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CLASS INVARIANTS FOR QUARTIC CM FIELDS

by Eyal Z. GOREN & Kristin E. LAUTER

Abstract. — One can define class invariants for a quartic primitive CM field
K as special values of certain Siegel (or Hilbert) modular functions at CM points
corresponding to K. Such constructions were given by de Shalit-Goren and Lauter.
We provide explicit bounds on the primes appearing in the denominators of these
algebraic numbers. This allows us, in particular, to construct S-units in certain
abelian extensions of a reflex field of K, where S is effectively determined by K, and
to bound the primes appearing in the denominators of the Igusa class polynomials
arising in the construction of genus 2 curves with CM, as conjectured by Lauter.

Résumé. — On peut définir des invariants de classe pour un corps CM quartique
primitif K comme valeurs spéciales de certaines fonctions modulaires de Siegel (ou
Hilbert) aux points CM associés à K. De telles constructions ont été décrites par
de Shalit-Goren et Lauter. Nous donnons des bornes explicites pour les idéaux
premiers divisant les dénominateurs de ces nombres algébriques. Cela nous permet,
en particulier, de construire des S-unités dans certaines extensions abéliennes d’un
corps réflexe de K, où S est explicitement determiné par K, et de borner les
nombres premiers apparaissant aux dénominateurs des polynômes de classe d’Igusa
qui interviennent dans la construction des courbes CM de genre 2, comme dans la
conjecture de Lauter.

1. Introduction

One of the main problems of algebraic number theory is the explicit
description of ray class fields of a number field K. Besides the case of the
field of rational numbers, the theory is most advanced in the case where K
is a complex multiplication (CM) field. Effective constructions are available
using modular functions generalizing the elliptic modular function j; one
constructs modular functions as quotients of two modular forms on a Siegel
upper half space and evaluates at CM points corresponding to K. The

Keywords: Class invariant, modular form, complex multiplication, polarization, super-
special abelian variety, units, Igusa invariants, quaternion algebra.
Math. classification: 11G15, 11G16, 11G18, 11R27.



458 Eyal Z. GOREN & Kristin E. LAUTER

values lie in an explicitly determined extension of the reflex field K∗ of K,
that depends on the field over which the Fourier coefficients of the modular
function are defined, on the level of the modular function, on the conductor
of the order of K corresponding to the CM point, and on the CM type. We
loosely call magnitudes constructed this way “class invariants” of K. The
terminology is proposed because when the Fourier coefficients are rational
and the level is 1 the values of the modular function at CM points lie in
ray class fields of K∗.

An outstanding problem is the effective construction of units in abelian
extensions of number fields, even in the case of complex multiplication. A
solution of this problem is expected to have significant impact on obtain-
ing additional cases of Stark’s conjecture. The case of cyclotomic units and
elliptic units is well developed, but in higher dimensional cases little was
known. The essential problem is that divisors of modular functions cannot
be supported at the boundary of the moduli space. In this paper we pro-
vide explicit bounds on the primes appearing in the denominators of class
invariants of a primitive quartic CM field K. This yields, in particular, an
explicit bound on the primes dividing the invariants u(a, b) constructed in
[24], thus yielding S-units lying in a specific abelian extension of K∗ for
an explicit finite set of primes S. To the best of our knowledge, excluding
very particular fields, this is the first time such a result has been obtained
for primitive CM fields of degree 4.

In [9], Gross and Zagier give factorization formulae for differences of
CM values of the modular j-function. The factorization formulae are inter-
preted in later work in terms of heights of Heegner points and are related
to certain special values of L-functions. One may view a special case of
their work as studying the Hilbert class polynomial of a quadratic imagi-
nary field and the norm of its value at a CM point associated to another
quadratic imaginary field. The Hilbert class polynomial has integer coeffi-
cients, but this is not the case in higher-dimensional situations. Motivated
by the work of Gross and Zagier, it is reasonable to expect similar results
for Siegel modular functions, where now there is no canonical choice anal-
ogous to the j-function. Nonetheless, Igusa defined certain Siegel modular
functions which give the invariants of genus 2 curves and so are, in some
sense, canonical. One is led to consider the class polynomials associated
to the Igusa functions. Our bound on the primes appearing in the denom-
inators of class invariants gives an explicit bound, closely related to the
discriminant of the primitive quartic CM field, on the primes appearing in
the denominators of the Igusa class polynomials arising in the construction
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of genus 2 curves with CM, as conjectured in [17]. In this same spirit but
using different methods, Bruinier and Yang [1] have recently obtained very
interesting factorization formulae for genus 2 Hilbert modular functions
averaged over CM cycles for a certain class of primitive quartic CM fields.
Their results do not give bounds on the primes in the denominators of
Igusa class polynomials; however, they have conjectural expressions for in-
tersection numbers which would imply such bounds. In Section 5.2, we will
compare our bound to the conjectural bounds of [1] and [17]. Villegas has
explained in private correspondence how to obtain factorization formulae
for the split CM case of bi-quadratic fields, (see also his example worked
out in [23]), but his methods do not generalize to the case of primitive
quartic CM fields.

Our methods are geometric in nature and in order to prove our bounds,
we reformulate the question of primes of bad reduction for genus 2 CM
curves over a number field in terms of a solution to a certain embedding
problem of a CM field into the two-by-two matrices with entries in a quater-
nion algebra. We provide an explicit bound on the primes of bad reduction
for genus 2 CM curves over a number field which is related to the discrim-
inant of the CM field. In the process, we are led to study the arithmetic
of definite quaternion algebras and we show that elements of small norm
belong to a commutative sub-algebra. As a consequence, we provide an
alternate proof for Gross and Zagier’s bound on the primes dividing the
difference of singular moduli.

2. Elements of small norm in a definite quaternion algebra

2.1. A volume estimate and elements of small norm

Let B = Bp,∞ be “the” quaternion algebra over Q ramified at {p,∞}.
Concrete models for B can be found in e.g. [29, p. 98]. Let Tr and N be
the (reduced) trace and norm on B and x 7→ x = Tr(x) − x its canonical
involution. Let R be a maximal order of B. The discriminant of R is p2;
if we choose a Z-basis v1, . . . , v4 for R then det(Tr(vivj)) = p2; cf. [21,
Prop. 1.1]. Further, using this basis we may identify B ⊗ R with R4. The
bilinear form 〈α, β〉 = Tr(αβ) is represented with respect to this basis by
an integral symmetric 4 × 4 matrix M with even diagonal entries, which
is positive definite and satisfies det(M) = p2. It defines an inner product
on R4. We let ‖r‖ =

√
〈r, r〉 =

√
2N(r). Note that the co-volume of R (the

absolute value of the volume of a fundamental parallelepiped) is p.
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460 Eyal Z. GOREN & Kristin E. LAUTER

Lemma 2.1.1. — Let Ki, i = 1, 2, be quadratic imaginary subfields
of B. We assume that one of the following equivalent conditions holds:
(i) K1 6= K2; (ii) K1 does not commute with K2; (iii) K1 ∩K2 = Q.

