
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Veronica BAKER, Marcy BARGE & Jaroslaw KWAPISZ

Geometric realization and coincidence for reducible non-unimodular Pisot
tiling spaces with an application to β-shifts
Tome 56, no 7 (2006), p. 2213-2248.

<http://aif.cedram.org/item?id=AIF_2006__56_7_2213_0>

© Association des Annales de l’institut Fourier, 2006, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2006__56_7_2213_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
56, 7 (2006) 2213-2248

GEOMETRIC REALIZATION AND COINCIDENCE FOR
REDUCIBLE NON-UNIMODULAR PISOT TILING
SPACES WITH AN APPLICATION TO β-SHIFTS

by Veronica BAKER, Marcy BARGE & Jaroslaw KWAPISZ

Abstract. — This article is devoted to the study of the translation flow on
self-similar tilings associated with a substitution of Pisot type. We construct a
geometric representation and give necessary and sufficient conditions for the flow
to have pure discrete spectrum. As an application we demonstrate that, for certain
beta-shifts, the natural extension is naturally isomorphic to a toral automorphism.

Résumé. — Cet article est consacré à l’étude du flot de translation sur pavages
auto-similaires associés à une substitution de type Pisot. Nous construisons une
représentation géométrique et nous donnons les conditions nécessaires et suffisantes
pour que le flot ait un spectre purement discret. Dans l’application, nous montrons
que pour certains beta-shifts, l’extension naturelle est naturellement isomorphique
à un automorphisme du tore.

1. Introduction

We are interested here in the pure discrete spectrum property for Pisot
substitutions. Traditionally, this would mean considering the pure discrete-
ness of the unitary operator f 7→ f ◦σ on L2(Xφ) where Xφ is the (discrete)
substitutive system associated with a substitution φ of Pisot type. We find
it more convenient to study the tiling flow T t : Tφ → Tφ, t ∈ R, on the
space of tilings associated with φ; (Xφ, σ) can be recovered by taking a
cross-section. The advantage of (Tφ, T t) over (Xφ, σ) lies in the existence
of the inflation-and-substitution homeomorphism Φ: Tφ → Tφ that inter-
acts with T t via Φ ◦ T t = Tλt ◦Φ, λ the dominant eigenvalue of φ. In fact,
the inflation-and-substitution dynamics allows one to define the tiling space

Keywords: Substitution, tilings, pure discrete spectrum spectrum, Pisot.
Math. classification: 37B50, 11R06, 28D05.
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as a global attractor in a geometrical setting. “Geometric realization” of
the tiling space onto a compact abelian group is then a simple matter and
the preeminent question in the subject — whether or not the tiling flow has
pure discrete spectrum — reduces to the question of a.e. one-to-oneness of
geometric realization.

In case the abelianization of φ is unimodular, has irreducible charac-
teristic polynomial, and has dominant eigenvalue a Pisot-Vĳayaraghavan
number (the “irreducible, unimodular Pisot” case), the geometric theory
of the tiling flow alluded to above is developed in [5]. Here we extend the
theory to cover all primitive substitutions of Pisot type.

The earliest instance of geometric realization for Pisot substitutions oc-
curs in [21]. There Rauzy constructed three topological disks in the plane
that tile the plane periodically as well as aperiodically. The union of the
three disks (the Rauzy fractal) is a fundamental domain for a two-torus on
which an irrational translation is defined whose orbits, when coded by the
three disks, yield the substitutive system associated with the Tribonacci
substitution (1 7→ 12, 2 7→ 13, 3 7→ 1). Using a more arithmetical ap-
proach, Thurston ([28]) produced tilings as a geometrical picture of the
expansion of numbers in a Pisot base. These tilings lead to “arithmetic
codings” of hyperbolic toral automorphisms, a process studied by Vershik,
Sidorov, Kenyon, Schmidt, and others ([24, 17, 23], the survey [25]). The
substitution based geometric approach initiated by Rauzy has been devel-
oped by Arnoux and Ito, and Cantorini and Siegel ([3, 9]), and recast from
the Iterated Function Systems point of view by Sirvent and Wang ([26]).
Further advances were made independently in [16] and [5] where an optimal
coincidence condition in the irreducible unimodular case was introduced.
The optimality alludes here to equivalence with various good properties
ranging from some very specific tiling and metric properties of the (gener-
alized) Rauzy fractals to the general measure theoretical property of pure
discrete spectrum (cf. [27]) of the tiling flow; see [5] for a comprehensive dis-
cussion. The related number-theoretic investigations have been undertaken
in a number of works by Akiyama, Frougny, Ito, Rao, Solomyak, Steiner,
and Thuswaldner([1, 2, 13, 16, 29]). For a recent survey of the connections
between tilings, Pisot arithmetics, and substitutions consult [7].

As mentioned above, the main issue in all of this is the question of
pure discrete spectrum. It is proved in [10] (see also Cor. 5.7 in [5] for
a strand based proof) that, for irreducible Pisot φ, the tiling flow T t has
pure discrete spectrum if and only if the substitutive shift σ does. In the
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reducible case, the relation(1) between the two spectra is not as simple: pure
discrete spectrum for σ implies that for T t but the opposite implication
typically fails. The following conjecture has become known as the Pisot
conjecture ([7]).

Conjecture 1.1 (Pisot Conjecture). — The tiling flow associated with
an irreducible Pisot substitution has pure discrete spectrum.

In Sections 2 and 3 below we construct the geometric realization of the
tiling flow associated with a general substitution of Pisot type. In Section 4
we state the Geometric Coincidence Condition (GCC) and prove that it
holds if and only if geometric realization is a.e. one-to-one. In Section 5 we
identify the eigenvalues of the tiling flow and prove that pure discrete spec-
trum of the flow is equivalent to the GCC. We also provide an example to
show that the validity of the Pisot Conjecture does not extend to arbitrary
reducible Pisot substitutions, even assuming the expansion constant λ is
a Pisot unit. In Section 6 we establish a powerful criterion (Theorem 6.1)
that allows us to verify (in Section 7) the Pisot Conjecture for a particular
class of substitutions that arise from β-shifts for certain Parry numbers.
As a corollary, we increase the scope of β-shifts with Pisot β for which the
natural extension is known to be naturally isomorphic to an automorphism
of a compact group — cf. [23], and see the pertaining discussion in Sec-
tion 7 for more detail. Finally, in Section 8, we explain how injectivity of
geometric realization (as established in Section 7) provides an explanation
for a phenomenon observed by Ei and Ito ([11]), namely that the natural
domain exchange on the Rauzy fractal corresponding to certain classes of
reducible β-substitutions is induced by a toral translation; that is, it is the
first return, under an appropriate toral translation, to the Rauzy fractal.

Acknowledgment. — The last author would like to express gratitude
to the organizers and participants of the meeting on “Numeration, Tilings,
Substitutions”. In particular, he benefited from interaction with Ei, Ito and
Rao, who have been engaged in a study of reducible Pisot substitutions that
parallels (and anticipates) some of what we do here ([12]).

Research of the third author was supported in part by NSF grant DMS-
0201600.

(1) To be elaborated elsewhere.
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2. Strand space

We fix a substitution φ : A → A∗ on an alphabet A of n letters, which
we may well take to be A = {1, . . . , n}, with values in the set A∗ of finite
nonempty words over A. A substitution φ extends to words by concate-
nation and hence may be iterated. The abelianization of φ is given by an
n× n matrix A = (aij) with aij equal to the number of occurrences of i in
φ(j). By the Perron Frobenius Theorem, the spectral radius λ of A is its
dominant eigenvalue; let ω be a corresponding non-negative eigenvector,

Aω = λω.

Throughout this paper φ is primitive (Am > 0 for some m ∈ N) and trans-

lation aperiodic (if φn(i) = uwkv then k < N for N > 0 independent of
u, v, w ∈ A∗, i ∈ A, k ∈ N) and satisfies the following definition.

Definition 2.1. — φ is Pisot iff λ is a Pisot number, i.e., λ > 1 and all
conjugates of λ over Q are of modulus less than one.

The Fibonacci substitution (1 7→ 12, 2 7→ 1) and the Morse substitution
(1 7→ 12, 2 7→ 21) are both Pisot.

The characteristic polynomial of A decomposes into irreducible (over Q)
monic factors

(2.1) pA(x) = p1(x)p2(x)m2 · · · pk(x)mk

where pmin := p1 is the minimal monic polynomial of λ (with no exponent
because λ is simple). Taking q(x) := p2(x)m2 · · · pk(x)mk we have an A-
invariant decomposition(2)

(2.2) Rn = V ⊕W

so that p1(x) and q(x) are the characteristic polynomials of the restrictions
A|V and A|W , respectively. Here both V and W are rational in the sense
that they are linear spans over R of their intersections with Qn. The dy-
namical meaning of the Pisot hypothesis is that A|V is hyperbolic and has
the stable/unstable splitting

V = Eu ⊕ Es

with Eu of dimension 1; Eu = lin(ω). We shall denote by

prV : Rn → V, prs : V → Es, pru : V → Eu

(2) Concretely, upon choosing s1(x), s2(x) ∈ Q[x] so that s1(x)pmin(x) + s2(x)q(x) =
1, one checks that the matrices P1 := s1(A)pmin(A) and P2 := s2(A)q(A) yield the
complementary projections onto V and W so that V := ker(P1) and W := ker(P2).

ANNALES DE L’INSTITUT FOURIER
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the projections along W , Eu and Es, respectively. We have an A-invariant
lattice

Γ := prV (Zn) ⊂ Qn ∩ V.
From AΓ ⊂ Γ and 0 being an attractor in Es, Es ∩ Γ = {0} making Es

totally irrational (i.e., Es ∩Qn = {0}). Also, Eu is non-resonant(3) in the
sense that Eu taken modulo Γ yields a dense subgroup of the torus V/Γ.(4)

Thus pru : V → Eu is injective on the rational points of V and prs(Γ) is
dense in Es.

Denoting by ei, i = 1, . . . , n, the standard basis vectors in Rn, set

vi := prV (ei) and let σi :=
{
tvi : 0 6 t 6 1

}
be the edge (an oriented segment) representing vi. We would like to distin-
guish between σi and σj even if σi = σj for i 6= j, thus we shall consider
each σi as a labeled edge with the label — also referred to as type — being i.
An oriented broken line γ in V obtained by stringing together tip-to-tail a
sequence of translated copies of the basic edges, (σik +xk), xk ∈ V , will be
called a strand. Taken together with the sequence of labels (ik), such γ is
called a labeled strand.

We shall denote the space of the bi-infinite strands in V by

F :=
{
γ : γ is a bi-infinite labeled strand in V

}
.

The substitution φ naturally induces a map

Φ: F → F .

Namely, given an edge I labeled i with its initial vertex denoted x = min I,
Φ(I) is the finite strand beginning at Ax and labeled by φ(i). Acting edge-
by-edge as above yields Φ on arbitrary strands.

