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DIFFERENTIAL GALOIS REALIZATION

OF DOUBLE COVERS

by T. CRESPO &#x26; Z. HAJTO

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1017-1025

In this paper we present an effective construction of homogeneous
linear differential equations of order 2 with Galois group a double cover 2G
of a group G equal to one of the alternating groups A4, A5 or the symmetric
group 64 over a differential field k of characteristic 0 with algebraically
closed field of constants C. It is known that, if is an algebraic extension
of the differential field k, then the derivation of k can be extended to K in
a unique way and every k-automorphism of K is a differential one. Thus a
realization of a finite group G as an algebraic Galois group over k is also
a realization of G as a differential Galois group. If such a group G has

a faithful irreducible representation of dimension n over C, then G is the
Galois group of a homogeneous linear differential equation of order n over k
(cf. [1], [11]). The difficulty appears when one wants to find explicitly such
an equation. In [2] we gave a method of construction of a homogeneous
linear differential equation with Galois group 2G over k, starting from a
polynomial with Galois group G over k, which reduces the obtention of such
a differential equation to the resolution of a system of linear (algebraic)
equations. In the present paper we obtain a different method which is more
effective and based on the symmetric square of a differential equation. Given
a polynomial P(X) E with Galois group G and splitting field K, we
give an equivalent condition in terms of a quadratic form over 1~ for the
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existence of a homogeneous linear differential equation with Galois group
2G such that its Picard-Vessiot extension K is a solution to the Galois

embedding problem associated to the field extension and the double

cover 2G of G. When this condition is fulfiled, we determine explicitly all
such differential equations. Our result has been anounced in [3].

In the sequel, k will always denote a differential field of characteristic
0 with algebraically closed field of constants C. For the basic definitions
and results of differential Galois theory we refer the reader to [4], [5] and
[10].

DEFINITION 1. - Let L(y) = 0 be a homogeneous linear differential
equation of order n over the differential field k. Let fyl,...,y.1 be a
fundamental set of solutions of L(y) = 0. We call symmetric power of
order m of L(y) = 0 the differential equation L~’~’2~ (y) - 0 whose solution
space is spanned ... yn /i 1 + ... in = space lS spanne 1 ***Yn ’ll + ... ’In == m .

PROPOSITION 1. - Let k be a differential field of characteristic 0

with algebraically closed field of constants C and

an irreducible differential equation over k with Galois group a double

cover 2G of a group G not having normal subgroups of order 2. Then
the symmetric square ~

of L(Y) = 0 has Galois group G over k.

Proof. Let K be a Picard-Vessiot extension of L and K a Picard-
Vessiot extension of L (2) contained in K. Let (Yl, Y2) be a basis of the
solution vector space of the equation L(Y) = 0 in K. Then K = K(yi)
and [~C(~i) : K] = 2. Therefore the Galois group of the extension is a

quotient of 2G by a normal subgroup of order 2, which must be equal to G
as G does not contain normal subgroups of order 2. The explicit expression
of the coefficients of L~2&#x3E; in terms of the coefficients of L is obtained by
computing formally the derivatives of the product uv of two solutions u, v
of L(Y) = 0 (cf. [11], 3.2.2).

We shall use the following lemma on representations.

LEMMA 1. - Let V be a k-vector space of dimension n and p : G -

GL(V) an irreducible representation. Let us assume that there exists some
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s E G such that p(s) has n different eigenvalues. We consider

where and we fix monomorphisms fj : V - such

that 7rj o fj : V - V, where 7rj is the projection on the j-component, is an
isomorphism of G-modules, m.

Then every invariant subspace of ym isomorphic to V as a G-

module is of the form  (Ej &#x3E;, for some (a,, am) E
km B {(O,... 0} and (vl, ... , vn) a k-basis of V.

