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FINITE DETERMINACY OF DICRITICAL
SINGULARITIES IN (C2, 0)

by Gabriel CALSAMIGLIA-MENDLEWICZ (*)

Abstract. — For germs of singularities of holomorphic foliations in (C2, 0)
which are regular after one blowing-up we show that there exists a functional an-
alytic invariant (the transverse structure to the exceptional divisor) and a finite
number of numerical parameters that allow us to decide whether two such singu-
larities are analytically equivalent. As a result we prove a formal-analytic rigidity
theorem for this kind of singularities.

Résumé. — Nous montrons l’existence d’un invariant analytique fonctionnel (la
structure transverse au diviseur exceptionnel) et d’un nombre fini de paramètres
numériques associés aux germes de feuilletages holomorphes dans (C2, 0) qui ne
présentent pas de singularités après un éclatement. Ceux-ci permettent de décider
si deux telles singularités sont analytiquement équivalentes. On dérive ensuite un
théorème de rigidité formelle-analytique pour ce type de singularité.

1. Introduction

Given a holomorphic germ of 1-form ω in (C2, 0) with an isolated zero
at the origin we can define its associated singular foliation by holomorphic
curves Fω: the origin 0 is the singular set and its leaves are the integral
curves of ω outside 0. Let E : C̃2 −→ (C2, 0) denote the quadratic blow up
at the origin expressed in coordinates by E(t, x) = (x, tx) = (X,Y ), and E0

its exceptional divisor corresponding to the set {x = 0} in the chart (t, x).
It is well known that E∗(ω) defines a regular foliation in the complement
of E0 which can be uniquely extended to a holomorphic foliation F̃ω in a
neighborhood of E0 in C̃2 with a finite set of isolated singularities on E0.
Let D0 denote the set of foliations Fω such that F̃ω is a regular foliation. We

Keywords: Dicritical singularities, holomorphic singular foliations.
Math. classification: 32S65, 37F75.
(*) The author is partially supported by CNPq, Brasil.



674 Gabriel CALSAMIGLIA-MENDLEWICZ

are interested in describing the space of analytic equivalence classes of D0.
The index theorem in ([3], p.592) forces E0 to be generically transverse
to F̃ω, so Fω has a dicritical singularity. However, there is a finite set of
points ΣFω

⊂ E0 corresponding to the points p ∈ E0 where the leaf of F̃ω

through p is tangent to the curve E0 with contact order r(p)+1. A result by
Klughertz [7] asserts that topologically there aren’t any other invariants:

Theorem 1. — Given F ,F ′ ∈ D0, there exists a homeomorphism Ψ :
(C2, 0) → (C2, 0) sending leaves of F to leaves of F ′ if and only if there
exists a bĳection ψ : ΣF → ΣF ′ such that r(ψ(p)) = r(p) for all p ∈ ΣF .

In other words the partition of D0 into subsets whose elements are topo-
logically equivalent can be described as D0(n; r1, . . . , rn) where n ∈ N de-
notes the number of points of tangency, and r1, . . . , rn ∈ N∗ their orders
of tangency when n 6= 0. The case n = 0 is solved by Poincaré’s lin-
earization theorem: every F ∈ D0(0) is analytically equivalent to the radial
foliation FY dX−XdY . Suzuki’s example (see Section 2 below or [13]) shows
that there are two elements in D0(1; 1) which are not analytically equiv-
alent. The obstruction is related to the following analytic invariant: given
F ∈ D0(n; r1, . . . , rn), consider for each pi ∈ ΣF a local holomorphic first
integral Fi : Ui → C of F̃ in a neighborhood Ui of pi in C̃2.

Define fi = Fi Ui∩E0. The group of invariance of F at pi is

H(F , pi) =
{
h ∈ Diff(E0, pi) | fi ◦ h = fi

}
.

It is a cyclic group of germs of order r(pi) + 1. We define the transverse
structure of F as

H(F) =
⋃

p∈ΣF

H(F , p).

Observe that if Ψ : (C2, 0) → (C2, 0) is a biholomorphism then Ψ∗(F) ∈ D0

and the restriction ψ ∈ Aut(E0) of Ψ to E0 defines a bĳection

h 7−→ ψ−1 ◦ h ◦ ψ

from H(F) to H(Ψ∗(F)). We thus define the projective class of the trans-
verse structure H[F ] as the conjugacy class of H(F) by holomorphic au-
tomorphisms of E0, which are just Möbius transformations. The previous
argument shows that H[F ] depends only on the analytic class [F ] of F ,
and also that if Ψ∗(F) = F ′, then up to linear conjugacy we can sup-
pose H(F ′

) = H(F). On the other hand, the fact that elements in D0 can
be constructed using foliated surgery techniques (and Grauert’s Theorem)
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FINITE DETERMINACY OF DICRITICAL SINGULARITIES IN (C2, 0) 675

allows us to realize any finite union of cyclic groups of germs of diffeomor-
phisms of (E0, p) at points p ∈ E0 of finite order as the transverse structure
of an element of D0.

A natural question is to decide whether the projective class of the trans-
verse structure determines the analytic class of the foliation completely. In
the case of D0(1; 1) the answer is positive:

Theorem 2 (Cerveau). — Given F ,F ′ ∈ D0(1; 1), there exists a germ
of biholomorphism Ψ : (C2, 0) → (C2, 0) with Ψ∗(F ′) = F if and only if
H[F ] = H[F ′].

In the remaining cases we provide examples showing that there are ele-
ments F ,F ′ ∈ D0 with H(F) = H(F ′) and #H(F) > 2 arbitrary which
are not analytically equivalent. Our main result states that, apart from
the projective class of the transverse structure, there are at most a fi-
nite number of analytic invariants of numerical nature in each topological
class D0(n; r1, . . . , rn):

Theorem 3. — Let ω, ω′ be two holomorphic 1-forms in (C2, 0) defining
foliations F ,F ′ ∈ D0(n; r1, . . . , rn) respectively. Define

N := r1 + · · ·+ rn, κ := (N + 1) + max{ri}(3N − 2).