Thus defined Φ is the factor via prV of the map Φ on strands in Rn
defined in [5]; and most of the pertaining discussion in [5] can be repeated
in the present context. In particular (cf. Lemma 5.1 in [5]), taking | · |s to
be the stable adapted semi-norm for A|V , there is R0 > 0 such that the set
FR0 of strands that are contained in the diameter R0 cylinder about Eu,

CR0 := {x ∈ V : |x|s 6 R0},

is forward invariant under Φ and eventually absorbs iterates of every strand
that lies within a bounded distance from Eu (i.e., ∀R>0 ∀γ∈FR ∃n∈N
Φn(γ) ∈ FR0).

(3) To see that, note that the orthogonal complement of Eu is the stable space Es for
the transpose of A, and Es ∩ Qd = {0}.
(4) As a consequence, if φ is Pisot then it is automatically translationally aperiodic if
dim(V ) > 2.

TOME 56 (2006), FASCICULE 7
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Definition 2.2. — The strand space of φ is the space of bi-infinite orbits
of Φ that stay within a bounded distance from Eu,

(2.3) F←φ :=
{
(γk)∞k=−∞ : γk+1 = Φ(γk), γk ∈ FR0 , k ∈ Z

}
.

In other words, F←φ is the inverse limit of Φ restricted to

Fφ :=
⋂
n∈N

Φn(FR0),

which intersection served as the definition (in [5]) of the strand space of
φ in the irreducible unimodular case (i.e., when det(A) = ±1 and the
characteristic polynomial of A is irreducible over Q). We shall check now
that F←φ is just a presentation of the tiling space Tφ associated to φ,

Tφ :=
⋂
n∈N

Φn(T ),

where T stands for the space of equivalence classes of bi-infinite strands
in Rn with two strands being equivalent iff they differ by a translation
along W ⊕Es. Note that T can be thought of as the quotient of F by the
translations along Es and that Φ factors to a map on T , which we have
denoted with the same letter. Also, the topologies taken on F and T are
those of uniform convergence on compact subsets of V and Rn/(W ⊕Es),
respectively. In particular, both F←φ and Tφ are a priori compact(5) .

Proposition 2.3. — The natural projection F←φ → Tφ given by (γk) 7→
γ0 mod Es is a homeomorphism.

Proof. — First we show surjectivity. Tφ always contains simple inflation
periodic tilings, i.e., tilings of the form η (mod Es) where the labeled strand
η has 0 as a vertex and is fixed by Φm. Such a tiling is clearly the image of
(ηk) ∈ F←φ where ηk := Φk mod m(η). Thus one concludes that all of Tφ is
in the image by virtue of the union of translation orbits of simple inflation
periodic tilings being dense in Tφ. We used here Proposition 4.3 from [5].

Injectivity hinges on the fact that Φ induces a homeomorphism on Tφ,
which is a consequence of Mosse’s recognizability result [19]. Indeed, sup-
pose that (γk), (γ′k) ∈ F←φ are such that γ0 ≡ γ′0 mod Es. Then γk ≡ γ′k
mod Es for all k ∈ Z by the bĳectivity of Φ on Tφ. That is γ′k = γk + xk
where xk ∈ Es; and |xk| 6 C for some C > 0 independent of k because

(5) The definition of the tiling space we have given is a bit non-standard; in particular,
it allows for the possible existence of finitely many orbits under the tiling flow that are
non-recurrent, orbits that aren’t included in the usual “hull” definition, cf. [27].

ANNALES DE L’INSTITUT FOURIER
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γk, γ
′
k ∈ CR0 . Hence, for k ∈ Z and m ∈ N, we can write

γ′k = Φm(γ′k−m) = Φm(γk−m + xk−m)(2.4)

= Φm(γk−m) +Amxk−m = γk +Amxk−m.

Thus xk = Amxk−m allowing us to write xk = limm→∞Amxk−m =
0 where |xk−m| 6 C facilitated computation of the limit. This shows
(γk) = (γ′k). �

From the proposition, (γk) 7→ γ0 is a homeomorphism between F←φ and
Fφ =

⋂
m∈N Φm(FR0). Our preference for the inverse limit F←φ in the

non-unimodular setting is somewhat idiosyncratic and has to do with the
group serving as the geometric realization of Tφ being an inverse limit
itself. (Besides, in most arguments, individual strands γ0 will be invariably
accompanied by their Φ-orbits making the notation γk for Φk(γ) pleasantly
compact.)

3. Natural lattice and geometric realization

In this section we shall construct the appropriate compact abelian group
to serve as the geometric realization of F←φ . The obvious candidate is the
inverse limit of the endomorphism induced by A on the torus V/Γ, but it is
optimal to replace Γ with an intrinsic lattice Σ that reflects the recurrence
of the translation flow on F←φ . Thus constructed, the geometric realization
will have the property that it is an a.e. one-to-one presentation of the tiling
flow if and only if the Pisot Conjecture holds for φ (see Corollary 5.2). We
start with Σ.

The recurrence vectors of the letter i are

(3.1) Θ(i) := {v ∈ Γ: ∃(γk)∈F←φ ∃k∈Z γk contains edges I, I’

labeled i and I ′ = I + v}.

Since, given i, j ∈ A, φm(i) contains j for large enough m by primitivity
of φ, v ∈ Θ(i) implies Amv ∈ Θ(j) by considering repetitions of j in
(Φm(γk)). Hence,

⋃
k∈Z A

kΘ(i) is independent of i and so is the subgroup
of V generated by it:

(3.2) Σ∞ :=
〈⋃
k∈Z

AkΘ(i)
〉
.

Clearly , AΣ∞ = Σ∞ and Σ∞ ⊂ Γ∞ where Γ∞ :=
⋃
n>0A

−nΓ. This makes

(3.3) Σ := Σ∞ ∩ Γ

TOME 56 (2006), FASCICULE 7
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an A-invariant sublattice of Γ (as the irreducibility of A|V over Q implies
that ranks of Γ and Σ coincide) from which Σ∞ can be recovered via

(3.4) Σ∞ =
⋃
k>0

A−kΣ.

If A is irreducible Pisot (i.e., W = {0}) then Σ = Γ by the argument in [5]
but that is not generally the case by the example at the end of this section.

For i, j ∈ A, in view of Θ(i),Θ(j) ⊂ Σ, there is a well defined element
wij ∈ Γ/Σ with the following property: if (γk) ∈ F←φ and I, J are edges in
γk of type i and j, respectively, then

(3.5) minJ −min I (mod Σ) = wij .

Because (wij)i,j∈A is a coboundary in the sense that wij + wjk + wki = 0,
there are ui ∈ Γ/Σ, i ∈ A, such that

(3.6) wij = uj − ui.

Observe that, if i ∈ A and i′ is the first letter of φ(i), then

(3.7) τ := Aui − ui′

is independent of i. (Indeed, Awij = wi′j′ obtains by applying Φ to γk.)
Now ui, being only unique up to an additive constant, allows for the nor-
malization τ = 0. This entails replacing ui by ui − (A − I)−1τ where we
rely on the Pisot hypothesis for the existence of (A− I)−1.(6)

Denote by TA the inverse limit of the endomorphism A : V/Σ → V/Σ
induced by A, i.e.,

(3.8) TA :=
{
(pk)∞k=−∞ : pk+1 = Apk, pk ∈ V/Σ, k ∈ Z

}
.

One readily verifies that the following is an unambiguous definition.

Definition 3.1. — The geometric realization of F←φ is the map
hφ : F←φ → TA sending (γk)∞k=−∞ to (pk)∞k=−∞ given by

(3.9) pk := min I − ui, k ∈ Z,

where I is an edge of γk with a label i (the choices of i and I being imma-
terial).

(6) We compute A(ui−(A−I)−1τ)−(ui′−(A−I)−1τ) = Aui−ui′−(A−I)(A−I)−1τ =
τ − τ = 0.

ANNALES DE L’INSTITUT FOURIER
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Thus defined, hφ factors the dynamics on F←φ to nice algebraic actions
on TA. First, we have a commuting diagram

(3.10)

F←φ
Φ−−−−→ F←φ

hφ

y hφ

y
TA

A−−−−→ TA
where the automorphism denoted by A on TA is given by (pk)∞k=−∞ 7→
(Apk)∞k=−∞ = (pk+1)∞k=−∞. Second, the natural translation action on F←φ
whereupon the strands are translated in the direction of Eu,

(3.11) T t : (γk)∞k=−∞ 7→ (γk + λktω)∞k=−∞, t ∈ R,

factors down to the translation T tω : (pk)∞k=−∞ 7→ (pk + λktω)∞k=−∞ along
the one parameter dense subgroup Eu := {(λktω)∞k=−∞ : t ∈ R} ⊂ TA, i.e.,

(3.12)

F←φ
T t−−−−→ F←φ

hφ

y hφ

y
TA

T tω−−−−→ TA
The inflation-substitution homeomorphism Φ: F←φ → F←φ has a natural

Markov partition with the transition matrix given by A, which makes it al-
most homeomorphically conjugate to a mixing Markov chain. The measure
of maximal entropy of Φ serves as the invariant measure of the the tiling
flow T t : F←φ → F←φ , which is uniquely ergodic (see e.g. [27]). Also, T t is
minimal on the complement F←φ,min of a finite number of wandering orbits
(via Proposition 3.5 in [5]).

We finish this section with a simple example for which Γ is finer then Σ.

Example 3.2 (where Γ 6= Σ). — Consider φ : 1 7→ 12323, 2 7→ 1232,
3 7→ 323. We have

A :=

1 1 0
2 2 1
2 1 2


with the characteristic polynomial (x − 1)(x2 − 4x + 1). Taking b1 :=
[0, 1, 1]T , b2 := [1, 0, 0]T , a := [1, 0,−2]T , we have V := lin(b1, b2), W =
lin(a) with A|V represented by

B :=
(

3 2
1 1

)
.

TOME 56 (2006), FASCICULE 7
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One computes prV (e1) = e1, prV (e2) = [−1/2, 1, 1]T , prV (e3) = [1/2, 0, 0]T .
Thus Γ = prV (Z3) = 〈[−1/2, 1, 1]T , [1/2, 0, 0]T 〉. At the same time, upon
renaming c = 23, φ factors to ψ : 1 7→ 1cc, 2 7→ 1ccc. Therefore, consecu-
tive repetitions of 1 are separated by a word that is a power cm and so the
vectors of Θ(1) have the form e1 +m(prV (e2)+prV (e3)) = [1,m,m]T ∈ Z3

where m ∈ N. Since both A and A−1 map Z3 to itself, we have Σ ⊂ Z3.

Let us add that the above example arises by taking the toral automor-
phism associated to B and constructing the Markov partition by cutting
T2 into three boxes along the stable manifold of [0, 0] and the unstable
manifolds of [0, 0] and [1/2, 0].

4. Geometric Coincidence Condition

In this section we study the fiber of hφ and develop a suitable Geometric
Coincidence Condition allowing for algorithmic verification whether or not
the geometric realization hφ is a measure theoretical isomorphism for any
given φ. It is conjectured that hφ is an isomorphism for all Pisot φ that are
irreducible (i.e., deg(pmin) = n) or arise from β-expansions. At the same
time, as soon as one abandons the irreducibility hypothesis, hφ may fail to
be a.e. 1− to−1 as exemplified by the Morse substitution and Example 5.3
ahead, in which the dominant eigenvalue is a Pisot unit (the product of λ
with its conjugates is ±1).