Proof. Let (vi, ... , vn) be a k- basis of V in which p(s) diagonalizes
and let p(s)(vi) - Then is a basis of Vm. Let

v = E.. aij fj (vi). Then, if v is an eigenvector of p"2 (s) with eigenvalue A~,
we have and so

Let wl = ~~ l ~ n. We want to see that, if (wl, ... , wn)
is an invariant subspace for pm and vi - wl defines an isomorphism of G-
modules, then the coefficients are independent from l. For n = 1, there
is nothing to prove. If n &#x3E; 1, then  v, &#x3E; is not invariant and so, there exist

some t E G and some p &#x3E; 1 such that bii vi with 0. We

have bilwi and,
on the other hand, = 

and so bP1 ap  = apj = aijvj. By proceeding inductively, we
prove that the coefficients aij do not depend on l.

Let now P(X) be a polynomial over k with Galois group G = A4, S4
or A5 and let K be its splitting field. We consider the Galois embedding
problem 2G - G ri We recall that a solution to this embedding
problem is a quadratic extension of K such that the extension is

Galois and the epimorphism Gal(Klk), given by restriction,
agrees with 2G - G. Therefore, if the embedding problem considered is
solvable and K is a solution to it, then is a differential field extension

with differential Galois group 2G and so, is the Picard-Vessiot extension

of an irreducible differential equation L(Y) = Y" + AY’ + BY = 0 with
Galois group 2G. The symmetric square L (2) (Y) = 0 of L(Y) = 0 will be a
differential equation with Picard-Vessiot extension and Galois group
G. Moreover the symmetric square of the representation ;5: 2G - GL(2, C)
associated to L(Y) = 0 factors through the representation G - GL(3, C)
associated to L (2) (Y) = 0.
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Let 2A4, 2A5 be the non trivial double covers of A4 and A5, respec-
tively, let 2-S4 be the double cover of 64 in which transpositions lift to
elements of order 4, 2+S4 the second double cover of 64 containing 2A4. In
the sequel G will denote one of the groups A4, S4, A5 and 2G one of the
double covers defined above. Let us remark that each of the four groups
2G has a faithful irreducible representation p of dimension 2. In the sequel,
p will stand for the irreducible representation of dimension 3 of G which is
the symmetric square of p. For G = A4, p is the only irreducible representa-
tion of dimension 3 of A4; for G S4 and 2G = 2+,S’4, p is the irreducible
representation of dimension 3 of 64 contained in the permutation repre-
sentation of S4; for G = 64 and 2G = 2-S4, p is the tensor product of
the representation above by the signature; for G = A5, p is any of the two
irreducible representations of dimension 3 of A5 (which are conjugated by
f - -f) .

Given a polynomial P(X) over k with Galois group G and a double
cover 2G of the group G, our aim is to give a homogeneous linear differential

equation of order 2 with Galois group 2G and such that its Picard-Vessiot
extension K is a solution to the embedding problem considered. To this end,
we shall determine the complete family of homogeneous linear differential
equations with Galois group G, Picard-Vessiot extension K and associated

representation p and among these we shall characterize the ones which are

symmetric square.

We state now our main result.

THEOREM 1. - Let k be a differential field of characteristic 0, with

algebraically closed field of constants C. Let P(X ) E with Galois group
G = A4, 64 or A5, K its splitting field. Let 2G be a double cover of G equal
to 2A4, 2+S4, 2-64 or 2A5.

There exist three k-vector subspaces VI, V2, V3 of dimension 3 of K
such that the action of G on each of them corresponds to the representation
p and such that VI + V2 + V3 is a direct sum. Moreover there exists a

quadratic form Q in three variables over k such that the Galois embedding
problem 2G --~ G ^-~ is solvable if and only if Q represents
0 over k. Let us choose a basis 1 ~ jy ~ 3, in each Vi in such

a way that Fij H Fkj defines an isomorphism of G-modules from Y
onto Vk. Then, for ( f , g, h) ~ ~ B {(0,0,0)} such that Q ( f , g, h) - 0,

+ gF 2j + ~~3j}? 1 ~ ~ ~ 3, is a basis of the solution space of a

differential equation
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over k having K as Picard-Vessiot extension and such that the differential
equation

has Galois group 2G over k. The coefficients A, B, C can be computed
explicitly.