Suppose
(i) H(F) = H(F ′);
(ii) the jets of ω and ω′ at 0 satisfy jκ

0 (ω) = jκ
0 (ω′).

Then there exists a biholomorphism Ψ : (C2, 0) → (C2, 0) such that

Ψ∗(F ′) = F and dΨ(0, 0) = Id .

As a corollary we get a theorem of formal-analytic rigidity in D0:

Corollary 4. — Two elements in D0 are formally equivalent if and
only if they are analytically equivalent.

Since the algebraic multiplicity of the elements in D0(n; r1, . . . , rn) is
N + 1, we can state Theorem 3 in terms of the algebraic multiplicity instead
of κ. This theorem can be reinterpreted in the following way: fix a 1-form ω

such that Fω ∈ D0. Consider the set

(1.1) D0[Fω] :=
{
ω′ | Fω′ ∈ D0 and H(Fω) = H(Fω′)

}
.

The assertion is that each fiber of the map

jκ
0 : D0[Fω] −→ CM where M :=

(κ+ 1
2

)
−

(N + 1
2

)
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676 Gabriel CALSAMIGLIA-MENDLEWICZ

defines a unique equivalence class in D0. Different fibers might define the
same class or not. Nevertheless we have at most CM different analytic
classes with the same transverse structure.

A theorem of finite determinacy of a similar type was proven by Klughertz
[7] in her doctoral thesis. Our appoach improves the order of the jet involved
(in her statement the dependence is quadratic on N). On the other hand
the methods used for the proof differ. We will geometrically construct a
biholomorphism by choosing adequate generically transverse auxiliary fo-
liations, whereas Klughertz used the cohomological methods developped
in [8] to find a biholomorphism which is tangent to the identity up to a
certain order.

Ortiz-Bobadilla, Rosales-Gonzalez and Voronin [10] have recently proved
a formal-analytic rigidity theorem in D0(n; 1, . . . , 1), after what formal nor-
mal forms are constructed for the analytic classes in D0(n; 1, . . . , 1), and
formal invariants are identified from this normal form. Again, the process
lacks of a geometric interpretation, and we hope that our approach will
shed some light on the problem of identifying the invariants and giving
them a geometrical meaning, eventually enabling us to construct normal
forms for every analytic class in D0.

Finally, we want to remark that a finite determinacy theorem for general-
ized cusps can be proven as a consequence of Theorem 3 and that the proof
we present of the latter can be generalized to prove a theorem of finite de-
terminacy for regular germs of holomorphic foliations defined in a neighbor-
hood of the zero section of a Hopf component of negative auto-intersection
having the same transverse structure (for a proof of these results see [1]).
Similarly, Theorem 2 can be generalized to give the analytic classification
of regular germs of foliations in a neighborhood of the zero section of a
line bundle L→ E over a rational or elliptic Riemann surface E having a
single simple tangency with the curve E, provided that c1(L) < −1. Both
generalizations, and the method for the proof of these results, are inspired
by the paper [2].

The content of the article is organized as follows: in Section 2 we pro-
vide examples of singularities in D0 that are not analytically equivalent; in
Section 3 we prove Theorem 3 and in Section 4 we prove Corollary 4.

This article is based on the main part of my doctoral thesis at IMPA,
Brazil. I thank P. Sad and J.F. Mattei for many useful conversations.
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2. Examples

Let us first establish some definitions that will be used throughout this
article. For F ∈ D0 we define ΣF as the set of points p ∈ E0 where the
leaf L̃p of F̃ is tangent to E0 at p. The order of contact at p will be
denoted by r(p)+1; remark that r(p) is the order of the zero of the normal
component to E0 of the local 1-form defining F̃ at p. Define

Sep(F̃) =
⋃

p∈ΣF

L̃p

as the set of isolated separatrices. The blow down of Sep(F̃) by E will be
denoted as Sep(F). The latter is a union of germs of generalized cusps.
Observe that the foliation F̃ is the minimal resolution of F . Nevertheless
we will repeatedly use a different resolution SF that we will call extended
resolution which corresponds to the resolution of Sep(F) in the sense of
(reducible) curves. It is the result of composing E with S(p,r(p)+1) at each
point p ∈ ΣF , where S(p,r(p)+1) is defined inductively by the rules: S(p,1) is
the blowing-up of the point p, and

S(p,i) = S(p,i−1) ◦ S(p̂i,1) where p̂i = S−1
(p,i−1)(p) ∩ S

−1
(p,i−1)(E0 \ p).

For each p we have r(p) + 1 irreducible components Ep
1 , . . . , E

p
r(p)+1 of

the divisor DF associated to SF . The strict transform of each irreducible
component of Sep(F) by SF intersects transversely exactly one irreducible
component of DF . We call F̂ = S∗F (F) the pull back of F by SF .

Next observe that for a point p ∈ E0 we can find a neighborhood Up ⊂ C̃2

and a local biholomorphism Φp : (Up, p) → (C2, 0) which we call normal-
izing chart of F̃ at p such that (u, v) = Φp(t, x) = (Φ1(t, x),Φ2(t, x)) with
Φ2(t, 0) ≡ 0 and such that (Φ−1

p )∗(F̃ Up
) can be described as the levels

of the function fp(u, v) = v − ur(p)+1. It is important to remark that the
change of coordinates is local. With this at hand it is obvious that for a
point p ∈ ΣF the group of invariance H(F , p) is cyclic of order r(p) + 1;
in fact Φ1(t, 0) conjugates it with the group of rotations of order r(p) + 1.
In particular if we choose any two elements F ,F ′ ∈ D0(n; r1, . . . , rn) with
ΣF = {p1, . . . , pn} and ΣF ′ = {p′1, . . . , p′n}, r(pi) = r(p′i), we can find germs
of biholomorphism ψi : (E0, pi) → (E0, p

′
i) conjugating H(F , pi) with

H(F ′, p′i). However, in general, there does not exist an automorphism ψ

of E0 whose restriction to a neighborhood of pi is ψi for i = 1, . . . , n,
even in the case n = 1. In these cases F and F ′ cannot be analytically
conjugated, for the existence of an equivalence would imply the existence

TOME 57 (2007), FASCICULE 2



678 Gabriel CALSAMIGLIA-MENDLEWICZ

of a ψ with the said properties. Suzuki’s example is an instance of this
phenomenon: define

ω = (2Y 2 +X3)dX − 2XY dY,

ω′ = (Y 3 + Y 2 −XY )dX − (2XY 2 +XY −X2)dY.

