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THE RESOLVENT FOR LAPLACE-TYPE OPERATORS
ON ASYMPTOTICALLY CONIC SPACES

by A. HASSELL, A. VASY

Ann. Inst. Fourier, Grenoble
51, 5 (2001), 1299-1346

1. Introduction.

Scattering metrics are a class of Riemannian metrics yielding mani-
folds which are geometrically complete, and asymptotically conic at infin-
ity. We consider manifolds which have one end which is diffeomorphic to
Y x where Y is a closed manifold, and metrically asymptotic to
dr2 ~- r2h, where h is a Riemannian metric on Y, as r -~ oo. The precise
definition is given in Definition 2.1 below. Examples include the standard
metric and the Schwartzschild metric on Euclidean space.

In this paper we give a direct construction of the outgoing resolvent
kernel, + iO) = (H - (~ + for o- on the real axis, where H is
a perturbation of the Laplacian with respect to a scattering metric. The

incoming resolvent kernel, may be obtained by taking the formal
adjoint kernel.

The strategy of the construction is to compactify the space to a
compact manifold X and use the scattering calculus of Melrose [10], as well
as the calculus of Legendre distributions of Melrose-Zworski [12], extended
by us in [4]. The oscillatory behaviour of the resolvent kernel is analyzed in
terms of the ’scattering wavefront set’ at the boundary. Using propagation

Keywords: Legendre distributions - Symbol calculus - Scattering metrics - Resolvent
kernel.
Math. classification: 35P25 - 58J40.



1300

of singularities theorems for the scattering wavefront set leads to an ansatz
for the structure of the resolvent kernel as a sum of a pseudo differential
term and Legendre distributions of various types. The calculus of Legendre
distributions allows us to construct a rather precise parametrix for the
resolvent in this class, with a compact error term E. Using the parametrix,
we show that one can make a finite rank correction to the parametrix which
makes Id + E invertible, and thus can correct the parametrix to the exact
resolvent.

As compared to the method of [4], where the authors previously
constructed the resolvent, the construction is direct in two senses. First,
we write down rather explicitly a parametrix for + iO) and then solve
away the error using Fredholm theory. In [4], by contrast, the resolvent was
constructed via the spectral measure, which itself was constructed from
the Poisson operator. Second, we make no use of the limiting absorption
principle; that is, we work directly at the real axis in the spectral variable
rather than taking a limit R( a + iE) as E ~ 0. We then prove a posteriori
that the operator constructed is equal to this limit.

Let us briefly describe the main result here. We consider an operator
H of the form H = L1 + P acting on half densities, where P is, in the first
place, a short range perturbation, that is, a first order self-adjoint differen-
tial operator with coefficients vanishing to second order at infinity. (Later,
we show that there is a simple extension to metrics and perturbations of
’long range gravitational type’, which includes the Newtonian or Coulomb
potential and metrics of interest in general relativity.) We remark that the
Riemannian half-density trivializes the half-density bundle, and op-
erators on half-densities can be regarded as operators on functions via this
trivialization. Given A &#x3E; 0, we solve for a kernel f?(A) on X2 which satisfies

where KId is the kernel of the identity operator on half densities. More
precisely, we consider this equation on X2 which is the space X2 with
the corner blown up. This allows us to use the scattering wavefront set at
the ’front face’ (the face resulting from blowing up the corner) to analyze
singularities, which is an absolutely crucial part of the strategy. The kernel
R(A) is also required to satisfy a wavefront set condition at the front face,
which is the analogue of the outgoing Sommerfeld radiation condition.

We cannot find R(A) exactly in one step, so first we look for an ap-
proximation G(A) of it. The general strategy is to find G(A) which solves
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away the singularities of the right hand side, KId, of (1.1). Singularities
should be understood both in the sense of interior singularities and oscilla-
tions, or growth, at the boundary, as measured by the scattering wavefront
set.

The first step is to find a pseudodifferential approximation which
solves away the interior singularities of KId, which is a conormal distribu-
tion supported on the diagonal. This can be done and removes singularities
except at the boundary of the diagonal, where H - A 2 is not elliptic (in
the sense of the boundary wavefront set). In fact, the singularities which
remain lie on a Legendrian submanifold N* diagb at the boundary of diagb
(see (4.5)). Singularities of G(A) can be expected to propagate in a Leg-
endre submanifold L+(A) which is the bicharacteristic flowout from the
intersection of N* diagb and the characteristic variety of H - A~. (The ge-
ometry here is precisely that of the fundamental solution of the wave oper-
ator in which is captured by the intersecting Lagrangian calculus of
Melrose-Uhlmann [11], but it takes place at the boundary.) This Legendre
has conic singularities at another Legendrian, L~ (~), which is ’outgoing’.
Thus, in view of the calculus of Legendre distributions of Melrose-Zworski
and the authors, the simplest one could hope for is that the resolvent on
the real axis is the sum of a pseudodifferential term, an intersecting Legen-
dre distribution associated to (N* diagb, L+ (A)) and a Legendre conic pair
associated to (L+ (A), L# (A)). This is the case:

THEOREM 1.1. Let H be a short range perturbation of a short

range scattering metric on X. Then, for A &#x3E; 0, the outgoing resolvent
-f- io) lies in the class (4.4), that is, it is the sum of a scattering pseu-

dodifferential operator of order -2, an intersecting Legendre distribution
of order -1/2 associated to (N*diagb, L+ (A)) and a Legendrian conic pair
associated to (L+(A), L# (A)) of orders -1 /2 at L+ (A), (n - 2) /2 at L# (A)
and (n - 1)/2 at the left and right boundaries.

If H is of long range gravitational type, then the same result holds
except that the Legendre conic pair is multiplied by a complex power of
the left and right boundary defining functions.

This theorem was already proved in our previous work [4], so it is

the method that is of principal interest here. By comparison with [4], the
proof is conceptually much shorter; it does not use any results from [10]
or [12], although it makes substantial use of machinery from [12]. But the
main point we wish to emphasize is that the proof works directly on the
spectrum and nowhere uses the limiting absorption principle, a method of
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attack that we think will be useful elsewhere in scattering theory. It seems
that things which are easy to prove with this method are difficult with the
limiting absorption principle, and vice versa. For example, it is immediate
from our results that if f is compactly supported in the interior of X, then
u = R(A 2 + io) f is such that x-(n-I)/2e-iÀ/xu E C~ (X ), while it is not so
easy to see that the resolvent is a bounded operator from xlL2 to x-LL2
for any 1 &#x3E; 1/2. Using the limiting absorption principle, it is the second

statement that is much easier to derive (following [1] for example). Thus, we
hope that this type of approach will complement other standard methods
in scattering theory.

In the next section, we describe the machinery required, including
the scattering calculus on manifolds with boundary, the scattering-fibred
calculus on manifolds with codimension two corners, and Legendre distri-
butions in these contexts. The b-double space, Xb2, which is a blown up
version of the double space X x X which carries the resolvent kernel, is

also described. The discussion here is rather concise, but there are more

leisurely treatments in [12] and [4].
The third section gives a symbol calculus for Legendre distributions

on manifolds with codimension two corners. This is a straightforward
generalization from the codimension one case.

The fourth section is the heart of the paper, where we construct

the parametrix G(A) for the resolvent kernel. Propagation of singularities
theorems show that the simplest space of functions in which one could hope
to find the resolvent kernel is given by (4.4). We can in fact construct a
parametrix for the resolvent in this class. In the fifth section this is extended
to long range metrics and perturbations.

In the final section we show that one can modify the parametrix so
that the error term E(A) is such that Id + E(A) is invertible. This is done
by showing that the range of H -À2 on the sum of C~*(X) and 
is dense on suitable weighted Sobolev spaces (see Lemma 6.1 ) . Thus the
parametrix may be corrected to an exact solution of ( 1.1 ) . Such a result
also shows the absence of positive eigenvalues for H. Finally, we show that
the kernel so constructed has an analytic continuation to the upper half
plane and agrees with the resolvent there.

Notation and conventions. - On a compact manifold with boundary,
X, we use C~- (X) to denote the class of smooth functions, all of whose
derivatives vanish at the boundary, with the usual Fréchet topology, and

C"~(X) to denote its topological dual. On the radial compactification
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of R" these correspond to the space of Schwartz functions and tempered
distributions, respectively. The Laplacian A is taken to be positive. The
space L 2(X) is taken with respect to the Riemannian density induced by
the scattering metric g. This density has the form near the

boundary, where a is smooth.

Acknowledgements. - We wish to thank Richard Melrose and Rafe
Mazzeo for suggesting the problem, and for many very helpful conversa-
tions, and the referee for comments that improved the paper. A. H. is

grateful to the Australian Research Council for financial support. A. V.
thanks the NSF for partial support, NSF grant #DMS-99-70607.