We say that a (finite or infinite) labeled strand γ lies over p ∈ V/Σ iff
min I − ui ∈ p+ Σ where I is any edge of γ and i is its label (and ui is as
in (3.6)).

Two labeled strands γ, η are coincident, denoted γ ∼ η, iff Φk(γ) and
Φk(η) share a labeled edge for some k > 0.

Definition 4.1. — The coincidence rank of φ, denoted by crφ, is the
maximal number of strands in F that lie over the same point of V/Σ and
no two of which are coincident with each other. We say that the Geometric

Coincidence Condition (GCC) holds for φ iff crφ = 1.

The a priori finiteness and algorithmic computability of crφ will be made
apparent by Remark 4.3 ahead.

Theorem 4.2 (Coincidence Theorem). — The geometric realization
map hφ is uniformly finite-to-one (i.e., ∃C>0 ∀p∈TA #h−1

φ (p) 6 C) and al-
most everywhere crφ-to-1. Precisely, there is a full Haar measure Gδ-subset
Guφ ⊂ TA such that, for p ∈ Guφ, we have

(4.1) #h−1
φ (p) = min{#h−1

φ (q) : q ∈ TA} = crφ.

ANNALES DE L’INSTITUT FOURIER
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Moreover, the map p 7→ h−1
φ (p) is continuous at p ∈ Guφ and, if hφ((γk)) =

hφ((ηk)) ∈ Guφ for (γk) 6= (ηk), then γk and ηk are noncoincident for every
k ∈ Z.

Regarding the last assertion of the theorem, we point out that, given
arbitrary (γk), (ηk) ∈ F←φ , we have an obvious equivalence:

(4.2) ∃k∈Z γk ∼ ηk ⇐⇒ ∀k∈Z γk ∼ ηk.

Also, Guφ is a priori invariant under A and the flow T tω.
Proof of Theorem 4.2. — Let us start with some preliminary observa-

tions. Given c ∈ N, consider points p with the fiber h−1
φ (p) that can be

covered by c balls of small diameter; precisely, for N ∈ N, we set

(4.3) UN,c :=
{
p ∈ TA : #π−N (h−1

φ (p))|N−N 6 c
}

where π−N ((γk)) := γ−N and η|N−N denotes the central substrand of η

of the unstable length 2N (i.e., the smallest substrand of η containing
pr−1
u [−Nω,Nω]∩ η). One readily checks that UN,c is A-invariant and that

(4.4) {p : #h−1
φ (p) 6 c} =

⋂
N∈N

int(UN,c).

Thus {p : #h−1
φ (p) 6 c} is a full measure Gδ for c := min{#h−1

φ (q) : q ∈
TA} by ergodicity of A : TA → TA.

To show c 6 crφ, it suffices to prove the last assertion of the theorem;
namely, that if h−1

φ (p) = {γ1, . . . , γc} is a fiber of minimal possible cardi-
nality then γik and γi

′

k are noncoincident for i 6= i′ and k ∈ Z.
Suppose that γik0 and γi

′

k0
are coincident for some i 6= i′ and k0 ∈ Z. Then

for large enough r ∈ N, γik0+r = Φr(γik0) and γi
′

k0+r
= Φr(γi

′

k0
) contain a

common finite labeled substrand of length increasing to ∞ as r → ∞.
Upon replacing p by its translate T tω(p), if necessary, we may require that
the common finite substrand intersects Es. Now, given any N ∈ N, by
taking sufficiently large r ∈ N, the ξi ∈ Fφ defined by

(4.5) ξik := Φr(γik0+k), k ∈ Z,

have the property that #{ξi−N |N−N : i = 1, . . . , c} 6 c− 1 because some two
of the labeled strands have their central |N−N substrands coalesced into one.
Since, by construction, {ξi : i = 1, . . . , c} = h−1

φ (q) where q = Ar+k0p,
we see that UN,c−1 6= ∅, and thus it is of full measure. In this way,
{p : #h−1

φ (p) 6 c − 1} =
⋂
N∈N UN,c−1 6= ∅, contradicting the minimal-

ity of c.
Second, we see that crφ is a lower bound on the cardinality of the fiber

h−1
φ (p). Suppose that no two of the strands η1, . . . , ηcrφ ∈ F are coincident
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and they lie over the same point of V/Σ. Then, for any m ∈ N, the same can
be said about Φm(η1), . . . ,Φm(ηcrφ) ∈ F as well as about γ1, . . . , γcrφ ∈ F
obtained as limits γi = limj→∞Φmjηi (provided the limits exist). Now,
choose(7) the sequence mj → ∞ so that, for every k ∈ Z, Φmj+k(ηi)
converges, and denote the limit by γik. By this construction, the γi :=
(γik)

∞
k=−∞ belong to F←φ and map under hφ to the same point p ∈ TA.

Also, the γi are distinct with some definite distance separating any two, as
follows from the fact that, for i 6= j and k ∈ Z, γik and γjk are noncoincident
and thus do not share any labeled edges.

Since any q ∈ TA is a limit q = limj→∞ T
tj
ω (p) for some tj →∞, we con-

clude that h−1
φ (q) must contain the set of the crφ distinct elements of F←φ

obtained as a (Hausdorff) limit point of the sequence of sets h−1
φ (T tjω (p)) =

{T tjγ1, . . . , T tjγcrφ}. This shows that min{#h−1
φ (q) : q ∈ TA} > crφ.

As to the global bound on the cardinality of the fiber, consider M ∈ N,
and suppose that h−1

φ (p) > M for some p ∈ TA. Because, π0 : F←φ → F is a
homeomorphism onto its image (by Proposition 2.3), we have
#π0(h−1

φ (p)) > M and thus also #π0(h−1
φ (p))|N−N > M for some N ∈ N.

However, for large enough m ∈ N, Φm maps π−m(h−1
φ (p))|1−1 to a family of

substrands which properly contain the substrands in π0(h−1
φ (p))|N−N . Thus

M 6 #π0(h−1
φ (p))|N−N cannot exceed the maximal number of strands of

the form η|1−1 contained in CR0 and lying over the same point of V/Σ.
Finally, upper semicontinuity p 7→ h−1

φ (p) at any p is a general property
of continuous mappings between compact spaces. We leave it to the reader
to see that, if the lower semicontinuity failed at p then p could not have a
minimal cardinality fiber. �

Before leaving, let us characterize crφ in terms of coincidence of indi-
vidual edges and thus reconnect with the development in the irreducible
unimodular case (Definition 7.1 in [5]). Thus, for q ∈ V/Σ, we introduce
the set of states over q:

(4.6) Sq :=
{
I : I is an edge over q and (I r max I) ∩ Es 6= ∅

}
and its finite subset SR0

q := {I ∈ Sq : I ⊂ CR0}. Of course every strand
γ ∈ F determines a state, denoted by γ̂.

Remark 4.3. — For any q ∈ V/Σ, crφ coincides with the maximal car-
dinality of a pairwise non-coincident family in Sq. Moreover, such a family
of crφ states can be found in SR0

q .

(7) By using a diagonal argument and compactness of the space of strands contained
in CR0 .
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In particular, crφ can be algorithmically computed along the lines of
Proposition 17.1 in [5].

Proof of Remark 4.3. — Fix q ∈ V/Σ. Let c be the maximum cardinality
of a pairwise non-coincident family in Sq.

Pick any p = (pk) ∈ Guφ and let h−1
φ (p) = {γ1, . . . , γcrφ}. The strands

γ1
0 , . . . , γ

crφ
0 are strictly inside CR0 and are pairwise non-coincident. Since

Eu winds densely in V/Σ, we can find x ∈ V so that p0 + x = q and
γ1
0 + x, . . . , γ

crφ
0 + x are still in CR0 . Thus

{
γ̂1
0 + x, . . . , ̂γcrφ0 + x

}
is a non-

coincident family in SR0
q . In particular, c > crφ.

For the opposite inequality, suppose that {I1, . . . , Ic} is a non-coincident
family in Sq. After possibly performing a small translation along Eu, we
can assume that the Ii intersect Es in an interior point. Thus, as m →
∞, the Φm(Ik) grow indefinitely on both sides of Es (i.e., pru(Φm(Ik))
converges to R), and we can repeat the arguments of the third paragraph
of the proof of the theorem to construct limiting bi-infinite strands γik :=
limj→∞Φmj+k(Ii), i = 1, . . . , c, so that (γik)k∈Z are in the same fiber of hφ
and γik 6∼ γjk for i 6= j, which implies c 6 crφ. �

5. Discrete spectrum

In this section we identify the discrete spectrum of the tiling flow T t and
show that T t has pure discrete spectrum iff crφ = 1. We then use the result
to exhibit a Pisot substitution with λ a unit for which T t fails to have pure
discrete spectrum.

Recall first some fundamentals regarding pure discrete spectrum of the
algebraic flow T tω : TA → TA, T tω : (pk) 7→ (pk + λktω). We shall use the
linear dual V T of V realized as the subspace of Rn orthogonal to W , V T :=
W⊥, so that the ordinary dot product 〈·|·〉 provides the pairing V T ×V →
R. V T is invariant under the action of the transpose AT and so is the dual

lattice of Σ defined by

(5.1) Σ∗ :=
{
u ∈ V T : 〈u|v〉 ∈ Z for all v ∈ Σ

}
.

The subgroup of V T given by

(5.2) Σ∗∞ :=
⋃
l>0

(AT )−lΣ∗

is the Pontryagin dual of TA; the characters on TA are indexed by u ∈ Σ∗∞
and given on p = (pk) ∈ TA by

(5.3) χu(p) := exp
(
〈(Al)Tu|p−l〉

)
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where exp (t) := e2πit and l ∈ N is taken sufficiently large so that (Al)Tu ∈
Σ∗ (which makes the scalar product well defined). Each χu, u ∈ Σ∗∞, is an
eigenfunction for the flow T tω with the eigenvalue 〈u|ω〉; indeed,

χu(T tωp) = exp
(
〈(Al)Tu|p−l + tλ−lω〉

)
= exp (t〈u|ω〉)χu(p), p∈TA, t∈R.

Theorem 5.1. — The eigenvalues of the tiling flow T t consist of num-
bers 〈u|ω〉 where u ∈ Σ∗∞, and χu ◦ hφ serves as an eigenfunction corre-
sponding to the eigenvalue 〈u|ω〉.

By observing that functions χu ◦ hφ are constant on the fibers of hφ
and thus cannot form a dense subset(8) of L2(F←φ ) unless hφ is a measure
theoretical isomorphism, Theorem 5.1 can be combined with Theorem 4.2
to yield the following counterpart of Corollary 9.4 in [5].

Corollary 5.2. — The tiling flow T t has pure discrete spectrum iff
crφ = 1.

In the argument below, ω∗ > 0 is a Perron eigenvector of AT satisfying
ATω∗ = λω∗ and the normalization 〈ω|ω∗〉 = 1. Thus pru(v) = 〈v|ω∗〉ω for
v ∈ V . Also, recall that F←φ,min denotes the unique subset of F←φ minimal
under the tiling flow T t.