They have first integrals

f(X,Y ) =
Y 2 −X3

X2
, f ′(X,Y ) =

X

Y
eY (Y +1)/X

respectively, and define foliations Fω,Fω′ ∈ D0(1; 1). In the (t, x) chart
of C̃2 we have ΣFω = {(0, 0)} and ΣFω′ = {(1, 0)}; H(Fω, (0, 0)) = 〈h〉
with h(t) = −t and H(Fω′ , (1, 0)) = 〈h′〉. Consider the maps

H : (C, 0) −→ C2, t 7−→
(
t, h(t)

)
,

H ′ : (C, 1) −→ C2, t 7−→
(
t, h′(t)

)
and define C = ImH, C ′ = ImH ′. C is algebraic in C2. Suppose there
exists ψ ∈ Aut(E0) such that H ′(t + 1) = (ψ,ψ) ◦ H(t). Recall that ψ is
a rational function of t, so C ′ should also be algebraic. However C ′ is not
algebraic (see [6] or [1]). Using this kind of argument it is possible to give
necessary and sufficient conditions to decide which elements in F ∈ D0

admit a meromorphic first integral (see [12]). In fact the conditions depend
only on H[F ].

When #H(F) = 2 the correspondence [F ] 7→ H[F ] is injective (see The-
orem 2). In the remaining cases this is no longer true. Mattei [8] showed
that locally (in the sense of unfoldings) there exists a vector space of dimen-
sion 1

2N(N−1) of analytic classes once we have fixed a transverse structure.
In next paragraph we construct some explicit families of counterexamples
which give a clear idea of the kind of obstructions that appear.

The first family is related to the fact that H(F) does not determine the
analytic class of Sep(F). Fix n > 2. In the (t, x) chart of C̃2 choose points
pi = (ti, 0) and ri ∈ N∗ for i = 1, . . . , n. Define

P (t) =
∫

(t− t1)r1 · · · (t− tn)rn dt

with P (0) = 0. In the same chart consider foliations

(2.1) F̃ =
{
P (t) + x = Cte

}
, F̃ ′ =

{
P (t) + x

(
1 + (t− t1)

)
= Cte

}
.

They extend to regular holomorphic foliations in C̃2, and we call F =
E−1∗(F̃) and F ′ = E−1∗(F̃ ′) the singular foliations they define in (C2, 0)
after implosion. They admit meromorphic first integrals in (X,Y ) with
common denominator Xr1+···+rn+1. From (2.1) we deduce that F ,F ′ ∈
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FINITE DETERMINACY OF DICRITICAL SINGULARITIES IN (C2, 0) 679

D0(n; r1, . . . , rn) with ΣF = ΣF ′ = {p1, . . . , pn}, and by the definition of
the transverse structure H(F) = H(F ′).

Lemma 2.1. — One has [F ] 6= [F ′] for a generic choice of pi’s.

Proof. — If n > 2, generically in the choice of pi’s we have that

(2.2) Aut
(
H(F)

)
:=

{
ϕ ∈ Aut(E0) | ϕH(F)ϕ−1 = H(F)

}
= {Id}.

Suppose Ψ : (C2, 0) → (C2, 0) is a biholomorphism such that Ψ∗(F ′) = F .
From H(F) = H(F ′) and (2.2) we deduce that there exists λ ∈ C∗ such
that dΨ(0, 0) = λ Id. We also have that Ψ(Sep(F)) = Sep(F ′), but by the
choices made in (2.1), it is easily seen by studying the action of Ψ on the
divisor of the extended resolution of F and F ′ and the position of the points
of intersection of Sep(F) with it that there is no possible value for λ. In the
case n = 2, Aut(H(F)) consists of two elements, but generically the case
where Ψ̂0 6= Id is excluded by a similar argument. �

Motivated by this proof we establish the following definition:

Definition 2.2. — Given F ∈ D0(n; r1, . . . , rn) and two families P,Q
of n points in DF we say that P ∼ Q if and only if there exists a biholo-
morphism Ψ : (C2, 0) → (C2, 0) whose lifting Ψ̂ to a neighborhood of DF
satisfies Ψ̂ E0 = Id and Ψ̂(P ) = Q. Define QF ⊂ DF as the set of n singu-
larities of F̂ which are not corners of DF and q(F) := [QF ] its class by the
equivalence relation ∼.

Observe that, although q(F) is not an analytic invariant of F , it is in-
variant by the subgroup of biholomorphisms which fix every point in E0.
By using coordinates it is easily seen that the space of classes of points
of type QF is isomorphic to a subset of CPn−1. On the other hand, q(F)
depends only on Sep(F).

The second family of examples shows that even fixing H(F) and Sep(F)
there are analytically different elements in D0. Fix r > 3 and consider

F =
{
f := (Xr+1 + Y r)/Xr = Cte

}
,

F ′ =
{
f(X,Y ) · (1 +X) = Cte

}
contained in D0(1; r − 1). After one blowing up we have

F̃ =
{
f̃ := x+ tr = Cte

}
,

F̃ ′ = {f̃ ′ := (x+ tr)(1 + x) = Cte}.

