

ANNALES

DE

L'INSTITUT FOURIER

Teresa CRESPO & Zbigniew HAJTO

Differential Galois realization of double covers

Tome 52, nº 4 (2002), p. 1017-1025.

http://aif.cedram.org/item?id=AIF_2002__52_4_1017_0

© Association des Annales de l'institut Fourier, 2002, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

http://www.cedram.org/

DIFFERENTIAL GALOIS REALIZATION OF DOUBLE COVERS

by T. CRESPO & Z. HAJTO

In this paper we present an effective construction of homogeneous linear differential equations of order 2 with Galois group a double cover 2Gof a group G equal to one of the alternating groups A_4 , A_5 or the symmetric group S_4 over a differential field k of characteristic 0 with algebraically closed field of constants C. It is known that, if K|k is an algebraic extension of the differential field k, then the derivation of k can be extended to K in a unique way and every k-automorphism of K is a differential one. Thus a realization of a finite group G as an algebraic Galois group over k is also a realization of G as a differential Galois group. If such a group G has a faithful irreducible representation of dimension n over \mathcal{C} , then G is the Galois group of a homogeneous linear differential equation of order n over k(cf. [1], [11]). The difficulty appears when one wants to find explicitly such an equation. In [2] we gave a method of construction of a homogeneous linear differential equation with Galois group 2G over k, starting from a polynomial with Galois group G over k, which reduces the obtention of such a differential equation to the resolution of a system of linear (algebraic) equations. In the present paper we obtain a different method which is more effective and based on the symmetric square of a differential equation. Given a polynomial $P(X) \in k[X]$ with Galois group G and splitting field K, we give an equivalent condition in terms of a quadratic form over k for the

Math. classification: 12H05 - 11F80 - 12F12.

T. Crespo is partially supported by the grant BFM2000-074-C02-01 of the Spanish Ministry of Education. Z. Hajto is partially supported by the grant SAB2000-0063 of the Spanish Ministry of Education.

Keywords: Picard-Vessiot extension – Symmetric square of a differential equation – Group representations.

existence of a homogeneous linear differential equation with Galois group 2G such that its Picard-Vessiot extension \widetilde{K} is a solution to the Galois embedding problem associated to the field extension K|k and the double cover 2G of G. When this condition is fulfilled, we determine explicitly all such differential equations. Our result has been anounced in [3].

In the sequel, k will always denote a differential field of characteristic 0 with algebraically closed field of constants \mathcal{C} . For the basic definitions and results of differential Galois theory we refer the reader to [4], [5] and [10].

DEFINITION 1. — Let L(y) = 0 be a homogeneous linear differential equation of order n over the differential field k. Let $\{y_1, \ldots, y_n\}$ be a fundamental set of solutions of L(y) = 0. We call symmetric power of order m of L(y) = 0 the differential equation $L^{(m)}(y) = 0$ whose solution space is spanned by $\{y_1^{i_1} \ldots y_n^{i_n}/i_1 + \ldots i_n = m\}$.

Proposition 1. — Let k be a differential field of characteristic 0 with algebraically closed field of constants $\mathcal C$ and

(1)
$$L(Y) = Y'' + AY' + BY = 0$$

an irreducible differential equation over k with Galois group a double cover 2G of a group G not having normal subgroups of order 2. Then the symmetric square

(2)
$$L^{(2)}(Y) = Y''' + 3AY'' + (2A^2 + A' + 4B)Y' + (4AB + 2B')Y = 0$$
 of $L(Y) = 0$ has Galois group G over k .

Proof. — Let \widetilde{K} be a Picard-Vessiot extension of L and K a Picard-Vessiot extension of $L^{(2)}$ contained in \widetilde{K} . Let (y_1,y_2) be a basis of the solution vector space of the equation L(Y)=0 in \widetilde{K} . Then $\widetilde{K}=K(y_1)$ and $[K(y_1):K]=2$. Therefore the Galois group of the extension K|k is a quotient of 2G by a normal subgroup of order 2, which must be equal to G as G does not contain normal subgroups of order 2. The explicit expression of the coefficients of $L^{(2)}$ in terms of the coefficients of L is obtained by computing formally the derivatives of the product uv of two solutions u, v of L(Y)=0 (cf. [11], 3.2.2).

We shall use the following lemma on representations.

