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BESICOVITCH SUBSETS OF SELF-SIMILAR SETS

by J.-H. MA, Z.-Y. WEN and J. WU

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1061-1074

1. Introduction.

Besicovitch [1] and Eggleston [2] considered subsets of points of the
unit interval with given frequencies in the digits of their m-ary expansions;
M. Moran and J. Rey in [5] extended the analysis to self-similar sets,
and conjectured that "the Besicovitch subsets of self-similar sets have

infinite Hausdorff measure in their dimension". Following the pioneer work
of R. Kaufman [4] on the classical dyadic Besicovitch sets and that of
Y. Peres [6] on the Mc Mullen sets, we give a complete classification of
the Hausdorff and packing gauge functions of the Besicovitch subsets of
self-similar sets, this extends the results of R. Kaufman, as a corollary, we
prove the conjecture of Moran and Rey positively.

We recall first some result about self-similar sets, for more details, we
refer to [3]. Given an integer m &#x3E; 2, let ~~o, ~1, ~ ~ ~ , ~m-1 ~ be similarity
contracting with similarity ratio fro and let E be the self-

similar set of the family of the similarities. Suppose that the open set
condition is satisfied (i.e., there exists a non-empty bounded open set V
such that V D with the union disjoint), then dimH E = dimp E =
diMB E = s and moreover 0  PS (E)  oo, where s is the unique
positive solution of the equation rJ = 1.

For the sake of simplicity, we shall work in the unit interval, and
assume that (§j ( [0, l])}j=c/ be a collection of disjoint sub-intervals of [0, 1].
Keyt.vords: Perturbation measures - Gauge functions - Bescovitch set.
Math. classification: 28A80 - 28A78 - 26A30 - 58F12.
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Let and to be the one-sided

symbolic space. Define . to be the n-level basic

interval with (xi, ... , xn) E In what follows, we adopt the following
conventions:

1. The coding mapping 7r: S2 -~ E is defined as

2. If no confusion happens, x = denotes both an element of 0

and the point IXl,...,Xn in E.

3. Let x = xI = xn - -  SZ, the n-level cylinder on Q containing x E 0,
denoted by In (x), is defined as

If no confusion happens, In (x) also denotes the n-level basic interval
7r( In (x)) containing E E.

Given a probability vector p = (p~ &#x3E; 0, pj =
1), we can define a Besicovitch-type subset of E(see [5]) as follows:

where Xj is the indicator function of the 

We first collect some known facts:

o is a non-compact invariant set of the system

o E(p ) is dense in E, hence, of box-dimension s = dim E;

Now we formulate our main theorem:

THEOREM 1.1. - Let

and g a gauge function, then

(which we call the compatible
case), then uTe have
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(ii) If? = (po, pl, ~ - ~ , is a positive probability vector other than
r, then the gauge functions can be partitioned as follows:

Remark 1.2. -

and is the classical Besicovitch-Eggleston set.

2) Our argument can be passed through to the higher dimensional
analogue, hence, by taking g (t) - ta in (1) of Theorem 1.1, we give an
affirmative answer to the conjecture of Moran and Rey in [5] that 
has infinite Hausdorff measure in the dimension.

2. Preliminaries.

2.1. Gauge functions.

We call g: [0, +oo) -&#x3E; [0, a gauge function if it is non-

decreasing, right-continuous such that

where ( &#x3E; 1 is a constant.

and 9 a gauge function. For any r &#x3E; 0, define

and

H9 (A) is called the g-Hausdorff measure of A. If g(t) = t’, then H9 (A)
is the classical s-dimensional Hausdorff measure of the set A.
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By the same way, we can define g-packing measure of A,
for more details, see [3].

Let A c ~0,1~, if there exists a gauge function g such that 0 
H9 (A)  oo (resp. 0   oo), then we say that g is the Hausdorff
gauge (resp. packing gauge) of the set A, otherwise, we say that A has
no Hausdorff (resp. packing) gauge.

