηβ , (β, k) ∈
Ih form a basis of F

n
2 +1H ′

C̃
∩ WnH

′
C̃

. Also Hn(Lc,Z) is generated by a

TOME 57 (2007), FASCICULE 3



780 Hossein MOVASATI

distinguished set of vanishing cycles (see [7, 1]) and one may be interested
in constructing such a distinguished set of vanishing cycles, try to carry out
explicit integration and hence obtain more explicit descriptions of Hodge
cycles. For an ω ∈ H ′ the function h(t) =

∫
δt
ω extends to a multivalued

function on C\C and satisfies a Picard-Fuchs equation with possible poles
at C. For a quasi-homogeneous polynomial f = g the Picard-Fuchs equation
associated to ηβ is t∂h

∂t − Aβ ·h = 0. For the example f = x3
1 + x3

2 + · · · +
x3

5 − x1 − x2 which has a non-trivial variation of Hodge structures using
Singular (see §7) we get the following fact: For all c ∈ C − {± 4

3
√

3
, 0} a

cycle δ ∈ H4(Lc,Z) is Hodge if and only if

(972c2 − 192)
∫

δ

x1x2η + (−405c3 − 48c)
∫

δ

x2η

+ (−405c3 − 48c)
∫

δ

x1η + (243c4 − 36c2 + 64)
∫

δ

η = 0.

Since the Hodge conjecture is proved for cubic hypersurfaces of dimension
4 by C. Clemens, J. P. Murre and S. Zucker (see [33]), we conclude that an
integral

∫
δ
ω divided by π2 is an algebraic number, where ω is a differential

4-form over Q and it is without residues at infinity (see §7). In [17] we have
used this idea to compute the values of the Gauss hypergeometric series at
certain algebraic points.

Let us explain the structure of the article. In §1 we recall some termi-
nology on weighted projective spaces. In §2 we explain the idea that to
be able to give descriptions of Hodge cycles in terms of integrals one must
consider them with support in affine varieties and then use Theorem 0.1
and get the property of being a Hodge cycle in terms of the vanishing of
integrals. In §3 we introduce two Brieskorn modules H ′ and H ′′ associated
to a polynomial f and the notion of Gauss-Manin connection on them. The
version of Gauss-Manin connection we use here comes from the context of
differential equations (see [20]) and the main point about it is that we can
iterate it. In §4 we see how the iteration of an element ω of H ′′ by the
Gauss-Manin connection is related to the residue of ω/(f − c)k, k ∈ N in
the regular fiber Lc of f . §5 is dedicated to a generalization of a theorem
of Griffiths (see [14]) to weighted projective spaces by J. Steenbrink (see
[29]). The main point in this section is Theorem 5.2. What is new is an
explicit basis of the underlying cohomology. In §6 we prove Theorem 0.1.
§7 is dedicated to some examples.

When the first draft of this paper was written M. Schulze told me
about his article [26] in which he gives an algorithm to calculate a good
C[∇−1]-basis of the Brieskorn module for strongly tame polynomials. For

ANNALES DE L’INSTITUT FOURIER



MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES 781

the moment the only thing which I can say is that in the case f = g

the set {ηβ , β ∈ I} is also a good basis of the C[∇−1]-module H ′ because
tηβ = (Aβ +1)∇−1ηβ , ∀β ∈ I. In particular, any strongly tame polynomial
in the sense of this article has the same monodromy at infinity as g and so
the spectrum of H ′ is equal to {Aβ + 1, β ∈ I}. The generalization of the
result of this article for a tame polynomial in the sense of [23] or a Lefschetz
pencil (see [21]) would be a nice challenge. Note that the pair (W•, F

•) de-
fined on H ′ is different form the mixed Hodge structure constructed in [23]
(using also the Gauss-Manin connection), in which the weight filtration is
due to the monodromy at infinity.

One can compute ∇, dβ ’s and calculate every element of H ′ as a C[t]-
linear combination of ηβ ’s. These are done in the library foliation.lib
written in Singular and is explained in [18]. This paper is devoted to the
applications of the existence of such a basis in differential equations. Also
for many examples it is shown that by modification of Theorem 0.1 one
can get a basis of H ′ compatible with W•H

′ and F •H ′.

Acknowledgment. — I learned Hodge theory when I was at the Max-
Planck Institute for Mathematics in Bonn and in this direction S. Archava
helped me a lot. Here I would like to thank him and the Institute. When
I had the rough idea of the results of this article in my mind, I visited
Kaiserslautern, where Gert-Martin Greuel drew my attention to the works
of J. Steenbrink. Here I would like to thank him and the Singular team.
I would like to thank the Mathematics Department of the University of
Göttingen, where the main result of this article was obtained, for hospitality
and financial support. My thanks also go to T. E. Venkata Balaji for useful
conversations in Algebraic Geometry.

1. Weighted projective spaces

In this section we recall some terminology on weighted projective spaces.
For more information on weighted projective spaces the reader is referred
to [8, 29].

Let n be a natural number and α := (α1, α2, . . . , αn+1) be a vector of
natural numbers whose greatest common divisor is one. The multiplicative
group C∗ acts on Cn+1 in the following way:

(X1, X2, . . . , Xn+1) → (λα1X1, λ
α2X2, . . . , λ

αn+1Xn+1), λ ∈ C∗.

We also denote the above map by λ. The quotient space

Pα := Cn+1/C∗

TOME 57 (2007), FASCICULE 3



782 Hossein MOVASATI

is called the projective space of weight α. If α1 = α2 = · · · = αn+1 = 1
then Pα is the usual projective space Pn (since n is a natural number, Pn

will not mean a zero dimensional weighted projective space). One can give

another interpretation of Pα as follow: Let Gαi :=
{
e

2π
√
−1m

αi | m ∈ Z
}

.
The group

∏n+1
i=1 Gαi acts discretely on the usual projective space Pn as

follows:

(ε1, ε2, . . . , εn+1), [X1 : X2 : · · · : Xn+1] → [ε1X1 : ε2X2 : · · · : εn+1Xn+1].

The quotient space Pn/
∏n+1

i=1 Gαi is canonically isomorphic to Pα. This
canonical isomorphism is given by

[X1 : X2 : · · · : Xn+1] ∈ Pn/

n+1∏
i=1

Gαi → [Xα1
1 : Xα2

2 : · · · : Xαn+1
n+1 ] ∈ Pα.