LEMMA 1. — Let V be a k-vector space of dimension n and $\rho: G \to GL(V)$ an irreducible representation. Let us assume that there exists some

 $s \in G$ such that $\rho(s)$ has n different eigenvalues. We consider

$$\rho^m = \overbrace{\rho \oplus \ldots \oplus \rho}^m : G \to \mathrm{GL}(V^m)$$

where $V^m = V \oplus ... \oplus V$, and we fix monomorphisms $f_j : V \to V^m$ such that $\pi_j \circ f_j : V \to V$, where π_j is the projection on the j-component, is an isomorphism of G-modules, $1 \leq j \leq m$.

Then every invariant subspace of V^m isomorphic to V as a G-module is of the form $<(\sum_j a_j f_j(v_i))_{1\leqslant i\leqslant n}>$, for some $(a_1,\ldots,a_m)\in k^m\setminus\{(0,\ldots,0\}\text{ and }(v_1,\ldots,v_n)\text{ a k-basis of V.}$

Proof. — Let (v_1, \ldots, v_n) be a k-basis of V in which $\rho(s)$ diagonalizes and let $\rho(s)(v_i) = \lambda_i v_i$. Then $(f_j(v_i))_{1 \leq i \leq n, 1 \leq j \leq m}$ is a basis of V^m . Let $v = \sum_{i,j} a_{ij} f_j(v_i)$. Then, if v is an eigenvector of $\rho^m(s)$ with eigenvalue λ_l , we have $\lambda_l v = \rho^m(s)(v) = \sum_{i,j} a_{ij} f_j(\rho(s)(v_i)) = \sum_{i,j} a_{ij} \lambda_i f_j(v_i)$ and so $a_{ij} = 0$ for $i \neq l$.

Let $w_l = \sum_j a_{lj} f_j(v_l), 1 \leqslant l \leqslant n$. We want to see that, if $\langle w_1, \ldots, w_n \rangle$ is an invariant subspace for ρ^m and $v_l \mapsto w_l$ defines an isomorphism of G-modules, then the coefficients a_{lj} are independent from l. For n=1, there is nothing to prove. If n>1, then $< v_1 >$ is not invariant and so, there exist some $t \in G$ and some p>1 such that $\rho(t)(v_1) = \sum_l b_{l1} v_l$ with $b_{p1} \neq 0$. We have $\rho(t)(w_1) = \sum_l b_{l1} w_l = \sum_l b_{l1} (\sum_j a_{lj} f_j(v_l)) = \sum_{l,j} b_{l1} a_{lj} f_j(v_l)$ and, on the other hand, $\rho(t)(w_1) = \rho(t)(\sum_j a_{lj} f_j(v_l)) = \sum_j a_{lj} \sum_l b_{l1} f_j(v_l)$ and so $b_{p1} a_{pj} = b_{p1} a_{1j} \forall j \Rightarrow a_{pj} = a_{1j} \forall j$. By proceeding inductively, we prove that the coefficients a_{lj} do not depend on l.

Let now P(X) be a polynomial over k with Galois group $G = A_4$, S_4 or A_5 and let K be its splitting field. We consider the Galois embedding problem $2G \to G \simeq \operatorname{Gal}(K|k)$. We recall that a solution to this embedding problem is a quadratic extension \widetilde{K} of K such that the extension $\widetilde{K}|k$ is Galois and the epimorphism $\operatorname{Gal}(\widetilde{K}|k) \to \operatorname{Gal}(K|k)$, given by restriction, agrees with $2G \to G$. Therefore, if the embedding problem considered is solvable and \widetilde{K} is a solution to it, then $\widetilde{K}|k$ is a differential field extension with differential Galois group 2G and so, is the Picard-Vessiot extension of an irreducible differential equation L(Y) = Y'' + AY' + BY = 0 with Galois group 2G. The symmetric square $L^{(2)}(Y) = 0$ of L(Y) = 0 will be a differential equation with Picard-Vessiot extension K|k and Galois group G. Moreover the symmetric square of the representation $\widetilde{\rho}: 2G \to \operatorname{GL}(2,\mathcal{C})$ associated to L(Y) = 0 factors through the representation $G \to \operatorname{GL}(3,\mathcal{C})$ associated to $L^{(2)}(Y) = 0$.