Proof of Theorem 5.1. — That every α of the postulated form is an
eigenvalue is clear from (3.12) so we concentrate on showing the converse.

First we shall use the duality between eigenvalues and the return times
— going back at least to [15, 27, 20, 30] — to show that, for any eigenvalue
α of T t and any t := 〈v|ω∗〉 with v ∈ Σ, we have

(5.4) lim
n→∞

exp (λnαt) = 1.

Since, for a fixed α, the set of t for which (5.4) holds is a priori an additive
group, it suffices to argue for v ∈

⋃
k∈Z A

kΘ(i). For such v, we can find γ =
(γk) ∈ F←φ,min so that there exists k > 0 such that (Φk(γ0) and (Φk(γ0 + v)
share an edge that meets Es in its interior. Thus dist(Φm(γ0),Φm(γ0 +
v)) → 0 as m→∞ (since the two strands coincide on a progressively longer
central substrand). From t = 〈v|ω∗〉, we see that γ0 + v and γ0 + tω differ
by a translation along Es and thus also dist(Φm(γ0),Φm(γ0 + tω)) → 0. It
follows that

(5.5) lim
m→∞

dist(Φm(γ),Φm ◦ T t(γ)) = 0.

(8) Use here that hφ is locally injective on Gu
φ (from Theorem 4.2), cf. the proof of

Corollary 9.4 in [5].
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Moreover, since the above persists under a small perturbation of γ0, we see
that (5.5) holds on an open set of γ ∈ F←φ,min. This is to say that t is a
homoclinic return time for a positive measure set of γ ∈ F←φ,min and we can
invoke Lemma 13.1 in [5] to conclude (5.4).

Now, characterizing α based on (5.4) is the object of the Pisot theory.
Specifically, as in Lemma 13.3 in [5], one writes α = 〈u|ω〉 for some u ∈ V T
and computes

λmtα = λm〈v|ω∗〉〈u|ω〉 = 〈Amv|ω∗〉〈u|ω〉(5.6)

= 〈Amv|u〉 − 〈Amv − 〈Amv|ω∗〉ω|u〉

to conclude that exp (〈Amv|u〉) → 1 by observing that Amv−〈Amv|ω∗〉ω =
Am prs(v) decays exponentially. Now, Remark 1 in [18] applied to the action
of AT restricted to V T , asserts that u ∈

⋃
m>0(A

T )−mL∗v + EsT where
EsT := lin(ω)⊥ is the stable space of AT |V T and Lv is the smallest sublattice
of Σ that contains Amv for all m ∈ N. By arbitrariness of v ∈ Σ, we must in
fact have u ∈

⋃
m>0(A

T )−mΣ∗ + EsT . Thus α = 〈u|ω〉 belongs to 〈Σ∗∞|ω〉,
which is what we set out to prove. �

Recall that it is conjectured that T t has pure discrete spectrum for any
Pisot φ for which the abelianization A is irreducible. That the hypothesis
of irreducibility is necessary is demonstrated by the well known example
of the Morse substitution for which λ = 2 and hφ can be easily seen to be
a.e. two-to-one. To further clarify the role of irreducibility, we give below
an example with λ that is a Pisot unit and hφ is a.e. two-to-one.

Example 5.3. — The idea is to take the tiling space associated to a
Markov partition for a pseudo Anosov map that is a ramified covering
of an Anosov automorphism on T2. Take then the toral automorphism
f : T2 → T2 induced by

B =
(

5 1
4 1

)
.

Observe that p = (0, 0) and q = (0, 1
2 ) (mod Z2) are two fixed points.

Cutting T2 along the stable and unstable manifolds of these fixed points,
as indicated at the bottom of Figure 5.1, produces a Markov partition for
which the associated substitution is easily seen to be

(5.7) ψ : 1 7→ 132111, 2 7→ 132211, 3 7→ 32211.

The tilings of R constructed by associating to p ∈ T2 the embedding of
R into a coset of Eu + Z2 via t 7→ tω + p and then decomposing R into
intersections with individual Markov boxes are exactly those making up the
tiling space Tψ (with the possible exception of the countably many cosets
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containing whole boundary segments). This gives a measure theoretical
isomorphism of Tψ ' F←φ to T2 that conjugates the tiling flow T tψ to the
Kronecker flow on T2.

Now, consider a genus two surface M presented as the pair of rectan-
gles depicted in the upper portion of Figure 5.1 and the ramified covering
π : M → T2 that identifies the corresponding points of the left and right rec-
tangle. One checks (by applying the standard lifting theorem to π over the
doubly punctured torus T2r{p, q}) that f lifts to g : M →M , f ◦π = π◦g.
Thus obtained g is pseudo-Anosov with two four prong singularities of the
stable/unstable foliations at p and q. The Markov partition of three boxes
for f lifts to one of six boxes for g, and the associated substitution can be
found to be:

φ : 1 7→ 162111, 2 7→ 435211, 3 7→ 35211,(5.8)

4 7→ 435444, 5 7→ 162544, 6 7→ 62544.(5.9)

The (a.e. defined) holonomy flow on M along the leaves of the unstable
foliation that factors via π to the Kronecker flow T tω on T2 is measure the-
oretically conjugated to the tiling flow T tφ on Tφ ' F←φ . (The isomorphism
is constructed by associating to p ∈ M the tiling of the unstable manifold
of p into intersection segments with the Markov partition.)

������ ������

����

PSfrag replacements

R1

R1

R2

R2

R3

R3

R4

R5

R6

π

1

Figure 5.1. Two-to-one ramified covering of a toral automorphism.

We claim that this flow does not have pure discrete spectrum. One way to
see this is to check that, modulo the above natural isomorphisms, π is the
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geometric realization map hφ and so crφ = 2. Another entails checking that
the homoclinic return times of the holonomy flow on M are exactly those
of T tω, concluding that the discrete spectra of the two flows coincide (by
using the ideas of the proof of Theorem 5.1), and observing that L2(M)
cannot possibly be in the closed linear span of the eigenfunctions that must
be the toral harmonics lifted from T2 to M via π. We leave the details as
an exercise.

6. Criteria for coincidence condition

In verifying the GCC one is greatly aided by the following result that
again already appears in [5] in the irreducible unimodular context. Below,
we use ∼tω for the equivalence relation of coincidence along tω+Es: γ ∼tω η
iff there is k > 0 such that Φk(γ) and Φk(η) share a labeled edge J and
J r max J intersects λktω + Es.

Let us precede the technical development by a rough outline. GCC holds
in case K ∼tω L is typical for states K and L over an arbitrary point
in the torus and small t. Theorem 6.1 below asserts that to guarantee
that coincidence is typical it suffices to establish the existence of states,
arbitrarily distant from each other, that are coincident along tω + Es for
a dense Gδ set of t ∈ [−ε, ε] for some fixed ε > 0. The idea is that, if the
latter condition holds, then repeated inflation will produce long strands
that are coincident along tω + Es generically for t ∈ [−T, T ] where T is
large. Carefully taking limits, this leads to γ ∈ F←φ,min with γ0 ∼tω γ0 + v

for generic t ∈ R and some nonzero v ∈ Σ. The irreducibility (over Q) of
the action of A on V forces the set of such v to be a finite index subgroup
of Σ. Transitivity of the powers of Φ then forces this subgroup to equal Σ,
from which crφ = 1 follows immediately.

Theorem 6.1. — Suppose that crφ > 1. For any ε > 0 there is D > 0
such that if K,L ∈ Sp, p ∈ V/Σ, and K ∼tω L for a dense Gδ set of
t ∈ [−ε, ε], then dist(K,L) < D.

The proof of the theorem will require some buildup including the follow-
ing generalization of Lemma 10.1 in [5].

Lemma 6.2. — There is a full measure dense Gδ set Gsφ ⊂ V/Σ that is
invariant under translations along Es and under the toral endomorphism
induced by A and such that, for p ∈ Gsφ, we have

(i) Sp consist of exactly crφ equivalence classes of ∼0;
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(ii) if I ∼0 J for I, J ∈ Sp, then I + z ∼0 J + z for all sufficiently small
z ∈ V ;

(iii) there is an R1 > 0 such that, for any y ∈ Es, each equivalence class
in Sp has a representative contained in the cylinder y + CR1 .

Proof of Lemma 6.2. — We repeat the proof of Lemma 10.1 in [5], with
obvious modifications, for the convenience of the reader.

Note first that there is R1 > 0 so that, for any p ∈ V/Σ and R > R1,
SRp has at least crφ equivalence classes of ∼0. Indeed, if we fix any q ∈ Guφ,
write p = q0 + x for some x in a bounded fundamental domain of V/Σ,
and let h−1

φ (q) = {γ1, . . . , γc}, c = crφ, then {γ̂1
0 + x, . . . , γ̂c0 + x} is a non-

coincident family in SR0+|x|s
p .

To construct Gsφ, for R > R1, we define

Dn
R :=

{
p ∈ V/Σ: #Φ̂n(SRp ) 6 crφ

}
,(6.1)

DR :=
⋃
n>0

Dn
R, D :=

⋂
R>0

int(DR).

Thus, from the definition of ∼0, p ∈ DR iff SRp has at most (and thus,
for R > R1, exactly) crφ equivalence classes of ∼0; and p ∈ D iff SRp has
exactly crφ such classes “stably” under small perturbation of p for any
R > R1. Note that D is Es-invariant.

From now on we consider R > R1. We claim that DR is dense. Indeed,
otherwise there would be p ∈ V/Σ, ε > 0 and (since SRp is finite) a single
I ∈ SRp such that I 6∼tω (γi0 +x)∧ for all i = 1, . . . , crφ and all t with |t| < ε

(where γi0 + x is as before). By applying Φm to I and the γi0 + x for m
large enough (so that, say, λmε > 100), we would then get crφ + 1 strands
intersecting Es along pairwise noncoincident states — in contradiction with
Remark 4.3.

Moreover, we claim DR ⊂ int(DR). Indeed, p ∈ DR means exactly that
there is m ∈ N such that #Φ̂m(SRp ) = crφ. But then #Φ̂m(SRp̃ ) = crφ for
all p̃ := p− tω where 0 6 t < ε and ε > 0 is sufficiently small. Coupled with
Es-invariance of ∼0, this yields #Φ̂m(SRp̃ ) = crφ for all p̃ in a neighborhood
of p− ε

2ω thus placing p− ε
2ω in int(DR).

So far we know that int(DR) is a dense open set. At the same time, for
R > R0, ̂Φ(SRA−1p) ⊂ SRp yields A−1(DR) ⊂ DR, so int(DR) is in fact of
full measure by ergodicity of the toral endomorphism A. Thus D is a full
measure dense Gδ invariant under actions of Es and A, and so is

Gsφ := D r (Es + Σ) .
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(i) follows immediately from Gsφ ⊂ D and the construction of D.
(ii) alone can be easily seen to hold for all p 6∈ Es + Σ.
As for (iii), we deal first with the special case of the cylinder centered at

y = 0. From our initial discussion, we know that SR1
p contains representa-

tives of crφ equivalence classes for every p ∈ V/Σ. For p ∈ D, there are no
more classes in Sp and thus all are represented in SR1

p .
To get (iii) in full generality, we translate along Es: for y ∈ Es, all

the states of Sp in y + CR1 constitute SR1
p−y + y and p − y ∈ D whenever

p ∈ D. �

Corollary 6.3. — The equivalence classes of ∼0 on Sp depend contin-
uously on p at p ∈ Gsφ in the sense that, if zn → 0 and I, J ∈ Sp for p ∈ Gsφ,
then we have I ∼0 J iff I + zn ∼0 J + zn for sufficiently large n.