Let d be a natural number. The polynomial (resp. the polynomial form)
ω in Cn+1 is weighted homogeneous of degree d if

λ∗(ω) = λdω, λ ∈ C∗.

For a polynomial g this means that

g(λα1X1, λ
α2X2, . . . , λ

αn+1Xn+1) = λdg(X1, X2, . . . , Xn+1), ∀λ ∈ C∗.

Let g be an irreducible polynomial of (weighted) degree d. The set g =
0 induces a hypersurface D in Pα, α = (α1, α2, . . . , αn+1). If g has an
isolated singularity at 0 ∈ Cn+1 then Steenbrink has proved that D is a
V -manifold/quasi-smooth variety. A V -manifold may be singular but it has
many common features with smooth varieties (see [29, 8]).

For a polynomial form ω of degree dk, k ∈ N in Cn+1 we have λ∗ ω
gk = ω

gk

for all λ ∈ C∗. Therefore, ω
gk induce a meromorphic form on Pα with poles

of order k along D. If there is no confusion we denote it again by ω
gk . The

polynomial form

(1.1) ηα =
n+1∑
i=1

(−1)i−1αiXid̂Xi

where d̂Xi = dX1∧· · ·∧dXi−1∧dXi+1∧· · ·∧dXn+1, is of degree
∑n+1

i=1 αi.
Let P(1,α) = {[X0 : X1 : · · · : Xn+1] | (X0, X1, . . . , Xn+1) ∈ Cn+2} be

the projective space of weight (1, α), α = (α1, . . . , αn+1). One can consider
P(1,α) as a compactification of Cn+1 = {(x1, x2, . . . , xn+1)} by putting

(1.2) xi =
Xi

Xαi
0

, i = 1, 2, . . . , n+ 1.

ANNALES DE L’INSTITUT FOURIER



MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES 783

The projective space at infinity Pα
∞ = P(1,α) − Cn+1 is of weight α :=

(α1, α2, . . . , αn+1).
Let f be the strongly tame polynomial of (weighted) degree d in the

introduction and g be its last quasi-homogeneous part. Now we can look
at f as a rational function on P(1,α) and the fibration f = t as a pencil in
P(1,α) with the axis {g = 0} ⊂ Pα

∞. Note that Pα
∞ itself is a fiber of this

pencil. This implies that the closure Lc of Lc := f−1(c) in P(1,α) intersects
Pα
∞ transversally in the sense of V -manifolds. In particular,

1. f has connected fibers because f at the infinity has connected fibers
2. f has only isolated singularities because every algebraic variety of

dimension greater than zero in P(1,α) intersects Pα
∞.

After making a blow-up along the axis {g = 0} ⊂ Pα
∞ and using Ehres-

mann’s fibration theorem one concludes that f is C∞ fiber bundle over C\C.

2. Hodge cycles

Let M be a smooth projective complex manifold of dimension n. The
cohomologies of M with complex coefficients carry the so called Hodge
decomposition

(2.1) Hm(M,C) = Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕H1,m−1 ⊕H0,m.

Using de Rham cohomology

Hm(M,C) ∼= Hm
deR(M) :=

Zm
d

dAm−1

we have Hp,q ∼= Zp,q
d

dAp+q−1∩Zp,q
d

, where Am (resp. Zm
d , Zp,q

d ) is the set of C∞

differential m-forms (resp. closed m-forms, closed (p, q)-forms) on M (with
this notation one has the canonical inclusions Hp,q → Hm(M,C) and one
can prove (2.1) using harmonic forms, see M. Green’s lectures [12], p. 14).
The Hodge filtration is defined

Gp := F pHm(M,C) = Hm,0 ⊕Hm−1,1 ⊕ · · · ⊕Hp,m−p.

Let m be an even natural number and Z =
∑s

i=1 riZi, where Zi, i =
1, 2, . . . , s is a subvariety of M of complex dimension m

2 and ri ∈ Z. Using
a resolution map Z̃i →M , where Z̃i is a complex manifold, one can define
an element

∑s
i=1 ri[Zi] ∈ Hm(M,Z) which is called an algebraic cycle

(see [2]). Since the restriction to Z of a (p, q)-form with p + q = m and
p 6= m

2 is identically zero, an algebraic cycle δ has the following property:∫
δ

G
m
2 +1 = 0.

TOME 57 (2007), FASCICULE 3



784 Hossein MOVASATI

A cycle δ ∈ Hm(M,Z) with the above property is called a Hodge cycle.
The assertion of the Hodge conjecture is that if we consider the rational
homologies then a Hodge cycle δ ∈ Hn(M,Q) is an algebraic cycle, i.e.,
there exist subvarieties Zi ⊂ M of dimension m

2 and rational numbers ri
such that δ =

∑
ri[Zi]. The difficulty of this conjecture lies in constructing

varieties just with their homological information.
Now let U be a quasi-projective smooth variety, U ⊂ M its compactifi-

cation in the projective variety M such that N := M −U is a divisor with
normal crossings (see [5], 3.2) and

i : Hm(U,Z) → Hm(M,Z)

be the map induced by the inclusion U ⊂ M . For instance, Lc = f−1(c),
c ∈ C\C of the previous section with m = n is an example of such a
quasi-projective smooth variety whose compactification divisor has only
one irreducible component. We are interested to identify Hodge cycles in
the image of i.

Remark 2.1. — Let M be a hypersurface of even dimension n in the
projective space Pn+1. By the first Lefschetz theorem Hm(M,Z) ∼=
Hm(Pn+1,Z), m < n and so the only interesting Hodge cycles are in
Hn(M,Z). For a general hypeplane section N of M , the long exact se-
quence of the pair (M,U), where U is the complement of N in M , gives
rise to the isomorphism Hn

prim(M,Q) ∼= WnH
n(U,Q) induced by the inclu-

sion U ⊂M . This implies that we capture all Hodge cycles in the primitive
cohomology (using Poincaré duality).

The mixed Hodge structure of Hm(U,Q) consists of two filtrations

0 = Fm+1 ⊂ Fm ⊂ · · · ⊂ F 1 ⊂ F 0 = Hm(U,C)

0 = Wm−1 ⊂Wm ⊂Wm+1 ⊂ · · ·Wm+a−1 ⊂Wm+a

= Hm(U,C), 1 6 a 6 m

(2.2)

where W is defined over Q, i.e., it is defined on Hn(U,Q) and we have
complexified it. The number a is the minimum of m and the number of
irreducible components of N . Therefore, it is 1 for Lc. The first is the
Hodge filtration and the second is the weight filtration. The Hodge filtration
induces a filtration on GrW

a := Wa/Wa−1 and we set

(2.3) Grb
FGr

W
a := F bGrW

a /F b+1GrW
a =

(F b ∩Wa) +Wa−1

(F b+1 ∩Wa) +Wa−1
, a, b ∈ Z.