Let R be a maximal order of B. Let ki ∈ Ki be elements such that {1, ki}
is a basis for Ki over Q and ki ∈ R. Let L be the Z-lattice spanned by
{1, k1, k2, k1k2}. Then L is a full-rank sublattice of R and its co-volume
satisfies

(2.1) co-vol(L) 6 ‖1‖ · ‖k1‖ · ‖k2‖ · ‖k1k2‖ = 4 ·N(k1) ·N(k2).

Proof. — Straightforward. �

Corollary 2.1.2 (Elements of small norm commute). — If k1, k2 ∈ R
and N(k1),N(k2) <

√
p/2 then k1k2 = k2k1.

Proof. — If k1k2 6= k2k1 then the fields Ki = Q(ki) satisfy the assump-
tions of Lemma 2.1.1. The co-volume of the lattice L is then strictly less
than p, by (2.1). On the other hand, since L ⊆ R we have co-vol(L) >
co-vol(R) = p, which is a contradiction. �

Corollary 2.1.3. — There is an order O1 of a quadratic imaginary
field K1, O1 ⊂ R, such that all elements of R of norm less than √

p/2
belong to O1.

2.2. Simultaneous embeddings and a weak form of a result of
Gross-Zagier

Lemma 2.2.1. — Let Ki, i = 1, 2, be quadratic imaginary fields of dis-
criminant dKi contained in B, and let Oi be the order of conductor mi

of Ki, hence of discriminant dOi
= m2

i dKi . Assume that both O1,O2 are
contained in R, a maximal order of B, and that K1 6= K2. Then

(2.2) p 6
(dO1 − 1)(dO2 − 1)

4
.

Proof. — To obtain optimal bounds one chooses ki ∈ Oi of minimal
norm, such that {1, ki} is a Z-basis for Oi. Write Ki = Q(

√
Di) with Di a

square free integer. One verifies that ki = ±mi

√
Di if Di ≡ 2, 3 (mod 4),

(±1±mi

√
Di)/2 ifDi ≡ 1 (mod 4) andmi is odd, and±mi

√
Di/2 ifDi ≡ 1

(mod 4) and mi is even. The norm of ki is, respectively, m2
i |Di|/4 and

m2
i |Di|, (1+m2

i |Di|)/4. Now apply Lemma 2.1.1, using that p 6 co-vol(L).
�
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Lemma 2.2.1 allows us to draw a corollary that we view as a weak form
of results of Gross-Zagier [9] and Dorman [4] on singular moduli. We say
“weak” because they get explicit factorization formulae, while we only get a
bound of the size of the primes involved in the factorization. Our technique,
though, is much easier and also generalizes to higher dimensional situations.
Interestingly enough, the bound we get is optimal.

Corollary 2.2.2. — Let ji, i = 1, 2, be two singular j-invariants, that
is, ji corresponds to an elliptic curve Ei that has complex multiplication by
an order Oi of a quadratic imaginary field Ki ⊂ C. Suppose that K1 6= K2.
Let p be a prime of Q dividing p. If (j1 − j2) ∈ p then p 6

(dO1−1)(dO2−1)

4 .

Proof. — If (j1 − j2) ∈ p then E1
∼= E2 (mod p). Let E = E1 (mod p).

Since K1 6= K2, E is supersingular and, after fixing an isomorphism
End(E)⊗Q ∼= B, End(E) is a maximal order of B containing O1,O2. �

Remark 2.2.3. — Corollary 2.2.2 can be extended to the case K1 =
K2 = K for, say, the maximal order of K. The missing ingredient is that the
moduli space of elliptic curves, endowed with an action of OK and of a fixed
CM type, is étale over Spec(OK). This can be proved using the methods
of § 4.4. It implies that different singular j-invariants corresponding to
such elliptic curves define non-equivalent optimal embeddings, even upon
reduction modulo a prime, and the method above applies.

3. An embedding problem

A number field K is a CM field if it is a totally imaginary quadratic
extension of a totally real subfield K+. A CM type Φ of K is a subset of
Hom(K,C) such that Φ|K+ = Hom(K+,C). In general, there is a notion
of primitive, or simple CM type. This is a CM type that is not induced
from a CM type of a CM subfield of K; see [16, Ch. I, § 2] and [25, Ch.
II, § 8] for general information on CM fields and types. We say that K is
a primitive CM field, if K has no proper CM subfields. Clearly, every CM
type of K is then primitive.

Let K be a CM field of degree 4 over Q, and let K+ its totally real
subfield. Write K+ = Q(

√
d), for d > 0 a square free integer. Write K =

K+(
√
r) with r ∈ Z[

√
d] a totally negative element. Every quartic CM field

can be written this way. The following are equivalent: (i) K is primitive, i.e.,
does not contain a quadratic imaginary field; (ii) K is either non-Galois,
or a cyclic Galois extension; (iii) NQ(

√
d)/Q(r) is not a square in Q.

TOME 57 (2007), FASCICULE 2



462 Eyal Z. GOREN & Kristin E. LAUTER

We remark that there is much known on the index of Z[
√
d,
√
r] in OK

(see [27] and the proof of Proposition 5 in [5], where the index is always 2
or 4, for example). Intuitively, at least, the better one approximates OK

by Z[
√
d,
√
r] the better bounds one should get in Theorem 3.0.4 and its

applications.
Let E1, E2 be supersingular elliptic curves over Fp. Let a = Hom(E2, E1),

a∨ := Hom(E1, E2), Ri = End(Ei). Then End(E1 × E2) =
(

R1 a
a∨ R2

)
.

The product polarization induced by the divisor E1 × {0} + {0} × E2

on E1 × E2 induces a Rosati involution denoted by ∨. This involution
is given by

(
a b
c d

)
7→

(
a b
c d

)∨ =
(

a∨ c∨

b∨ d∨

)
, where a∨, b∨ etc. denotes the

dual isogeny. The Rosati involution is a positive involution. The algebra
End(Ei) ⊗ Q is a quaternion algebra over Q, ramified precisely at the
places {p,∞}. It is thus non-canonically isomorphic to the quaternion al-
gebra B of § 2.1. Under any such isomorphism, Ri is a maximal order of B
and we have a∨ = a, d∨ = d, where ·̄ is the canonical involution of B.

The embedding problem: For a quartic CM field K, and a prime p, to
find a ring embedding ι : OK ↪→ End(E1 × E2) such that the Rosati invo-
lution coming from the product polarization induces complex conjugation
on OK .

As we shall see below, the problem is intimately related with bounding
primes in the denominators of class invariants.