Let $2A_4$, $2A_5$ be the non trivial double covers of A_4 and A_5 , respectively, let 2^-S_4 be the double cover of S_4 in which transpositions lift to elements of order 4, 2^+S_4 the second double cover of S_4 containing $2A_4$. In the sequel G will denote one of the groups A_4 , S_4 , A_5 and 2G one of the double covers defined above. Let us remark that each of the four groups 2G has a faithful irreducible representation $\tilde{\rho}$ of dimension 2. In the sequel, ρ will stand for the irreducible representation of dimension 3 of G which is the symmetric square of $\tilde{\rho}$. For $G = A_4$, ρ is the only irreducible representation of dimension 3 of A_4 ; for $G = S_4$ and $2G = 2^+S_4$, ρ is the irreducible representation of S_4 ; for $G = S_4$ and $S_4 = S_4$ ontained in the permutation representation of S_4 ; for $S_4 = S_4$ and $S_4 = S_4$, $S_4 = S$

Given a polynomial P(X) over k with Galois group G and a double cover 2G of the group G, our aim is to give a homogeneous linear differential equation of order 2 with Galois group 2G and such that its Picard-Vessiot extension \widetilde{K} is a solution to the embedding problem considered. To this end, we shall determine the complete family of homogeneous linear differential equations with Galois group G, Picard-Vessiot extension K and associated representation ρ and among these we shall characterize the ones which are symmetric square.

We state now our main result.

THEOREM 1. — Let k be a differential field of characteristic 0, with algebraically closed field of constants C. Let $P(X) \in k[X]$ with Galois group $G = A_4, S_4$ or A_5 , K its splitting field. Let 2G be a double cover of G equal to $2A_4, 2^+S_4, 2^-S_4$ or $2A_5$.

There exist three k-vector subspaces V_1, V_2, V_3 of dimension 3 of K such that the action of G on each of them corresponds to the representation ρ and such that $V_1 + V_2 + V_3$ is a direct sum. Moreover there exists a quadratic form Q in three variables over k such that the Galois embedding problem $2G \to G \simeq \operatorname{Gal}(K|k)$ is solvable if and only if Q represents 0 over k. Let us choose a basis F_{ij} , $1 \leqslant j \leqslant 3$, in each V_i in such a way that $F_{ij} \mapsto F_{kj}$ defines an isomorphism of G-modules from V_i onto V_k . Then, for $(f,g,h) \in k^3 \setminus \{(0,0,0)\}$ such that Q(f,g,h) = 0, $\{fF_{1j} + gF_{2j} + hF_{3j}\}, 1 \leqslant j \leqslant 3$, is a basis of the solution space of a differential equation

(3)
$$Y''' + AY'' + BY' + CY = 0$$

over k having K as Picard-Vessiot extension and such that the differential equation

(4)
$$Y'' + \frac{A}{3}Y' + \frac{1}{4}\left(B - 2\frac{A^2}{9} - \frac{A'}{3}\right)Y = 0$$

has Galois group 2G over k. The coefficients A, B, C can be computed explicitly.

Proof. — Let us consider the representation of G on the k-vector space K given by the Galois action. By the normal basis theorem, this representation is the regular one and so contains ρ three times. Moreover, we can determine explicitly three k-subspaces V_1, V_2, V_3 of dimension 3 of K such that their sum $V_1 + V_2 + V_3$ is direct and such that the Galois action on V_i , i = 1, 2, 3, corresponds to ρ . We consider the case $G = A_4$ or S_4 and let x_1, x_2, x_3, x_4 be the roots of the polynomial P in K. When $2G = 2A_4$ or 2^+S_4 , ρ is contained in the permutation representation of G on a dimension 4 vector space $\langle v_1, v_2, v_3, v_4 \rangle$ and we can take $w_1 = 3v_1 - v_2 - v_3 - v_4, w_2 = 3v_2 - v_1 - v_3 - v_4, w_3 = 3v_3 - v_1 - v_2 - v_4$ as a basis of the invariant subspace W of dimension 3. The restrictions to W of the k-morphisms $\langle v_1, v_2, v_3, v_4 \rangle \rightarrow K$ given by $v_i \mapsto x_i^i$ i = 1, 2, 3, are monomorphisms and their images are three k-subspaces V_1, V_2, V_3 with the wanted conditions. When $2G = 2^-S_4$, ρ is contained in the representation of S_4 on a dimension 4 vector space $\langle v_1, v_2, v_3, v_4 \rangle$ given by the tensor product of the permutation representation and the dimension 1 representation given by the signature and we can take w_1 $3v_1 - v_2 - v_3 - v_4, w_2 = 3v_2 - v_1 - v_3 - v_4, w_3 = 3v_3 - v_1 - v_2 - v_4$ as a basis of the invariant subspace W of dimension 3. The restrictions to Wof the k-morphisms $\langle v_1, v_2, v_3, v_4 \rangle \rightarrow K$ given by $v_i \mapsto \sqrt{dx_i^i}$, i = 1, 2, 3, 3where d is the discriminant of the polynomial P, are monomorphisms and their images are three k-subspaces V_1, V_2, V_3 with the wanted conditions.