Clearly H(F) = H(F), Sep(F) = Sep(F ′) and Aut(H(F)) is the set of
nonzero homotetias in the t variable. Suppose there exists a biholomor-
phism Ψ : (C2, 0) → (C2, 0) such that Ψ∗(F) = F ′. From the previous
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680 Gabriel CALSAMIGLIA-MENDLEWICZ

facts we get that after blowing up C2 at 0, Ψ lifts to

Ψ̃(t, x) =
(
λt+ xφ1(t, x), x

(
µ+ φ2(t, x)

))
for some holomorphic functions φ1, φ2 defined in a neighborhood of E0 \∞
and λ, µ ∈ C∗. Since Ψ conjugates the foliations we have

f̃
(
Ψ̃(t, x)

)
= λr · f̃ ′(t, x).

From this last equation we get

(2.3) xφ2(t, x) = λr(x+ tr)(1 + x)−
(
λt+ xφ1(t, x)

)r − µx.

Now from the fact that Ψ̃ is the lifting of Ψ we have that the left hand
side of equation (2.3) must be a series of the form

∑
i>1Ai(t)xi where Ai

are polynomials in t and degAi 6 i. Thus, to eliminate the trx term
we need φ1(t, 0) = λt, but this will produce a nonzero term in the trx2-
monomial which cannot be cancelled with any other term of the right hand
side of equation (2.3), producing a contradiction. Hence [F ] 6= [F ′].

We are thus interested in determining other analytic invariants. This is
quite a difficult problem even for the reducible curves Sep(F) associated
to F ∈ D0, for which, except in some cases (see [15], [14]), a complete list
of analytic invariants is unknown.

In the examples above a short calculation shows that, denoting by ω

and ω′ the forms defining the foliations F and F ′ we have that

jN+1(ω) = jN+1(ω′) but jN+2(ω) 6= jN+2(ω′).

In the case of germs of curves we know that there is finite determinacy
(see [6]): if two equations of such germs coincide up to a sufficiently high
order, they are analytically equivalent. Our approach is to prove a theorem
of finite determinacy in D0(n; r1, . . . , rn) (see Theorem 3) whose proof is
given in the following section.

3. Proof of Theorem 3

Consider F = Fω ∈ D0(n; r1, . . . , rn) and suppose, without loss of gener-
ality, that ΣF = {p1, . . . , pn} is contained in the (t, x) chart of C̃2. Denote
by p∞ = (∞, 0) the point at infinity in this chart. Let Ci be the separatrix
whose strict transform C̃i passes through pi. Take irreducible Weierstrass
polynomials in Y , fi(X,Y ) such that Ci = {fi = 0} for i = 1, . . . , n,∞,
and a unit φ ∈ O∗

(C2,0). Define

N = r1 + · · ·+ rn, F :=
n∏

i=1

fi

ANNALES DE L’INSTITUT FOURIER



FINITE DETERMINACY OF DICRITICAL SINGULARITIES IN (C2, 0) 681

and the meromorphic function in (C2, 0)

g =
fN+n+1
∞
F

· φ.

It defines a germ of holomorphic foliation G = {g = Cte} with a dicritical
singularity at 0 whose blowing up

G̃ := E∗(G) = {g̃ := g ◦ E = Cte}

has the following properties:

Lemma 3.1. — (i) E0, C̃1, . . . , C̃n, C̃∞ are invariant by G̃;
(ii) Sing(G̃) = {p1, . . . , pn, p∞};
(iii) G̃ is dicritic at p1, . . . , pn and has a saddle with local holomorphic

first integral and index −1/(N + n+ 1) at p∞;
(iv) the holonomy of G̃ at pi along E0 is trivial.
Moreover, for a generic choice of unit φ, we have that the set tang(F̃ , G̃)

of tangencies between F̃ and G̃ satisfies

(3.1) tang(F̃ , G̃) = C̃∞ +
n∑

i=1

(C̃i + T̃i)

where T̃i is a regular irreducible analytic set tangent to E0 at pi with order
ri = r(pi) of contact, when C̃i and E0 are tangent with contact ri +1 at pi.
In this case we will say that (F ,G) (or (F̃ , G̃)) are companion foliations
(see Figure 3.1 for diagrams).

C C

F

p p

E0 E0

p1 p1

p2

T2 T2

T1

C1

T1

C1

C2 p2
C2

G

Figure 3.1. Companion foliations (F̃ , G̃) with r(p1) = 1, r(p2) > 1.

Proof. — For the proofs of (i)–(iv) it suffices to say that

div(g̃) = (N + n+ 1)C̃∞ + E0 −
n∑

i=1

C̃i.

For the proof of (3.1) observe that F̃ and G̃ are transverse at all p ∈
E0 \ {p1, . . . , pn, p∞}. At p∞, C̃∞ is a common separatrix of F̃ and G̃ and

TOME 57 (2007), FASCICULE 2



682 Gabriel CALSAMIGLIA-MENDLEWICZ

since p∞ is a saddle for G̃ there are no other components of tang(F̃ , G̃)
there.

For i = 1, . . . , n, consider a normalizing chart for F̃ around pi: (t, x),
where pi = (0, 0). In this chart F̃ is expressed as the levels of f(t, x) =
x− tri+1 and G̃ as the levels of

g(t, x) =
x

x− tri+1
· ν(t, x)

where ν is a unit depending on φ and the normalizing chart. Hence the
components of tangency are described in this chart by the expression

0 = df ∧
(
(x− tri+1)2dg

)
(3.2)

= (x− tri+1)[x∂tν + (ri + 1)tri(ν + x∂xν)]dx ∧ dt.

For generic values of j1(ν) (which depend on generic values of j1(φ)) the set
{x∂tν+(ri+1)tri(ν+x∂xν) = 0} is regular at (0, 0) and has contact ri with
the set {x = 0}. Since the inverse of the normalizing chart sends {x = 0}
to E0 and preserves orders of tangency we get, after (3.2), two components
of tang(F̃ , G̃) at pi, C̃i and T̃i, with the required properties. �

Let (F ,G) and (F ′,G′) be two pairs of companion foliations where G =
{g = Cte} and G′ = {g′ = Cte} associated to F ,F ′ ∈ D0(n; r1, . . . , rn)
with ΣF = ΣF ′ . For a point p ∈ E0 \ {ΣF , p∞}, consider holomorphic first
integrals Fp, F

′
p : (Up, p) → (C, 0) of F̃ and F̃ ′ respectively defined in a

small neighborhood Up of p. By transversality and Lemma 3.1, for each
q ∈ Up there is a unique point Ψp(q) ∈ Up such that

(3.3) F ′
p

(
Ψp(q)

)
= Fp(q), g′

(
Ψp(q)

)
= g(q).