Let r : Hm(M,C) → Hm(U,C) be induced by inclusion. We have Wm =
r(Hm(M,C)) and r is a weight zero morphism of mixed Hodge structures.
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It is strict and in particular

r(G
m
2 +1) = F

m
2 +1 ∩ Im(r) = F

m
2 +1 ∩Wm

(see for instance [16] for definitions). Now let us be given a cycle δ ∈
Hm(U,Z) whose image in Hm(M,Z) is Hodge. The condition of being a
Hodge cycle translate into a property of δ using the mixed Hodge structure
of Hm(U,C) as follows

(2.4)
∫

i(δ)

G
m
2 +1 =

∫
δ

r(G
m
2 +1) =

∫
δ

F
m
2 +1 ∩Wm = 0.

Definition 2.2. — A cycle δ ∈ Hm(U,Z) is called Hodge if (2.4) holds,
where F

m
2 +1 (resp. Wm) is the

(
m
2 + 1

)
-th (resp. m-th) piece of the

Hodge filtration (resp. weight filtration) of the mixed Hodge structure of
Hm(U,Q).

All the elements in the kernel of i are Hodge cycles and we call them
trivial Hodge cycles.

3. Global Brieskorn modules

In this section we introduce two Brieskorn modules H ′ and H ′′ associated
to a polynomial f and the notion of Gauss-Manin connection on them. In
the usual definition of Gauss-Manin connection for n-th cohomology of the
fibers of f , if we take global sections and then compose it with the vector
field ∂

∂t in C then we obtain our version of Gauss-Manin connection.
Let f be the strongly tame polynomial in the introduction. Multiplying

by f defines a linear operator on

(3.1) Vf :=
C[x]

〈 ∂f
∂xi

| i = 1, 2, . . . , n+ 1〉

which is denoted by A. In the previous section we have seen that f has
isolated singularities and so Vf is a C-vector space of finite dimension µ,
where µ is the sum of local Milnor numbers of f , and eigenvalues of A
are exactly the critical values of f (see for instance [20], Lemma 1.1). Let
S(t) ∈ C[t] be the minimal polynomial of A, i.e., the polynomial with the
minimum degree and with the leading coefficient 1 such that S(A) ≡ 0 as
a function from Vf to Vf

S(f) =
n+1∑
i=1

pi
∂f

∂xi
, pi ∈ C[x]
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or equivalently

(3.2) S(f)dx = df ∧ ηf , ηf =
n+1∑
i=1

(−1)i−1pid̂xi.

>From now on we fix an ηf with the above property. To calculate S(t) we
may start with the characteristic polynomial S(t) = det(A − tI), where
I is the µ × µ identity matrix and we have fixed a monomial basis of Vf

and have written A as a matrix. This S has the property (3.2) but it is in
general useless from computational point of view (see §7). Note that if f has
rational coefficients then S has also rational coefficients. The polynomial S
has only zeros at critical values C of f .

The global Brieskorn modules are

H ′′ =
Ωn+1

df ∧ dΩn−1
, H ′ =

df ∧ Ωn

df ∧ dΩn−1
.

They are C[t]-modules. Multiplication by t corresponds to the usual mul-
tiplication of differential forms with f . The Gauss-Manin connection

∇ : H ′ → H ′′, ∇([df ∧ ω]) = [dω]

is a well-defined function and satisfies the Leibniz rule

(3.3) ∇(pω) = p∇(ω) + p′ω, p ∈ C[t], ω ∈ H ′

where p′ is the derivation with respect to t. Let H ′
C (resp. H ′′

C and C[t]C)
be the localization of H ′ (resp. H ′′ and C[t]) on the multiplicative subgroup
of C[t] generated by {t − c, c ∈ C}. An element of H ′

C is a fraction ω/p,
ω ∈ H ′, p ∈ C[t], {p = 0} ⊂ C. Two such fractions ω/p and ω̃/p̃ are
equal if p̃ω = pω̃. We have H′′

H′ = Vf and so S·H ′′ ⊂ H ′. This means that
the inclusion H ′ ⊂ H ′′ induces an equality H ′

C = H ′′
C . We denote by HC

the both side of the equality. Let Ω̃i denote the set of rational differential
i- forms in Cn+1 with poles along the Lc, c ∈ C. The canonical map
HC → Ω̃n+1

df∧dΩ̃n
is an isomorphism of C[t]C-modules and this gives another

interpretation of HC . One extends ∇ as a function from HC to itself by
(3.4)

∇
( [df ∧ ω]

p

)
=

[
d
( ω

p(f)

)]
=
p[dω]− p′[df ∧ ω]

p2
, p ∈ C[t], [df ∧ ω] ∈ H ′.

This is a natural extension of ∇ because it satisfies

∇
(ω
p

)
=
p∇ω − p′ω

p2
, p ∈ C[t], ω ∈ HC .
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Lemma 3.1. — We have

∇([Pdx]) =
[(QP − P ·S′(f))dx]

S
, P ∈ C[x]

where

QP =
n+1∑
i=1

( ∂P
∂xi

pi + P
∂pi

∂xi

)
.

Proof.

∇([Pdx]) = ∇
( [df ∧ Pηf ]

S

)
= [d

( Pηf

S(f)

)
]

=
[S(f)d(Pηf )− S′(f)Pdf ∧ ηf ]

S2
=

[d(Pηf )− S′(f)Pdx]
S

=
[dP ∧ ηf + P · dηf − P ·S′(f)dx]

S
=

[(QP − P ·S′(f))dx]
S

.

�

It is better to have in mind that the polynomial QP is defined by the
relation d(Pηf ) = QP dx. In the next section we will use the iterations of
Gauss-Manin connection, ∇k = ∇ ◦ ∇ ◦ · · · ◦ ∇, k times. To be able to
calculate them we need the following operators

∇k : H ′′ → H ′′, k = 0, 1, 2, . . .

∇k(ω) = ∇
( ω

S(t)k

)
S(t)k+1 = S(t)∇(ω)− k·S′(t)ω.