Theorem 3.0.4. — Let K = Q(
√
d)(
√
r) be a primitive quartic CM

field as above. If the embedding problem has a positive solution then p 6
d2(Tr(r))2.

Proof. — Assume such an embedding ι exists. Then ι(OK+) is fixed by
the Rosati involution, thus

√
d 7→ M = ( a b

c e ), for some a, e ∈ Z, b ∈ a,
b∨ = c. Moreover, M2 =

(
d 0
0 d

)
. This gives the following conditions on the

entries of M .

a2 + bb∨ = d, b(a+ e) = 0

b∨(a+ e) = 0, b∨b+ e2 = d.

If a 6= −e then b = 0 and hence d is a square - a contradiction. Thus,
a = −e, and we can write the embedding as

(3.1)
√
d 7→M =

(
a b

b∨ −a

)
, a ∈ Z, b ∈ a, a2 + bb∨ = d.

We may write
r = α+ β

√
d, α < 0, |α| > |β

√
d|.
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The condition of the Rosati involution inducing complex conjugation is
equivalent to ι(

√
r)∨ = −ι(

√
r). So, if ι(

√
r) = ( x y

z w ) then
(

x∨ z∨

y∨ w∨

)
=

− ( x y
z w ) . This translates into the conditions x = −x∨, w = −w∨, y = −z∨,

implying in particular that x and w have trace zero, which we write as
x ∈ R0

1 and w ∈ R0
2. It follows that

(3.2) ι(
√
r) =

(
x y

−y∨ w

)
, x ∈ R0

1, w ∈ R0
2, y ∈ a.

A further condition is obtained from ι(
√
r)2 = r, i.e.,(

x y

−y∨ w

)2

=
(
α+ βa βb

βb∨ α− βa

)
,

that is,

(3.3)
(

x2 − yy∨ xy + yw

−y∨x− wy∨ w2 − y∨y

)
=

(
α+ βa βb

βb∨ α− βa

)
.

Since yy∨ = y∨y ∈ Z, this leads to the following necessary conditions

(?) x2 − yy∨ = α+ βa, xy + yw = βb

w2 − yy∨ = α− βa, a2 + bb∨ = d,

where x ∈ R0
1, w ∈ R0

2, b, y ∈ a, α, β, a ∈ Z.
Note that y = 0 implies that either b = 0 or β = 0. The case b = 0 gives

that d is a square, hence is not possible; the case β = 0 is possible, but
leads to K a bi-quadratic field, contrary to our assumption.

We use the notation N(s) = ss∨, N(y) = yy∨, etc. Note that for s∈Ri

this definition of the norm is the usual one and, in any case, under the
interpretation of elements as endomorphisms N(s) = deg(s) and so N(st) =
N(s) ·N(t) when the product st makes sense. It follows from (?) that

(??) N(x) + N(y) = −(α+ βa)

N(w) + N(y) = −(α− βa).

Let ϕ : E1 → E2 be a non-zero isogeny of degree δ. For f ∈ End(E1×E2)
the composition of rational isogenies

E1 × E1
(1,ϕ)−→ E1 × E2

f−→ E1 × E2
(1,δ−1ϕ∨)−→ E1 × E1,

gives a ring homomorphism End0(E1 × E2) −→ End0(E1 × E1) that can
be written in matrix form as

f =
(
f11 f12
f21 f22

)
7→

(
f11 f12ϕ

δ−1ϕ∨f21 δ−1ϕ∨f22ϕ

)
.

TOME 57 (2007), FASCICULE 2
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Let ψ be the composition K −→ End0(E1×E2) −→ End0(E1×E1). Then ψ
is an embedding of rings with the property

(3.4)
(

1 0
0 δ

)
ψ(OK) ⊂M2(R1).

Choose ϕ = y∨. Taking f =
(

a b
b∨ −a

)
(corresponding to

√
d), or

( x y
−y∨ w

)
(corresponding to

√
r), the embedding ψ is determined by

(3.5) ψ(
√
d) =

(
a by∨

yb∨/δ −a

)
, ψ(

√
r) =

(
x δ

−1 ywy∨/δ

)
.

We conclude that

S = {by∨, yb∨, x, ywy∨} ⊂ R1.

Let

δ1 = min{−(α− βa),−(α+ βa)} = |α| − |β| · |a|,
δ2 = max{−(α− βa),−(α+ βa)} = |α|+ |β| · |a|.

It follows from (3.1) and (??) that

N(by∨) = N(yb∨) 6 dδ1, N(x) 6 δ2.

Assume that p > d2(Tr(r))2 > max{4 · d2δ21 , 4 · δ22}. Then N(by∨), N(yb∨)
and N(x) are all smaller than√p/2. By Corollary 2.1.3, the elements x, y∨b,
yb∨ belong to some imaginary quadratic field K1. The equation xy+ yw =
βb appearing in (?) gives the relation xyy∨ + ywy∨ = βby∨, which shows
that ywy∨ ∈ K1. We conclude that ψ is an embedding K →M2(K1). This
implies that K1 ↪→ K (else consider the commutative subalgebra generated
by K and K1 in M2(K1)), contrary to our assumption. It follows that if
there is a solution to the embedding problem ι then p 6 d2(Tr(r))2. �

4. Bad reduction of CM curves

In this section we discuss the connection between solutions to the embed-
ding problem and bad reduction of curves of genus two whose Jacobian has
complex multiplication. We shall assume CM by the full ring of integers,
but the arguments can easily be adapted to CM by an order, at least if
avoiding primes dividing the conductor of the order.

ANNALES DE L’INSTITUT FOURIER
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4.1. Bad reduction solves the embedding problem

Fix a quartic primitive CM field K. Write K = Q(
√
d)(
√
r), r ∈ OK+ , d

a positive integer. Let C be a smooth projective genus 2 curve over a num-
ber field L. We say that C has CM (by OK) if Jac(C ) has CM by OK .
By passing to a finite extension of L we may assume that C has a sta-
ble model over OL and that all the endomorphisms of Jac(C ) are defined
over L. Since K is primitive, Jac(C ) is a simple abelian variety and so
End0(Jac(C )) = K. In particular, the natural polarization of Jac(C ), as-
sociated to the theta divisor C ⊂ Jac(C ), preserves the field K and acts
on it by complex conjugation.

It is well known that Jac(C ) has everywhere good reduction. It follows
that for every prime ideal pCOL either C has good reduction modulo p or
is geometrically isomorphic to two elliptic curves E1, E2 crossing trans-
versely at their origins. In the latter case we have an isomorphism of
principally polarized abelian varieties over k(p) = OL/p , (Jac(C ),C ) ∼=
(E1 × E2, E1 × {0} + {0} × E2). Since K ↪→ End(E1 × E2) ⊗ Q we see
that E1 must be isogenous to E2. Moreover, Ei cannot be ordinary; that
implies that K ↪→M2(K1) for some quadratic imaginary field K1 and one
concludes that K1 ↪→ K, contradicting the primitivity of K. We conclude

Lemma 4.1.1. — Let C /L be a non-singular projective curve of genus 2
with CM by OK . Assume that C has a stable model over OL. If C has bad
reduction modulo a prime p|p of OL then the embedding problem has a
positive solution for the prime p.