By holomorphicity of all the foliations under consideration, Ψp : (Up, p) →
(Up, p) defines a germ of biholomorphism. If p, p′ ∈ E0 \ {ΣF , p∞} and
Up ∩ Up′ 6= ∅ then Ψp ≡ Ψp′ on Up ∩ Up′ . Thus we have a biholomorphism
Ψ : U → U from a neighborhood U of E0 \ {ΣF ,∞} in C̃2 to itself. The
properties of G and G′ at p∞ and its relations with F and F ′ allow us to
extend Ψ to a neigborhood of p∞ as a biholomorphism by using a theo-
rem of Mattei and Moussu (see [9], p. 482). The following lemma provides
necessary and sufficient conditions for Ψ to extend to neighborhoods of all
points of ΣF :

Lemma 3.2. — Ψ extends to a neighborhood of E0 as a biholomorphism
if and only if the following conditions are fulfilled:

(a) H(F) = H(F ′);
(b) q(F) = q(F ′);
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(c) there exist homeomorphisms ψi : Ti −→ T ′i between the irreducible
components of tang(F ,G) and tang(F ′,G′) not invariant by any of
the foliations passing through pi ∈ ΣF such that

(3.4) F ′
i

(
ψi(q)

)
= Fi(q), g′

(
ψi(q)

)
= g(q)

for all q ∈ Ti and local first integrals Fi and F ′
i of F̃ and F̃ ′ respec-

tively around pi whose restriction to E0 coincide.

Proof. — Suppose first that Ψ extends to a neighborhood of E0 as a
biholomorphism. Then it is the identity on E0 and we have already seen
that this implies (a) and (b). For the proof of (c) it suffices to observe that
Ψ(Ti) = T ′i , take ψi ≡ Ψ Ti

and apply the equations (3.3) defining Ψ in the
neighborhood of pi.

For the converse, we have to consider the extended resolution SF of F
and F ′. Call F̂ = S∗F (F), F̂ ′ = S∗F (F ′), Ĝ = S∗F (G), wĜ′ = S∗F (G′) and
DF the exceptional divisor associated to SF . DF consists of N + n + 1
irreducible components: one of them is transverse to F̂ and F̂ ′, and we still
call it E0 (by abuse of language). From each pi there is a chain of ri + 1
irreducible components that we will call Ei

1, . . . , E
i
ri+1 where Ei

j and Ei
j+1

intersect transversally at a corner for j = 1, . . . , ri and pi = E0 ∩ Ei
ri+1.

Call Ĉi and T̂i the strict transforms of Ci and Ti respectively by SF for
i = 1, . . . , n,∞. The relevant properties of F̂ are:

1) Ei
1, . . . , E

i
ri+1, Ĉi and Ĉ∞ are invariant by F̂ for i = 1, . . . , n.

2) Sing(F̂) = {corners, Q1, . . . , Qn} where Qi ∈ Ei
ri+1 is not a corner.

All singularities are reduced saddles.
3) For j = 1, . . . , ri +1 the holonomy of F̂ along Ei

j of the singularities
in Ei

j have degree j.

For the companion foliation Ĝ the relevant properties are:
4) Ĝ is regular and transversal to Ei

ri+1 in all its points. E0, E
i
1, . . . , E

i
r, Ĉi

and Ĉ∞ are invariant by Ĝ for i = 1, . . . , n.
5) Sing(Ĝ) = {Qi

1, Q
i
2, p∞, corners not contained in Eri+1 : i = 1, . . . , n}

where Qi
1 ∈ Ei

1 and Qi
2 ∈ Ei

ri
are not corners. All singularities are

reduced saddles with holomorphic first integral.
6) From Lemma 3.1, T̂i is a regular disc transverse to Ei

ri

All these properties are also satisfied by F̂ ′ and Ĝ′.
Condition (b) implies that after a diagonal linear change of coordinates in

the original foliations we can suppose Sing(F̂) = Sing(F̂ ′) = {Q1, . . . , Qn}.
Condition (a) implies that the holonomy maps of Qi along Ei

ri+1, and the
index of Qi are the same for F̂ and F̂ ′. As before we can use the theorem

TOME 57 (2007), FASCICULE 2



684 Gabriel CALSAMIGLIA-MENDLEWICZ

of Mattei and Moussu to extend Ψ̂, the lifting of Ψ, to the separatrix Ĉi

for i = 1, . . . , n.
Now fix i ∈ {1, . . . , n}. Condition (a) implies the existence of the first in-

tegrals Fi and F ′
i with the properties stated in (c). Let L,L′ be leaves of F̂

and F̂ ′ respectively with L∩E0 = L′∩E0 6= {pi} sufficiently close to pi. The
construction requires that Ψ(L) = L′. Observe that L∩T̂i = {W1, . . . ,Wri},
by properties 3) and 6). Observe that these points correspond to the crit-
ical points of the restriction ĝ L of ĝ := S∗F (g) to L. Take a disc D ⊂ L

containing L ∩ T̂i, and such that the image of ∂D by Ψ has already been
defined. Let D′ ⊂ L′ be the disc containing L′ ∩ T̂ ′i = {W ′

1, . . . ,W
′
ri
} such

that ∂D′ = Ψ(∂D). If L is sufficiently close to Ei
ri

then all the multiplicities
v(Wj) of the critical points of ĝ D coincide and are equal to some v > 1.
Applying Hurwitz’s formula applied to the pasting of two copies of ĝ D

we get

2 = 2 · (ri + 1)− 2
( ∑

q∈D

(v(q)− 1)
)

which means that v = 2 and that v(q) = 1 for all q ∈ D \ {W1, . . . ,Wri
}.