For ω = Pdx we obtain the formula

∇k(Pdx) = (QP − (k + 1)S′(t)P )dx.

We show by induction on k that

(3.5) ∇k =
∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0

S(t)k
.

The case k = 1 is trivial. If the equality is true for k then

∇k+1 = ∇ ◦∇k = ∇
(∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0

S(t)k

)
=
∇0 ◦ ∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0 − kS′(t)∇k−1 ◦ ∇k−2 ◦ · · · ◦ ∇0

S(t)k+1

=
∇k ◦ ∇k−1 ◦ · · · ◦ ∇0

S(t)k+1
.

The Brieskorn module H ′ = Ωn

df∧Ωn−1+dΩn−1 defined in the introduction is
isomorphic to the one in this section by the map [ω] → [df ∧ω]. The inverse
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of the canonical isomorphism H ′
C → H ′′

C is denoted by ω ∈ H ′′
C → ω

df ∈ H ′
C .

The Gauss-Manin connection with this notation can be written in the form

∇ : H ′ → H ′
C , ∇(ω) =

dω

df
:=

ω1

S(t)

where S(f)dω = df ∧ ω1. In the literature one also calls dω
df the Gelfand-

Leray form of dω. Looking in this way it turns out that

(3.6) df ∧∇ω = ∇(df ∧ ω), ∀ω ∈ H ′.

Let U be an small open set in C\C, δt ∈ Hn(Lt,Z), t ∈ U be a continu-
ous family of cycles and ω ∈ H ′. The main property of the Gauss-Manin
connection is

(3.7)
∂

∂t

∫
δt

ω =
∫

δt

∇ω.

Recall the notations introduced for a quasi-homogeneous polynomial f = g

in Introduction. For this f S(t) = t and ηf is η in (0.1). This means that
fdx = df ∧ η. Since this equality is linear in f it is enough to check it for
monomials xα, α·w = 1.

dxα ∧ η = (
n+1∑
i=1

αi
xα

xi
dxi) ∧ (

n+1∑
i=1

(−1)i−1wixid̂xi) = (α·w)xαdx = xαdx.

We have also dη = (w· 1)dx.

dηβ = dxβ∧η+xβdη = (β·w)xβdx+(w· 1)xβdx = Aβx
βdx =

Aβ

f
df∧(xβη)

which implies that ∇ηβ = Aβ

t ηβ ( In the same way on can check that
∇(xβdx) = (Aβ−1)

t xβdx). This implies that ∂
∂t

∫
δt
ηβ = Aβ

t

∫
δt
ηβ . Therefore

there exists a constant number C depending only on ηβ and δt such that∫
δt
ηβ = CtAβ . One can take a branch of tAβ so that C =

∫
δ1
ηβ .

4. Residue map on the Brieskorn module

Let us be given a closed submanifold N of pure real codimension c in a
manifold M . The Leray (or Thom-Gysin) isomorphism is

τ : Hk−c(N,Z)→̃Hk(M,M −N,Z)

holding for any k, with the convention that Hs(N) = 0 for s < 0. Roughly
speaking, given x ∈ Hk−c(N), its image by this isomorphism is obtained
by thickening a cycle representing x, each point of it growing into a closed
c-disk transverse to N in M (see for instance [4], p. 537). Let N be a
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connected codimension one submanifold of the complex manifold M of
dimension n. Writing the long exact sequence of the pair (M,M −N) and
using τ we obtain:

(4.1) · · · → Hn+1(M,Z) → Hn−1(N,Z) σ→ Hn(M −N,Z)
i→ Hn(M,Z) → · · ·

where σ is the composition of the boundary operator with τ and i is
induced by inclusion. Let ω ∈ Hn(M − N,C) := Hn(M − N,Z)∗ ⊗ C,
where Hn(M − N,Z)∗ is the dual of Hn(M − N,Z). The composition
ω ◦ σ : Hn−1(N,Z) → C defines a linear map and its complexification
is an element in Hn−1(N,C). It is denoted by ResN (ω) and called the
residue of ω in N . We consider the case in which ω in the n-th de Rham
cohomology of M − N is represented by a meromorphic C∞ differential
form ω′ in M with poles of order at most one along N . Let fα = 0 be the
defining equation of N in a neighborhood Uα of a point p ∈ N in M and
write ω′ = ωα∧ df

f . For two such neighborhoods Uα and Uβ with non empty
intersection we have ωα = ωβ restricted to N . Therefore we get a (n− 1)-
form on N which in the de Rham cohomology of N represents ResN ω (see
[14] for details). This is called Poincaré residue. The residue map ResN is
a morphism of weight −2 of mixed Hodge structures, i.e.,

ResN (WpH
n(M −N,C)) ⊂ ResN (Wp−2H

n−1(N,C)), p ∈ Z

ResN (F qHn(M −N,C)) ⊂ ResN (F q−1Hn−1(N,C)), q ∈ Z.
We fix a regular value c ∈ C\C. To each ω ∈ H ′′

C we can associate the
residue of ω

(t−c)k in Lc which is going to be an element of Hn(Lc,C). This
map is well-defined because

df ∧ dω
p(f)(f − c)k

= d
( df ∧ ω
p(f)(f − c)k

)
, p ∈ C[t], ω ∈ Ωn−1.

Lemma 4.1. — For ω ∈ H ′′ and k = 2, 3, . . . the forms ω
(t−c)k and

∇ω
(k−1)(t−c)k−1 have the same residue in Lc. In particular the residue of ω

(t−c)k

in Lc is the restriction of ∇k−1ω
(k−1)!df to Lc and the residue of df∧ω

(t−c)k , ω ∈ H ′

in Lc is the restriction of ∇k−1ω
(k−1)! to Lc.

Proof. — This Lemma is well-known in the theory of Gauss-Manin sys-
tems (see for instance [24]). We give an alternative proof in the context of
this article. We have

∇
( ω

(t− c)k−1

)
=

∇(ω)
(t− c)k−1

− (k − 1)
ω

(t− c)k
.
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According to (3.4), the left hand side corresponds to an exact form and so
it does not produce a residue in Lc. This proves that first part. To obtain
the second part we repeat k − 1 times the result of the first part on ω

(t−c)k

and we obtain ∇k−1ω
(k−1)!(t−c) . Now we take the Poincaré residue and obtain

the second statement. The third statement is a consequence of the second
and the identity (3.6). �

Note that the residue of ω
t−c , ω ∈ H

′′ in Lc coincides with the restriction
of ω

df ∈ H ′
C to Lc.