The following theorem now follows immediately using Theorem 3.0.4.

Theorem 4.1.2. — Let C be a non-singular projective curve of genus 2
with CM by OK and with a stable model over the ring of integers OL of
some number field L. Let p|p be a prime ideal of OL. Assume that p is
greater or equal to d2(Tr(r))2 then C has good reduction modulo p.

4.2. A solution to the embedding problem implies bad reduction

Theorem 4.2.1. — Assume that the embedding problem of § 3 has
a solution with respect to a primitive quartic CM field K. Then there is
a smooth projective curve C of genus 2 over a number field L with CM
by OK , whose endomorphisms and stable model are defined over OL, and
a prime p of OL such that C has bad reduction modulo p.

TOME 57 (2007), FASCICULE 2
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Our strategy for proving the theorem is the following. We consider a
certain infinitesimal deformation functor N for abelian surfaces with CM
by OK . We show that N is pro-representable by a W (Fp)-algebra Ru, and
that a solution to the embedding problem can be viewed as an Fp-point x
of Spec(Ru). We prove that Ru is isomorphic to the completed local ring of
a point on a suitable Grassmann variety and deduce that Ru ⊗Q 6= 0. We
conclude that x can be lifted to characteristic zero and finish using classical
results in the theory of complex multiplication. Before beginning the proof
proper, we need some preliminaries about Grassmann varieties.

4.3. Grassmann schemes

The following applies to any number field K with an involution ∗; we
denote the fixed field of ∗ by K+. Put [K : Q] = 2g.

4.3.1. Consider the module M0 := OK ⊗Z W , W = W (Fp), equipped
with an alternating perfect W -linear pairing 〈·, ·〉 with values in W , such
that for s ∈ OK we have 〈sr, r′〉 = 〈r, s∗r′〉. Note that this also holds
for s ∈ OK ⊗Z W if ∗ denotes the natural extension of the involution to
this ring.

This defines a Grassmann problem: classify for W -algebras W ′ the iso-
tropic, locally free, locally direct summands W ′-submodules of M0⊗W W ′

of rank g that are OK-invariant. This is representable by a projective
scheme G′ → Spec(W ) (a closed subscheme of the usual (projective) Grass-
mann scheme). We claim that G′ is topologically flat: namely, that ev-
ery Fp-point of it lifts to characteristic zero. That means that for every
submodule N1 of OK ⊗Z Fp, satisfying the conditions above, there is a
flat W -algebra W ′ and such submodule N0 of OK ⊗W W ′ that lifts N1.

4.3.2. First note that for k ⊃ W an algebraically closed field of charac-
teristic zero, the k-points of G′ are in bĳection with “CM types”. Indeed,
we are to classify the isotropic, rank g, sub k-vector spaces of OK ⊗Z k =
⊕{ϕ : K→k}k(ϕ), where k(ϕ) is k on which OK acts via ϕ. It is easy to
see that the pairing decomposes as a direct sum of orthogonal pairings
on the g subspaces k(ϕ) ⊕ k(ϕ ◦ ∗) (use that for r ∈ k(ϕ), r′ ∈ k(ϕ′) we
have ϕ(s)〈r, r′〉 = 〈sr, r′〉 = 〈r, s∗r′〉 = (ϕ′ ◦ ∗)(s)〈r, r′〉). On k(ϕ)⊕k(ϕ ◦ ∗)
the pairing is non-degenerate so every maximal isotropic subspace is a line
and vice-versa. The condition of being an OK-submodule leaves us with
precisely two submodules of k(ϕ)⊕ k(ϕ ◦ ∗), viz. k(ϕ), k(ϕ ◦ ∗). Thus, the
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choice of an isotropic, OK-invariant k-subspace of dimension g of OK ⊗Z k

corresponds to choosing an element from each of the g pairs {ϕ,ϕ ◦ ∗}.

4.3.3. We now prove topological flatness for G′. We first make a series of
reductions. Let p =

∏
pei

i be the decomposition of p into prime in OK+ . We
have OK+⊗ZW = ⊕p|pOK+

p
⊗ZpW (with corresponding idempotents {ep})

and OK+ ⊗Z Fp = ⊕p|pOK+/pep ⊗Fp Fp. The modules M0 = OK ⊗Z W ,
M1 := OK ⊗Z Fp, which are, respectively, free OK+ ⊗Z W and OK+ ⊗Z Fp

modules of rank 2, decompose accordingly as ⊕p|pM0(p),⊕p|pM1(p). We
claim that the submodules {M0(p) : p|p} (resp. {M1(p) : p|p}) are or-
thogonal. Indeed, this follows from the fact that for the idempotents {ep}
we have 〈epr, ep′r

′〉 = 〈e2pr, e2p′r′〉 = 〈epr, epe
2
p′r

′〉 = δp,p′〈epr, ep′r
′〉 . We

may thus assume without loss of generality that p = pe with residue de-
gree f in OK+ (note that the global nature of the rings OK ,OK+ plays
no role). Let W+ = W (Fpf ) considered as the maximal unramified sub-
extension of OK+

p
. A further reduction is possible: Since OK+

p
⊗Zp

W =
⊕{W+→W}OK+

p
⊗W+ W , the same arguments as above (using idempotents

etc.) allow us to assume with out loss of generality that f = 1. Thus, the
problem reduces to the following:

4.3.4. One is given a p-adic ring of integers A, finite of rank e overW , and
a free semi-simple A-algebra B of rank 2 with an involution ∗ whose fixed
points are A. Also given is a perfect alternating pairing 〈·, ·〉 : B ×B →W

such that for s ∈ B we have 〈sr, r′〉 = 〈r, s∗r′〉. One needs to show that every
maximal isotropic B ⊗W Fp submodule of B ⊗W Fp lifts to characteristic
zero in the sense previously described.

Note that B is either an integral domain that is a ramified extension of A
or isomorphic as an A-algebra to A⊕A with the involution being the per-
mutation of coordinates. The first case is immediate: We have B ⊗W Fp

∼=
Fp[t]/(t2e) and it has a unique submodule of rank e over Fp, viz. (te). Since
the Grassmann scheme G′ always has characteristic zero geometric points
and is projective, a lift is provided by (any) characteristic zero point of G′.