2.2. Perturbation of the Bernoulli measures.

We denote by M(Q) the collection of Borel probability measures on Q,
for each positive probability vector p = &#x3E; 0, LPj ==
1, 0  j  m - 1), there is an associated Bernoulli measure pp E M(Q)
which satisfies for each x E Q:

This measure plays an important role in the study of classical Besicovich-
Eggleston set, but we need a kind of more subtle measures in the present
paper that will be obtained by following mainly the methods of [4] and [6].

A sequence 6 = is called a perturbation factor provided

Take another Bernoulli measure pq, called perturbation source,
defined by a probability vector 4* = (qo, ql , ~ ~ ~ , qm-1 ) . We now define a
sequence of positive probability vectors as follows:

which introduces a measure I-Lp E M(Q) such that

The measure ~cps’q~ is called the perturbation measure of pp
with perturbation factor 8 and perturbation source 
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The following two propositions (the first is classical, see [7]) will be
used in the proof of Theorem 1.1.

PROPOSITION 2.1. - Let X1, X2, - - ., Xn, - - - be a sequence of inde-
pendent random variables with finite second moments. If there are positive
numbers an such that an T oo and

then

where V and IE stand for rnatllematical expectation and variance respec-
tively.

PROPOSITION 2.2. - Given a perturbation factor 6 = f 6n I’, and
a perturbation source iT- (qo, ql, ... , 7~ 15’- (po, pl , ~ ~ ~ , pm-1 ), then

where

Proof. With respect to the probability measure
can be regarded as a sequence of independent random variables.

(i) Let Xk = simple calculation yields

and
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Since by Proposition 2.1 we get

From I , therefore by expanding the function
z log z at zo = pj, the Taylor’s formula gives

thus

where On the other hand, by (5) and (6), we
we get thus

By i n for n large enough, then by

(9), we conclude that for

which yields the conclusion of (i).
on the other hand,

notice that

we have therefore

, we have

by Proposition 2.1,
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3. Proof of the main theorem.

The following variant of the density theorem is essentially due to
Taylor, see p. 684 of [8],

PROPOSITION 3.1. - Let A be a subset of the self-similar set E, /.I

a probability measure supported by E with p(A) &#x3E; 0. Let g be a gauge
function and a &#x3E; 0 a constant then

where CI and C2 are positive constants.

PROPOSITION 3.2. - Except for the compatible case that pj =
~(0 ~ ~ ~ ~ ~ 1)? there must exist 0 ~ 1 ~ m - 1, such that pi  r’ ,

Proof. By the concavity of the function "log", we have

where the equality holds if and only if pj - m - 1).
Thus a = s if pi = rs, and a  s otherwise.
So in the non-compatible cases, we have

which gives the desired result. 0

Let A denote the image measure of p)4 under the coding mapping 7r.p

LEMMA 3.3. - Suppose that there is a sequence {tn , c

with - a. Then there exists a Borel set

El C E with A(Ei ) &#x3E; 0, a sequence of non-negative numbers 
and a perturbation factor b = such that



1068

where k (x, n) is determined by the inequality

Proof. - For any x E E, set

By (10), we have

and

from this inequality and noting that we have

which implies

hence for any x E E, by the definition of En (x), we have lim n--+CXJ En (x) = 0.
Thus Egorov’s theorem asserts that there exists a Borel set El C E with

&#x3E; 0 such that converges to 0 uniformly on E1. Now set

then limn-c)o ’En = 0.

Finally, put

then
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which is the conclusion (1) of the lemma. The conclusion (2) follows from
directly the definition of En(x) and En. 0

Now we are going to prove the main theorem.