5. Griffiths-Steenbrink Theorem

This section is dedicated to a classic theorem of Griffiths in [14]. Its
generalization for quasi-homogeneous spaces is due to Steenbrink in [29].
In both cases there is not given an explicit basis of the Hodge structure of
the complement of a smooth hypersurface. This is the main reason to put
Theorem 5.2 in this article. Recall the notations of §1.

Lemma 5.1. — For a monomial xβ with Aβ = k ∈ N, the meromorphic
form xβdx

(f−t)k has a pole of order one at infinity and its Poincaré residue at

infinity is Xβηα

gk .

Proof. — Let us write the above form in the homogeneous coordinates
(1.2). We use d

(
Xi

X
αi
0

)
= X−αi

0 dXi − αiXiX
−αi−1
0 dX0 and

xβdx

(f − t)k
=

(
X1

X
α1
0

)β1

· · ·
(

Xn+1

X
αn+1
0

)βn+1

d
(

X1
X

α1
0

)
∧ · · · ∧ d

(
Xn+1

X
αn+1
0

)
(f

(
X1

X
α1
0
, . . . , Xn+1

X
αn+1
0

)
− t)k

=
Xβη(1,α)

X
(
∑n+1

i=1
βiαi)+(

∑n+1

i=1
αi)+1−kd

0 (X0F̃ − g(X1, X2, . . . , Xn+1))k

=
Xβη(1,α)

X0(X0F̃ − g(X1, X2, . . . , Xn+1))k

=
dX0

X0
∧ Xβηα

(X0F̃ − g)k
.

The last equality is up to forms without pole at X0 = 0. The restriction of
Xβηα

(X0F̃−g)k
to X0 = 0 gives us the desired form. �
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Theorem 5.2 (Griffiths-Steenbrink). — Let g(X1, X2, . . . , Xn+1) be a
weighted homogeneous polynomial of degree d, weight α = (α1, α2, . . . ,

αn+1) and with an isolated singularity at 0 ∈ Cn+1(and so D = {g = 0} is
a V -manifold). We have

Hn(Pα −D,C) ∼=
H0(Pα,Ωn(∗D))

dH0(Pα,Ωn−1(∗D))

and under the above isomorphism

(5.1) Grn+1−k
F GrW

n+1H
n(Pα −D,C) := Fn−k+1/Fn−k+2 ∼=

H0(Pα,Ωn(kD))
dH0(Pα,Ωn−1((k − 1)D)) +H0(Pα,Ωn((k − 1)D))

where 0 = Fn+1 ⊂ Fn ⊂ · · · ⊂ F 1 ⊂ F 0 = Hn(Pα − D,C) is the Hodge
filtration of Hn(Pα −D,C). Let {Xβ | β ∈ I} be a basis of monomials for
the Milnor vector space

C[X1, X2, . . . , Xn+1]/〈
∂g

∂Xi
| i = 1, 2, . . . , n+ 1〉.

A basis of (5.1) is given by

(5.2)
Xβηα

gk
, β ∈ I, Aβ = k

where ηα is given by (1.1).

Recall that if D is normal crossing divisor in a projective variety M

then Hm(M − D,C) ∼= Hm(M,Ω•(logD)),m > 1 and the i-th piece of
the Hodge filtration of Hm(M −D,C) under this isomorphism is given by
Hm(M,Ω•>i(logD)) (see [5]). By definition we have F 0/F 1 ∼= Hn(M,OM )
and so in the situation of the above theorem F 0 = F 1. Note that in the
above theorem the residue map r : Hn(Pα − D,C) → Hn−1(D,C)0 is an
isomorphism of Hodge structures of weight −2, i.e., it maps the k-th piece
of the Hodge filtration of Hn(Pα − D,C) to the (k − 1)-th piece of the
Hodge filtration of Hn−1(D,C)0. Here the sub index 0 means the primitive
cohomology.

Proof. — The first part of this theorem for usual projective spaces is due
to Griffiths [14]. The generalization for quasi-homogeneous spaces is due
to Steenbrink [29]. The essential ingredient in the proof is Bott’s vanishing
theorem for quasi-homogeneous spaces: Let L ∈ H1(Pα,O∗) be a line bun-
dle on Pα with c(π∗L) = k, where Pn → Pα is the canonical map. Then
Hp(Pα,Ωq

Pα ⊗L) = 0 except possibly in the case p = q and k = 0, or p = 0
and k > q, or p = n and k < q − b.
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The proof of the second part which gives an explicit basis of Hodge
filtration is as follows: We consider Pα as the projective space at infinity
in P(1,α). According to Lemma 5.1 for f = g the residue of the form xβdx

(g−1)k

at g = 1 is (5.2). Now we use Lemma 5 of [29]. This lemma says that the
residue of xβdx

(g−1)k at infinity form a basis of (5.1). �

6. An explicit basis of H
C̃

In this section we prove Theorem 0.1. In the following by homogeneous we
mean weighted homogeneous with respect to fixed weights α = (α1, α2, . . . ,

αn+1).
Let f be the polynomial in the introduction, f = f0+f1+f2+· · ·+fd−1+

fd be its homogeneous decomposition in the graded ring C[x1, x2, . . . , xn+1],
deg(xi) = αi and g := fd the last homogeneous part of f . Let also F =
f0x

d
0 + f1x

d−1
0 + · · ·+ fd−1x0 + g be the homogenization of f .

Lemma 6.1. — The set xI generates freely the C[x0]-module

V := C[x0, x]/〈
∂F

∂xi
| i = 1, 2, . . . , n+ 1〉.

Proof. — First we prove that xI generates V as a C[x0]-module. We
write the expansion of P (x0, x) =

∑k
i=0 x

i
0Pi(x) ∈ C[x0, x] in x0 and so it

is enough to prove that every element P ∈ C[x] can be written in the form

(6.1) P =
∑
β∈I

Cβx
β +

n+1∑
i=1

Qi
∂F

∂xi
, Cβ ∈ C[x0], Qi ∈ C[x0, x].

Since xI is a basis of Vg, we can write

(6.2) P =
∑
β∈I

cβx
β +

n+1∑
i=1

qi
∂g

∂xi
, cβ ∈ C, qi ∈ C[x].

We can choose qi’s so that

(6.3) deg(qi) + deg
( ∂g

∂xi

)
6 deg(P ).