In the second case we have B ⊗W Fp
∼= Fp[t]/(te) ⊕ Fp[t]/(te). Every

submodule of B ⊗W Fp of rank e over Fp is a direct sum (ti) ⊕ (te−i).
Such submodules are automatically isotropic. We claim that the submod-
ule (ti) of Fp[t]/(te) can be lifted to characteristic zero, that such a lifting
corresponds to a choice of e − i embeddings A → Qp over W and that
each lifting is isotropic when considered as a submodule of B ⊗W W ′ =
A ⊗W W ′ ⊕ A ⊗W W ′, where W ′ is a “big enough” flat extension of W .
Indeed, every geometric point of the appropriate Grassmann scheme, being
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proper over Spec(W ), extends to an integral point (defined over a finite
integral extension W ′/W ). Such a geometric point corresponds to a choice
of ( e

i ) embeddings A→ Qp over W and is isotropic (cf. § 4.3.2 – when we
view A⊗W as a B-submodule of B⊗W via the first (or second) component,
it is isotropic). Moreover, since the submodule (ti) is uniquely determined
by its rank, every such integral point indeed provides a lift of (ti). It now
easily follows that (ti)⊕ (te−i) can be lifted in ( e

i ) ways.

4.4. Proof of Theorem 4.2.1

By an abelian scheme with CM we mean in this section a triple
(A/S, λ, ι), consisting of a principally polarized abelian scheme over S with
an embedding of rings ι : OK → EndS(A) such that the Rosati involution
defined by λ induces complex conjugation on OK . We denote complex con-
jugation on K by ∗ and let K+ be the totally real subfield of K. As before,
W = W (Fp). The following lifting lemma, that holds for any CM field K

and whose proof is given in §§ 4.4.1–4.4.4, is the key point. (1)

Lemma 4.4.1. — Let (A, λ, ι) be an abelian variety with CM over Fp

then (A, λ, ι) can be lifted to characteristic zero.

4.4.1. Let S be a local artinian ring with residue field Fp. Let (A′, λ′, ι′)
be an abelian scheme over S with CM. We claim that H1

dR(A′/S) is a
free OK ⊗Z S-module of rank 1. Since H1

dR(A′/S) is a free S-module of
rank 2g, to verify that it is a free OK ⊗Z S-module it is enough to prove
that modulo the maximal ideal of S (cf. [2, Rmq. 2.8]), namely, to prove
that H1

dR(A′ ⊗S Fp/Fp) is a free OK ⊗Z Fp-module. This is [22, Lem. 1.3].
In fact, loc. cit. gives that H1

crys(A
′ ⊗S Fp/W ) is a free OK ⊗Z W -module.

4.4.2. The polarization λ induces a perfect alternating pairing 〈·, ·〉 on
the free OK ⊗Z W -module H1

crys(A/W ), which we identify with M0 :=
OK ⊗Z W . This pairing induces complex conjugation on OK and reduces
modulo p to the pairing induced by λ on H1

dR(A/Fp). Moreover, there exists
a finite flat extension Λ of W such the Hodge filtration

0 → H0(A,Ω1
A/Fp

) → H1
dR(A/Fp)

can be lifted to M0⊗W Λ. This follows from the discussion in § 4.3. In fact,
the results of that section show that such a lift is uniquely determined by

(1) After this paper was submitted for publication, we were informed by Chia-Fu Yu that
this lemma was obtained by him independently. See his paper in J. Pure Appl. Algebra
187 (2004), no. 1-3, 305–319.
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its generic point, a subspace of K ⊗Q Qp = ⊕{ϕ : K→Qp}
Qp(ϕ), consisting

of a choice of one subspace out of each pair Qp(ϕ)⊕Qp(ϕ ◦ ∗).
Recall that a CM type Φ ofK is a subset of Hom(K,C) (or of Hom(K,Qp))

that is disjoint from its complex conjugate, equivalently, a subset that in-
duces Hom(K+,C) (or Hom(K+,Qp)). A choice of lift of the Hodge filtra-
tion provides us with CM type Φ. Let K∗ be the reflex field defined by Φ.
We see that, in fact, a lift of the Hodge filtration is defined over Λ, where Λ
is the compositum of W with the valuation ring of the p-adic reflex field
associated to Φ.

4.4.3. Let V = OK ⊗Z C - a complex vector space on which OK acts.
Choose a Z-basis e1, . . . , e2g for OK and consider fΦ(x) = det(

∑
eixi,

Lie(A)). This a polynomial in x1, . . . , x2g with coefficients in OK∗ that
depends only on Φ and determines it.

Let M : SchOK∗ → Sets be the functor from the category of schemes
over OK∗ to the category of sets such that M(S) is the isomorphism classes
of triples (A/S, λ, ι : OK ↪→ EndS(A)), where (A/S, λ) is a principally po-
larized abelian scheme with CM and det(

∑
eixi,Lie(A)∗) = fΦ(x). That

is, the triple (A/S, λ, ι : OK ↪→ EndS(A)) satisfies the Kottwitz condition
[15, § 5] uniquely determined by Φ (with the slight variation of working
with Lie(A)∗ instead of Lie(A)).

For the given point x = (A, λ, ι) ∈ M(Fp) we consider the local deforma-
tion problem induced by M. This is the functor N from the category CΛ

of local artinian Λ-algebras with residue field Fp to the category Sets as-
sociating to a ring R in CΛ those elements of M(R) specializing to x.
We remark that the Kottwitz condition is closed under specialization. It is
thus fairly standard that N is pro-represented by a complete noetherian Λ-
algebra Ru; cf. [20, § 2] and [3, § 4].

4.4.4. Let G → Spec(Λ) be the Grassmann variety parameterizing for
a scheme S → Spec(Λ) the set of OK-invariant, isotropic, locally free,
locally direct summands OS-submodules of rank g of M0 ⊗Λ OS (with the
pairing coming from x as above) and satisfying Kottwitz condition fΦ for
a CM type Φ. (In fact, one can deduce that G ∼= Spec(Λ) but we don’t
need it here.) Let x be the point of G corresponding to H0(A,Ω1

A/Fp
) →

H1
dR(A/Fp).
Given the results of § 4.4.1, the theory of local models furnishes an

isomorphism O∧G,x
∼= Ru; cf. [2, § 3], [3, Thm. 4.4.1] – the arguments easily

extend to allow a Kottwitz condition. We conclude therefore that there is
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a triple (A, λ, ι) lifting x defined over the p-adic field K1 = Λ ⊗ Q. This
concludes the proof of the lemma.