2. Preliminaries.

2.1. Scattering calculus.

Let X be a manifold with boundary YX = Y. Near the boundary we
will write local coordinates in the form (x, y) where x is a boundary defining
function and y are coordinates on Y extended to a collar neighbourhood
of aX .

We begin by giving the definition of a scattering metric. The precise
requirements for the metric (and many other things besides) are easiest to
formulate in terms of a compactification of the space. Taking the function
x - as a boundary defining function and adding a copy of Y at
x - 0 yields a compact manifold, X, with boundary Y. Then

the definition of scattering metric is given in terms of X in Definition 2.1
below. Regularity statements for the metric coefficients are in terms of the
C°° structure on X; this is a strong requirement, being equivalent to the
existence of a complete asymptotic expansion, together with all derivatives,
in inverse powers of r as r - oo. The benefit of such a strong requirement
is that we get complete asymptotic expansions for the resolvent kernel, and

correspondingly, mapping properties of the resolvent on spaces of functions
with complete asymptotic expansions.

DEFINITION 2.1. A (short range) scattering metric on X is a

Riemannian metric g in the interior of X which takes the form



1304

where h’ is a smooth symmetric 2-cotensor on X which restricts to the
boundary to be a metric h on Y ~10~. A long range scattering metric is a
metric in the interior of X which takes the form

where aoo is smooth on X, aoo = 1 + O(x), and h’ is as above [13]. If
aoo = 1 - cx + O (x2 ) for some constant c we call g a gravi tational long
range scattering metric.

Examples. - Flat Euclidean space has a metric which in polar coor-
dinates takes the form

where cJw2 is the standard metric on S’- 1 - Compactifying Euclidean space
as above, we obtain a ball with x = r-1 as boundary defining function, and
then the flat metric becomes

which is a short range scattering metric.

The Schwartzschild metric on R" takes the form near infinity

which under the same transformation leads to a gravitational long range
scattering metric

near x = 0. The constant m = c/2 is interpreted as the mass in general
relativity. (Note that the boundary r = 2m has a different structure.)

The natural Lie Algebra corresponding to the class of scattering
metrics on X is the scattering Lie Algebra

= xW , where W is a C°° vector field on X tangent to 8X)

Clearly this Lie Algebra can be localized to any open set. In the
interior of X, it consists of all smooth vector fields, while near the boundary
it is equal to the C°° (X)-span of the vector fields x2 ax and z8y, . Hence
it is the space of smooth sections of a vector bundle, denoted 
the scattering tangent bundle. Any scattering metric turns out to be a
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smooth fibre metric on The dual bundle, denoted SCT* X, is called
the scattering cotangent bundle; near the boundary, smooth sections are
generated over C~(X) by dx/x2 and dy2/x. A general point in "Tpx
can be thought of as the value of a differential d( f /x) at p, where

f E C°° (X ), and in terms of local coordinates (x, y) near aX can be written
+ flidyilx, yielding local coordinates (x, y, T, on sCT* X near 8X .

The scattering differential operators of order k, denoted Diff:c(X), are
those given by sums of products of at most scattering vector fields. There
are two symbol maps defined for P E Dififj (X) . The first is the ’usual’ sym-
bol map, denoted which maps to 

where denotes the classical symbols of order 1~ on SCT* X. The

second is the boundary symbol, E which is the full

symbol of P restricted to x = 0. This is well defined since the Lie Alge-
bra Vsc (X) has the property Vsc (X)] C so commutators

of scattering vector fields vanish to an additional order at the boundary.
Dividing the interior symbol afnt(P) where I . Ig is the metric on

sCT* X determined by the scattering metric, we get a function on the sphere
bundle of sCT* X. This may be combined with the boundary symbol into a
joint symbol, a function on Csc(X) which is the topological space
obtained by gluing together the sphere bundle of scT*X with the the fibre-
wise radial compactification of sCTâx X along their common boundary.

The scattering pseudo differential operators are defined in terms of the
behaviour of their Schwartz kernels on the scattering double space Xi, a
blown up version of the double space X2. This is defined by

and

and diagb is the lift of the diagonal to Xbl. The lift of diagb to is

denoted diagsc. The blowup notation [;] ] is that of Melrose: see [8] or [9].
The boundary hypersurfaces are labelled lb, rb, bf and sf; see figure 1. The
scattering pseudodifferential operators of order k, acting on half densities,

1
are those given by KD .i 2-valued distribution kernels which are

classical conormal at diag,,,, of order k, uniformly to the boundary, and
1

rapidly vanishing at lb, rb, bf. (Here KD 2 is the pullback of the bundle
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Figure l. The b-double space and the scattering scattering space

The joint symbol map j’ extends from multi-

plicatively,

and such that there is an exact sequence

A scattering pseudo differential operator A is said to be elliptic
at a point q E 0. It is said to have elliptic interior

symbol (boundary symbol) does not vanish at fibre-infinity (spatial
infinity), and is said to be totally elliptic vanishes nowhere. The

characteristic variety of A, ~(A), is the zero set of 

The scattering wavefront set of a tempered distribution u E 
(the dual space of the space of smooth functions on X vanishing
with all derivatives at the boundary) is the closed subset of whose

complement is

elliptic at q such that . ..

The interior part of the wavefront set (at fibre-infinity) is a familiar object,
the standard wavefront set introduced by Hormander (except that each
ray of the standard wavefront set is thought of here as a point in the
cosphere bundle). In this paper we are mostly interested in the part of the
scattering wavefront set at spatial infinity. In fact, the operators H we shall

study will have elliptic interior symbol, uniformly to the boundary, so in
view of the next theorem, solutions of (H - = 0 must have wavefront

set contained in the part of Csc (X) at spatial infinity, which we denote K
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There is a natural contact structure on K induced by the symplectic
form w on T*.X. Writing c,~ in terms of the rescaled cotangent variables T, J-L
and contracting with the vector yields the 1-form

which is nondegenerate, and therefore a contact form. A change of boundary
defining function x’ - ax changes X by a factor so the contact structure

is totally well-defined. Given a Hamiltonian h on K, the Hamiltonian vector
field on K determined by the contact form is

This is the same as x-1 vh restricted to x = 0, where Vh is the Hamilton
vector field on SCT* X induced by h. Integral curves of this vector field are
called bicharacteristics of h (or of A, if h is the boundary symbol of A) .

Under a coordinate change, the variables T and p change according to

Since a &#x3E; 0, this shows that the subset

is invariantly defined. This is important in the definition of the outgoing
resolvent, see (4.2).

The boundary part of the scattering wavefront set behaves very much
as the interior wavefront set part behaves, and in particular we have a

propagation of singularities result for operators of real principal type:

THEOREM 2.2. - Suppose A E has elliptic interior symbol,
and real boundary symbol. Then for u E n C-1 (X), we have

and

(2.8) WFsc(Au) is a union of

maximally extended bicharacteristics of A WFsc(Au).
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Thus, if Au = 0, then SCWF(u) C K and consists of a union of
maximally extended bicharacteristics of A inside E(A).

As well as a boundary principal symbol defined on K, scattering
pseudodifferential operators also have a boundary subprincipal symbol.
This is the O(x) term of the full symbol at the boundary when the operator
is written in Weyl form. It is important to keep in mind that it depends
on a choice of product structure at the boundary; it does not enjoy quite
the same invariance properties as does the standard (interior) subprincipal
symbol. A practical formula to use for differential operators with symbol
in left-reduced form, ie, such that

is that for = p(y, T, J-l)+xq(y, T, J-l)+O(x2), the boundary subprincipal
symbol of P is given by

LEMMA 2.3. - Let g be a short range scattering metric, let x be a

boundary defining function with respect to which g = dx2 I x4 + h’ IX2 , and
let H be a short range perturbation of the Laplacian with respect to g.
Then in local coordinates (x, y), the sub-principal symbol of H vanishes

Proof. The operator H may be written

Thus the left-reduced symbol as above is

Hence the sub-principal symbol is

which vanishes when p = 0. D

We now define the gravitational condition for the perturbation P.

DEFINITION 2.4. - A first order scattering differential operator P on
X is said to be short range if it lies in and long range if it
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lies in Let g be a scattering metric and x a boundary defining
function with respect to which g takes the form (2.1) or (2.2). P is said to
be of long range gravitational type with respect to g if it has the form

near x = 0, where ai, b and c are in C°° (X ), and for some constants bo and
co, b = bo -f- O(x) and c = co -I- O (x) .

The point of the short range condition is that then the subprincipal
symbol of both H = L1 + P vanishes at the radial 0, T = ±A
of H - À2, whilst in the long range gravitational case, the subprincipal
symbol is constant. In the general long range case, the subprincipal sym-
bol is an arbitrary function on the radial set, which causes some inconve-
nience (but not insuperable difficulties) in constructing the parametrix for
(~~2_~)-1.