If this is not the case then we write the non-trivial homogeneous equation
of highest degree obtained from (6.2). Note that ∂g

∂xi
is homogeneous. If

some terms of P occur in this new equation then we have already (6.3). If
not we subtract this new equation from (6.2). We repeat this until getting
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the first case and so the desired inequality. Now we have ∂g
∂xi

= ∂F
∂xi

−
x0

∑d−1
j=0

∂fj

∂xi
xd−j−1

0 and so

(6.4) P =
∑
β∈I

cβx
β +

n+1∑
i=1

qi
∂F

∂xi
− x0(

n+1∑
i=1

d−1∑
j=0

qi
∂fj

∂xi
xd−j−1

0 ).

>From (6.3) we have (∗) : deg(qi
∂fj

∂xi
) 6 deg(P )−1. We write again qi

∂fj

∂xi
in

the form (6.2) and substitute it in (6.4). By degree conditions this process
stops and at the end we get the equation (6.1).

Now let us prove that xI generate the C[x0]-module freely. For every x0 =
a fixed, let Va be the specialization of V at x0 = a. All Va’s are vector spaces
of the same dimension and according to the above argument xI generates
all Va’s. For V0 it is even a C-basis and so xI is a basis of all Va’s. If the
elements of xI are not C[x0]-independent then we have C·

∑
β∈I Cβx

β = 0
in V for some C,Cβ ∈ C[x0] and Cβ ’s do not have common zeros. We take
an a which is not a zero of C. We have

∑
β∈I Cβ(a)xβ = 0 in Va which is

a contradiction. �

Proposition 6.2. — For every strongly tame polynomial f ∈ C[x] the
forms ωβ := xβdx, β ∈ I (resp. ηβ := xβη, β ∈ I) form a C[t]- basis of the
Brieskorn module H ′′ (resp. H ′) of f .

Proof. — We first prove the statement for H ′′. The statement for f = g

is well-known (see for instance [1]). Recall the definition of the degree of a
form in §1. We write an element ω ∈ Ωn+1, deg(ω) = m in the form

ω =
∑
β∈I

pβ(g)ωβ + dg ∧ dψ, pβ ∈ C[t], ψ ∈ Ωn−1,

deg(pβ(g)ωβ) 6 m, deg(dψ) 6 m− d.

This is possible because g is homogeneous. Now, we write the above equality
in the form

ω =
∑
β∈I

pβ(f)ωβ + df ∧ dψ + ω′,

with
ω′ =

∑
β∈I

(pβ(g)− pβ(f))ωβ + d(g − f) ∧ dψ.

The degree of ω′ is strictly less than m and so we repeat what we have
done at the beginning and finally we write ω as a C[t]-linear combination
of ωβ ’s. The forms ωβ , β ∈ I are linearly independent because #I = µ and
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µ is the dimension of Hn(Lc,C) for a regular c ∈ C−C. The proof for H ′

is similar and uses the fact that for η ∈ Ωn one can write

(6.5) η =
∑
β∈I

pβ(g)ηβ + dg ∧ ψ1 + dψ2

and each piece in the right hand side of the above equality has degree less
than deg(η). �

The above proposition gives us an algorithm to write every element of
H ′ (resp. H ′′) as a C[t]-linear sum of ηβ ’s (resp. ωβ ’s). We must find such
an algorithm first for the case f = g, which is not hard to do (see [18]).
Note that if η ∈ Ωn is written in the form (6.5) then

dη =
∑
β∈I

(pβ(g)Aβ + p′β(g)g)ωβ − dg ∧ dψ1.

We specialize the module V at x0 = 1 and use Lemma 6.1 and obtain
the following fact: xI form a basis for the Milnor vector space Vf of f . Let
Ft = F − t·xd

0.

Lemma 6.3. — Let b ∈ C\C. There is a map β ∈ I → dβ ∈ N ∪ {0}
such that the C-vector space Ṽ := C[x0, x]/〈∂Fb

∂xi
| i = 0, 1, . . . , n + 1〉 is

freely generated by

(6.6) {xβ0
0 xβ , 0 6 β0 6 dβ − 1, β ∈ I}.

In particular, the C(t)-vector space

V ′ := C(t)[x0, x]/〈
∂Ft

∂xi
| i = 0, 1, . . . , n+ 1〉

is freely generate by (6.6).

Proof. — We consider the class Cl of all sets of the form (6.6) whose
elements are linearly independent in Ṽ . For instance the one element set
{xβ′} is in this class. In this example dβ′ = 1 and dβ = 0,∀β ∈ I − {β′}.
Since Ṽ is a finite dimensional C-vector space, Cl has only a finite number
of elements and so we can take a maximal element A of Cl, i.e., there is
no element of Cl containing A. We prove that A generates Ṽ and so it is
the desired set. Take a β ∈ I. We claim that xβxk

0 , k > dβ − 1, can be
written as a linear combination of the elements of A. The claim is proved by
induction on k. For k = dβ , it is true because A is maximal and A∪{xβx

dβ

0 }
is of the form (6.6). Suppose that the claim is true for k. We write xβxk

0

as linear combination of elements of A and multiply it by x0. Now we use
the hypothesis of the induction for k = dβ for the elements in the new
summand which are not in A and get a linear combination of the elements
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of A. Since Ṽ = V/〈∂Fb

∂x0
〉 and V is a C[x0]-module generate by xβ ’s, we

conclude that xβxk
0 , k ∈ N ∪ {0}, β ∈ I generate Ṽ and so A generates Ṽ .

If there is a C(t)-linear relation between the elements of (6.6) then we
multiply it by a suitable element of C(t) and obtain a C[t]-linear relation
such that putting t = b gives us a nontrivial relation in Ṽ . This proves the
second part. �

Remark 6.4. — Lemma 6.3 implies that for all c ∈ C, except a finite
number of them which includes C and does not include b, the set (6.6) is
a basis of the specialization of V ′ at t = c. The set C̃ of such exceptional
values may be greater than C. To avoid such a problem we may try to
prove the following fact which seems to be true:
(∗) Let C[t]C be the localization of C[t] on its multiplicative subgroup
generated by t − c, c ∈ C. There is a function β ∈ I → dβ ∈ N ∪ {0} such
that the C[t]C-module V ′′ := C[t]C [x0, x]/〈∂Ft

∂xi
| i = 0, 1, . . . , n+1〉 is freely

generated by {xβ0
0 xβ , 0 6 β0 6 dβ − 1, β ∈ I}.