Proof. — The implication ⇒ is the object of (ii). We show ⇐ now. First
we fix representatives, Ki := γ̂i0 + x, i = 1, . . . , crφ, of the equivalence
classes of ∼0 on Sp as supplied by the first paragraph of the proof of the
lemma. Should I 6∼0 J then I ∼0 Ki and J ∼0 Kj for some i 6= j. By (ii),
for sufficiently large n, we have I + zn ∼0 Ki + zn and J + zn ∼0 Kj + zn,
which yields Ki + zn ∼0 Kj + zn by transitivity. In particular, γi0 ∼ γj0,
contrary to Theorem 4.2. �

For γ ∈ F , we define

(6.2) Zγ := {v ∈ Σ: γ ∼0 γ + v}.

Proposition 6.4. — The map γ 7→ Zγ is continuous (with the compact
open topology in the range) at γ that lie over points in the generic set Gsφ.
Moreover, if Zγ0 = Σ for a single γ = (γk)k∈Z ∈ F←φ then crφ = 1.

Proof. — The continuity follows from Corollary 6.3 and the definition
of Zγ .

As for crφ = 1, from Remark 4.3, it suffices to show that, given two
states J,K lying over the same point of V/Σ as γ0, we must have J ∼ K.
Since γ0 has edges of all types, there are u,w ∈ Γ such that J is an edge
of γ0 + u and K is an edge of γ0 + w. Since necessarily u,w ∈ Σ = Zγ0 ,
we have γ0 + u ∼0 γ0 and γ0 +w ∼0 γ0. By transitivity, γ0 + u ∼0 γ0 +w,
which is to say that J ∼0 K. �

We also define, having fixed an arbitrary γ = (γk)k∈Z in the minimal set
F←φ,min of the tiling flow,

(6.3) Z∞ := {v ∈ Σ: γ0 ∼tω γ0 + v for generic t ∈ R}.

Here, generic refers to a dense full measure Gδ subset.
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Fact 6.5. — Z∞ is either {0} or a finite index subgroup of Σ indepen-
dent of the choice of γ = (γk)k∈Z ∈ F←φ,min.

Proof. — Let us first show that Z∞ is independent of the choice of γ.
Fix then γ, η ∈ F←φ,min and suppose that γ0 ∼tω γ0 + v for generic t ∈ R.
Let l > 0 be arbitrary. By minimality of the tiling flow, the 2l long central
substrand of η0 can be approximated by γ0 + tω: there is t ∈ R and y ∈ Es
such that (γ0 + tω)|l−l = η0|l−l + y and (γ0 + v + tω)|l−l = (η0 + v)|l−l + y.
From γ0 ∼tω γ0 + v for generic t ∈ R, we get then that η0 ∼tω η0 + v for
generic t ∈ [−l, l]. Hence, v ∈ {v ∈ Σ: η0 ∼tω η0 + v for generic t ∈ R} by
arbitrariness of l (and stability of genericity under countable intersections).

As for Z∞ being a subgroup, if v, w ∈ Z∞ then γ0 ∼tω γ0 + v for generic
t ∈ R and γ0 − v ∼tω γ0 − v + w for generic t ∈ R, where we used the
definition of Z∞ with γ replaced by T− pru(v)(γ) for the second one (as
facilitated by Fact 6.5 and Es invariance of ∼tω). By transitivity of ∼tω,
we get γ0 ∼tω γ0 − v + w for generic t ∈ R. That is, w − v ∈ Z∞.

Finally, once Z∞ 6= {0}, it is of finite index because irreducibility (over
Q) of the action of A on V forces the invariant subspace linQ(Z∞) to
coincide with V . �

Lemma 6.6. — If crφ > 1 then Z∞ = {0}.
Proof. — First we need to see that, for η ∈ F←φ,min, Zη0 is a union of

cosets of Z∞. Suppose that v ∈ Zη0 so that η0 ∼tω η0 + v for all non-
negative t near zero and that w ∈ Z∞ by virtue of η0 +v ∼tω η0 +v+w for
generic t ∈ R. It follows that, for some tn → 0, η0− tnω ∼0 η0 +v− tnω ∼0

η0+v+w−tnω so that v+w ∈ Zη0−tnω. Hence v+w ∈ Zη0 via Corollary 6.3.
This shows v + Z∞ ⊂ Zη0 for v ∈ Zη0 .

Suppose that Z∞ is nontrivial and thus of finite index in Σ by Fact 6.5.
Consider g : η 7→ Zη0/Z∞ as a function on F←φ,min taking values in subsets
of Σ/Z∞. From the definition of Zη0 , we have g ◦ Φ = A ◦ g. Thus, Σ/Z∞
being finite, we have g ◦Φn0 = g for some n0 ∈ N. Since Φn0 is transitive, g
is constant on its continuity set: there is Z ⊂ Σ such that Zγ0 = Z for the
set D consisting of γ ∈ F←φ,min with γ0 lying over p ∈ Gsφ (see Corollary 6.3).

We claim that Z = Z∞. Indeed, Gsφ being Es invariant, any coset of
Eu must intersect Gsφ along a generic subset. Therefore, having fixed any
γ ∈ F←φ,min, we have then that T t(γ) ∈ D for generic t ∈ R. Consequently,
for any v ∈ Z, γ0 + v− tω ∼0 γ− tω for generic t ∈ R. That is v ∈ Z∞ and
so Z ⊂ Z∞, making Z = Z∞ (since Z is consists of cosets of Z∞).

Finally, having fixed any i ∈ A, one easily sees that Θ(i) ⊂
⋃
γ∈D Zγ0 =⋃

γ∈D Z = Z. It follows that Σ ⊂ 〈Z〉 = 〈Z∞〉 = Z∞. Proposition 6.4
secures crφ = 1. �
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We are ready to prove the theorem now.
Proof of Theorem 6.1. — Again, we repeat the proof of Theorem 16.3

in [5] with obvious modifications. Suppose crφ > 1 yet the assertion of the
theorem fails. We claim that there are then ε > 0, p ∈ V/Σ and an infinite
unbounded family of states in Sp, J1, J2, . . ., such that Ji ∼tω Jj for all
i, j ∈ N and generic t ∈ [−ε, ε]. Indeed, by our hypothesis, there exist ε > 0
and Km, Lm ∈ Spm , m ∈ N, such that dist(Km, Lm) > m and Km ∼tω Lm
for generic t ∈ [−2ε, 2ε] and with all Km of the same type. By compactness,
one can arrange that pm converge to some p ∈ V/Σ. Taking vm ∈ V so
that pm + vm = p and vm → 0, one readily sees that J1 := Km + vm,
J2 := Lm + vm, J3 := Lm+1 + vm+1, J4 := Lm+2 + vm+2, ... are as desired
provided m is large enough.

In view of Lemma 6.6, it suffices to show that Z∞ 6= {0}. To do that, for
every k ∈ N, pick from among the partial strands Φk(J1)|λ

kε
−λkε,

Φk(J2)|λ
kε
−λkε, . . . two, call them αk and βk, that are disjoint and deter-

mine the same word ak := [αk] = [βk], and intersect Es at points xk and
yk that are further than 100R0 apart. This assures αk ⊂ xk + C2R0 and
βk ⊂ yk+C2R0 . What is more, by replacing αk and βk with Φl(αk)|λ

kε
−λkε and

Φl(βk)|λ
kε
−λkε for some large l > 0, we may require as well that dist(xk, yk) <

200λR0. Finally, let us translate αk and βk by a common vector in Es so
that αk, βk ⊂ C200λR0+4R0 .

By passing to a subsequence if necessary, we have ak → a, αk → α, βk →
β for some bi-infinite word a and bi-infinite strands α, β. By construction,
α (mod Es), β (mod Es) ∈ Tφ and α ∼tω β for generic t ∈ R.

From α (mod Es) ∈ Tφ, there is x ∈ Es so that γ0 := α + x is a strand
of some (γk)k∈Z ∈ F←φ,min. Also, β+ x = γ0 + v for some v ∈ V r {0}. Note
that v ∈ Σ because αk and βk lie over the same point of V/Σ and thus the
same is true for α and β. From α ∼tω β, γ0 ∼tω γ0 + v for generic t ∈ R
thus placing v 6= 0 in Z∞. �

7. Coincidence condition for a class of β-substitutions

Recall that β > 0 is a Parry number iff 1 is preperiodic under the action
of the β-transformation fβ : [0, 1] → [0, 1] sending x 7→ βx − bβxc. (This
is to say that {fβn(1) : n ∈ N} is a finite set.) Any Pisot β is a Parry
number [8, 22]. The sweeping conjecture asserts that, for Pisot β, fβ is
algebraic in the sense that the natural extension of fβ is naturally almost
homeomorphically conjugate to a compact abelian group automorphism. In
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our context, the natural extension of fβ can be realized as the tiling space
of an appropriate substitution. Thus the conjecture concerns injectivity of
the geometric realization and can be attacked by verifying the GCC for a
suitable class of substitutions.

We shall prove that fβ is algebraic for a broad subclass of simple Parry

numbers, i.e., β > 0 such that fnβ (1) = 0 for some n ∈ N. The relevant
substitution φ is given in the form

(7.1) φ = φβ :



1 7→ 21a1

2 7→ 31a2

...
n− 1 7→ n1an−1

n 7→ 1an

The numbers ai are determined by the action of fβ . Setting Pi :=
[0, f i−1

β (1)], i = 1, . . . , n, we see that fβ maps Pi ai times across P1 = [0, 1]
and once across Pi+1 for i = 1, . . . , n−1, and fβ maps Pn exactly an times
across P1. The intervals Pi are then proportional to the tiles of the tiling
space Tφβ . Indeed, there is a metric isomorphism of the inflationary dynam-
ics of the tiling space, (Tφβ ,Φβ), with the natural extension (lim← fβ , f̂β)
given by γ

p7→ (. . . t−1, t0, t1, . . .) where pru(Φnβ(γ)) = −tnω and ω is nor-
malized so that pru(e1) = ω.

To connect with arithmetical properties of Pisot numbers, recall that
each non-negative real number x has a greedy expansion in base β, x =∑∞
n=−N xnβ

−n with xn ∈ {0, . . . , bβc}(9) . Each such greedy expansion de-
termines a sequence (. . . , 0, 0, x−N , . . . , x−1, x0, x1, x2, . . .) ∈ {0, . . . , bβc}Z;
let Σβ be the closure of the set of all such sequences in {0, . . . , bβc}Z. The
subshift (Σβ , σ), the β-shift, is sofic for Pisot β and is of finite type in case
β is a simple Parry number. The (a.e. defined) map

(. . . , x−1, x0, x1, . . .)
r7→
(
. . . ,

∞∑
n=1

xn−1β
−n,

∞∑
n=1

xnβ
−n,

∞∑
n=1

xn+1β
−n, . . .