4.4.5. Let K be a primitive quartic CM field. A solution of the embed-
ding problem for p provides us with a triple (A/Fp, λ, ι) = (E1×E2/Fp, λ =
λ1×λ2, ι : OK → EndFp

(E1×E2)). By Lemma 4.4.1, we may lift (A/Fp, λ, ι)
to a triple (A0, λ0, ι0) defined over the ring of integers of some p-adic
field K1 and so, by Lefschetz principle, defined over C. By the theory of
complex multiplication (A0, λ0, ι0) is defined over some number field K2.
Since the CM field K is primitive, A0 is simple and principally polarized.
By a theorem of Weil [31] the polarization is defined by a non singular
projective genus 2 curve C and it follows that A0

∼= Jac(C ) as polarized
abelian varieties. Furthermore, C is defined over a number field K3 (that
is at most a quadratic extension of K2). By passing to a finite extension L
of K3, we get a stable model.

4.4.6. It remains to explain why C has bad reduction modulo p. Let Cp

denote the reduction. The polarization on Jac(C ) is defined by the theta
divisor OJac(C )(C ) and the polarization on Jac(Cp) is the reduction of
that of Jac(C ) and hence defined by OJac(Cp)(Cp). Note that, thus far,
the embedding of C or Cp into the Jacobian is only determined up to
translation. On the other hand, the polarization on Jac(Cp) is also given
by the reducible divisor E1 × {0} + {0} × E2. The fact that this implies
that Cp is isomorphic to the two elliptic curves E1, E2 crossing transversely
follows from a theorem Weil [31], but we provide a self contained argument.

Let X/k be an abelian variety over an algebraically closed field k and
let K,L be two ample divisors of degree one on X, which are algebraically
equivalent. Then, after a suitable translation of L we have K = L. Indeed,
for a divisor D on X let φD = φOX(D) denote the associated homomor-
phism X → Pic0(X), x 7→ T ∗xOX(D) ⊗ OX(D)−1 = OX(T ∗xD − D). By
assumption, φK−L = 0. This implies that OX(K − L) ∈ Pic0(X), cf. [19,
§ 8]. Since L is ample, φL is surjective and so OX(K −L) ∼= OX(T ∗xL−L)
for a suitable x ∈ X. It follows that OX(K − T ∗xL) is the trivial sheaf.
Without loss of generality we may assume that L = T ∗xL, and so there
exists a rational function f on X such that (f) = K − L. But such a
function belongs to OX(L). By the Riemann-Roch theorem for abelian va-
rieties dimH0(X,OX(nL)) = ng(Lg)/g! = ng, since L is ample of degree
one [19, § 16]. But then H0(X,OX(L)) = k and it follows that K = L.
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5. Applications

5.1. A general principle

The following lemma is folklore and easy to prove:

Lemma 5.1.1. — Let π : S → R be a proper scheme over a Dedekind
domain R with quotient field H. Let L → S be a line bundle on S

and f, g : S → L sections. Let x ∈ S(H ′) be a point, where H ′ is a fi-
nite field extension of H. Let u = (f/g)(x) ∈ H ′. Let p be a prime of R′,
the integral closure of R in H ′. Let x̄ be the R′-point corresponding to x.
Then valp(u) < 0 implies that x̄ intersects the divisor of g in the fiber of S
over p.

Corollary 5.1.2. — Let A2 → Spec(Z) be the moduli space of prin-
cipally polarized abelian surfaces and let

(5.1) Θ(τ) =
1

212

∏
(ε,ε′)

even char.

(
Θ

[
ε

ε′

]
(0, τ)

)2

.

Let f be a Siegel modular form with q-expansion
∑

ν a(ν)q
2πiTr( tντ),

where ν runs over g × g semi-integral, semi-definite symmetric matrices.
Assume that all the Fourier coefficients a(ν) ∈ OL, the ring of integers of
a number field L, and that the weight of f is of the form 10k, k a positive
integer.

Let τ be a point on Sp4(Z)\H2 corresponding to a smooth genus 2
curve C with CM by the full ring of integers of a primitive CM field K and
CM type Φ. Then (f/Θk)(τ) is an algebraic number lying in the composi-
tum HK∗L of L and the Hilbert class field of the reflex field K∗ of (K,Φ). If
a prime p divides the denominator of (f/Θk)(τ) then C has bad reduction
modulo p.

Proof. — The argument is essentially that of [24, § 4.4]: Igusa [13] proved
that Θ is a modular form on Sp4(Z)\H2 (see [13, Thm. 3], Θ is denoted
there −22χ10). It is well known to have weight 10 and a computation shows
that its Fourier coefficients are integers and have g.c.d. 1. The q-expansion
principle [6, Ch. V, Prop. 1.8] shows that f and Θk are sections of a suitable
line bundle of the moduli scheme A2 ⊗Z OL. The value (f/Θk)(τ) lies
in HK∗L by the theory of complex multiplication.

It is classical that the divisor of Θ over C, say Dgen, is the locus of the
reducible polarized abelian surfaces – those that are a product of elliptic
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curves with the product polarization. The Zariski closureDcl
gen ofDgen in A2

is contained in the divisor Darith of Θ, viewed as a section of a line bundle
over A2, and therefore Dcl

gen = Darith, because by the q-expansion prin-
ciple Darith has no “vertical components”. Since Dcl

gen also parameterizes
reducible polarized abelian surfaces, it follows that Darith parameterizes re-
ducible polarized abelian surfaces. (Furthermore, it is easy to see by lifting
that every reducible polarized abelian surface is parameterized by Darith.)
The Corollary thus follows from Lemma 5.1.1. �

Corollary 5.1.3. — (f/Θk)(τ) is an S-integer, where S is the set of
primes of lying over rational primes p less than d2(Tr(r))2 and such that p
decomposes in a certain fashion in a normal closure of K as imposed by
superspecial reduction [8, Thms. 1, 2] (for example, if K is a cyclic Galois
extension then p is either ramified or decomposes as p1p2 in K).

5.2. Class invariants

Igusa [11, p. 620] defined invariants A(u), B(u), C(u), D(u) of a sextic
u0X

6+u1X
5+· · ·+u6, with roots α1, . . . , α6, as certain symmetric functions

of the roots. For example, D(u) = u10
0

∏
i<j(αi − αj)2 is the discriminant.

Igusa also proved that if k is a field of characteristic different from 2,
the complement of D = 0 in Proj k[A,B,C,D], where A,B,C,D are of
weights 2, 4, 6, 10 respectively, is the coarse moduli space for hyperelliptic
curves of genus 2. Moreover, the ring of rational functions is generated by
the “absolute invariants” B/A2, C/A3, D/A5 (see [12, p. 177], [11, p. 638]).
One can choose other generators of course, and for our purposes it makes
sense to choose generators with denominator a power of D. Choose then as
in [30, p. 313] the generators

i1 = A5/D, i2 = A3B/D, i3 = A2C/D.