In the case $G=A_5$, ρ is contained in the third symmetric power of the permutation representation of G and we obtained explicitly in [1] an invariant subspace corresponding to ρ . From this explicit determination, we obtain V_1, V_2, V_3 considering, as above, the action of A_5 on the roots of the polynomial P, their squares and their cubes.

We want to determine the complete family of homogeneous linear differential equations of order 3 over k whose Picard-Vessiot extension is K and such that the corresponding representation of the group G is ρ . This is equivalent to determining the whole family of invariant subspaces V of dimension 3 of the G-module K such that the restriction of the Galois

action to V corresponds to ρ . By Lemma 1, each such V is generated by $\{fF_{1j} + gF_{2j} + hF_{3j}\}_{1 \leq j \leq 3}$ for F_{ij} as in the statement of the theorem and $(f,g,h) \in k^3 \setminus \{(0,0,0)\}.$

We impose now that (V, ρ) is the symmetric square of the faithful representation $(\widetilde{V}, \widetilde{\rho})$ of dimension 2 of 2G. To this end, we use the explicit expression of $\tilde{\rho}$ given in [7]. For (v_1, v_2) a basis of \tilde{V} , we compute the representation ρ in the basis $(v_1^2, v_1 v_2, v_2^2)$ of the symmetric square $\widetilde{V}^{(2)}$ of \widetilde{V} and consider an isomorphism φ of G-modules from $\widetilde{V}^{(2)}$ into V. We write down $\varphi(v_1^2)\varphi(v_2^2) - \varphi(v_1v_2)^2$ in the basis $\{fF_{1i} + gF_{2i} + hF_{3i}\}_{1 \le i \le 3}$ and observe that this expression is a homogeneous polynomial of degree 2 in f, g, h whose coefficients are invariant by the action of the group G. We obtain then that (V, ρ) is the symmetric square of $(\widetilde{V}, \widetilde{\rho})$ if and only if (f, g, h) satisfies an algebraic homogeneous equation Q(f, g, h) = 0of degree 2 with coefficients in k. The coefficients of Q are obtained explicitly in terms of the coefficients of the polynomial P. Namely, for $P(X) = X^4 + s_2 X^2 - s_3 X + s_4$ with Galois group $G = A_4$ or $G = S_4$ and $2G = 2A_4$ or $2G = 2^{\pm}S_4$, we obtain $Q(f, g, h) = 8s_2f^2 + (16s_4 - 4s_2^2)g^2 +$ $(8s_2^3 - 3s_3^2 - 24s_2s_4)h^2 - 24s_3fg + (32s_4 - 16s_2^2)fh + 28s_2s_3gh$; for P(X) = $X^5 + s_2 X^3 - s_3 X^2 + s_4 X - s_5$ with Galois group $G = A_5$ and discriminant $d=D^2$ and $G=2A_5$, we obtain $Q(f,g,h)=(24s_2^3+90s_3^2-80s_2s_4)f^2+$ $(24s_2^3s_3^2 + 90s_3^4 - 56s_2s_3^2s_4 - 8s_2^2s_4^2 + 32s_4^3 - 96s_2^2s_3s_5 + 320s_3s_4s_5)g^2 + (24s_2^9 + 32s_4^2 + 32$ $162s_2^6s_3^2 + 96s_2^3s_3^4 - 216s_2^7s_4 - 288s_2^4s_3^2s_4 - 72s_2s_3^4s_4 + 648s_2^5s_4^2 + 216s_2^2s_3^2s_4^2 - 72s_2s_3^4s_4 + 648s_2^5s_4^2 + 216s_2^2s_3^2s_4^2 - 72s_2s_3^2s_4 + 648s_2^5s_4^2 + 216s_2^2s_3^2s_4^2 - 72s_2s_3^2s_4 + 648s_2^2s_3^2s_4^2 - 72s_2s_3^2s_4 + 648s_2^2s_3^2s_4^2 - 72s_2s_3^2s_4^2 - 72s_2s_3^2s_4^2 + 72s_2s_3^2s_4^2 - 72s_2s_3^2s_4^2 + 72s_2s_3^2s_4^2 - 72s_2s_3^2s_3^2 - 72s_2^2s_3^2 - 7$ $728s_2^3s_4^3 + 48s_3^2s_4^3 + 240s_2s_4^4 - 684s_2^5s_3s_5 - 216s_2^2s_3^3s_5 + 1356s_2^3s_3s_4s_5 +$ $72s_3^3s_4s_5 - 1152s_2s_3s_4^2s_5 + 570s_2^4s_5^2 + 144s_2s_3^2s_5^2 - 900s_2^2s_4s_5^2 + 810s_4^2s_5^2)h^2 - 900s_2^2s_4s_5^2 + 810s_4^2s_5^2 + 810s_5^2s_5^2 + 810s_5^2s_$ $(24s_2^3s_3 + 90s_3^3 - 68s_2s_3s_4 - 60s_2^2s_5 + 200s_4s_5)fg - (24s_2^6 + 130s_2^3s_3^2 - 160s_2^4s_4 + 130s_2^3s_3^2 - 160s_2^3s_3^2 - 160s_$ $(6s_2s_3^2s_4 + 304s_2^2s_4^2 - 160s_4^3 - 456s_2^2s_3s_5 + 30s_3s_4s_5 + 350s_2s_5^2 + 2\sqrt{5}Ds_2)fh + \\$ $\left(24 s_{2}^{6} s_{3}+130 s_{2}^{3} s_{3}^{3}-152 s_{2}^{\overline{4}} s_{3} s_{4}+24 s_{2} s_{3}^{3} s_{4}+292 s_{2}^{2} s_{3} s_{4}^{2}-184 s_{3} s_{4}^{3}-24 s_{2}^{5} s_{5}-184 s_{3} s_{4}^{3}-184 s_{3}^{2} s_{5}^{2}-184 s_{5}^{2} s_{5}^{2}-184 s_{5$ $510s_2^2s_3^2s_5 + 92s_2^3s_4s_5 + 12s_3^2s_4s_5 - 20s_2s_4^2s_5 + 630s_2s_3s_5^2 - 250s_5^3 + 2\sqrt{5}Ds_5)gh.$