2.2. Legendre distributions.

An important special case that occurs often is that SCWF(u) is a

Legendre submanifold, or union of Legendre submanifolds, of I~; moreover,
in many cases, u is a Legendre distribution, which means that it has a

WKB-type expansion, the product of a oscillatory and smooth term, as
discussed below, which makes it particularly amenable to analysis.

We let dim X = n, so that dim K = 2n - 1. A Legendre submanifold
of K is a submanifold G of dimension n - 1 such that X f G = 0. Such
submanifolds have several nice properties. One is that if a Hamiltonian, h,
is constant on G then its Hamilton vector field is tangent to G. Another
is that Legendre submanifolds may be generated in the following way: If
F is a submanifold of dimension n - 2, such that X vanishes on F, and if
the Hamilton vector field of h is nowhere tangent to F, then the union of
bicharacteristics of h passing through F is (locally) a Legendre submanifold.

Let G be a Legendre submanifold, and let q E G. A local (nonde-
generate) parametrization of G near q is a function 0(y, v) defined in a
neighbourhood of yo E Y and vo C such that d_Ç = 0 at q’ = (yo, vo),
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Ç satisfies the nondegeneracy hypothesis

are linearly independent at

and near q,

A Legendre distribution of order m associated to G is a half-density of the
form u = (uo + uj)v, where v is a smooth section of the scattering
half density bundle, uo E and uj is supported in a coordinate patch
(x, y) near the boundary, with an expression .

where Oj locally parametrizes G and aj E C°°(X x with compact
support in v. Melrose and Zworski showed that uj can be written with
respect to any local parametrization, up to an error in The set of

such half-densities is denoted I m (X, G; 2 ) . The scattering wavefront set
of u E 7~(X, G; ’c Q " ) 2 is contained in G.

An intersecting Legendre distribution is associated to a pair of Leg-
endre submanifolds, L = (Lo, L1 ), where L, is a manifold with boundary
such that Lo and LI intersect cleanly at aLl. A local parametrization
of ( Lo , L 1 ) near q E Lo n L 1 is a defined in a neigh-
bourhood of q’ = (yo, vo, 0) in Y x X [0, 00) such that 0 at q’,
q = satisfies the nondegeneracy hypothesis

ds, do, and are linearly independent at

and near q,

A Legendre distribution of order m associated to L is a half-density of the
form u = uo + where v is a smooth scattering half-density,
UO E + I-+112(X, (the subscript c indicates
that the microlocal support does not meet the boundary of L1 ), and
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is supported in a coordinate patch (x, y) near the boundary, with an
expression

where Çj locally parametrizes (Lo, Li) and aj E C°° (X x x [0,oo)),
with compact support in v and s. Again, uj can be written with respect
to any local parametrization, up to an error in C1°(X). The set of such
half-densities is denoted I m (X, L; S~SZ 2 ) . The scattering wavefront set of
u E L; sC[2 ~) is contained in Lo U L 1.

A Legendre distribution associated to a conic Legendrian pair is

associated to a pair of Legendre submanifolds G = (G, GO) where GO is

a projectable Legendrian (that is, the projection from SCT* X to Y is a

diffeomorphism restricted to G~ ) and G is an open Legendrian submanifold
such that G B G is contained in GO and G has at most a conic singularity at
G# . We further assume that T # 0 on G#, so that we may change coordinates
to a new boundary defining function such that GO is parametrized by
the phase function 1. In these coordinates, the condition that G has a
conic singularity at GO means that G lifts to a smooth submanifold with
boundary, G, on the blown-up space

intersecting the front face of (2.12) transversally. In local coordinates

(x, y, T, ~c), coordinates near the front face are

and we require that d is given by the vanishing of n smooth functions of
these variables with linearly independent differentials, and that dlMI ~ 0
at 81.

A local parametrization of G near q E ?7 n GO is a function 0(y, v, s) =
defined in a neighbourhood of q’ = (yo, vo, 0) in Y x Rk x [0, (0)

such that 00 parametrizes GO near q, d~,~ = 0 at q’, q = (y, 
Ç satisfies the nondegeneracy hypothesis

ds, do, and are linearly independent at

and near q,
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in the coordinates (2.13). A Legendre distribution of order (m, p) associated
to (G,G~) is a half-density of the form u = uo + ui)v, where v is
as above, uo E 17 (X, G; + IP (X, GO; (the subscript c indicates
that the microlocal support does not meet GO) I and uj is supported in a
coordinate patch (x, y) near the boundary, with an expression

where Çj locally parametrizes (G,G~) and aj E C°° (X x x [0, 00) x
[0, oo)), with compact support in v, and s. Here uj can be written with
respect to any local parametrization, up to an error in 
The set of such half-densities is denoted G; sen 2 ). The wavefront
set of u E is contained in G U G#.

2.3. Codimension 2 corners.

In this subsection we briefly review the extension of the theory of
Legendre distributions to manifolds with codimension 2 corners and fibred
boundaries given in [4].

Let M be a compact manifold with codimension 2 corners. The

boundary hypersurfaces will be labelled mf, Hl, ... , Hd, where the Hi are
endowed with fibrations,7ri : Hi --~ Zi to certain closed manifolds Zi and mf

(the ’main face’) is given the trivial fibration id : mf - mf. The collection
of fibrations is denoted ~. It is assumed that Hi f1 Hj = o if i ~ j . It

is also assumed that the fibres of 7ri intersect Hi n mf transversally and
therefore induce a fibration from Hi n mf ~ Zi. Further, it is assumed

that a total boundary defining function x is given, which is distinguished
up to multiplication by positive functions which are constant on the fibres

Near H n mf, where H - Hi for some i, there are coordinates
such that x, is a boundary defining function for H, X2 is a

boundary defining function for mf, = x, and the fibration on H takes

the form

Associated with this structure is a Lie Algebra of vector fields

is tangent to ~ at
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This is the space of smooth sections of a vector bundle, denoted 
The dual space is denoted A point in may be thought of
as a differential at p, where f is a smooth function on M constant
on the fibres at 8M. A basis for for p E M near mf n H, is given
by dxlx2, dYl/x, dY2/x2. Writing q E as

gives coordinates

on near mf n H.

The differential operators of order at most 1~ generated over C°° (M)
by (M) are denoted Diffk (M). Near the interior of mf, the Lie Algebra

localizes to the scattering Lie Algebra where M denotes
the noncompact manifold with boundary MBUiHi. Consequently, we have a
boundary symbol aa(P), P E taking values in over

the interior of mf. In fact the symbol extends to an element of 
continuous up to the boundary of mf.

For each fibre F of H, there is a subbundle of stPT M consisting of
all vector fields vanishing at F. The annihilator subbundle of is

denoted sCT* (H; F) since it is isomorphic to the cotangent space of the
fibre. The quotient bundle, F) is denoted stP N* Zi since it
is the pullback of a bundle over Zi. The fibration 1fi induces a fibration

We next describe three types of contact structures associated with
the structure of M. Since is locally the scattering structure near
the interior of mf, there is an induced contact structure on over the

interior of mf. In local coordinates, the contact form looks like

We see from this that at x, = 0, x is degenerate. However, restricted to
mf n H, x is the lift of a form Xz,, on (Zi), namely dT -I- which

is nondegenerate on S~ N* (Zi ) . This determines our second type of contact
structure (one for each i). The third type of contact structure is that on
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F) induced by for each fibre F of Hi, since it restricts
to the scattering vector fields on each fibre. In local coordinates, this looks
like dTl + 

Using these three contact structures we define Legendre submanifolds
and Legendre distributions.

DEFINITION 2.5. - A Legendre submanifold G is a Legen-
dre submanifold which is transversal to for each Hi,
for which the map (2.15) induces a fi bration from 8G to GI, where GI is a
Legendre submanifold whose fibers are Legendre submanifolds

ofscTâpF.
A projectable Legendrian (one such that the projection mf

is a diffeomorphism when restricted to G) is always of the form 
‘

for some smooth function 0 constant on the fibres of aM. We then say
that 0 parametrizes G. In general, let G be a Legendre submanifold of

and let q E G. If q lies above the interior of mf, then a local

parametrization of G near q is as described in the previous subsection,
so consider q E 8G lying in where yo E mf n H. A local

(nondegenerate) parametrization of G near q is a function yl, y2, v, w)
of the form

defined in a neighbourhood of such that

in local coordinates (2.14), 0 satisfies the nondegeneracy hypothesis at q’

linearly independent,

and near q,



1315

A Legendre distribution of order (m; rl, ... rd) associated to G is a half-
density such that for any vi E C°° (M) whose support does not intersect
Hk, for k 7~ i, vi u is of the form u = uo + + u~ ) v, where
v is a smooth section of the half-density bundle induced by 
UO E and uj, u’ have expressions

with N = dim M, aj E x U x I~~+~~ ) , U open in mf, f i the
dimension of the fibres of Hi and Oj a phase function parametrizing a
Legendrian G on U, and

open in H, fi as above, V)j
a phase function parametrizing the Legendrian G1.