One should note though that these invariants are not known a-priori to
be valid in characteristic 2, since Weierstrass points “do not reduce well”
modulo 2. The invariants in can be expressed in terms of Siegel modular
forms thus:

i1 = 2 · 35χ−6
10 χ

5
12, i2 = 2−3 · 33ψ4χ

−4
10 χ

3
12,

i3 = 2−5 · 3ψ6χ
−3
10 χ

2
12 + 22 · 3ψ4χ

−4
10 χ

3
12.

See [12, pp. 189, 195] for the definitions; ψi are Eisenstein series of weight i,
−22χ10 is our Θ.
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Another interesting approach to the definition of invariants is the fol-
lowing: Let I2 = h12/h10, I4 = h4, I6 = h16/h10, I10 = h10 be the modu-
lar forms of weight 2, 4, 6, 10, respectively, as in [17]. The appeal of this
construction is that each hn is a simple polynomial expression in Rie-
mann theta functions with integral even characteristics [ ε

ε′ ]; for example,
h4 =

∑
10(Θ [ ε

ε′ ] (0, τ))
8, h10 = 212Θ. It is not hard to prove that the g.c.d.

of the Fourier coefficients of Θ [ ε
ε′ ] (0, τ), for [ ε

ε′ ] an integral even character-
istic, is 1 if ε ∈ Z2 (that happens for 4 even characteristics) and 2 if ε 6∈ Z2

(that happens for 6 even characteristics). Using that and writing In = ∗/Θ,
one finds that the numerator of In has an integral Fourier expansion. One
then lets

j1 := I5
2/2

−12I10, j2 := I3
2I4/2

−12I10, j3 := I2
2I6/2

−12I10.

These are modular functions of the form f/Θk, such that the numerator
has integral Fourier coefficients. Slightly modifying the definition of [17]
(there one uses ji := 2−12ji), we put

(5.2) Hi(X) =
∏
τ

(X − ji(τ)), i = 1, 2, 3,

where the product is taken over all τ ∈ Sp(4,Z)\H2 such that the associ-
ated abelian variety has CM by OK (thus all polarizations and CM types
appear). We remark that j1 = i1, j2 = i2; this can be verified using the
formulas given in [14, p. 848].

The polynomials appearing in Equation (5.2) have rational coefficients
that are symmetric functions in modular invariants, viz. the values of the
functions ji associated to CM points. As such, it is natural to ask for the
prime factorization of these coefficients. For example, the results of [9] give
the factorization of the discriminant of the Hilbert class polynomial in the
case of imaginary quadratic fields and so provide a bound on the primes
which can appear. In [17], it was conjectured that primes dividing the
denominators of the coefficients of Hi(X) are bounded by the discriminant
of K (note that the only difference between the current definition and loc.
cit. is powers of 2). We deduce from the preceding results the following:

Corollary 5.2.1. — The coefficients of the rational polynomialsHi(X)
are S-integers where S is the set of primes smaller than d2(Tr(r))2 and
satisfying a certain decomposition property in a normal closure of K as
imposed by superspecial reduction [8, Thms. 1, 2].

Remark 5.2.2. — Theorem 4.2.1 gives a partial converse to this corol-
lary.
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Remark 5.2.3. — We would like to explain the connection between our
results and the conjectures of [17] and [1]. In [17], the primes appearing
in the denominators of the coefficients of the class polynomials Hi were
conjectured to be bounded by the discriminant of K. When K is written
in the form K = Q(

√
d)(
√
r), with d > 0 a fundamental discriminant and

r = a+ b
√
d a totally negative element of Z[

√
d], the discriminant of K is

roughly d2(a2 − b2d) (it certainly divides 28d2(a2 − b2d)). In fact, it was
suggested there, based on numerical evidence, that the correct bound on
the primes may be a small multiple of NK+/QdK/K+ , which is roughly
d0 = a2 − b2d. Our bound, on the other hand, is 4d2a2, which is larger
than d2(a2− b2d). One therefore expects that our bound can be improved.
This is also suggested by the method of our proof, which replaces algebraic
identities by metric inequalities.

It is also of much interest to compare the above with the work of Bru-
inier and Yang [1], which also suggests that our bound can be improved.
Their paper considers a CM field K with absolute discriminant p2q and
K+ = Q(

√
p), where p, q are primes congruent to 1 modulo 4. To fix

ideas, assume that K+ has strict class number one. Then one finds that
K = Q(

√
p)(

√
a+ b

√
p), where a+b

√
p is a totally negative element whose

norm is q. Conjecture (1.10) of loc. cit. can be applied to the divisor of the
pull-back of Θ under the modular map from the Hilbert to the Siegel upper
half space, see loc. cit. Remark 9.3. This allows one to conclude after some
simple calculations that their conjecture implies that primes in the denom-
inators are bounded by pq/64. We should stress though, that we have not
attempted to optimize our calculations and possibly a better bound can be
drawn from their work.

5.3. Units

Let K be a primitive quartic CM field as before. In [24], de Shalit and
the first named author constructed class invariants u(Φ; a), u(Φ; a, b), asso-
ciated to certain ideals of K and a CM type Φ. The construction essentially
involves the evaluation of Θ at various CM points associated to K. Though
the construction is general, we recall it here only under very special condi-
tions. For the general case, refer to loc. cit.

Example 5.3.1. — Assume that K is a cyclic CM field with odd class
number hK and that hK+ = 1. Let Φ be a CM type of K and assume that
the different ideal DK/Q = (δ) with δ = −δ and Im(ϕ(δ)) > 0 for ϕ ∈ Φ.
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Let a be a fractional ideal of OK and choose a ∈ K+, a� 0 such that aa =
(a). The form 〈f, g〉 = TrK/Q(fg/aδ) induces a principal polarization on
C2/Φ(a). Write the lattice Φ(a) as spanned by the symplectic basis formed
by the columns of (ω1 ω2) and consider ∆(Φ(a)) := det(ω2)−10Θ(ω−1

2 ω1).
It depends only on Φ, a and not on a. One then lets

(5.3) u(Φ; a) =
∆(Φ(a−1))
∆(Φ(OK))

, u(Φ; a, b) =
u(Φ; ab)

u(Φ; a)u(Φ; b)
.

See [24, § 1.3] for remarkable properties of these invariants. In particular,
if hK is a prime different from 5 the group generated by the u(Φ; a, b) in
H×

K has rank hK − 1. The following corollary holds in general.

Corollary 5.3.2. — The invariants u(Φ; a, b) are S-units for S the set
of primes of HK∗ that lie over rational primes p smaller than d2(Tr(δ2))2

such that p decomposes in a certain fashion in a normal closure of K as
imposed by superspecial reduction [8, Thms. 1,2].