)
provides a metric isomorphism of (Σβ , σ) with (lim← fβ , f̂β). The compo-
sition g := hφβ ◦ p−1 ◦ r is then a bounded-to-one semi-conjugacy between
the β-shift and the algebraic system (TA, A) that is continuous and sat-
isfies g(x + x′) = g(x) + g(x′) for x = (. . . , 0, 0, x−N , . . . , x−1, x0, x1, . . .)
and x′ = (. . . , 0, 0, x′−K , . . . , x

′
−1, x

′
0, x
′
1, . . .) that come from β-expansions

of real numbers x and x′ (here x + x′ means x+ x′). Such g is called

(9) For each M > N ,
∣∣x−∑M

n=−N
xnβ−n

∣∣ < β−M .
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an arithmetical coding of (TA, A) by Sidorov who proves that this cod-
ing is a.e. one-to-one in case β is a weakly finitary Pisot unit ([24]). The
latter terminology is due to Hollander ([14]) and is defined as follows.
Let Fin(β) := {x > 0: x has a finite greedy expansion in base β}. Then
β is weakly finitary provided, for each δ > 0 and x ∈ Z[1/β]+, there is
y ∈ Fin(β) ∩ (0, δ) so that x + y ∈ Fin(β). Akiyama ([1]) has proved that
if φβ is irreducible (that is, the algebraic degree of β is the n in (7.2)),
then GCC for φβ is equivalent with β being weakly finitary. Theorem 7.1
below assures that certain Pisot numbers are weakly finitary and that a
wide class of arithmetical codings are a.e. one-to-one.

Let us briefly mention another interpretation of the result below associ-
ated with the (generalized) β-integers, Σ−β := {(. . . , x−1, x0.0, 0, . . .) ∈ Σβ}.
There is an “adic” action that takes each x ∈ Σ−β to its immediate successor
(this is defined by extending the successor map on the (finite) β-integers,
which are ordered as real numbers). This adic action is measurably conju-
gate to the substitutive system (Xφβ , σ). Theorem 7.1 below assures that,
for certain β with the algebraic degree degQ(β) = n (and thus with irre-
ducible φβ), the adic action and the substitutive system have pure discrete
spectrum. (If degQ(β) 6= n, we can only conclude that these Z-actions are
induced as return maps under a flow with pure discrete spectrum.)

For β Pisot and a simple Parry number and φ as in (7.1), it is automatic
that:

(i) a1 > 0 and an > 0;
(ii) the largest modulus root β of tn − a1t

n−1 − · · · − an−1t − an is a
Pisot number.

We will also require the following hypothesis:

(iii) the algebraic degree d := deg β satisfies d > n/p where p > 1 is the
smallest prime divisor of n.

Theorem 7.1. — Under the above hypotheses (i), (ii) and (iii) the sub-
stitution φ satisfies GCC, i.e., crφ = 1.

Observe that this result completely resolves the irreducible case when
n = d, which was previously tackled only under extra hypotheses: a1 >
a2 > · · · > ad−1 > ad = 1 in [13] and a1 >

∑d
i=2 ai in [14]. That last

hypothesis was weakened in [2] to a1 >
∑n
i=2 |ai|, which covers some Pisot

β that are not simple Parry numbers and lie outside the scope of our result.
The following argument proceeds in the spirit of our initial improvement

of these results in [6].
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We observe that taking b1 := 1, b2 := φ(1), . . . , bn := φn−1(1) we have
φ(bn) = φ(nban−1

1 · · · ba1
n−1) = ban1 b

an−1
2 · · · ba1

n . Thus we are led to abandon
φ in favor of a more managable substitution

(7.2) ψ :



1 7→ 2

2 7→ 3
...
n− 1 7→ n

n 7→ 1an2an−1 · · ·na1

Fact 7.2. — The tiling flows and inflation substitution actions on Tφ
and Tψ are homeomorphically conjugated.

Proof. — For k = 1, . . . , n, set σ(k) := φk−1(1) and

(7.3) ρ(k) :=


n for k = 1

(k − 1)ankan−1 . . . (n− 1)ak for 1 < k < n

(n− 1)ak for k = n.

Then σ◦ρ = φn−1 and ρ◦σ = ψn−1. This is to say that φn−1 and ψn−1 are
shift equivalent in the category of substitutions and one can conclude that
the (n− 1)st powers of inflation-substitution dynamics on tiling spaces are
conjugated via Williams’ theory of generalized solenoids [31]. An explicit
development in the language of tilings can be found in [4]: Lemma 3.1
there yields Gρ : Tφn−1 7→ Tψn−1 and Gσ : Tψn−1 7→ Tφn−1 that intertwine
the inflation-substitution dynamics Ψn−1 and Φn−1; moreover, naturality
yields Gρ ◦ Gσ = Gρσ = Ψn−1 so Gρ and Gσ are homeomorphisms. That
Gρ and Gσ intertwine the flows is stated in the beginning of the third
paragraph of the proof of Lemma 3.1 in [4]. �

Note that the matrix A of ψ is a companion matrix. In particular,

(7.4) |vi|u = |pru(vi)| = βi−1|v1|u, i = 1, . . . , n,

so that |v1|u < |v2|u < · · · < |vn|u.
For x ∈ A, we can grow σx into an infinite strand starting with σx:

(7.5) γx :=
⋃
k>0

Ψkn(σx).

Lemma 7.3. — For each y > n/p, there is x 6 n/p so that γx ∼tω γy
for generic t ∈ [0,∞).

Proof. — In view of a1 > 0, ψn−1(l) = . . . n for all l ∈ A. Corollary 3.5 of
[5] applies then to yield: there are k, l ∈ A, k 6= l, and ε > 0 so that σk ∼tω
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σl for generic t ∈ [0, ε). It follows that γk ∼tω γl for generic t ∈ [0,∞). As
Ψ(γi) = γi+1 with i ∈ A taken mod n, we also have that γk+i ∼tω γl+i for
generic t ∈ [0,∞) and all i. Combined with transitivity of ∼tω, this assures
that K := {k : γy+k ∼tω γy for generic t ∈ [0,∞)} is a nontrivial additive
(cyclic) subgroup of A (mod n). The order of K being at least p, K has to
have an element k in the (cyclic) segment {−y + 1, . . . ,−y + n/p} so that
x := y + k ∈ {1, . . . , n/p}. �

Lemma 7.4. — There exists a finite strand γ with the following prop-
erties:

(a) all segments of γ have type in {1, . . . , n/p},
(b) min γ = 0 and |max γ|u > |vn/p+1|u,
(c) γ ∼tω σn/p+1 for generic t ∈ [0, |vn/p+1|u].

Proof. — Let x1 ∈ {1, . . . , n/p} be such that γx1 ∼tω γn/p+1 for generic
t ∈ [0,∞), and let I1

1 , I
1
2 , . . . be the consecutive segments of γx1 , i.e., I1

1 =
σx1 and max I1

i = min I1
i+1 for i = 1, . . .. Let

m(1) := inf
{
i : I1

i is of type y for some y > n/p
}
.

If |min I1
m(1)|u > |vn/p+1|u, then we are done by taking

(7.6) γ := I1
1 ∪ · · · ∪ I1

m(1)−1.

PSfrag replacements

σn/p+1

σx1

σx2
+ u1

u1

u2

σx3
+ u2

γ

Es
+ u3

u2 + I3
m(3)

u1 + I2
m(2) = σy3

+ u2

I1
m(1) = σy2

+ u1

1

Figure 7.1. Construction of γ in the proof of Lemma 7.4.

If |min I1
m(1)|u < |vn/p+1|u, let y2 be the type of I1

m(1) and let x2 ∈
{1, . . . , n/p} be so that γx2 ∼tω γy2 for generic t ∈ [0,∞). Let I2

1 , I
2
2 , . . . be
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the consecutive segments of γx2 . Let

m(2) := inf
{
i : I2

i is of type y for some y > n/p
}
.

If |min I2
m(2)|u + |min I1

m(1)|u > |vn/p+1|u, set

(7.7) γ := I1
1 ∪ · · · ∪ I1

m(1)−1 ∪ (I2
1 + u1) ∪ · · · ∪ (I2

m(2)−1 + u1)

where u1 := max I1
m(1)−1.

That (a) and (b) hold for this γ is clear and so is (c) for t ∈ [0, |u1|u]. To
account for (c) for t ∈ [|u1|u, |vn/p+1|u], it suffices to observe that I1

m(1) ∼tω
(γx2 + u1) for generic t ∈ [|u1|u, |u1|u + |vx2 |u] and I1

m(1) ∼tω σn/p+1 for
generic t ∈ [|u1|u, |vn/p+1|u]. Beside the choice of x2 and x1, we used here
|max I1

m(1)|u > |vn/p+1|u, which is due to the type of I1
m(1) being in {n/p+

1, . . . , n} and (7.4).
If |min I2

m(2)|u+ |min I1
m(1)|u < |vn/p+1|u, let y3 be the type of I2

m(2) and
let x3 ∈ {1, . . . , n/p} be so that γx3 ∼tω γy3 for generic t ∈ [0,∞). Let
I3
1 , I

3
2 , . . . be the consecutive segments of γx3 . Let

m(3) := inf
{
i : I3

i is of type y for some y > n/p
}
.

The strand γ is defined by stringing together portions of γx1 , u1 +γx2 , and
u2 + γx3 where u2 := max I2

m(2)−1 + u1 following the pattern set by (7.7)
and illustrated by Figure 7.1.

This process will terminate in a finite number of steps producing a finite
strand γ with the desired properties. �

Let the consecutive segments of γ from the previous lemma be J1, J2, . . ..
Set w0 := vn/p+1 and define recursively, for k = 1, 2, . . .,

ik := inf
{
i : |max(Ji + wk−1 − vn/p+1)|u > |vn/p+1)|u

}
(7.8)

wk := maxJik + wk−1 − vn/p+1.

The Figure 7.2 depicts the process generating the wk as endpoints of the
appropriate translated copies of γ. The role of the hypothesis (iii) is to
assure that the resulting cluster of strands is infinite (and thus unbounded):

Claim 7.5. — We have wk 6= wl for k 6= l, k, l ∈ N and also |wk+1|u >
|vn/p+1|u for k = 0, 1, . . ..

Proof. — Note that wk is of the form
∑n/p
i=1 mivi − (k − 1)vn/p+1 for

some non-negative integers mi. If wk = wl then |wk|u − |wl|u = 0 which
(via (7.4)) has the form

∑n/p
i=1 ciβ

i−1|v1|u − (k − l)βn/p|v1|u = 0 for some
integers ci. Thus k 6= l would contradict (iii).
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PSfrag replacements

vn/p+1

Ji1

Ji2 + w1 − vn/p+1

Ji3 + w2 − vn/p+1

0

w1

w2

w3

γ

γ + w1 − vn/p+1

γ + w2 − vn/p+1

w1 − vn/p+1

w2 − vn/p+1

1

Figure 7.2. Stacking of strands γ + wk.