DEFINITION 2.6. - A Legendre pair with conic points, (G, GO), in
"’I’T* M consists of two Legendre submanifolds G and GO of M which

form an intersecting pair with conic points in sCTiIM such that for each
Hi the fibrations of G and GO induced by (2.15) have the same Legendre
submanifold GI as base and for which the fibres are intersecting
pairs of Legendre submanifolds with conic points ofscTâpF.

The Legendrian GO is required to be projectable, so it parametrized by
a phase function 0(g) which is constant on the fibres of 9M. Thus, x’ = xlo
is another admissible total boundary defining function. With respect to x’,
GO is parametrized by the function 1. Thus, without loss of generality we

may assume that coordinates have been chosen so that GO is parametrized
by 1. This simplifies the coordinate form of the blowup (2.12). Coordinates
near 96 then are

the last of which is a boundary defining function for 6 (see [4]).
As a consequence of Definition 2.6, 6 is a compact manifold with

corners in
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with one boundary hypersurface at the intersection of G and 
for each i (which are mutually nonintersecting, since the Hi are mutually
nonintersecting), and one at the intersection of 6 and the front face of the
blowup in (2.22). If q lies in the interior of G then the situation is as for
Legendrians in the scattering setup. If q is on the boundary of G, but does
not lie over Hi for some i, then the situation is as for Legendrian conic
pairs as in the previous subsection. If q is on the boundary of G but not in
GO then the situation is as above. Thus the only situation left to describe
is if q is in the corner of G, lying above yo E mf n Hi say.

A local parametrization of (G, G~ ) near q (in coordinates as chosen
above) is a function

with V) defined in a neighbourhood of (
such that = 0 at q’,

are linearly independent at q’,

and such that near q E G,

in the coordinates (2.21).

A Legendre distribution of order (m, p ; rl , ... rd) associated to (G, G~)
is a half-density such that for any vi C C°° (M) whose support does not

w r . I

intersect Hk , for k =1= i, viu is of the form
where and uj, uj have expressions

with N = dim M, aj E x U x U open in mf, f i the
dimension of the fibres of Hi and Oj a phase function parametrizing a
Legendrian G on U, and where u’ is as in (2.20).
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2.4. The b-double space.

Here we analyze the b-double space Xb2, where X is a compact
manifold with boundary, from the perspective of manifolds with corners
with fibred boundaries. The manifold with corners X2 has three boundary
hypersurfaces: lb and rb, which are the lifts of the left and right boundaries

Xb , and bf, coming from the blowup of (aX)2
(see figure 1). Thus, lb and rb have natural projections to 9X. The fibres
of lb and rb meet bf transversally, so we may identify bf as the ’main face’
mf of Xb2. Given coordinates (x, y) or z on X, we denote the lift to X2
via the left, resp. right projection by (x’, y’) or z’, resp. (x", y") or z". We
may take the distinguished total boundary defining function to be x’, for
a = x’/x"  C and x", for cr &#x3E; C-l. These are compatible since their ratio
is constant on fibres on the overlap region C-’  cr  C (this is trivially
true since the fibres of bf are points).

These data give Xb the structure of a manifold with corners with
fibred boundary as defined above. The sV-vector fields then are the same
as the sum of the scattering Lie Algebra Vb (X) lifted to Xb from the left
and right factors.

On X~, and it is most convenient to use coordinates lifted

from X and SCT* X. Near lb, but away from bf, we use coordinates

(x’, y’, z") and coordinates (7’, Ji/, on s’DT*Xb2 where we write a covector

Similarly near rb, but away from bf, we use coordinates (Z , x , y ;
~’, T", ,u" ) . Near lb n bf, we use (x", a, y’, y" ) with corresponding coordina-
tes (T, K, [L’, ~C"), by writing q E s"’T* X2 as

However, we may also use scattering cotangent coordinates
lifted from SCT* X, where we write

This gives
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The coordinates (x",a,y’,y") hold good near bf as long as we stay away
from rb, when we need to switch to (Xf, a - 1, y’, y"). The cotangent coordi-
nates ~c") are good coordinates globally near bf; notice that the
roles of (T, 71, ILl, ~2) are played by (T’, T", J..L’, near lb and (T", T’, P", J..L’)
near rb.

The operator H can act on half-densities on X2 by acting either on
the left or the right factor of X; these operators are denoted Hl and Hr
respectively. For H = L1 + P, where P E the Hamilton vector

field induced by Hi and the contact structure on s4T* 2 with respect to
x’, takes the form

Similarly, the Hamilton vector field induced by Hr and the contact struc-
ture on with respect to x", takes the form

Notice that V, and Vr commute.

3. Symbol calculus for Legendre distributions.

3.1. Manifolds with boundary.

Let X be a manifold with boundary of dimension N, and let

be a Legendre distribution of order m. Let C = f (y, v) = 0} and let A
be a set of functions in (y, v)-space such that (A, form local coordinates

near C. We temporarily define the symbol relative to the coordinate system
,~ _ (x, y) and the parametrization 0 to be the half density on G given by
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Here we have used the correspondence (2.11) between C and G.

If we change coordinate system, the symbol changes by

where

If the parametrization is changed, then by [6], the symbol changes by

the exponential is a locally constant function. We use these transformation
factors to define two line bundles, the E-bundle over which is

defined by the transition functions (3.3), and the Maslov bundle over G
which is defined by the transition functions (3.4). (These bundles will be
described in much more detail in [5].) Defining the bundle (G) =

0 E 0 M(G) over G, we obtain an invariant symbol map
from (3.1)

The elements of the symbol calculus for Legendre distributions on
manifolds with boundary have been given by Melrose and Zworski [12] :

PROPOSITION 3.1. - The symbol map induces an exact sequence

Thus, if the symbol of P vanishes on G, then Pu E G; The

symbol of order m + 1 of Pu in this case is

where Hp is the Hamilton vector field of p, the principal symbol of P, and
psub is the subprincipal symbol of P.
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The symbol calculus for intersecting Legendre distributions is easily
deduced from Melrose and Uhlmann’s calculus of intersecting Lagrangian
distributions. The symbol takes values in a bundle over Lo U Li . Let PI be
a boundary defining function for 8Li as a submanifold of Lo, and po be
a boundary defining function for 8Li as a submanifold of Li . To define
the symbol, note that the symbol on Lo is defined by continuity from
distributions microsupported away from Li , and takes values in

while the symbol on LI defined by continuity from distributions microsup-
ported away from 8Li takes values in

Melrose and Uhlmann showed that the Maslov factors were canonically
isomorphic on Lo rl Ll, so is naturally isomorphic to 
over Lo n L1. Canonical restriction of the half-density factors to Lo n LI
gives terms and

respectively. In fact 

0 is canonically trivial; an explicit trivialization is

given by

where VPi are the Hamilton vector fields of the functions p2 extended into
sCT* X, and w is the standard symplectic form. Thus the two bundles are
naturally isomorphic over the intersection. We define the bundle 
to be that bundle such that smooth sections of Oi/2(£) ® Simi (L) are
precisely those pairs (a, b) of sections of PlICOO(OI/2(Lo) 0 s[m+I/2] (Lo))

such that

under the identification (3.7). The symbol maps of order m on Li and
m + 1/2 on Lo then extend in a natural way to a symbol map of order m
on L taking values in 0 

PROPOSITION 3.2. - The symbol map on L yields an exact sequence
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Moreover, if we consider just the symbol map to Li, there is an exact
sequence

and

Thus, if the symbol of P vanishes on Ll, then Pu is an element of

+ The symbol of order m + 1 of Pu
on L 1 in this case is given by (3. 5).

For a conic pair of Legendre submanifolds G = (G, GO), with G
the desingularized submanifold obtained by blowing up GO, the symbol
is defined by continuity from the regular part of G. The symbol calculus
then takes the form

PROPOSITION 3.3. - Let s be a boundary defining function for G.
Then there is an exact sequence

and

If the symbol of P vanishes on G, then The

symbol of order m + 1 of Pu in this case is given by (3.5).

3.2. Codimension two corners.

When we have codimension two corners, then essentially the same
results hold by continuity from the main face. The symbol is defined as a
half-density on G by continuity from the interior of mf, where the scattering
situation applies. We must restrict to differential operators, however, since

pseudodifferential operators have not been defined in this context.

Let M be a manifold with codimension 2 corners with fibred bound-

aries, let N = dim M, and let G be a Legendre distribution. Let pi be a
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boundary defining function for Hi. The Maslov bundle M and the E-bundle
are defined via the scattering structure over the interior of G and extend to
smooth bundles over the whole of G (that is, they are smooth up to each
boundary of G at Let = 

Q9IN* Hdlm-N/4. Finally let r stand for (rl, ... , rd), and

PROPOSITION 3.4. - There is an exact sequence

Thus, if the symbol of P vanishes on G, then Pu E I-+l,r (M, G; 
The symbol of order m -f- 1 of Pu in this case is given by (3.5).

