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ON THE REAL ANALYTIC LEVI FLAT

HYPERSURFACES IN COMPLEX TORI

OF DIMENSION TWO

by K. MATSUMOTO &#x26; T. OHSAWA

Ann. Inst. Fourier, Grenoble
52, 5 (2002), 1525-1532

Introduction.

Let X be a complex manifold of dimension n and let M be a real
hypersurface of X. M is called Levi flat if it locally separates X into two
Stein domains, i.e. if M is locally pseudoconvex from both sides. In recent
works of Lins-Neto [LN] and the second named author [0] it was proved
that P , complex projective space of dimension n, contains no compact real
analytic Levi flat hypersurfaces if n &#x3E; 2 (for the smooth case see 

The purpose of the present article is to extend this reasoning by
studying the geometry of Levi flat hypersurfaces in complex tori. Let
h be a lattice of let T - and let 7r : (Cn ---~ T be the

canonical projection. Unlike the case of pn (n &#x3E; 2), T contains infinitely
many compact Levi flat hypersurfaces + u), where uj ( j -
1,..., 2n -1 ) are R-linearly independent vectors in F and u E en. Therefore
the best thing one can hope is the following.

CONJECTURE. - Let M be a compact Levi flat hypersurface ofT.
Then ~r-1 (M) is a union of complex affine hyperplanes. If moreover T
contains no proper complex tori of positive dimension, M is flat, i.e. M is
of the form + u).

Keywords: Levi flat - Complex torus.
Math. classification: 32ZT40.
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We shall give a partial answer to this question by proving

THEOREM. - Let M, T and 7r be as above. If M is real analytic
and dim T = 2, then 7r - 1 (M) is a union of complex affine lines. Moreover,
if M does not contain any elliptic curve, M is flat.

For the proof we combine the method of extending the analytic normal
bundle of M and its roots from a neighbourhood of M to the whole space
with an explicit computation of the Levi form of - log 6(z) for the euclidean
distance function 6(z) from z to a nonsingular complex curve in (C2.

1. The key lemma.

Let M be a compact Levi flat hypersurface in a complex torus T

C’/F), and let 6M (z) be the distance from z E T to M with respect to
the euclidean metric. Since T B M is locally Stein by assumption, - log 6M
is a continuous plurisubharmonic exhaustion function on T B M. A finer
property of this function is derived from the following.

LEMMA. - Let C be a complex hypersurface in e2 defined by

for open V c C and holomorphic f. Then for any p E C there exists a
neighbourhood U ( C (C2 ) of p such that

for any (zl , z2 ) E U B C and for any (Ç1,Ç2) E (~2 . Here 6C (Zl, Z2) denotes
the euclidean distance from (zl, z2) to C and t = t(Zl, Z2) is the solution of

Proof. If we put
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andtEY,then

and

Since H(t, f (t), t) 7~ 0 for t E V, it follows by the implicit function theorem
that one can find a CW function t = defined in some neighbourhood
U of p E C which satisfies

Then

for any

We put

for simplicity. Applying (1) we have

for i = 1, 2. Therefore we obtain

and

Moreover by differentiating (1) we have
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for i = 1, 2, and hence

Since

and

it follows that

Hence we obtain

We put

on U B C. Then we have

or

Combining this with (2) and (4) we obtain
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In other words the Levi form of A is written as

which proves the lemma. 0

2. Proof of Theorem.

First we note that the lemma implies the following.

PROPOSITION. - Let M be a compact Levi flat hypersurface of
class C2 in a complex torus T of dimension 2. Suppose that there exists a
complex line in C2 whose image in T by the canonical projection osculates
M but is not contained in M. Then T B M is a Stein open subset of T.

Proof. By assumption there exists a point p E M such that the

germ of a complex curve passing through p and contained in M does not
inflect at p. By the lemma, 8e -1 (= is strictly plurisubharmonic
on U B M for some neighbourhood U E) p. Since the set of such points p
is open and dense in M, we can replace U by a smaller neighbourhood of
p, if necessary, in such a way that 6m-l is also strictly plurisubharmonic
on U B M. Hence, since T is homogeneous, T B M is Stein by a theorem of
Michel [M] and the Kontinuitatssatz of Docquier-Grauert [DG]. 0

Let us suppose now that M is a compact Levi flat hypersurface of class
C’ in T, where dim T = 2. We shall prove the theorem by contradiction.
If we assume the contrary to the assertion, M would contain a nonlinear

complex curve. Then by the above proposition T B M is Stein. On the other
hand, by the real analyticity of M the Levi foliation of M, the foliation
defined by the CR tangent bundle of M, is uniquely extendable to a tubular
neighbourhood say Q of M, as a complex analytic foliation.