For $(f,g,h) \in k^3 \setminus \{(0,0,0)\}$ such that Q(f,g,h) = 0, we can compute explicitly a differential equation of order 3 with $\{fF_{1j} + gF_{2j} + hF_{3j}\}$ as a basis of the solution vector space. Taking into account the explicit expression of the symmetric square of a differential equation of order 2 given in Proposition 1, we obtain the equation with Galois group 2G.

Remark 1. — For $G = S_4$ or A_4 , $2G = 2A_4$ or $2^{\pm}S_4$, we have $Q_E = <1 > +Q$ where Q_E denotes the quadratic trace form of the extension E|k, where E = k[X]/(P(X)) (cf [8]). We can check that, under the hypothesis $-1, 2 \in k^{*2}$, the solvability condition for the Galois embedding problem $2G \to G \simeq \text{Gal}(K|k)$ given in the statement of the

theorem is equivalent with the one given by Serre in [8] in terms of the quadratic trace form Q_E .

Remark 2. — If the transcendence degree of k over \mathcal{C} is equal to one, in particular for $k = \mathcal{C}(T)$, every quadratic form Q in three variables represents 0 over k (cf. [9] II 3.3).

Examples. — From the explicit expression of the quadratic form Q, we see that if $P(X) = X^4 - s_3X + s_4$ is a polynomial with Galois group A_4 or S_4 , or $P(X) = X^5 + s_4X - s_5$ is a polynomial with Galois group A_5 , then the corresponding quadratic form Q satisfies Q(1,0,0) = 0 and so the differential equation with solution vector space V_1 is a quadratic square. From the polynomials generating a regular extension of $\mathbb{Q}(T)$ with Galois groups A_4 , S_4 and A_5 given in [6], we obtain the following differential equations:

1. The polynomial $X^4 - \frac{1}{1+3T^2}(4X-3)$ has Galois group A_4 over $\overline{\mathbb{Q}}(T)$. From it we obtain the equation

$$Y''' + \frac{18T}{1+3T^2}Y'' + \frac{115+729T^2}{12(1+3T^2)^2}Y' + \frac{27T}{4(1+3T^2)^2}Y = 0$$

with Galois group A_4 , which is the symmetric square of the equation

$$Y'' + \frac{6T}{1+3T^2}Y' + \frac{43+81T^2}{48(1+3T^2)^2}Y = 0$$

with Galois group $2A_4$.