For a conic pair of Legendre submanifolds G = (G, G~), with 6 the
desingularized submanifold obtained by blowing up G~, the symbol calculus
takes the form

PROPOSITION 3.5. - Let s be a boundary defining function for 6 at
6 n G~. Then there is an exact sequence

If the symbol of P vanishes on G, then Pu E j"2+l,p;r (M, G; 2 ) . The
symbol of order m + 1 of Pu in this case is given by (3.5).

The proofs of these propositions are omitted, since they are easily
deduced from the codimension one case.
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4. Parametrix construction.

In this section, we consider self-adjoint operators H of the form 
where L1 is the positive Laplacian with respect to a short-range metric on
a compact manifold with boundary, X, and P E is a short-

range perturbation of L1. In the following section, we consider metrics
and perturbations of long range gravitational type. Let R( a) denote the
resolvent (H - a)-l of H.

Thus, we directly construct a parametrix G(A) for (1.1) whose error
term E(A) = (H - À2)G(À) - Id is compact. Using Fredholm theory and a
unique continuation theorem we solve away the error, giving us a Schwartz
kernel R(~). We then show that R(Q) has an analytic continuation (as
a distribution on X2 ) to the upper half a plane which agrees with the
resolvent there. This proves that R(A) and R(À2 coincide on the

real axis.

The distribution f?(A) has the defining property that

as an operator on 2 ), and that

as defined in (2.5).

Here X2 X2 B {lb U rb} is regarded as an open manifold with boundary,
so that we can talk about the scattering wavefront set over the interior
of bf. Equation (4.2) is the microlocal version of the outgoing Sommerfeld
radiation condition. (For example, if A &#x3E; 0, e’)/’ has wavefront set in K_ ,
while does not.)

Equation (4.1) means that the kernel of R(A), which we also denote
by R(A) by an abuse of notation, satisfies

where KId is the kernel of the identity operator, i.e., it is a delta distribution
on the diagonal, and Hl is the operator H acting on the left factor of X
in X x X.

There are four main steps in the construction. First we find an

approximation to R(A) in the scattering calculus, Gi (A) E ~5~2 (X), which
removes the singularity on the diagonal in (4.3). This leaves an error which,
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when viewed on the b-double space X£, 7 is singular at the boundary of
the diagonal 8diagb. In fact, it is Legendrian at a Legendre submanifold
lying over 8diagb which we denote N* diagb (see (4.5)). We solve this error
away locally near 8diagb using an intersecting Legendrian construction
which is due (in the Lagrangian setting) to Melrose and Uhlmann [11];
the singularities inside A2 ) propagate in a Legendre
submanifold L+(A). This Legendre submanifold intersects both lb and rb,
and an ’outgoing’ Legendre submanifold L# (~); (L+(A),L#(A)) form a
conic pair of Legendre submanifolds and we can find a conic Legendre pair
which solves away the error up to an error term which is Legendrian only at

L#(A), i.e., we can solve away the errors at L+(A) completely. Finally, this
outgoing error is solved away, using a very standard argument in scattering
theory, at lb and bf, leaving an error E(A) which is compact on weighted
L2 spaces for all l &#x3E; 1/2.

Thus, we seek G(A) (and f?(A)) in the class

where the second term is an intersecting Legendrian distribution and the
third is a Legendre conic pair with orders -1/2 at L+(A), (n - 2)/2 at
L# (A) and (n - 1)/2 at lb and rb. In this class of distributions there is a
unique solution R(A) to (4.1) and (4.2).

To avoid cumbersome notation, Q will denote a generic correction to
the parametrix constructed so far, and E will denote a generic error. The
values of these symbols is allowed to change from line to line.

4.1. Pseudodifferential approximation.

The first step in constructing G(A) is a very standard argument. We
seek C ~5~2 (X) such that

This will mean that the error term El (A) has a smooth kernel (times the
standard half-density) on X;c, so that we have solved away completely the
singularity along the diagonal.
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The standard elliptic argument applies here since the interior symbol
of H - A 2is elliptic. Thus, we first choose any Q E whose interior

symbol is I . 1;2 = (a2(H - .x2))-1. Then

Multiplying Q by a finite Neumann series thus gives an
error Ek E Taking an asymptotic limit gives us a Gi (A) E W;2(X)
with the desired error term.

4.2. Intersecting Legendrian construction.

In the next step of the construction we move to X~, and view the error
Ei (A) from the first step of the construction on 2 rather than Xi . On X2
it has a smooth kernel except at 8diagb where it has a conic singularity.
That is, at 0, a * 1, y’ = y" ~ , the kernel is

a smooth (and compactly supported) function of x’, S’ = (as - 
Y = (y’ - y")/x’ and y’; this is easy to see since these are smooth

coordinates on sf C Using the Fourier transform, we write

where a is smooth in all variables, and in addition Schwartz in (r~, t) . The
phase function (y’ - y") . q + (a - 1)t parametrizes the Legendrian

Therefore, Ei(A) is a Legendre distribution of order 0 associated to

N*diagb. (To be pedantic, El (a) does not fall strictly in the class of Leg-
endre distributions as defined by Melrose and Zworski since its wavefront
set is not a compact subset of from (4.5) we see that the wave-aX2 bb
front set is a vector bundle over i9diagb- It is instead an ’extended Legendre
distribution’ as defined in [2]. However this is of no significance since the
symbol is rapidly decreasing in each fibre of the vector bundle, hence all
constructions we wish to perform here are valid in this context.)

Observe that aa(Hi - A 2) = T’2 + /~(~/,//) 2013 A2vanishes on a
codimension one submanifold of N* diagb, and does so simply. Consider the
vector field Y which is given by (2.25). Since T’2 --~ h = ~2 ~ 0 
at least one of the coefficients of aCT and c~ in (2.25) is nonzero, so Y is
transverse to N* diagb at the intersection A 2). We define L° (A)
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to be the flowout Legendrian from N* diagb A 2) with respect to
Vl, and L) (A) to be the flowout in the positive, resp. negative direction
with respect to Vl. Thus, at least locally near N*diagb, L) (A) are smooth
manifolds with boundary. Notice that by (2.24), N*diagb is contained in
T = 0 and  0 at N* diagb . Thus, at least locally near N* diagb,
L’(A) is contained in K- = (T x 01. The global properties of L) (A) are
studied in the next section; in this section we only work microlocally near
N*diagb.

The first step in solving away the error Ei (A) from the previous step is
to find an intersecting Legendrian Q E I-1~2(Xb, (N*diagb, L+ (A)); I )
such that

microlocally near N* diagb . To do this we choose Q with symbol on

N* diagb equal to a) (Hi - ~2 ) -1 ~o (E+1 &#x3E; ( ~) ) . This is an admissible symbol
on N*diagb by (3.6), and (3.9), since oO a (Hi - A 2) is a boundary defining
function for L+(A) on N* diagb. It determines the value of the symbol
on L+(A) at the boundary by (3.8). We extend this symbol by requiring
that the transport equation, (3.5), be satisfied. This equation is a first

order linear ODE with smooth coefficients, so there is a unique solution
in a neighbourhood of N* diagb . Then the symbol of order -1 /2 of (Hl -

(A) vanishes, and there is an additional order of vanishing on
L+(A) since the transport equation is satisfied. Thus by (3.10) the error
term is as in (4.6).

We now show inductively that we can solve away an error Ek
which is in + with a term Qk E

up to an error which is in +

L+ (A)). The argument is the same as above: we take the
symbol of order on N*diagb equal to ag(Hz - ..B2)-lak(Ek)’ and the
symbol on L+ (A) to solve away the symbol of order k + 1/2 of Ek when
the transport operator is applied to it. Taking an asymptotic sum of Q and
the gives us an error term which is microlocally trivial near N*diagb.
By cutting off away from adiagb, we obtain an error

where the subscript c indicates that the microlocal support is compact and

disjoint from the intersection with N*diagb.
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4.3. Structure of L(A).

In this section we analyze the global structure of L° (~). This was
defined as the flowout from N* diagb À2) by the vector field Vi.
In fact, it is quite easy to see that N* diagb A~) = N* diagb n

~~). Moreover, neither v nor vr is tangent to N* diagb at any point
contained in A2), but the difference Vi - Vr is tangent to N*diagb.
Since Y and Vr commute, this shows that the flowout with respect to

Y is the same as the flowout with respect to Yr . We will soon see that
the symbols of our parametrix on L+(A), defined so as to satisfy the left
transport equation, also satisfy the right transport equation.

It is convenient to write down L°(A) explicitly. Indeed, the compu-
tation of Melrose and Zworski can be applied with a minor change (that
takes care of the behavior in ~) to deduce that

The sets T~ (~) are, for fixed y, integral curves of both vector fields,
and they appear separately only because we used the parameterization
of Melrose-Zworski. The smooth structure near T~ (~) follows from the
flowout description, but is not apparent in this parameterization; we discuss
it below while describing the closure of L°(A).

