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A FORMULA FOR THE RATIONAL LS-CATEGORY

OF CERTAIN SPACES

by L. LECHUGA &#x26; A. MURILLO (*)

Ann. Inst. Fourier, Grenoble
52, 5 (2002), 1585-1590

1. Introduction.

The Lusternik-Schnirelmann category is an old and well-known nu-
merical invariant of the homotopy type of spaces which may be defined
as follows: A space ,S’ has category n if this is the least integer for which
S‘ can be covered by n + 1 open sets contractible in S. This invariant is
hard to compute even for 1-connected rational spaces where the algebraic
machinery of rational homotopy theory may the reader think it would be
easy. Indeed, in [2], Felix and Halperin developed a deep approach, within
rational homotopy theory, for computing the LS-category. Later on, and
also concerning this hard task, F61ix, Halperin and Lemaire [3] showed
that for Poincar6 duality spaces (and hence for elliptic spaces) the rational
LS-category coincide with the Toomer invariant which, at first sight, may
look easier to compute. In this paper we shall find a formula (or a bound
in some other cases) for this invariant which generalizes and in some cases
it complements previous results in [1], [2], [5], [6]. Let us very briefly intro-
duce the basic notions on rational homotopy theory and Sullivan minimal
models we shall use, and the definition of this invariant. For the reader non

familiar with this the basic reference is [4].
The minimal model of the 1-connected space of finite type ,S’ is a

commutative differential graded algebra (AV, d) which algebraically models

(*) Partially supported by the DGES and the Junta de Andalucia.
Keywords: LS-category - Minimal model.
Math. classification: 55P62 - 55M30.
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the rational homotopy type of the space. By AV we mean the free

commutative algebra generated by the graded vector space V, i.e., AV =

TV/I where TV denotes the tensor algebra over V and I is the ideal

generated by v (9 w - 0 v, v, w E V. The differential d of any
element of V is a "polynomial" in 11V with no linear term. A model (AV, d)
is elliptic if both V and H* (AV, d) are finite dimensional spaces. From now
on we consider only models for which dimV  oo, and we set dim veven = n,
dim vodd == m.

The Toomer invariant of a minimal model eo(AV, d) (which equals
the rational LS-category of the space which it represents if it is elliptic [3])
may be defined as the biggest integer s for which there is a non trivial

cohomology class in H* (AV, d) represented by a cycle in As usual,
AsV denotes the elements in AV of "wordlength" s. Given a model (AV, d)
we denote by (A V, da) its associated pure model, i.e., da is the component
of d which satisfies da veven == 0 and d, vodd c AVeven.

Let (AV, d) be a minimal model and let k be the biggest integer for
which we may write d = with di (V) C AiV . Thus dk induces a
differential in AV and our main result which generalizes the one in [2] for
coformal spaces, reads:

THEOREM 1. - If (AV, dk) is elliptic then

In the next section we prove this result and point out its relation with

previous results on this subject.

2. A formula for the Toomer invariant.

The cohomology of an elliptic model is a Poincar6 duality algebra so
the cycle of maximal wordlength of a non trivial class occurs precisely in
the fundamental class.

We shall be using a process for determining the fundamental class
of the cohomology of a minimal model given in [7]. We recall it here for
completeness: Let (AV, d) be a pure model. Choose homogeneous basis
IXJ ... , I X.1, ~2~1, ... , 7 y. I of ve"en and vodd respectively, and write
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where each a’ is a polynomial in the variables x2, xi+1, ... , xn. For any
1  ii  ...  jn  m, denote by the determinant of the matrix

of order n:
~ m ~.?T,B

Then (see ~8~ ) the element wo E AV,

is a cycle representing a class, which is the fundamental class if the model
is elliptic, or null otherwise.

If (AV, d) is a non necessarily pure elliptic model, consider (AV, dO’) its
associated pure model and wo E AV obtained as before. Note that this cycle
lives in Am-nvodd)N in which m = = dim V,v,n

and N is the formal dimension.