2. The polynomial $X^4 - T(4X - 3)$ has Galois group S_4 over $\overline{\mathbb{Q}}(T)$. From it we obtain the equation

$$Y''' + \frac{3(-1+2T)}{2(-1+T)T}Y'' + \frac{-27+128T}{144(-1+T)T^2}Y' + \frac{3}{32(-1+T)T^3}Y = 0$$

with Galois group S_4 , which is the symmetric square of the equation

$$Y'' + \frac{-1 + 2T}{2(-1 + T)T}Y' + \frac{-27 - 16T}{576(-1 + T)T^2}Y = 0$$

with Galois group 2^+S_4 .

From the same polynomial, we obtain the equation

$$Y''' - \frac{3}{T}Y'' + \frac{999 - 1883T + 992T^2}{144(-1+T)^2T^2}Y' + \frac{2268 - 6459T + 6215T^2 - 2240T^3}{288(-1+T)^3T^3}Y = 0$$

with Galois group S_4 , which is the symmetric square of the equation

$$Y'' - \frac{1}{T}Y' + \frac{567 - 1019T + 560T^2}{576(-1 + T)^2T^2}Y = 0$$

with Galois group 2^-S_4 .

3. The polynomial $X^5 - \frac{1}{1-5T^2}(5X-4)$ has Galois group A_5 over $\overline{\mathbb{Q}}(T)$. From it we obtain the equation

$$Y''' + \frac{3(25T^2 - (8/\sqrt{5})T + 19)}{4(-1+5T^2)^2}Y' + \frac{-75(25T^3 + (-12/\sqrt{5})T^2 + 43T - (4/5\sqrt{5}))}{20(-1+5T^2)^3}Y = 0$$

with Galois group A_5 , given in [1], which is the symmetric square of the equation

$$Y'' + \frac{3(25T^2 - (8/\sqrt{5})T + 19)}{16(-1 + 5T^2)^2}Y = 0$$

with Galois group $2A_5$.

Different explicit examples obtained from polynomials with Galois group S_4 and A_5 whose corresponding quadratic form Q does not satisfy Q(1,0,0) = 0 are given in [3].

BIBLIOGRAPHY

- T. CRESPO, Z. HAJTO, Finite linear groups as differential Galois groups, Bull. Pol. Ac. Math., 49, n° 4 (2001), 363–375.
- [2] T. CRESPO, Z. HAJTO, Primitive unimodular groups of degree 2 as differential Galois groups, J. of Algebra, 229 (2000), 678–694.
- [3] T. CRESPO, Z. HAJTO, Recouvrements doubles comme groupes de Galois différentiels, C.R. Acad. Sci. Paris, Série I, 333 (2001), 271–274.
- [4] I. Kaplansky, An introduction to differential algebra, Hermann, 1976.
- [5] A.R. MAGID, Lectures on differential Galois theory, A.M.S., 1997.
- [6] G. MALLE, B.H. MATZAT, Inverse Galois Theory, Springer-Verlag, Berlin, 1999.
- [7] G.A. MILLER, H.F. BLICHFELDT, L.E. DICKSON, Theory and applications of finite groups, John Wiley and sons, Inc., 1916.
- [8] J-P. SERRE, L'invariant de Witt de la forme $\text{Tr}(x^2)$, Comment. Math. Helvetici, 59 (1984), 651–676.
- [9] J-P. SERRE, Cohomologie galoisienne, cinquième édition, Springer Verlag, 1994.
- [10] M.F. SINGER, An outline of differential Galois theory, in Computer Algebra and Differential Equations, E. Tournier ed., Academic Press, 1989, 3–57.

[11] M.F. SINGER, F. ULMER, Galois groups of second and third order linear differential equations, Journal of Symbolic Computation, 16 (1993), 9–36.

Manuscrit reçu le 19 juillet 2001, accepté le 4 février 2002.

Teresa CRESPO and Zbigniew HAJTO*, Universitat de Barcelona Departament d'Àlgebra i Geometria Gran Via de les Corts Catalanes 585 08007 Barcelona (Spain). crespo@cerber.mat.ub.es rmhajto@cyf-kr.edu.pl

*Permanent address: Zakład Matematyki Akademia Rolnicza al. Mickiewicza 24/28 30-056 Kraków (Poland).