The second equation in (3.4) means that by renaming the points we can
suppose ĝ′(W ′

j) = ĝ(Wj) =: wj ∈ C for j = 1, . . . , ri. Observe that ĝ−1(wj)
contains ri points. Define V = {w1, . . . , wri

}. Suppose D is big enough
to contain ĝ−1(V ) ∩ L =: W . Define W ′ = ĝ

′−1(V ) ∩ L′. Thus ĝ D\W :
D \W −→ ĝ(D)\V is a (ri +1) : 1 holomorphic covering. We can copy the
construction with ĝ′ and observe that the image of both coverings is the
same. Thus, using a covering argument, we can find a unique topological
extension Ψ̂D making the following diagram commutative

D \W Ψ̂D−−−−−−−−→ D′ \W ′

ĝ

y yĝ′

ĝ(D) \ V =−−−−−−−−→ ĝ′(D′) \ V

which is holomorphic and extends holomorphically to W because we can
interpret Ψ̂D as a holomorphic map between subsets of discs. This can be
done for each leaf L not containing pi.

The holomorphicity in the transverse direction to F̂ comes from (3.4).
Thus after blowing Ei

j down for j = 1, . . . , ri +1, Ψ extends biholomorphi-
cally to Ui \ pi where Ui is a neighborhood of pi in C̃2, and by Hartogs’
theorem (see [11], p. 341) we extend it to pi. �

The following lemma finishes the proof of Theorem 3:
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Lemma 3.3. — The hypotheses in Theorem 3 imply the existence of
functions g, g′ satisfying (a), (b) and (c) of Lemma 3.2.

Proof: Suppose F = Fω and F ′ = Fω′ ∈ D0(n; r1, . . . , rn) with H(F) =
H(F ′). Thus (a) is already satisfied. Recall N = r1 + · · · + rn and that
the algebraic multiplicity of ω and ω′ is N + 1. After a linear change of
coordinates we can suppose ΣF = {p1, . . . , pn} with coordinates pi = (ti, 0)
in the chart (t, x) of C̃2 such that |ti| 6= |tj | for i 6= j. A direct calculation
shows that jN+2(ω) = jN+2(ω′) implies (b). For the proof of (c), consider
a companion foliation G = {g = Cte} for F . Recall that Ci = {fi = 0}
(resp. C ′

i = {f ′i = 0}) is the Weiertrass polynomial of the separatrix of F
(resp. F ′) whose strict transform by E passes through pi for i = 1, . . . , n,∞.
Let F =

∏n
i=1 fi, F ′ =

∏n
i=1 f

′
i . We need to find a unit u ∈ O∗

(C2,0) such
that

G′ =
{
g′ :=

f
′N+n+1
∞
F ′ · u = Cte

}
is a companion foliation for F ′ and

(*) tang(F ,G) = tang(F ′,G′);
(**) g and g′ satisfy (3.4) on each component of type Ti of tang(F ,G),

where ψi : Ti → Ti is defined by the first equation of (3.4).

We know Ci = {fi = 0} is invariant by Fω so

dfi ∧ ω = fi ·HidX ∧ dY

for some holomorphic function Hi ∈ O(C2,0). The divisor tang(F ,G) is
defined by

0 = (F 2dg) ∧ ω

= fN+n+1
∞ F

(
H∞ −

n∑
i=1

Hi

)
dX ∧ dY =: fN+n+1

∞ FHdX ∧ dY.(3.5)

As we saw in Lemma 3.1 the divisor T = {H = 0} has n irreducible
components T1, . . . , Tn with multiplicity one. Each Ti is a generalized cusp
of type (ri, ri +1) (when ri = 1 it is just a regular disc). We will decompose
the problem of constructing u in two steps by finding functions φ ∈ O∗

(C2,0)

and ϕ ∈ O(C2,0) such that u = φ + H · ϕ. The idea is that conditions (∗)
and (∗∗) define the values of φ and ϕ on the analytic subset of dimension
one T . We then need to find holomorphic functions defined in the whole
neighborhood of the origin in C2 taking the same values on T . For this
purpose we need to construct the ψi’s appearing in (3.4) first:
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Using Lemma 3.4 (i) consider Fi, F
′
i local holomorphic first integrals

of F̃ and F̃ ′ respectively around pi such that Fi Vi
≡ F ′

i Vi
in a neighbor-

hood Vi ⊂ E0 of pi. Consider the following diagram:

T̃i \ pi T̃i \ pi

πi

y yπ′i

(T̃i \ pi)/Fi
∼= (Vi \ pi)/Fi = (Vi \ pi)/F ′

i
∼= (T̃i \ pi)/F ′

i

where πi and π′i are ri : 1 holomorphic coverings corresponding to the
projections onto the local leave spaces. Hence we can construct a home-
omorphism ψi : T̃i \ pi → T̃i \ pi such that π′i ◦ ψi = πi. In fact there
are ri different possibilities for constructing ψi. After blowing down we can
consider ψi : Ti → Ti as a homeomorphism.

Define the function φi := φ Ti
: (Ti, pi) → (C, 1) using condition (**):

(3.6) φi(q) =
(f∞ ◦ ψ−1

i

f ′∞

)N+n+1( n∏
i=1

f ′i
fi ◦ ψ−1

i

)
(q)

for q ∈ Ti. From now on we will suppose js(ω) = js(ω′) and find bounds
for s to insure that the construction can be done.

Claim 1. — If s > (N + 1) + max{ri}(N − 1) there exists φ ∈ O∗
(C2,0)

such that φ Ti
= φi for i = 1, . . . , n. Moreover,

dφ(X,Y ) = X(s−(N+1))/max{ri}ν(X,Y )

for some holomorphic germ of 1-form ν.