The closure L(A) of L°(A) is is clear from the above descrip-
tion ; it is

where

geodesic of length 7r connecting y’, ~" ~ .
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Note that the requirement ( sin s) 2 + ( sin &#x3E; 0 just means that s and
s’ cannot take values in {O, 7rl at the same time. The set L(A) B L’(A)
comprises those points where one of s, s’ takes values in {O, 7r} while the
other lies in (0, ir). The sets T±(A) in (4.9) comprise the limit points where
s and s’ converge either both to 0 or both to 1f, whilst comprise the
limit points as s - 0 and s’ ~ 7r or vice versa.

The smooth structure near T± A) becomes apparent if we note that
near r’ = A, T" = -A, a E [0, C) where C &#x3E; 1, L(A) is given by

where f (p) is smooth and f (0) = 1. Thus, the differen-
tial of the map

is invertible near It = 0, so it gives a diffeomorphism near = 0. Hence,
~ and (y", J-L") give coordinates on L(A) in this region, so L(A) is smooth
here. Away from T+(A), coordinates on L(A) are a, y", ji" and s.

In the coordinates (y, A s, s’), the vector field Y is given by sin s’ 8s,
and v~. is given by - sin s as . The intersection of L(A) and N* diagb is given
by {5 = S’l. Thus L+(A) is given by s’l. On L+(A), r = T’ + 
by (2.24), so

Thus, any distribution in ¡m(N*diagb’ L+ (A)) satisfies condition (4.2).
We also define

so L# (A) is a Legendrian submanifold of "Tb*fXb,and

PROPOSITION 4.1. The pair

is a pair of intersecting Legendre manifolds with conic points.
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Proof. We must show that when the set (tq t &#x3E; 0, q E 
is blown up inside the closure of L(A) is a smooth manifold

with corners which meets the front face of the blowup transversally. Let
us restrict attention to a neighbourhood of L#(A); the case of L#(-A)
is similar. Consider the vector field v + Yr. By (2.25) and (2.26), in

a2) n £(Hr - A2) this is given by

This is equal to -2A times the b-normal vector field 8,, + tlll .8J.L" plus
a sum of vector fields which have the form pV, where p vanishes at 
and V is tangent to lb and L# (A) (all considerations taking place inside
E(Hi - A 2) n E(H, - À2)). Thus, under blowup of 0, q E L~ (~) ~,
v + Vr lifts to a vector field of the form

where W is smooth and tangent to the boundary of L(À), and so dividing
by s yields a nonvanishing normal vector field plus a smooth tangent vector
field. As above, such a vector field has a continuation across the boundary
to the double of L(A) (across the front face) as a smooth nonvanishing
vector field. This holds true smoothly up to the corner with lb, so L(À) is
a smooth manifold with corners. D

4.4. Smoothness of symbols.

In the next stage of the construction, we solve away the error E2 (A)
which is microsupported in the interior of L+ (A). This involves solving the
transport equation globally on L+(A). In view of Proposition 4.1, we can
expect the construction to involve Legendrian conic pairs with respect to

(L+ (A), L~(a)). In order for the symbol to be quantizable to such a conic
pair, we need to show regularity of the symbol on L+(À), so that it lies in
the symbol space of the exact sequence from Proposition 3.5. That is, the
symbol of order j - 1/2 on L+ (A) should lie in

(We will ignore the symbol bundle S[j-I/2] in the rest of this section.)
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To do this, we observe that the symbol on L+(A) automatically
satisfies the transport equation for the right Hamilton vector field. To see
this, let G2(A) be the approximation to R(A) constructed so far, with

and

for some c &#x3E; 0. Consider applying E2 (A). Since Hl and Hr
commute, and HKID = we have

We claim that SCWF((Hr - A’) G2 (A) - KIa ) is contained in {T  -c}. For
if there is a point where T &#x3E; -c, then by (2.8), the maximal bicharacteristic
ray in

lies in Such rays always propagate into T &#x3E; 0.

But

so this is impossible. Consequently, (H~. - À2)G2(À) - KId has no scattering
wavefront set for (T &#x3E; -c~, and so the symbols of must obey the right
transport equations in this region. By cutting off the symbols closer and
closer to the boundary of L+(A), we see that the right transport equations
must be satisfied everywhere on L+(A).

Let us examine the form of these transport equations at the bound-

ary of L+ (A). Near lb, we have coordinates (y", ~c", a) near T+ (A) and
(Y//, All, o,, s) away from T+ (A), which are valid coordinates for cr  2, say.
The situation near rb is similar so the argument will be omitted.

In either set of coordinates, the left vector field, restricted to L+ (A),
takes the form

Also, by Lemma 2.3, the subprincipal symbol of Hl - A~, which is equal
to the subprincipal symbol of H - A 2 in the singly-primed coordinates,
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vanishes where [L’ vanishes, and y’ = 0 at lb on L+(A). Therefore, by (3.5),
the transport equation for the symbol of order -1/2 takes the form

near T+(~), or

away from T+(A), which gives an equation for ao of the form

This shows that (J-n/2ao is smooth across a = 0.

To show regularity near L# (~), we use the fact that the symbol
satisfies both the right and left transport equation. We take the sum of the
transport equations that obtain when we use the total boundary defining
function x’ for HL , and x" for Hr. The right transport operator with respect
to x" takes the form

However, by (3.2) the symbol written in terms of x" is equal to

(X/I/X/)-1/2-n/2 times the symbol written in terms of x’. Since we are
writing the symbol in terms of x’, we must include a factor o,- 1/2-n/2 to
be consistent with (4.19). This gives an equation for ao of the form
(4.21)

1

In view of the term -2T"a0a in the formula (2.26) for Vr, and since psub
vanishes at s = 0 since = 0 there, we get an equation for ao

Combining with the left transport equation gives an equation which,
using (4.15) and the fact that T’ = T" = -A at s = 0 takes the form
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where W is tangent to the boundary of L+(À) and f is smooth on L+(À).
This may be written

This together with (4.20) shows that

It follows that there is a Legendre distribution

(L+ (A), I+ (A) ) which has the correct symbol of order -1 /2 at L+ (A). Thus
it solves the equation

where (n + 3)/2 is the order of vanishing at lb and (n - 1)/2 is the order
of vanishing at rb. The order of improvement at lb is two since not only
is the Legendrian GI of Definition 2.5 at lb characteristic for Hl - A~,
but the transport operator for symbols of order (n - 1)/2 vanishes, so we
automatically get two orders of improvement there. At rb however we can
expect no improvement. As shown above, Q will automatically satisfy the
equation

Let us assume by induction that we have a kernel which solves the left
equation above up to an error in

and hence the right equation up to an error in

We wish to improve this by one order at L+ (A). To do this, we choose
to have the symbol of order k - 1/2

on L+ (A) which solves the left transport equation (and therefore the right
transport equation) on L+ (A). We need to investigate the regularity of this
symbol to see if it extends to a Legendrian conic pair. The argument is
very analogous to the one above, but now we have error terms on the right
hand side. In the first region, after removing the half-density factor, we get
an equation of the form

The term bk comes from the error to be solved away. Since the error
term is of order + 1/2 at L+(A) and order (n + 3)/2 at lb, bk E
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an/2-k+ICOO(L+(À)). This shows that ak E as desired.

Similarly, in the second region, near the corner lb n L# (~), by combining
the vector fields v + Vr we get an equation of the form

With bk again the error to be solved away. To calculate its order of vanishing
at s = 0, consider the transport equation for symbols of order (n - 2)/2 at
L~ (~). Noting that the subprincipal symbols vanish identically on L~(A),
the left transport operator is

whilst the right transport operator with respect to x" is

To write this with respect to x’ we must conjugate by a (by (3.2)). In view
of the term - 27" a 8(1 , this changes the operator to

The sum of these two operators vanishes on L# (A) so actually the right
hand side in (4.27) comes from a term in I ~+ 2 ~ n 2 2 e ~ ’ n 21 (Xb~ L+(~)~
L# (A); From Proposition 3.5 we see that bk E s(n-I)/2-k+lan/2-k

coo (.L+ (A)), one power in s better than might be expected. This shows
that ak E desired. Therefore, one can find
a Legendre conic pair with symbol of order k - 1/2 on L+ (A) equal to ak
which solves away the error term of order k + 1/2 at L+ (A). This completes
the inductive step. By asymptotically summing these correction terms, we
end up with an approximation G3 (A) to the resolvent kernel with an error

n-2 n+3 n-l 2 # cP 1

E3(A) in I-ri-r,-r(Xb,L (À);S 02). That is, we have solved away
the scattering wavefront set of the error term at L+ (A) completely.