Likewise, |wk+1|u − |vn/p+1|u = 0 would contradict (iii) by yielding a
relation of the form

∑n/p
i=1 ciβ

i−1|v1|u−(k+1)βn/p|v1|u for some integers ci.
�

We need the following direct consequence of the form of ψ.

Fact 7.6. — There is δ1 > 0 so that if I ∪ J is a 2-segment strand
with max I = min J and J is of type j ∈ {1, . . . , n/p} then I ∪ J ∼tω
σn/p+1 + (max J − vn/p+1) for all t ∈ [|minJ |u − δ1, |max J |u].

Proof. — The coincidence for t ∈ [|minJ |u, |max J |u] is effected by
applying Ψn−j because ψn−j(n/p + 1) = . . . n while ψn−j(j) = n for
j ∈ {1, . . . , n/p}. Thanks to ψn(i) = . . . n for all i, subsequent applica-
tion of Ψn extends the range of coincidence to t ∈ [|minJ |u− δ1, |minJ |u]
for some δ1 > 0. �

Now let

(7.9) δ := min{δ1, |v1|u, (βn/p − βn/p−1)|v1|u}.

The following asserts that the strands in Figure 7.2 meeting at vertices
w1, w2, . . . are coincident on the δ-strip between the dashed lines.

Claim 7.7. — For k > 1, we have

(7.10) γ + wk−1 − vn/p+1 ∼tω σn/p+1 + wk − vn/p+1

for all generic t ∈ [|vn/p+1|u − δ, |vn/p+1|u].
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Proof. — First we see that that the wk − vn/p+1 are to the left of the
δ-strip in Figure 7.2. Indeed, by the minimality of ik and (7.4) we get

|wk − vn/p+1|u < |max Jik −minJik |u 6 βn/p−1|v1|u
(7.11)

= (βn/p−1 − βn/p)|v1|u + |vn/p+1|u < |vn/p+1|u − δ.

Either Jik has no predecessor on γ, in which case |minJik + wk−1 −
vn/p+1|u = |wk−1 − vn/p+1|u < |vn/p+1|u − δ by (7.11) so that

(7.12) Jik + wk−1 − vn/p+1 ∼tω σn/p+1 + wk − vn/p+1

for all generic t ∈ [|vn/p+1|u − δ, |vn/p+1|]; or Jik has predecessor Jik−1 on
γ, in which case Fact 7.6 yields
(7.13)
(Jik−1∪Jik)+wk−1−vn/p+1 ∼tω σn/p+1+wk−1−vn/p+1+maxJik−vn/p+1

for generic t ∈ [|min(Jik+wk−1−vn/p+1)|u−δ, |max(Jik+wk−1−vn/p+1)|u].
Now, (7.12) and (7.13), with an eye on wk−1 − vn/p+1 + max Jik = wk,

secure (7.10). �

Corollary 7.8.
γ + wk − vn/p+1 ∼tω σn/p+1

for generic t ∈ [|vn/p+1|u − δ, |vn/p+1|u] and all k = 0, 1, . . .

Proof. — From (c) of Lemma 7.4, the strands meeting at wk − vn/p+1

are coincident on the δ-strip; namely, γ + wk − vn/p+1 ∼tω σn/p+1 + wk −
vn/p+1 for k = 0, 1, 2, . . . and for generic t ∈ [|vn/p+1|u− δ, |vn/p+1|u]. From
Claim 7.7, the strands meeting at vertices w1, w2, . . . are coincident on the
δ-strip. Hence, the transitivity of ∼tω, forces all the strands in Figure 7.2
to be coincident on the δ-strip. �

Conclusion of proof of Theorem 7.1. — Taking t1 := |vn/p+1|u − δ, let
L be the state L := σn/p+1 − t1ω and Kk be the state at which the finite
strand γ +wk − vn/p+1 − t1ω intersects Es. From Corollary 7.8, Kk ∼tω L
for generic t ∈ [0, δ]. From Claim 7.5, the vectors wk ∈ Γ must form an
unbounded set and thus so do the distances dist(L,Kk). Thus crφ = 1
follows from Theorem 6.1. �

8. The substitutive system as an induced system of a
group translation

The tiling flow T t has a natural cross-section

(8.1) Xφ :=
{
(γk) ∈ F←φ : γ0 has a vertex on Es

}
.
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The first return map Tφ : Xφ → Xφ under the reversed flow (i.e., T−t)
constitutes the much studied substitutive system associated to φ. Xφ de-
composes into

(8.2) Rsi :=
{
(γk) ∈ F←φ : γ0 has an edge I labeled i

with min I ∈ Es
}
, i = 1, . . . , n,

which sets are the stable boundaries of the natural Markov boxes for Φ:

(8.3) Ri :=
{
(γk) ∈ F←φ : γ0 has an edge labeled i

intersecting Es
}
, i = 1, . . . , n.

A geometric model of Xφ, called the Rauzy fractal, can be obtained by
mapping Xφ via (γk) 7→ (min γ̂k) (cf. (4.6)) that sends (γk) to the sequence
of vertices on Es which can be thought of as an element of Es×C where C
is the totally disconnected subgroup of TA that serves as its fiber over V/Σ,
i.e., C := {(qk) ∈ TA : q0 = 0}. This procedure is particularly appealing
when the stretching factor λ is a unit so that A|V is unimodular, C is just a
single point, and the Rauzy fractal of φ becomes a subset of Es; concretely,

(8.4) Ωs :=
n⋃
i=1

Ωsi

where the sets

(8.5) Ωsi :=
{
x ∈ Es : x = min γ̂0 where (γk) ∈ F←φ and γ̂0 is labeled i

}
are called the Rauzy pieces of φ.(10) In what follows, we restrict attention
to the case in which λ is a Pisot unit.

If the union
⋃n
i=1 Ωsi happens to be disjoint up to measure zero, the above

construction factors the return map Tφ to the domain exchange Eφ : Ωs →
Ωs a.e. defined by (cf. [3])

(8.6) Eφ(x) = x+ wi for x ∈ Ωsi , wi := prs(vi).

When A is irreducible over Q and crφ = 1, the Rauzy fractal Ωs is a
fundamental domain for the anti-diagonal torus Es/Λ ' Td−1, Λ := 〈wi −
wj : i, j = 1, . . . , d〉, and the domain exchange is just the toral translation
x 7→ x+w1 ≡ x+wi mod Λ. In the Pisot unit case, regardless of whether
or not GCC holds for φ, there is a dual tiling space T ∗φ consisting of certain
tilings of Es by the Rauzy pieces. For irreducible φ, the definition of T ∗φ is
in [5] and it can be modified in a straight-forward way for reducible φ. If φ
satisfies GCC, then T ∗φ is simply the space of tilings induced on the stable

(10) The Ωs
i are closures of their interiors and have boundary of zero measure, see [26].
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foliation (x+Es) + Σ, x ∈ Eu, by intersecting with the Markov rectangles
(hφ)0(Ri) := {p0 + Σ: (γk) ∈ Ri, p0 a vertex of γ0} in the torus V/Σ.

The elements of T ∗φ are aperiodic tilings of Es by the Rauzy pieces. When
GCC holds, the Rauzy pieces can also be assembled into periodic tilings
of Rd−1. For irreducible φ, Ωs =

⋃d
i=1 Ωsi is simply a fundamental domain

for the lattice Λ. For reducible φ, Ei and Ito ([11]) have observed that the
Rauzy fractal Ωs may fail to be a fundamental domain for any lattice in
Es (even though the geometric realization is a.e. one-to-one). Nevertheless,
in all examples considered, they find some lattice in Es and a translation
on the associated torus, so that Eφ coincides with the first return map
to Ωs under the translation. That means that the Rauzy pieces tile Rd−1

periodically because a fundamental domain of that lattice is obtained by
taking the union of the translations of the Rauzy pieces prior to their
return to Ωs. The following simple general proposition guarantees that this
is always the case.

Proposition 8.1. — Suppose that crφ = 1 so that the geometric re-
alization is a.e. one-to-one. Then the domain exchange Eφ is isometrically
conjugated with the first return map to some domain induced by a minimal
translation on the d− 1-dimensional torus.

Proof. — For R, ε > 0, we shall denote by Cε,R the solid cylinder Bs(R)×
Bu(ε) obtained as the product of balls of radius R and ε in Es and Eu,
respectively, both centered at 0.

Pick R > 0 large enough so that Ωs is contained in the ball Bs(R) ⊂ Es

and pick ε > 0 small enough so that the natural projection π : V → V/Σ
restricted to C2ε,R is an embedding. Take E ⊂ V to be a d− 1-dimensional
linear space that is totally rational (making E/(E ∩Σ) a d−1-dimensional
torus) and that approximates Es well enough so that E passes through the
sides of Cε,R while avoiding its top and bottom, i.e., E∩Cε,R ⊂ ∂Bs(R)s×
Bu(ε).

Let Λs ⊂ E denote the image of the Rauzy fractal Ωs under the projec-
tion prE : V → E along Eu and denote by h : π(Ωs) → π(Λs) the bĳection
between the two sets obtained by conjugating prE via π|Cε,R .

For the Kronecker flow in the direction ω, the domain exchange Eφ
conjugated by π constitutes the first return to π(Ωs). Because π|C2ε,R is
an embedding, this return is conjugated via h to the first flow return to
π(Λs). (Indeed, the flow line segment J joining p ∈ π(Λs) to its first return
q ∈ π(Λs) can encounter π(Ωs) only inside π(Cε,R) and thus at no other
points beside h−1(p) and h−1(q).)
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Clearly, the first flow return to π(Λs) is the first return to π(Λs) under
the minimal translation τ : E/(E∩Σ) → E/(E∩Σ) induced by flow return
to the global cross section E/(E ∩ Σ) ⊂ V/Σ. �

The simplicity of the above argument exacts a toll: its practical imple-
mentation may lead to an excessively large torus E/(E ∩ Σ) of which the
projected Rauzy fractal makes up only a small portion and takes many it-
erates to return to itself under the toral translation τ . Under an additional
condition (condition (8.2) below) we will make an explicit construction (in
the proof of Proposition 8.5) in a slightly different spirit, that limits the
size of the d− 1-dimensional torus and the return time to the Rauzy frac-
tal. We restrict attention to substitutions of the form (7.1) that satisfy the
hypotheses of Theorem 7.1 along with condition (8.2) below on the coef-
ficients of the minimal polynomial of the expansion factor λ = β. These
include the substitutions considered in [11].

Condition 8.2. — Let td−b1td−1−· · ·−bd be the minimal polynomial
of β. Then either bi > 0 for i = 1, . . . , d or

∑l
i=1 bi > 0 for l = 1, . . . , d.

Fact 8.3. — Under the above condition, for every m ∈ Z+, there are
Mm ∈ Z+ and cm,i,j ∈ Z, i = 1, . . . , d, j = 1, . . . ,Mm, so that, for all j,

(8.7) βm−1 =
Mm∑
j=1

ηm,j , ηm,j :=
d−1∑
i=0

cm,i,jβ
i > 0,

d−1∑
i=0

cm,i,j = 1.