Write MJ == 0 Ajvodd)i, p = m - n, and observe that

Since d2 wo = 0 it follows that 0 (indeed this is the only summand
of d2WO in Mp*+,). Hence cti is a d,-boundary: ao, /3i E Mp
Consider wl = wo - /31 and note that

Again, for the same reason, = 0, so there exists ~2 E such that

da $2 = a3 . Hence we define inductively elements /3j E (AV) N satisfying
wj = and dwj C Hence, for the first jo such
that 2 jo + 1 &#x3E; r this process stops and Wjo is a d-cycle which we denote by
w. Then w represents the fundamental class of (AV, d) [7]. We shall use a
similar process to prove our main results.

Before that, note that the formula for the fundamental class of an

elliptic pure model given above already gives us a bound for eo in some
cases (some of them already known by other methods):

Remark 2. - Let (AV, d) be an elliptic model for which dV E A kV
for some k. Hence d(A’V) E and then the differential d is of

bidegree (k-1,1) with respect to the gradation Note that this

induces a bigradation in the cohomology algebra and therefore all the cycles
representing the fundamental class have the same wordlength eo (AV, d).
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PROPOSITION 3. - Let (AV, d) be an elliptic pure model in which,
for each yj E vodd, dyj is homogeneous of wordlength h . Then

If lj = l for all j then the equality holds, i.e, eo(AV, d) = n(l - 2) + m.

Proof. Indeed, observe that the length of wo obtained as in the
formula above is precisely the requested bound. If dyj has the same length
for all j, then the equality holds by Remark 2. D

Remark 4. - Observe that for models for which d) = 0, i.e.,
dim Veven = dim Tl°dd = n, any cycle of the fundamental class will have
the same length. Therefore

A similar result is already remarked in [5].
The following two results clearly imply Theorem 1:

THEOREM 5. - Let (AV, d) be a model and let k be the biggest
integer for which dV C If (AV, dk) is elliptic then

Proof. First note that, in view of the Milnor-Moore spectral
sequence, (AV, d) is elliptic since (AV, dk) is so, and both have the same

formal dimension.

Call s = eo (AV, dk) and observe, by Remark 2, that any cycle wo
representing the fundamental class of lives in A’V. Then

with a? E Note also that r is a fix integer. Indeed the degree
of ao is greater or equal than 2(s + k - 1 + r) and it coincides with N + 1
being N the formal dimension. Hence r  (N + 3 - 2s - 21~) /2.

Since d2WO = 0, by wordlength reasons, 0. Hence, a° is a

dk boundary, i.e., there is b1 E A’+’V such that ao. Consider
wo - b1 and observe that
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Again, 0 so there exists b2 E As+2 V for which dkb2 = a2 . We
continue this process defining inductively bj, bj E 
j  r. Finally observe that 0 and that wr cannot be a d-boundary.
Indeed if wr - wo - b1 - ~ - ~ - br were a d-boundary, by wordlength
reasons, wo would be a dk-boundary. Thus wr is a non trivial cycle of
the formal dimension and therefore it represents the fundamental class.
Since w~. E we have eo (AV, d) &#x3E; 

On the other hand, call p = eo (AV, d) and let w be a cycle representing
the fundamental class of H* (AV, d). Write

Since dw = 0, by wordlength reasons, it follows that dk w0 = 0. If wo were a
dk-boundary, i.e., wo = dkb, then w - db E A~’P which contradicts the fact
p = eo (AV, d). Hence wo represents the fundamental class of H* (AV, dk)
and thus eo (AV, d)  eo (AV, dk), which finishes the proof of the theorem. El

THEOREM 6. - Let (AV, d) be an elliptic model for which the
differential is homogeneous of wordlength k, i. e., dV E If 

is elliptic then

Proof. First note that, if wo is the cycle given in the formula above
representing the fundamental class of (AV, its length is n(k - 2) + m.
Thus, by Remark 2, this is precisely We now show that

eo (AV, d) = eo (AV, dO").
Call s = eo (11Y, da) and let wo E be any cycle representing the

fundamental class of (A V, dO" ). Consider now

the representative of the fundamental class of (AV, d) given by the method
above. In this case, since the differential has homogeneous wordlength

E AS for all j. Therefore w E A~V and eo (AV, d) &#x3E; eo (AV, d,).

On the other hand the equation (1) tells us that eo (AV, do: ) &#x3E; eo (AV, d)
and the theorem holds. 0
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