Proof. Let us consider the representation of G on the k-vector
space K given by the Galois action. By the normal basis theorem, this
representation is the regular one and so contains p three times. Moreover,
we can determine explicitly three k-subspaces Vl, V2, V3 of dimension 3 of
K such that their sum VI + V2 + V3 is direct and such that the Galois

action on Vi, i = 1, 2, 3, corresponds to p. We consider the case G = A4 or
S’4 and let Xl, X2, X3, X4 be the roots of the polynomial P in K. When
2G - 2A4 or 2+,S’4, p is contained in the permutation representation
of G on a dimension 4 vector space  VI, V2, V3, V4 &#x3E; and we can take

3v1 - V2 - v3 - v4, W2 = 3v2 - vl - v3 - v4, W3 = 3v3 - v2 - v4

as a basis of the invariant subspace W of dimension 3. The restrictions
to W of the A;-morphisms  VI, V2, V3, V4 &#x3E; ~ K given by vj - x~ ,
t - 1, 2, 3, are monomorphisms and their images are three k-subspaces
Vl, V2, V3 with the wanted conditions. When 2G = 2 - S4, p is contained in
the representation of 5’4 on a dimension 4 vector space  vl, v2, v3, v4 &#x3E;

given by the tensor product of the permutation representation and the
dimension 1 representation given by the signature and we can take wl -
3v1 - v2 - v3 - v4, w2 = 3v2 - v3 - v4, w3 - 3v3 - vl - v2 - v4 as a
basis of the invariant subspace W of dimension 3. The restrictions to W
of the k-morphisms  V2, V3, V4 &#x3E;- K given by vj - i = 1, 2, 3,
where d is the discriminant of the polynomial P, are monomorphisms and
their images are three A;-subspaces Vl, V2, V3 with the wanted conditions.

In the case G = A5, p is contained in the third symmetric power of
the permutation representation of G and we obtained explicitly in [1] an
invariant subspace corresponding to p. From this explicit determination,
we obtain VI, V2, V3 considering, as above, the action of A5 on the roots of
the polynomial P, their squares and their cubes.

We want to determine the complete family of homogeneous linear
differential equations of order 3 over 1~ whose Picard-Vessiot extension is

K and such that the corresponding representation of the group G is p.
This is equivalent to determining the whole family of invariant subspaces
V of dimension 3 of the G-module K such that the restriction of the Galois
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action to V corresponds to p. By Lemma 1, each such V is generated by
for Fij as in the statement of the theorem and

We impose now that (V, p) is the symmetric square of the faithful

representation of dimension 2 of 2G. To this end, we use the explicit
expression of p given in [7]. For (VI, V2) a basis of V, we compute the
representation p in the basis (vI, VI V2, the symmetric square 
of V and consider an isomorphism cp of G-modules from V~2~ into V. We
write down in the + gF2j + hF3j 
and observe that this expression is a homogeneous polynomial of degree
2 in f, g, h whose coefficients are invariant by the action of the group
G. We obtain then that (V, p) is the symmetric square of (V , p) if and

only if ( f , g, h) satisfies an algebraic homogeneous equation Q ( f , g, h) = 0
of degree 2 with coefficients in k. The coefficients of Q are obtained
explicitly in terms of the coefficients of the polynomial P. Namely, for

P(X) = X~ -~ s2X 2 - s3X + s4 with Galois group G = A4 or G = S4 and
2G = 2A4 or 2G = 2~~4, we obtain Q ( f , g, h) = 8s2 f 2 ~ (1654 - 4S2)g2 +
(88 - 3s3 - 24s2s4)h2 - 24s3 fg + (32s4 -16s2) f h + 28s2s3gh; for P(X) =
X 5 + 82X3 - 83X2 + s4X - 85 with Galois group G = A5 and discriminant

- - - -

For (f, g, h) C ~B{ (0,0,0)} such that Q ( f , g, h) = 0, we can compute
explicitly a differential equation of order 3 with f f Flj + gF2j + 
as a basis of the solution vector space. Taking into account the explicit
expression of the symmetric square of a differential equation of order 2

given in Proposition 1, we obtain the equation with Galois group 2G.