Proof of Claim 1. — We need to analyse the relations between the jets
of the 1-form ω =

∑
j>N+1(Pj dX +Qj dY ) where Pj(X,Y ), Qj(X,Y ) are

homogeneous polynomials of degree j and the form defining F̃ω in the (t, x)
chart of C̃2:

ω̃(t, x) :=
E∗ω(t, x)
xN+2

=
∑
j>0

xj
[
Qj+N+1(1, t)dt+Rj+N+2(t)dx

]
where Rj+N+2(t) := Pj+N+2(1, t) + tQj+N+2(1, t).

Lemma 3.4. — If Fω,Fω′ ∈ D0(n; r1, . . . , rn) satisfy js
0(ω) = js

0(ω′),
then:

(i) ω̃′(t, x) = ω̃(t, x) + xs−(N+1)ω2(t, x) for some holomorphic 1-form
ω2. We define K(s) := s− (N + 1) ∈ N.
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(ii) If moreover, H(F̃ω, p) = H(F̃ω′ , p) for p ∈ E0, given a local holo-
morphic first integral f of F̃ω there exists a local holomorphic first
integral f ′ of F̃ω′ in a neighborhood of p such that

(3.7) f ′(t, x) = f(t, x) + xK(s)+1h(t, x)

for some holomorphic function h defined in a neighborhood of p.
(iii) Equation (3.7) implies that jK(s)+ri(fi) = jK(s)+ri(f ′i) for the

Weierstrass polynomials fi, f
′
i of Ci and C ′

i respectively.

Proof. — To prove (i), observe that in (3.7), the terms in the j-th mem-
ber of the sum depend on the (j+1)+N+1 jet of ω. For the proof of (ii) we
can construct f ′ by extending the function f(t, 0) along the leaves of F̃ω′

in a neighborhood of p = (t0, 0). We can assume ∂f/∂x(p) 6= 0. We write
h(t, x) = f(t, x) − f ′(t, x) =

∑
i>0 hi(t)xi with hi holomorphic functions

of t. From item (i) we get

xK(s)(ω2 ∧ df ′) + ω̃ ∧ dh = ω̃′ ∧ df ′ ≡ 0

Since ω̃ = Adt+Bdx is regular at p, and dh =
∑

i>1
∂hi

∂t x
idt+ixi−1hi(t)dx

we get, by comparing jets:

0 ≡
K(s)∑
i=0

xi−1iAhi −
K(s)−1∑

i=0

Bxi ∂hi

∂t

By hypothesis h0 ≡ 0. Inductively we get h1(t) ≡ . . . ≡ hK(s)(t) ≡ 0.
For the proof of (iii) we take Puiseux parametrizations w 7→ (wri+1, Qi(w))

and w 7→ (wri+1, Q′
i(w)) of Ci and C ′

i respectively. By (3.7) we get, by
comparing terms after the blowing up, jK(s)+ri(Qi) = jK(s)+ri(Q′

i) which
implies the assertion in (iii). �

Now consider a Puiseux parametrization

τi : D −→ Ti, w 7−→
(
wri , P̂i(w)

)
from a small disc D to Ti. Hence there exists a homeomorphism bi : D → D
such that

ψi(wri , P̂i(w)) =
((
bi(w)

)ri
, P̂i

(
bi(w)

))
In fact bi is holomorphic outside 0, which implies that it is also holomorphic
there. Suppose bi(w) =

∑
j>1 b

i
jw

j and that we have chosen ψi by imposing
b01 = 1. Using (3.7) and the fact that h ◦ E−1 ◦ τi(w) = aiw

ri + · · · with
ai 6= 0 we see inductively that bi2 = bi3 = · · · = biK(s) = 0. This together
with (3.6) and Lemma 3.4 (iii) implies that

(3.8) φi

(
wri , P̂i(w)

)
= 1 + wK(s)φ̃i(w)
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for some holomorphic function φ̃i. Since P̂i(w) = tiw
ri . . . and |ti| 6= |tj |

if i 6= j we can apply the following interpolation result due to Cartan
(see [5], p. 102), which has been adapted to our situation:

For each i ∈ {1, . . . , n} consider a germ of analytic irreducible set

Ti =
{

(X,Y ) ∈ C2 | Y ri +
ri−1∑
j=0

αj(X)Y j = 0
}

with its Puiseux parametrization x 7→ (xri , P̂i(x)). Suppose that P̂i(x) =
Aix

ri + · · · for Ai ∈ C with Ark
i 6= Ark

j if i 6= j and i, j, k ∈ {1, . . . , n}.

Lemma 3.5. — Let νi : Ti −→ C be a continuous function such that
νi(0, 0) = a ∈ C (independently of i) and νi(xri , P̂i(x)) = a+ cix

`i + · · · is
holomorphic with ci 6= 0. If ` := min `i/ri > (

∑n
i=1 ri)− 1 =: N − 1, then

there exists a holomorphic function ν ∈ O(C2,0) such that
(i) ν Ti

= νi;
(ii) dν(X,Y ) = X`−Nη(X,Y ) for a holomorphic 1-form η.

In other words, ν extends holomorphically to a neighborhood of (0, 0)
in C2 the functions νi defined on the analytic subsets Ti (of dimension 1).

Proof of Lemma 3.5. — For each i ∈ {1, . . . , n} choose a branch (.)1/ri

of the ri-th root and a primitive ri-th root of unity ζi. We index with j

the set of all branches of the union T of all the Ti’s: let r0 := 0 and for
j ∈ {1, . . . , N} define Pj(X) := P̂i(ζ

[j]
i X1/ri) where [j] = j−(r0+· · ·+ri−1)

if j ∈ {r0 + · · ·+ ri−1 + 1, . . . , r0 + · · ·+ ri}. We claim that the expression

(3.9) ν(X,Y ) :=
N∑

i=1

( ∏
j 6=i

Y − Pj(X)
Pi(X)− Pj(X)

)
νi

(
X,Pi(X)

)
defines an univaluated, continuous function in (C2, 0) with ν(p) = νi(p)
for p ∈ Ti. Outside {X = 0} this is a consequence of the symmetry of the
expression, for when we follow a loop around the origin in the X-plane, we
exchange the order of the members of the sum, leaving its value unchanged.