6. Appendix: Numerical data

6.1. Class polynomials

Let K = Q[x]/(x4 + 50x2 + 93) be the non-normal quartic CM field of
class number 4 generated by i

√
25 + 2

√
133 over its totally real subfield

K0 = Q(
√

133). The field discriminant of K is dK = 3 · 31 · 1332 and the
norm of the relative discriminant is 93. The reflex field of K is the quartic
CM field K∗ = Q[x]/(x4 + 100x2 + 2128), and it also has class number 4.
The Igusa class polynomials for K have degree 8, and the first one, H1(X),
has denominators which factor as:

748 · 1172 · 1924 · 2312 · 2912 · 8312 · 8912 · 16712.

Note that for the first Igusa invariant, χ10 appears to the sixth power in
the denominator, which agrees with the fact that all powers are a multiple
of 6. To give an idea of the size, the numerator of the constant term factors
as:

2224 · 320 · 2315 · (53 · 1508303 · 54586453 · 38280141661140007

· 1375394310638387387)5.

The other two class polynomials are not given here, as they have the same
primes in their denominators. The polynomials were computed using PARI
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with 1000 digits of precision in about 8 hours each on an Intel Pentium 4,
2.2GHZ, 512MB memory.

The algorithm used to compute the Igusa class polynomials is given
in [30], [32], and [17]. Roughly speaking, the algorithm works by listing
ideal classes in OK and computing for each ideal class and CM type the
period matrices associated to the corresponding abelian variety with its
principal polarization(s) (as in [26, Section 4.2 and p. 62]). The Siegel mod-
ular functions are then evaluated, to some amount of precision, at each of
the period matrices, and the minimal polynomial of the Igusa invariants is
formed. To recognize the coefficients of the minimal polynomial as rational
numbers, the continued fraction algorithm is used.

If enough precision is used in the computation, then the algorithm suc-
ceeds, but a bound on the size of the denominators is needed to determine
the amount of precision necessary. For primes satisfying mild ramification
conditions, the first named author has obtained bounds on the powers of
the primes appearing in the denominators of the Igusa class polynomials
and the class invariants of § 5.3. This will be published elsewhere. Together
with the bound given here on the primes, this provides a bound on the de-
nominators. In practice, the resulting triple of Igusa class polynomials are
checked by taking triples of roots modulo a prime ` which splits completely
in K (and into principal ideals in K∗, the reflex field of K), generating the
genus 2 curve over F` with those invariants using Mestre’s algorithm, and
checking that a point on the Jacobian is killed by one of the group orders
predicted for the Jacobian of a curve over F` with CM by K.

6.2. Curves with bad reduction

To illustrate the theory we give an example of a CM field K and two
genus 2 curves over Q with CM by K. We list their invariants, and verify
that they have bad reduction at the primes in the denominators of the
invariants. In [30], van Wamelen gives a complete list of all isomorphism
classes of genus 2 CM curves defined over the rationals along with their
Igusa invariants. For example, for the cyclic CM fieldK = Q(i

√
13− 3

√
13)

of class number 2, there are two non-isomorphic genus 2 curves defined
over Q.

The curve with invariants equal to
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i1 =
2 · 115 · 535 · 67195 · 301135

37 · 2312 · 13112
,

i2 =
2 · 5 · 113 · 533 · 67193 · 7229 · 301133

33 · 238 · 1318
,

i3 =
2 · 112 · 19 · 532 · 67192 · 301132 · 237589628623651

34 · 238 · 1318
,

has an affine model

y2 = −70399443x6 + 36128207x5 + 262678342x4 − 48855486x3

− 112312588x2 + 36312676x.

The reduction of a genus 2 curve at a prime can be calculated using [18,
Thm. 1, p. 204]. For these examples we actually calculated the reduction
using the genus 2 reduction program written by Liu. The output of the
program shows that at the primes p = 2, 3 , 23, 131, the curve has potential
stable reduction equal to the union of two supersingular elliptic curves E1

and E2 intersecting transversally at one point.
The second curve has invariants equal to

i1 =
2 · 710 · 115 · 210595

37 · 2312
,

i2 =
2 · 5 · 77 · 113 · 8387 · 210593

33 · 238
,

i3 =
2 · 76 · 112 · 210592 · 71347 · 739363

34 · 238
,

and has an affine model

y2 = −243x6 + 2223x5 − 1566x4 − 19012x3 + 903x2 + 19041x− 5882.

In this case, the output of the genus 2 reduction program shows that at
the primes p = 2, 3 , 23, the curve has potential stable reduction equal
to the union of two supersingular elliptic curves E1 and E2 intersecting
transversally at one point.

The reader may have noticed that 2 does not appear in the denomina-
tor of the invariants. This is not due to the invariants in being divisible
by 2. It is an artifact of cancellation between “values of the numerator and
the denominator” and explains in which sense Theorem 4.2.1 may fail to
provide a converse to Corollary 5.1.2. In fact, bad reduction of CM curves
modulo primes over 2 turns out to be prevalent. According to [10], there
is no smooth superspecial curve in characteristic 2. On the other hand, us-
ing complex multiplication, one can prove (e.g. for cyclic CM fields K and
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primes decomposing as (p) = p1p2 or (p) = p2
1) superspecial reduction of

principally polarized abelian surfaces with CM by K (cf. [8]). This implies
for p = 2 bad reduction of the corresponding curve.

6.3. Class invariants

In his McGill M.Sc. thesis, Daniel Vallieres calculated for the first time
numerical examples of the class invariants appearing in § 5.3. With his
kind permission, we provide an example here; many more appear in [28].
As one may expect, such invariants are rarely units. For an explanation
of this phenomena see [7]. The same remarks concerning the validity of
the calculations made in § 6.1 apply here. The field K we consider is
Q(

√
−15 + 6

√
5). Its discriminant is 24 · 32 · 53. This field has class group

isomorphic to Z/2Z×Z/2Z and we denote by a, b, c ideals representing its
non-zero elements. For a suitable choice of these ideals and a CM type Φ,
the data is given in the following table. All minimal polynomials split in
K+ = Q(

√
5). The prime 31 splits in K+ as (31) = p31,1p31,2.

invariant minimal polynomial factorization of u(Φ; x, y)
in Q(

√
5)

u(Φ; a, a) t2 − 10155047
923521

· t+
1

923521
p−4
31,1

u(Φ; a, b) t− 1
961

p−2
31,1p

−2
31,2

u(Φ; a, c) t2 − 10155047
961

· t+ 1 p−2
31,1p

2
31,2

u(Φ; b, b) t2 − 20809922
923521

· t+
1

923521
p−4
31,2

u(Φ; b, c) t2 − 20809922
961

· t+ 1 p2
31,1p

−2
31,2

u(Φ; c, c) t2 − 228826127 · t+ 1 1 (unit)

We remark that already in [28] one finds invariants with 7 primes in
their decomposition, and based on [7] the number of primes is expected
to be arbitrarily large when the discriminants of K and K+ grow. Also,
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as previously mentioned, in general the invariants u(Φ; a, b) generate non-
trivial ray class fields of K.
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