4.5. Solving away outgoing error.

In the last step of the construction of the parametrix, we solve away
the error to infinite order at bf and lb. We begin by considering the

expansion at rb. By construction, the parametrix G3 (A) has an expansion
at rb (here we are interested in what happens at rb n bf, where we start
the error removal process)
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where

is the fibre Legendrian of Definition 2.5 and y" is regarded as a smooth
parameter. (This expansion is an immediate consequence of the definition
of fibred Legendre distributions.) The factors v’, v" are the Riemannian
half-density factors on X lifted to Xb2 via the left and right projections,
respectively. We will ignore the half-density factors from here on; since
a(a - v’ - v’) = A(a) . v’ . v’, this only has the effect of changing H = A + P
to L1 + P’ for some P’ with the same properties as P.

The error term after applying H - A 2 to has the form

where Again we regard y" as a parameter.
Thus we have

Consider the problem of solving away errors of the form ej, to infinite
order at bf (of course we cannot solve the errors away exactly without
being able to solve (H - À2)u = f exactly, which we cannot do until we
have constructed the resolvent kernel!). If we apply H - A 2 to a series of
the form

we get a series of the form

(Here we suppressed y" in the notation since we regard it as a parameter.)
Thus, we can add to 9j a series of the form (4.30) to solve away the powers
greater than (n + 1) / 2, but the power (n + 1 ) /2 presents a problem (without
introducing logarithmic terms), because of the vanishing of co in (4.31)
when = 0. We need the following results.

then
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Proof - It follows inductively using (4.31) that the coefficient of
order (n + 1)/2 - 1 vanishes, for 1 = k, k - 1,.... Thus, actually g c

Then (4.31) shows that the next coefficient also
vanishes. 0

COROLLARY 4.3. The same result holds if the condition g E

is replaced by g E GO) for
any p and any Legendre conic pair (K, G~).

Proof. Apply the above argument to the symbol at G~ . 0

Thus, for each j, we can modify gj by a series of the form (4.30) until
the error term is of the form x Y). Then applying the
corollary to gj, we find that unsolvable term of order x’ ~n+ 1 ~ ~2 vanishes.
Therefore, we can solve away the ej to infinite order at bf. Thus, we may
assume that our error in E3(A) vanishes to infinite order at the corner
bf n rb.

Next, we solve the error away at L#. This involves solving the
transport equation

The equation for ao then is

and bo is rapidly decreasing at rb and is in ~3/2C°° (L# (~) ) at lb.

There is a unique solution which is rapidly decreasing at rb and in

at lb. We can thus find a correction term which reduces

the error to I ~n+2&#x3E; l2; (n~-3) /2, (n-1) /2 ~L# ~~~ ~ ~ with infinite order vanish-

ing at bf n rb. Inductively, assume that we have reduced the error to

In/2+l~;(n-~3)/2,(n-1)/2 (L# (~11 ~ with infinite order vanishing at bf nrb. The
transport equation for a~ is then

where inductively, bk is rapidly decreasing at rb and is in 
at lb. There is a unique solution rapidly decreasing at rb and in a-I/2+kCoo
(L# (A)) at lb. A Legendre distribution in In/2+k- 1, (n- 1)/2, (n- 1)/2 (L# (/B))
with aj as symbol then reduces the error to I n~2+~+1 ’ ~’~+3&#x3E; ~2, (n-1 ) /2 (L# (~) ) ~
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with infinite order vanishing at bf n rb, so this completes the inductive step.
Taking an asymptotic sum of such correction terms yields a parametrix
G4 (A) = G(A) leaving an error which is the sum of a term supported away
from rb of the form

with a smooth and rapidly decreasing at bf, plus a term supported away
from lb of the form

at rb, with b rapidly decreasing at bf. The error at lb can be solved away
using (4.30)-(4.31), leaving an error term E4(A) which can be expressed on
the blown-down space X2 as

with b smooth on X 2 and rapidly decreasing at x’ = 0. Such an error term
is compact on the weighted L2 space for any 1 &#x3E; 1 /2 (where L2 is
taken with respect to the metric density). This completes the construction
of the parametrix.

5. Long range case.

The case of long range metrics and long range perturbations, P E
requires only minor modifications in the parametrix construc-

tion until the last step (removing the outgoing error). In particular, there is
no change in the construction of the pseudodifferential approximation. In
the intersecting Legendrian construction, as well as solving the transport
equations on L~(A), the only difference is in the structure of the subprin-
cipal symbol, which no longer obeys Lemma 2.3. Thus, the arguments in
Section 4.4 and Section 4.5 have to be modified. Let q denote the boundary
subprincipal symbol of H. Notice that in the gravitational long range case,
q is a constant, but in the general long range case, q is an arbitrary smooth
function of y which is a quadratic on each fibre of K over Y. Let ql and q,
denote the lift of q to X2 via the left, respectively right, projection.

Let us now discuss the necessary modifications to Sections 4.4 and

4.5. Equation (4.18) becomes
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near T+ (A). Thus, (4.20) is replaced by

Thus, now we conclude that in this region ao is of the form

Next, in the second region, at the corner the right transport
equation (4.22) becomes

Adding this to the left transport equation yields

which now gives that ao is of the form

Combining this with the other similar results at rb and the interior
of we deduce that

In the general long range case, the dependence of q on y, and

its appearance in the exponent of the boundary defining functions plb,
etc., means that differential operators from the left factor, acting on a

Legendre function with principal symbol ao, introduce logarithmic terms.
For example, in a neighborhood of lb in L+ (A) the error term bk in (4.26)
for k = 1 will take the form

Then the transport equation for al takes the form



1338

Hence, near lb but away from al will take the form

A similar discussion works at the other boundary faces of L+ (A), with
up to quadratic factors in each of log P1b, log prb, logpo, and can be repeated
(with progressively higher powers of logarithms) for all ak’s.

Since the most important long-range case is the gravitational case
where the subprincipal symbol is constant, and since it makes the discussion
more transparent, in what follows we make the assumption that

A and P are of long range gravitational type,

which implies that q is constant. Let

The point is that in this case the powers of plb, etc., above are constant,
thus no logarithmic factors arise when we apply H - ,,B2 to such Legendre
functions. Then

and asymptotic summation gives an outgoing error

Since a is a constant, (4.30)-(4.31) are still true (I~ need not be an integer;
it suffices that it is a constant), except that now

Since now we are taking where 1 is an integer, we can solve away
the series, provided that the coefficient of the 1 = 0 term vanishes, which
is assured just as in Lemma 4.2. The rest of the argument requires only
similar modifications as compared to the short-range case, so we conclude,
as there, that we can modify the parametrix to obtain an error term of
the form

with b smooth on X2 and rapidly decreasing at x’ = 0.
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6. Resolvent from parametrix.

In the previous two sections, we constructed a parametrix G(A) for
R(A) which satisfies

where E(A) has a kernel which is of the form

Thus, it is a Hilbert-Schmidt kernel on for every 1 &#x3E; 1/2, and
in particular is compact. In fact, we also see directly from its form that

E(A) : for 1 &#x3E; 1/2. Crude estimates (such as Schur’s
Lemma) show that G(A) acts as a bounded operator from xl L2 to x-l L2 for
large enough l &#x3E; 1/2; more refined estimates, which we do not need here,
show that in fact this is true for any l &#x3E; 1/2. (The more refined estimates
reflect the improvement arising from the oscillatory behavior of the kernel,
i.e., are analogous to the standard FIO mapping property estimates, except
that now the kernel is not simply Legendrian. A different proof of these
optimal estimates is given by the limiting absorption principle; however,
this is exactly what we do not wish to use here to maintain the constructive
nature of our arguments!) Thus, the equation above becomes an operator
equation B

from ,

6.1. Finite rank perturbation.

To correct G(A) to the actual R(~), we must solve away the error
term E(A). Thus, we would like Id + E(A) to be invertible. However, this
is certainly not necessarily the case as things stand; if for example we
modified G(A) by subtracting from it the rank one operator 
for some E then the modified G(A) would be microlocally
indistinguishable from the old one, but would annihilate 0, so the modified
Id + E(A) would not be invertible.

Since Id + E(A) is compact, it has a null space and cokernel of the
same finite dimension N. To make Id + E(A) invertible, we try to correct
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G(A) by adding to it a finite rank term

Here (, ) denotes L2 pairing, lbz should lie in L2, and the factor of x2l is

included to ensure that it acts on xl L2. We require that Oi are in so

that (6.1) is bounded from xl L2 -~ x-lL2. We wish to choose §z andoi so
that

is invertible. This is possible if we can choose xloi to span the null space of
Id + E(A) and (H - A 2)0, to span a subspace supplementary to the range.
Note that if (Id + E(A))u = 0 and u E xlL2, then u = -E(A)u, so the
mapping properties of E(A) imply that u E C°°(X). Thus, we automatically
have qbz E above. To proceed, we need the following lemma.

LEMMA 6.1. - Let 1 &#x3E; 1/2. Then the image of H - A 2on the sum of
and the range of G(A) applied to is dense in xl L2 .