Remark l. - For G - 64 or A4, 2G = 2A4 or 2lS4, we have
QE = 1 &#x3E; -E-Q where QE denotes the quadratic trace form of the
extension where E - (cf [8]). We can check that,
under the hypothesis - l, 2 E 1~*2, the solvability condition for the Galois
embedding problem 2G ---+ G ~ given in the statement of the
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theorem is equivalent with the one given by Serre in [8] in terms of the
quadratic trace form QE .

Remark 2. - If the transcendence degree of 1~ over C is equal to

one, in particular for k = C(T), every quadratic form Q in three variables
represents 0 over 1~ (cf. [9] II 3.3).

Examples. - From the explicit expression of the quadratic form Q,
we see that if P(X) = X 4 - s3X + s4 is a polynomial with Galois group
A4 or S4, or P(X) == X~ + s4X - s5 is a polynomial with Galois group
A5, then the corresponding quadratic form Q satisfies Q(l,0,0) == 0 and
so the differential equation with solution vector space VI is a quadratic
square. From the polynomials generating a regular extension of Q(T) with
Galois groups A4, 64 and A5 given in [6], we obtain the following differential
equations:

1. The polynomial X4 - 1+3T2 (4X - 3) has Galois group A4 over
Q(T). From it we obtain the equation

with Galois group A4, which is the symmetric square of the equation

with Galois group 2A4.

2. The polynomial X~ - T(4X - 3) has Galois group S4 over Q(T).
From it we obtain the equation

with Galois group S4, which is the symmetric square of the equation

with Galois group 2+ 54.

From the same polynomial, we obtain the equation
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with Galois group 64, which is the symmetric square of the equation

with Galois group 2-,S’4.

3. The polynomial X5 - ~_5T2 (5X - 4) has Galois group A5 over
Q(T). From it we obtain the equation

with Galois group A5, given in [1], which is the symmetric square of the
equation

with Galois group 2A5.

Different explicit examples obtained from polynomials with Galois
group 64 and A5 whose corresponding quadratic form Q does not satisfy
Q ( 1, 0, 0) = 0 are given in [3].

BIBLIOGRAPHY

[1] T. CRESPO, Z. HAJTO, Finite linear groups as differential Galois groups, Bull. Pol.
Ac. Math., 49, n° 4 (2001), 363-375.

[2] T. CRESPO, Z. HAJTO, Primitive unimodular groups of degree 2 as differential
Galois groups, J. of Algebra, 229 (2000), 678-694.

[3] T. CRESPO, Z. HAJTO, Recouvrements doubles comme groupes de Galois différen-
tiels, C.R. Acad. Sci. Paris, Série I, 333 (2001), 271-274.

[4] I. KAPLANSKY, An introduction to differential algebra, Hermann, 1976.

[5] A.R. MAGID, Lectures on differential Galois theory, A.M.S., 1997.

[6] G. MALLE, B.H. MATZAT, Inverse Galois Theory, Springer-Verlag, Berlin, 1999.

[7] G.A. MILLER, H.F. BLICHFELDT, L.E. DICKSON, Theory and applications of finite
groups, John Wiley and sons, Inc., 1916.

[8] J-P. SERRE, L’invariant de Witt de la forme Tr(x2), Comment. Math. Helvetici,
59 (1984), 651-676.

[9] J-P. SERRE, Cohomologie galoisienne, cinquième édition, Springer Verlag, 1994.

[10] M.F. SINGER, An outline of differential Galois theory, in Computer Algebra and
Differential Equations, E. Tournier ed., Academic Press, 1989, 3-57.



1025

[11] M.F. SINGER, F. ULMER, Galois groups of second and third order linear differential
equations, Journal of Symbolic Computation, 16 (1993), 9-36.

Manuscrit recu le 19 juillet 2001,
accepté le 4 f6vrier 2002.

Teresa CRESPO and Zbigniew HAJTO*,
Universitat de Barcelona

Departament d’hlgebra i Geometria
Gran Via de les Corts Catalanes 585
08007 Barcelona (Spain).
crespo@cerber. mat. ub. es
rmhaj to@cyf- kr. ed u. pI
* Permanent address:
Zaklad Matematyki
Akademia Rolnicza
al. Mickiewicza 24/28
30-056 Krak6w (Poland).