Define K := M(X) the field of meromorphic functions in X, and K its
algebraic closure. Obviously Pj ∈ K and Pi 6= Pj if i 6= j. Hence for any
a ∈ C the polynomial in K [Y ] of degree N − 1 defined by

(3.10)
( N∑

i=1

( ∏
j 6=i

Y − Pj(X)
Pi(X)− Pj(X)

)
a
)
− a

has N different roots, and is therefore the zero polynomial. From Ark
i 6=

Ark
j if i 6= j we obtain |Pi(X) − Pj(X)| = |X| · |hij(X)| for a continuous

function hij such that hij(0) 6= 0. From the hypotheses on νi we have
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|νi(X,Pi(X))−a| 6 |X|N−1hi(|X|) for real continuous functions hi defined
in the neighborhood of 0. Therefore,

(3.11)
∣∣ν(X,Y )− a)

∣∣ 6
( N∑

i=1

( ∏
j 6=i

|Y − Pj(X)|
|hij(X)|

)
hi

(
|X|

)) |X|N−1

|X|N−1
−→ 0

when (X,Y ) → (0, 0). A similar argument can be used to prove continuity
on the remaining points of {X = 0}. Hence ν is continuous on (C2, 0) and
trivially holomorphic on (C2, 0) \ {X = 0}, hence holomorphic on (C2, 0).

For the proof of (ii) write ν(X,Y ) =
∑N−1

j=0 aj(X)Y j where a0(X) − a

and aj(X) are holomorphic functions of X. By (3.11) they are zero up to
order ` − (N − 1) for j = 1, . . . , N − 1, and taking derivatives we have
that X`−N divides all terms of dν(X,Y ). �

This finishes the proof of Claim 1. Let us continue with the proof of
Lemma 3.3. Condition (*) is satisfied if ϕi := ϕ Ti

satisfies

0 = (F
′2dg′) ∧ ω′ Ti

= F ′ · f
′N+n+1
∞ (φH ′dX ∧ dY + dφ ∧ ω′ + ϕidH ∧ ω′) Ti

(3.12)

where H ′ is obtained by a process similar to equation (3.5) but using
the f ′i ’s. In fact, from Lemma 3.4 (iii) we have

(3.13) jK(s)+N (H) = jK(s)+N (H ′).

Equation (3.12) is equivalent to

(3.14) φ(q)H ′(q)dX ∧ dY + dφ ∧ ω′(q) + ϕi(q)
(
dH ∧ ω′(q)

)
= 0

for each point q ∈ Ti. The expression in (3.14) defines the values of ϕi.

Claim 2. — If s > (N + 1) + max{ri}(3N − 2) =: κ there exists ϕ ∈
O(C2,0) such that ϕ Ti

= ϕi for i = 1, . . . , n.

Proof of Claim 2. — To use Lemma 3.5 for interpolation, we need to
analyse the order of ϕi(wri , P̂ (w)). This can be done using (3.14):

• H ′(wri , P̂i(w)) has order ri(K(s) + N), from (3.13) and the fact
that P̂i has order ri;

• dH(wri , P̂i(w)) has order riN − 1, since the tangent cone of H is∏n
i=1(Y − tiX)ri ;

• ω′(wri , P ′
i (w)) has order ri(N + 2), since

jN+1(ω′) =
n∏

i=1

(Y − tiX)ri(Y dX −XdY );

• dφ(wri , P ′
i (w)) has order ri(K(s)/max ri − N), by the the second

part of Claim 1.
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Hence, if

(3.15)

ri(K(s) +N)− (riN − 1)− ri(N + 2) > ri(N − 1),

ri

( K(s)
max ri

−N
)
− (riN − 1) > ri(N − 1) for i = 1, . . . , n

then we have ϕi(wri , P ′
i (w)) = wri(N−1)ϕ̃i(w) for some holomorphic func-

tion ϕ̃i. The hypothesis s > κ guarantees that the hypothesis of Claim 1
and the inequalities in (3.15) are satisfied. Applying Lemma 3.5 we obtain
the desired function ϕ. �

4. Proof of Corollary 4

Proof of Corollary 4. — Take Fω and Fω′ in D0, and suppose there
exists a formal equivalence φ̂ in (C2, 0) and a formal power series ĥ such
that φ̂∗ω′ = ĥω. After a linear change of coordinates we can suppose ΣFω

=
ΣFω′ , with the same orders of tangency and φ̂ tangent to the identity. Given
` ∈ N there exist 1-forms ω` e ω′` such that Fω`

= Fω, Fω′
`

is analytically
equivalent to Fω′ , j`(ω`) = j`(ω′`), H(ω) = H(ω`) and H(ω′) = H(ω′`). Let
us prove H(ω′) = H(ω). Let hp ∈ H(F̃ω, p) (resp. h′p ∈ H(F̃ω′ , p)) be a
generator, where p ∈ Σω. Given s ∈ N, there exists a big enough `(s) ∈ N
such that j`(s)(ωl(s)) determines js(hp) uniquely where the jet of hp is
taken in a global coordinate t of E0. Therefore we have js(hp) = js(h′p) for
each s ∈ N and hp = h′p. Now apply Theorem 3 to ω` and ω′` for a big `

and we get a biholomorphism from Fω to Fω′ . �

5. Addendum

In section 3, when n = 1 we need to define the companion foliation
in a different manner to be able to construct the biholomorphism. The
problem is that in this case the set of tangencies between F and G is not
a regular curve after applying a blow-up. To avoid this we consider the
function defining the companion foliation G to be a product g = fr+2

∞
f1·f2

where f1 = 0 is the isolated separatrix and f2 = 0 is a (regular) separatrix
tangent to some other direction p2. This produces a radial singularity at
the point p2 in E0 for the companion foliation G. The construction of the
biholomorphism between two elements F ,F ′ ∈ D0(1; r) by using the values
of their companion foliations extends without any extra conditions to a
neighborhood of p2, as can be seen by blowing this point once and using
the same argument as at p∞.
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