In [18] I have used another algorithm (different from the one in the proof
of Lemma 6.3). The advantage of this algorithm is that it also determines
whether the obtained basis of V ′ is a C[t]C basis of V ′′ or not. A similar
algorithm shows that one can take dβ = d− 1 for a generic b.

Let f be a quasi-homogeneous polynomial of degree d. In this case Ft =
f − t·xd

0 and V ′ is generated by {xβxβ0
0 , β ∈ I, 0 6 β0 6 d− 2}. In fact it

generates the C[t]C-module V ′′ freely and so C̃ = C = {0}. The dimension
of V ′ is (d−1)µ and so the Milnor number of f− t·xd

0 is (d−1)µ. Since the
Milnor number is topologically invariant, we conclude that for an arbitrary
strongly tame function f the dimension of V ′ is (d− 1)µ and so∑

β∈I

dβ = (d− 1)µ.

Moreover, we have 0 < A(β,β0) = Aβ + β0+1
d < n + 2 for all β ∈ I and

0 6 β0 6 dβ − 1 and so

dβ < d(n+ 2−Aβ).

Proof of Theorem 0.1. — Since the dimensions of the pieces of the mixed
Hodge structure of a smooth fiber Lc does not depend on the analytic
structure, the equality GrW

m H ′ = 0, m 6= n, n+1 follows form Steenbrink’s
theorem for the quasi-homogeneous polynomials.

We use Lemma 6.3 and we obtain a basis {xβ0
0 xβ , 0 6 β0 6 dβ−1, β ∈ I}

of the C[t]
C̃

-module V ′′. Recall the notations introduced in §2 and C̃ in
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Remark 6.4. Theorem 5.2 and Lemma 5.1 imply that the residue of the
forms

(6.7)
xβdx

(f − c)k
, Aβ = k

in Lc form a basis of Grn+1−k
F GrW

n+1H
n(Lc,C) (Residue map is morphism

of weight -2 of mixed Hodge structures). By Theorem 5.2 for P(1,α) and the
hypersurface Xc : F − cxd

0 = 0, c ∈ C\C̃ and Lemma 6.3

xβ0
0 xβη(1,α)

(F − cxd
0)k

, Aβ +
β0 + 1
d

= k, 0 6 β0 6 dβ − 1

form a basis for Grn+2−k
F GrW

n+2H
n+1(P(1,α) −Xc,C). In the affine coordi-

nate Cn+1 ⊂ P(1,α), these forms are

(6.8)
xβdx

(f − c)k
, Aβ +

1
d

6 k 6 Aβ +
dβ

d
, k ∈ N.

So the residues of the above forms at Lc form a basis of Grn+1−k
F GrW

n

Hn(Lc,C). We apply Lemma 4.1 to the meromorphic forms (6.7) and (6.8)
and obtain the fact that the forms (0.2) (resp. the forms (0.3)) restricted
to the fiber Lc, c ∈ C\C̃ form a basis of Grn+1−k

F GrW
n+1H

n(Lc,C) (resp.

Grn+1−k
F GrW

n Hn(Lc,C)). Note that xβdx = d
(

ηβ

Aβ

)
. �

7. Examples and applications

In this section we give some examples of the polynomial f and discuss
the result of the paper on them. The examples which we discuss are of
the form f(x1, x2, . . . , xn+1) =

∑n+1
i=1 fi(xi), where fi is a polynomial of

degree mi, mi > 2 in one variable xi and with leading coefficient one. Let
d be the least common multiple of m′

is. We consider f in the weighted
ring C[x], deg(xi) = d

mi
, i = 1, 2 . . . , n + 1. Then deg(f) = d and the last

homogeneous part of f is g = xm1
1 + xm2

2 + · · ·+ x
mn+1
n+1 . The vector space

V = C[x]/Jacob(f) has the following basis of monomials

xβ , β ∈ I := {β ∈ Zn+1 | 0 6 βi 6 mi − 2}

and µ = #I =
∏n+1

i=1 (mi − 1). To calculate the dimensions of the pieces
of W•H

′ and F •H ′, it is enough to do it for g. Because in the weighted
projective compactification of Cn+1 the fibers of f and g are obtained by
smooth deformations of each others and the dimension of the pieces of a
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mixed Hodge structure is constant under smooth deformations (see [16],
Chapter 2, §3). We obtain

dim(Grn+1−k
F GrW

n+1H
′) = #{β ∈ I | Aβ = k}

dim(Grn+1−k
F GrW

n H ′) = #{β ∈ I | k − 1 < Aβ < k}

where Aβ =
∑n+1

i=1
(βi+1)

mi
. Let Pi be the collection of zeros of ∂fi

∂xi
= 0,

with repetitions according to the multiplicity, and Ci = fi(Ai). The set of
singularities of f is P = P1×P2×· · ·Pn+1 and

∑n+1
i=1 Ci = {

∑n+1
i=1 ci | ci ∈

Ci} is the set of critical values of f . The Milnor number of a singularity is
the number of its repetition in P .

Before analyzing some examples, let us state a consequence of the Hodge
conjecture in the context of this article. We assume that f is a strongly tame
polynomial in Q[x] and t is an algebraic number. The Brieskorn module can
be redefined over Q and it turns out that the Gauss-Manin connection is
also defined over Q. If the Hodge conjecture is true then a Hodge cycle δ ∈
Hn(Lt,Q) satisfies the following property: For any polynomial differential
n-form ω ∈WnH

′ (defined over Q) we have

(7.1)
∫

δ

ω ∈ (2πi)
n
2 Q

(See Proposition 1.5 of Deligne’s lecture [6]). Such a property is proved
for Abelian varieties of CM -type by Deligne. Since the main difficulty of
the Hodge conjecture lies on construction of algebraic cycles, the above
statement seems to be much easier to treat than the Hodge conjecture
itself.