(i) In the compatible case, take p(A) = for any Borel set A,’H (&#x3E;
then by the scaling property and translation invariance of (see [3])

thus 1 by the strong law of large number with respect to the
random variables (see [7]), hence The same

argument yields 

(ii) Now consider the non-compatible case, in this case, take a

perturbation measure p)4 E M(Q), where p - the

perturbation factor 6 = is taken as in Lemma 3.3 and the

perturbation source q = (~0~1~ " ’? will be determined later.

First, by (i) of Proposition 2.2, for A - a.e. x E E:

Next, we sketch the estimate of log by an analogous discussion
as in Proposition 2.2.

Since 
-

we get

On the other hand, by the boundedness ] and the fact
we get by Proposition 2.1

From (6), we have for
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Now we prove the conclusions (1) and (2) of the theorem.

It is ready to see that the assertions (1) and (2) are equivalent to the
following three implications:

and

1) Suppose first that limt-to log  a, then there exist E &#x3E; 0 and) PP log t

to &#x3E; 0 such that for t  to, we have log g (t) / log t  a - E, so g(t) &#x3E; to, - ".

Therefore from the definitions of g-Hausdorff measure, Hausdorff measure
and Hausdorff dimension that,

we thus obtain the first implication.

2) Suppose that lim, &#x3E; a, then there exist c &#x3E; 0 and a

sequence ~tn~ decreasing to zero as n - oo such that &#x3E;

and fix E’ &#x3E; 0. Then for any x E there exists N(x) such that for any

For n &#x3E; 1, set

Then from (13) and the definition of In(x), we have for x E A(n),
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From the definition of A(n), for any n &#x3E; 1,

where the sum runs over the set

then and

we get thus by Stirling formula,

where max is taken over the set

and c is a positive constant independent of n.

Now for any n &#x3E; 1, take Nn such that

Notice that by the definition of E(p ) and above discussions, we have

Now by the condition and (15), we have

the last term is zero if E’ is small enough, where ci is an independent
constant. We get thus = 0 and we prove the second implication.
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3) Now we prove the third implication.

Suppose limt~o log g(t)/ log t = a. Take tn = n7=1 rXJ(n? 1), then
tn - 0 as n - oo and a, in this case, k(x, n) =
n, where n) is defined as in (10). It is easy to check that if we replace
the condition lim-&#x3E;oo log 109 tn - a by limn-&#x3E;oo log log tn # a, 7
the conclusion of Lemma 3.3 still hold. Thus from this variant of Lemma

3.3, there is a Borel set El C E with A(Ei) &#x3E; 0 such that for any x E El
we have

where the is defined as in Lemma 3.3. Thus by (12) and
the definition of r~, have for A-a.e. x E El:

where

Combine with (11) and Lemma 3.3 (i), we can claim that there exists
a Borel set E2 c E &#x3E; 0 such that for any x E E2 :

By Proposition 3.2, there is an integer 0  1 ~ m-1 such that p,  rz,
we specify the perturbation resource if == (9o?9i?’’’ ? by letting

Thus by the definitions of A, A* and a, we have

which, together with (17), yields that for each x E E2,

as n tends to infinity. This asserts for each x E E2, we have
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therefore by Proposition 3.1, we get H9(E2) = +oo, so 

+oo. We thus prove the third implication, so complete the proof of the
conclusions (1) and (2).

By the same discussion, to prove the assertions (3) and (4), we need
only to prove the implications

a) The second implication can be proved by the same way as the proof
of the case the Hausdorff gauge.

b) Suppose that then there is a sequence

decreasing to zero as n ~ oo such that By us-
ing Lemma 3.3 and the same discussions as above, we can prove that

holds on a subset of

with positive A-measure, hence the third implication follows from
Proposition 3.1.

c) Suppose now then

Therefore from the proof of b), we have On the other

hand, since a /,~3 &#x3E; 1, we have
We prove thus the first implication.

Remark 3.4. - In the cases 0 for some j, the conclusions of
the main theorem remain valid. To see this, we only need to modify the

perturbation measure by letting

where
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