Then, by the Steinness of T B M (together with dim T &#x3E; 2), the
foliation is extendable complex analytically to the complement of a finite
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subset of T, say to T’. Call this extended foliation 8. Let 0 be the
holomorphic tangent bundle of T, let O’ = O ~ T’ and let ,S be the subbundle
of 0’ tangent to 3.

We put L = 8’/ S. Then L admits at least two linearly independent
global holomorphic sections, say so and because so does 8’ and 8 is
nonlinear.

Hence we have a meromorphic map (so : s1 ) from T’ to I~1.

Since dim T = 2, a meromorphic map from T’ to I~1 cannot admit
any essential singularity at T B T’, (so : si ) extends to a meromorphic map
from T to P . In particular, by a well known algebraicity criterion for the
complex tori, T is algebraic.

Let m be any positive integer. Then there exists a holomorphic line
bundle L(,n) over a neighbourhood of M such that L there.

(m)
This is simply because one can choose a system of transition functions of
L near M so that they are real valued on M.

Let Gm be the group of (2m - I)-th roots of unity. Then for any p E M
and for any homomorphism p : -~ Gm we have a (holomorphic)
line bundle

where M denotes the universal cover of M, and the equivalence relation
is defined by

(x, () NP (x’, (’) ~ There exists a covering transformation

Let us denote the canonical extensions of Fp to a tubular neighbour-
hood of M by the same symbol.

We note that

near M.

Choosing so and s 1 in advance from the image of HO(T, 8) (~ C) ,
we may assume that (so : sl ) has no points of indeterminancy on M. We
then put

and consider the diagram 
..
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Here T" xpi I~1 denotes the fiber product of T" and Pl over pI with respect
to the morphisms (so : sl) and z2m-1. Then the map w : X - T" is a
branched (2m - 1) to 1 holomorphic map.

Take any point q E and fix a single valued branch of soO2"2-1)
on a neighbourhood of ~-1 (q). Then, by continuing it analytically we
have a holomorphic section of w* (Lr;,) 0 FP) for some p, defined on a
neighbourhood of M. Note that this is possible because L 02 is defined by
a system of positive defining functions on M. In fact we have only to put

This implies that Fp) is isomorphic to ~~-1 (so 1 (o)) ~ ~®2
on a neighbourhood of (M). Here Iw-1 (o)) ~ denotes the support of
the divisor w-1(SOl(0)) and denotes the line bundle over
X associated to Therefore zu*(L 02 0 Fp) is analytically
extendable to X. Moreover the locally free sheaf over

T" is extendable to T as a coherent analytic sheaf because so is L. Hence

0 Fp is a subbundle of a holomorphic vector bundle ®FP))
which is extendable to T as a coherent analytic sheaf.

Since 0 Fp)) is extendable to T coherently, its projecti-
fication is extendable as a complex analytic fiber bundle over a projective
algebraic manifold which is birationally equivalent to T. The subbundle

0 FP then induces a holomorphic section of that projective bundle
say P, over a neighbourhood of M. Since P is projective algebraic by Ko-
daira’s well known theorem, the section corresponding L 02 extends

to a meromorphic section over T. This means that 0 Fp is extendable
to a line bundle Lm ~ T B Em for some finite subset Em of T. (Actually
Em can be chosen to be empty.)

Now take any compact complex curve C C T" B which is not

contained in any fiber of (so : sl ). Then deg(L C) &#x3E; 0 because (so : si)
is nonconstant on C. However, L 02 1 C L 0(2m-1) I C must hold because
L ~ (L(m) 0 Fp)0(2m-1) near M and T B M is Stein.

Thus we obtain

which is an absurdity. 0

Acknovvledgement. The authors thank the referee for valuable criti-
cism.
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Added in proof. Unfortunately the proof of Theorem turned out to
be incorrect, so that the Steinness assertion for T B M only remains true.
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