Example 7.1 (f = g = xm1
1 +xm2

2 +· · ·+xmn+1
n+1 ). — Let G :=

∏n+1
i=1 Gmi ,

where Gmi
:= {εkmi

| k = 0, 1, . . . ,mi− 1} and εmi
:= e

2π
√
−1

mi is a primitive
root of the unity. The group G acts on each fiber Lc in the following way:

g : Lc → Lc, (x1, x2, . . . , xn+1) → (g1x1, g2x2, . . . , gn+1xn+1)

where g = (g1, g2, . . . , gn+1) is used for both a vector and a map. Let
I ′ =

∏n+1
i=1 (Gmi − {1}). We have the one to one map

(7.2) I → I ′, α→ (εα1+1
m1

, εα2+1
m2

, . . . , εαn+1+1
mn+1

)

and so we identify I ′ with I using this map. Fix a cycle δ ∈ Hn(Lc,Q). We
have

g∗ωβ = gβ+1ωβ = ε(α+1)(β+1)ωβ

where

ε(α+1)(β+1) := ε(α1+1)(β1+1)
m1

ε(α2+1)(β2+1)
m2

· · · ε(αn+1+1)(βn+1+1)
mn+1
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and g corresponds to α by (7.2). We have

(7.3)
∫

g∗δ

ωβ =
∫

δ

g∗ωβ = ε(α+1)(β+1)

∫
δ

ωβ .

Since ∪β∈I{δ ∈ Hn(Lc,Q) |
∫

δ
ωβ = 0} does not cover Hn(Lc,Q), we take

a cycle δ ∈ Hn(Lc,Q) such that
∫

δ
ωβ 6= 0, ∀β ∈ I. Therefore the period

matrix P in this example is of the form E·T , where E = [ε(α+1)(β+1)] and
T is the diagonal matrix with

∫
δ
ωβ in the β × β entry. Now the ωβ , β ∈ I

form a basis of H ′ and so the period matrix has non zero determinant.
In particular the space of Hodge cycles in Hn(Lc,Z) corresponds to the
solutions of

(7.4) B · [ε(α+1)(β+1)]α∈I,β∈Ih
= 0

where B is a 1 × µ matrix with integer entries and Ih = {β ∈ I | Aβ 6∈
N, Aβ < n

2 }. This gives an alternative approach for the description of
Hodge cycles for the Fermat variety given by Katz, Ogus and Shioda (see
[27]). Note that in their approach one gives an explicit basis of the C-vector
space generated by Hodge cycles and the elements of such a basis are not
Hodge cycles. In the description (7.4) one can find easily a basis of the
Q-vector space of Hodge cycles. Even if the Hodge conjecture is proved
(or disproved), the question of constructing an algebraic cycle just with
its topological information B obtained from (7.4) will be another difficult
problem in computational algebraic geometry.

For computations with the next example, we have used Singular [13].

Example 7.2. — (f = x3
1 + x3

2 + · · · + x3
5 − x1 − x2) In this example

g = x3
1 + x3

2 + · · · + x3
5, I = {0, 1}5 and S(t) = 27t3 − 16t. The statement

(∗) in Remark 6.4 is true for

dβ =


4 β1 = β2 = 0

2 β1 = 0, β2 = 1

1 otherwise

and so the above data works for all regular values of f . This follows from
the facts that a standard basis of the ideal Jacob(Ft), where Ft is the
homogenization of f − t, is given by

2x1x0 + 2x2x0 + 3tx2
0, x

2
5, x

2
4, x

2
3, 3x

2
2 − x2

0, 3x
2
1 − x2

0, 4x2x
2
0 + 3tx3

0, x
4
0
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and we have

S(t)x4
0 =

(−16
3
x2x0 + 4tx2

0

)
(3x2

1 − x2
0) +

(16
3
x2x0 + 12tx2

0

)
(3x2

2 − x2
0)

+ (−8x1x2 + 8x2
2 + 6tx1x0 + 6tx2x0 − 9t2x2

0)

· (−2x1x0 − 2x2x0 + (−3t)x2
0)t(4x2x

2
0 + 3tx3

0)

=
4
9
x0(3x2

1 − x2
0)−

4
9
x0(3x2

2 − x2
0) + (

2
3
x1 −

2
3
x2 − tx0)

· (−2x1x0 − 2x2x0 − 3tx2
0).

The data dβ = d− 1 = 2 does not work for the values b = ±(2/3)
3
2 . In fact

for arbitrary t we have x0x1x2 =
(

9
8 t

2 − 1
3

)
x3

0 in V ′, where V ′ is defined

in Lemma 6.3. Now ∇2(η) is a basis of Gr3FGr
W
4 H ′

C . We have

∇2(η) =
10

3S(t)2
(
(972t2 − 192)x1x2η + (−405t3 − 48t)x2η

+ (−405t3 − 48t)x1η + (243t4 − 36t2 + 64)η
)

which implies the statement in the Introduction.
It is remarkable that the integrals

∫
δ
∇2(η), δ ∈ H4(Lt,Q) satisfy the

Picard-Fuchs equation

(7.5) (27t3 − 16t)y′′ + (81t2 − 16)y′ + 15ty = 0.

It is a pull-back of a Gauss hypergeometric equation and so the integral∫
δ
∇2(η) can be expressed in terms of Gauss hypergeometric series. Since

the Hodge conjecture is known for cubic hypersurfaces of dimension 4 by
C. Clemens, J. P. Murre and S. Zucker (see [33]), one can get some algebraic
relations between the values of such functions on algebraic numbers. The
philosophy of using geometry and obtaining algebraic values of special func-
tions goes back to P. Deligne, F. Beukers, J. Wolfart and many others. In
[17] we have shown that up to a constant, the periods

∫
δ
∇2η, δ ∈ H4(Lt,Q)

reduce to the periods of the differential form dx
y on the elliptic curve

Et : y2 = x3−3x+z, z := 2− 27
4 t

2. It is an interesting observation that Eb

associated to the fiber Lb, b = ±(2/3)
3
2 , for which the data dβ = d−1 does

not work, is CM. Also the fiber L
(2/3)

3
2

is mapped to L
−(2/3)

3
2

under the
automorphism (x1, x2, x3, x4, x5) 7→ (−x1,−x2, εx3, εx4, εx5) of the family
f = t. For the effect of the automorphisms on variation of Hodge structures
the reader is referred to [31]. We have shown that the value of the Schwarz
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function

D(0, 0, 1|z) := −e−πi 5
6

F
(

5
6 ,

1
6 , 1|z

)
F

(
5
6 ,

1
6 , 1|1− z

)
belongs to Q(ζ3) at some z ∈ Q if and only if

F
(5

6
,
1
6
, 1|z

)
∼ 1
π2

Γ
(1

3

)3

, F
(5

6
,
1
6
, 1|1− z

)
∼ 1
π2

Γ
(1

3

)3

where a ∼ b means that a
b ∈ Q.
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