The proof is a straightforward induction on m. Of course, (8.7) is trivially
satisfied for m ∈ {1, . . . , d} with Mm = 1, cm,m−1,1 = 1, and cm,i,1 = 0 for
i 6= m− 1.

Question 8.4. — Are there cm,i,j ∈ Z, Mm ∈ Z+ such that (8.7) holds
for all m ∈ Z+ for every Pisot unit β?

Proposition 8.5. — Suppose that the substitution φ is of the form
(7.1) with β a unit and satisfies (i), (ii), (iii) of Theorem 7.1 together with
condition (8.2). Then there is a lattice Λ ⊂ prs(Γ) and w ∈ Es, so that
the domain exchange Eφ on the Rauzy fractal Ωs coincides with the first
return to Ωs under the transitive toral translation x 7→ x + w mod Λ on
Es/Λ ' Td−1.

Proof. — Let ψ be the substitution in (7.2). For a while all notation will
be in the context of ψ, including the Rauzy pieces, the Markov boxes

(8.8) Ωi :=
⋃

06t6βi

Ωsi−tω, βi := |vi|u = βi−1|v1|u = β1β
i−1, i = 1, . . . , n,
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and the vectors wi = prs(vi). By Theorem 7.1, the Ωi are piecewise disjoint
up to measure zero, as are the Ωsi (with respect to the d − 1-dimensional
measure).

Note that if kl is any two letter word then ψn(kl) = k · · ·nl · · ·n. In
particular, the abelianization of ψn(l), which is just An(vl), is among the
return vectors in Θ(l). It follows that the return lattice Σ coincides with
the lattice Γ = 〈v1, . . . , vn〉. Note also that v1, . . . , vd are linearly indepen-
dent (since Avi = vi+1 for i = 1, . . . , n − 1, and V = lin(v1, . . . , vn) has
dimension d) and so also are w1, . . . , wd (since Eu is irrational). Therefore,
upon setting

(8.9) Λ := 〈wi − wj : i, j = 1, . . . , d〉

the translation τ : x+ Λ 7→ x+ w1 + Λ is transitive on Es/Λ → Es/Λ.
Let cm,i,j ∈ Z, Mm ∈ Z+ be as in (8.7) with Mm = 1 and cm,i,1 = 1 for

i = 1, . . . , d − 1. For each m = 1, . . . , n, we take Mm stable slices of Ωm:
Ωsm,0 := Ωsm and

(8.10) Ωsm,k :=

Ωsm − β1

( k∑
j=1

ηm,jω

)+
k∑
j=1

d−1∑
i=0

cm,i,jvi+1,

for k = 1, . . . ,Mm − 1.

Since

pru

(
d−1∑
i=0

cm,i,jvi+1

)
=
d−1∑
i=0

cm,i,jβ1β
iω = β1ηm,jω,

Ωsm,k ⊂ Es. Since the boxes Ωm/Γ are disjoint (up to measure zero), so are
the Ωsm,k.

Now, for m ∈ 1, . . . , d and x ∈ Ωsm, the domain exchange Eψ is given
by Eψ(x) = x + wi, which is congruent to x + w1 mod Λ. For m > d and
x ∈ Ωsm, we have

Eψ(x) = x+ wm = x− β1β
m−1ω + vm = x− β1

(Mm∑
j=1

ηm,j

)
ω + vm

= x+
(d−1∑
i=0

cm,i,1vi+1−β1ηm,1ω

)
+
(d−1∑
i=0

cm,i,2vi+1−β1ηm,2ω

)
+ · · ·

+
(d−1∑
i=0

cm,i,Mm
vi+1−β1ηm,Mm

ω

)
+ vm−

Mm∑
j=1

(d−1∑
i=0

cm,i,jvi+1

)
.

Each of the vectors
∑d−1
i=0 cm,i,jvi+1−β1ηm,jω lies in Es (as its image under

pru is zero), and so do x and x − β1β
m−1ω + vm. Thus the vector vm −
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∑Mm

j=1

(∑d−1
i=0 cm,i,jvi+1

)
, lying in both Es and Γ, must be 0. Furthermore,

prs

(
d−1∑
i=0

cm,i,jvi+1 − β1ηm,jω

)
=
d−1∑
i=0

cm,i,jwi+1 ≡ w1, mod Λ,

for j = 1, . . . ,Mn, since
∑d−1
i=0 cm,i,j = 1. Thus, for x ∈ Ωsm, Eψ(x) =

x+Mmw1 mod Λ. Furthermore, we see that, if x ∈ Ωsm,0 = Ωsm, then τ(x+
Λ) ∈ Ωsm,1 + Λ, τ2(x+ Λ) ∈ Ωsm,2 + Λ, . . ., τMm−1(x+ Λ) ∈ Ωsm,Mm−1 + Λ,
and τMm(x+ Λ) = Eψ(x) + Λ ∈ Ωs + Λ.

Thus Eψ : Ωs → Ωs coincides (a.e.) with the first return to Ωs under
translation by w1, mod Λ, provided we can show that the Ωsm,j + Λ are
pairwise disjoint (up to measure zero). (At this point we only know that
the Ωsm,j are pairwise disjoint.)

If the disjointness were to fail we would have x ∈ Ωsm,i and y ∈ Ωsl,j
with (m, i) 6= (l, j) so that: x + Γ and y + Γ lie in the full measure set
Guψ (see Theorem 4.2) on which h−1

ψ is single valued, and there is a vector
w ∈ ∆ := 〈vi−vj : i, j = 1, . . . , d〉 so that y−x = prs(w). First suppose that
i = 0 = j (that is, x and y are in the original Rauzy pieces Ωsm and Ωsl ).
Since x ∈ Ωsm ∩Guψ, h−1

ψ (x+ Γ) = (αk) is such that x is a vertex of strand
α0 and the edge I of α0 with min I = x is labeled m. Let h−1

ψ (y+Γ) = (βk)
with y a vertex of β0. Then x+w is a vertex of the strand β0+pru(w) =: γ0

with (γk) ∈ F←ψ and hψ((γk)) = x + w + Γ = hψ((αk)). Hence, γ0 = α0

so that x′ := x + w must be a vertex of α0. Now, given u, v ∈ Γ, we shall
say that u is less than v, denoted u ≺ v, provided u− v =

∑d
i=1 civi with∑d

i=1 ci < 0(11) . Since 0 ≺ vi for i = 1, . . . , n (from (8.7)) and x′ − x = w

is neither less than nor greater than 0, x′ can neither precede nor follow x.
Thus x = x′, w = 0, and y = x, a contradiction.

Suppose now that (m, i) 6= (l, j) without the extra assumption i = 0 = j.
Let x′ ∈ Ωm and y′ ∈ Ωl and u, v ∈ Γ be such that x′ + u = x and
y′ + v = y. Then x′′ := x′ + pru(u) ∈ Ωsm,0, y′′ := y′ + pru(v) ∈ Ωsl,0 and
y′′−x′′ = prs(w−u+ v). If u− v ∈ ∆, then y′′ = x′′ from the above proof,
so that y = x. If u − v 6∈ ∆, then, without loss of generality, u ≺ v. Let
ỹ = y′ + pru(w) so that ỹ− x′ ∈ Γ. Now h−1

ψ (x′ + Γ) = (αk) is a singleton,
x′ = min I, I an edge of α0 labeled m, and, since y′ ∈ Ωl, y′ is a vertex of
β0, (βk) ∈ F←ψ , so that ỹ is a vertex of γ0 := β0 + pru(w), (γk) ∈ F←ψ . As
hψ((γk)) = ỹ+ Γ = x′+ Γ = hψ((αk)) and x′+ Γ ∈ Guψ, γ0 = α0 and ỹ is a
vertex of α0. Note that u ≺ v implies that x′ − ỹ = u− w − v ≺ 0 so that
ỹ must follow x′ on α0. On the other hand, x ∈ Ωsm,i means that v ≺ vm.

(11) This is the order on V lifted from that on the line V/ lin(∆).
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Since the edge following x′ on α0 is labeled m, the vertex following x′ is
x′ + vm and ỹ − (x′ + vm) = −vm + v + w − u ≺ 0. That is, ỹ must come
before x′ + vm on α0 (as well as after x′) and this is not possible. This
concludes the proof that the Ωsm,i + Λ are pairwise disjoint up to measure
zero.

We conclude the proof of Proposition 8.5 by translating the above con-
struction back to terms of φ via the shift equivalence (Fact 7.2) σ◦ρ = φn−1,
ρ ◦ σ = ψn−1. Let S and P be the abelianizations of the morphisms σ and
ρ. Then SP = An−1

φ and PS = An−1
ψ . It follows that the linear maps

P |Es
φ
: Esφ → Esψ, P |Eu

φ
: Euφ → Euψ, S|Es

ψ
: Esψ → Esφ, and S|Eu

ψ
: Euψ → Euφ

are isomorphisms. Moreover, P and S restrict to isomorphisms between the
lattices Σφ = Γφ and Σψ = Γψ. (That Σφ = Γφ is proved as was Σψ = Γψ.)

Let

(8.11) Λφ := P−1Λψ =
〈
P−1wi(ψ)− P−1wj(ψ) : i, j = 1, . . . , d

〉
⊂ Esφ

and let w̃ := P−1w1(ψ).
Let Ωsi (φ) and Ωi(φ) be the Rauzy pieces and the corresponding Markov

boxes for φ, let Ωm,0(ψ) := Ωm(ψ), m = 1, . . . , d, and let

(8.12) Ωm,j(ψ) =
⋃{

Ωsm(ψ)− tω : β1

j∑
l=1

ηm,l 6 t 6 β1

j+1∑
l=1

ηm,l

}
for m = d + 1, . . . , n, j = 1, . . . ,Mm − 1. Then P takes each Ωi(φ) in a
Markovian way across the Ωm,j(ψ): let

(8.13) Ωi(φ) =
Ki⋃
k=1

Ωi,k(φ)

be the corresponding decomposition of Ωi(φ), i = 1, . . . , n. (Thus
P (Ωi,k(φ)) runs entirely across some Ωm,j(φ)). The domain exchange Eφ
restricted to Ωsi (φ) is then a composition of Ki translations, each congru-
ent to a translation by w̃ modulo Λφ. Thus Eφ : Ωs(φ) → Ωs(φ), modulo
Λφ, coincides (a.e.) with the first return to Ωs(φ) + Λφ under the toral
translation by w̃ + Λφ on Esφ/Λφ ' Td−1. �

Remark 8.6. — Since the translation τ : Es/Λ → Es/Λ given by Propo-
sition 8.5 is transitive and the (generalized Rauzy pieces) Ωsm,j (see the
proof of Proposition 8.5) are closed with nonempty and pairwise disjoint in-
teriors, and

⋃
m,j Ωsm,j+Λ is invariant under τ , it must be that

⋃
m,j Ωsm,j+

Λ = Es+Λ. That is,
⋃
m,j Ωsm,j is a fundamental domain for the d−1 torus

Es/Λ, as noted in the examples of [11], which all satisfy the hypotheses of
Proposition 8.5.
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