Remark 6.2. - Note that (H - À2)G(À)g = (Id + E(A))g E 
if g E and for u E (H - A2)u E C* (X), so the image of
H - a2 on the space in the statement of the lemma is a subspace of 

Proof. To proceed, we give the proof for short range H; the proof
for long range H requires only minor modifications.

Let A4 be the subspace of given by the image of H - A 2 on the
sum of and the range of G(A) applied to If is not dense,
then there is a function f E xl L2 orthogonal to M. Since u E 
implies (H - A2)u E .J1~L, f satisfies

where we used that H is symmetric on On the other hand,
G(A) maps and for any g E I

(H - (Id + E(A))g E hence (Id + E(A))g E M. In
addition, E (A) *, with kernel E (A) * (z’, z") = E(A, z", maps C-°° (X ) -~
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so we have

If h = -E(A)~, then h has the form i.e., it is

incoming. A standard argument, similar to the one presented in [10],
then implies 0. Indeed, let h = + h, where

Green’s formula yields

so ho m 0. It then follows iteratively from (4.30) and (4.31) that the
expansion of h at the boundary of X vanishes identically, that is, that h E

Finally a unique continuation theorem, see e.g. [7, Chapter XVII],
shows h = 0 identically. This means that is indeed dense in xl L2 . 0

Thus, we can choose the §z E above so that

(H - E C1° (X) span a supplementary subspace of range Id + E(A).
The modified parametrix then satisfies

where E5 (a) has the same form as E(A) but in addition Id + E5(A) is

invertible on xl L2 for all l &#x3E; 1/2.

6.2. Resolvent.

The inverse Id + S(A) of Id + E5 (A) is Hilbert-Schmidt on xl L2 since
this is true of E5(A). Moreover, since

it is easy to see that also S(A) E e
solution for the kernel R(a) is then

Our
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It is not hard to show that G5 (A) S(A) has the form

so R(A) has the desired microlocal regularity (4.4).
Remark. - Lemma 6.1 directly shows the absence of positive eigen-

values of H. Suppose that (H - A’)u - 0 and u E xSH2(X) for some
s &#x3E; -1/2. This would certainly be the case of an eigenfunction since H
has elliptic interior symbol, so u would lie in for every k. We need

to show that for all functions g E x(n-I)/2eiÀ/xCoo(X) the equation

holds. Indeed, this implies that u is L’-orthogonal to the image of H -
A2 acting on or equivalently that x2lu E xlL2 is

orthogonal in xlL2 to the image of H - a2 acting on x(n-I)/2eiÀ/xCOO(X)
in xl L2 . Then Lemma 6.1 shows that u m 0.

To deduce (6.5) for identi-

cally 1 on 0 near the origin. Then

Note that [H, O(xlt)] is uniformly bounded (i.e., with bounds independent
of t) as a map x’+’L 2 and in fact - 0 strongly as
t - 0. Applying this with 1 = -1/2 - E, E &#x3E; 0 sufficiently small, we see
that the last term goes to 0 as t - 0, proving (6.5).

6.3. Analytic continuation.

It is not hard to show that the kernel R(A) constructed above

continues analytically (as a distribution on into 0, Re A &#x3E; 0.

We complete the proof of Theorem 1.1 by showing that this analytic
continuation coincides with the outgoing resolvent, R(À2), for Im A &#x3E; 0.

An interesting question, raised by the referee, is whether under

stronger assumptions our methods yield a precise description, as well
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as a new proof of existence, of the analytic continuation of R(A’) into
0, ReA &#x3E; 0 as well. The existence of the analytic continuation to

a sector containing the real axis, under appropriate analyticity conditions
near 8X, was shown by Wunsch and Zworski [14]. As can be seen below,
there are certainly delicate issues (e.g. the combination of exponentially
growing Legendrians and asymptotic summation) which would require
methods of different character from those employed elsewhere in the paper.
Nonetheless, one would expect that under suitably strong assumptions on
H one can indeed construct an analytic continuation to a neighborhood of
the real axis. Since it appears that such a construction would take us far

afield, we do not pursue this issue here.

Our parametrix is defined as an asymptotic sum of symbols, which
is really a sum with cutoff functions inserted (see [7, Proposition 18.1.3]
for an explicit construction). The cutoffs depend on C~ norms of a finite
number of symbols and ensure that the sum converges in C’~ for all k. If the
symbols are holomorphic in A then the C~ norms may be taken uniform on
compact subsets of A. Since holomorphy is preserved under uniform limits,
we need only check that the phase and symbols analytically continue in
some explicit parametrization of the Legendrians.

It is standard that the pseudo differential approximation G1 (a) ana-
lytically continues. Blowing down sf, we solve away the error as an inter-
secting Legendrian, see Section 4.2. Let 0 be a local parametrization of the
Legendrian L(l) near L(l) n Then it is easily checked that the
phase function

locally parametrizes (N* diagb, L+ (A)). Since the variable s takes nonneg-
ative values, the function continues to ImA &#x3E; 0.

Away from sf, the value of T is strictly negative on the Legendrian,
and so the phase is of the form

where 0 is positive on the Legendrian, independent of A. By restricting
the support of the symbol sufficiently, therefore, we may assume that
0 is positive everywhere on the support of the integral. Thus this also
analytically continues to the upper half plane with uniform bounds.
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The symbols are defined by iteratively solving transport equations of
the form

where bo = 0. These equations are solved along L° (~), i.e., if we consider
amplitudes in an explicit parameterization of the Legendrian, then along
the critical submanifold C~ = {(0,~/,~) : 01, where Aolx is the
phase function as above. Note that C~ is independent of A, and it is iden-
tified with L°(A) via the map (0, y, u) H (0, y, d(x,y) ·

Along Co the transport equation becomes an ODE whose coefficients de-
pend on A polynomially, since the only A dependence of the coefficients
arises from this identification map, and Hp, ~, psub are polynomial in the
fiber variables. Thus, the solution aj of the transport equation, as a func-
tion on D x C~, D a neighborhood of the positive real axis in C = (~a, is
holomorphic (in A), provided bj is (here we identify Co with L°(A)). Note
that the bj ’s arise because solving the transport equations only guarantees
that the ’error term’ E3 (A), arising from the application of H -À2 to R3 (A),
is one order lower than expected, so for each A, depends on ai, i  j
near C~, and not just on (In fact, depends on a finite number
of terms of the Taylor series of ai, i  j, at C~.) To ensure that the bj are
holomorphic in A, we define the ai near D x C~, rather than at D x 
e.g. by introducing a local product decomposition Co x U, U C R*’ , of the
parameter space near C~, and pull-back the ai, first defined on D x C~, by
the projection. Then, having constructed a2, i  j, bj will be holomorphic
in A near, hence at, D x C~, so aj is also holomorphic at D x C~, hence it
extends to be holomorphic near D x C~ . If we express the amplitudes aj
with respect to a different parameterization of L°(A), which is still of the
form then the new amplitudes iij will still be holomorphic functions
of A, so holomorphy is preserved at the overlap of parameterizations of
different parts of LO(À). This completes the inductive argument.

Therefore, our parametrix constructed above may be assumed holo-
morphic in some set B(E, Ao) n 0 1, for some Ao &#x3E; 0. It is easy to

see that for non-real A, the parametrix is in the small calculus, since the
positivity of 0 implies that the exponent of has negative real part,
and is therefore rapidly decreasing at bf, lb and rb. The finite rank correc-
tion may be taken independent of A if we chose c &#x3E; 0 sufficiently small.
Then, we have
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where all terms are holomorphic in some small open set as above, E5 (A) is
invertible on xlL2 for all &#x3E; 1/2, and off the real axis, G5 (A) and E5 (A) are
in the small calculus. Define Id + S(A) to be the inverse of Id + E5 (A) on
xl L2 for some fixed l. By the symbolic functional calculus [3], for ImA &#x3E; 0,
S is a family of scattering pseudodifferential operators which is clearly
holomorphic. Then R(a) _ G5(A)(Id + S(A)) satisfies (H - = Id

on xl L2 . But by self-adjointness, and the symbolic functional calculus, for
ImA &#x3E; 0, (H - À2) has a pseudodifferential inverse on L2. Since R(A) is
a bounded operator on L2 for ImA &#x3E; 0 it must be the inverse. Therefore

we have shown the inverse on the real axis constructed above continues as

a Schwartz kernel to the upper half plane and agrees with the resolvent
there. This completes the proof of Theorem 1.1.

Remark 6.3. - The only place where we used that Im A &#x3E; 0 is to
make our parametrix act on, and its error compact on, weighted Sobolev
spaces. Namely, in the last step of the construction, i.e., when we add a
finite rank perturbation to remove the error E(A), we need E(A) to be a
compact operator on xlL2 for 1 &#x3E; 1/2. However, the kernel of E(A) is of
the form SCÇ2 4), and for 1m À  0 the real part
of the exponent is positive, so the kernel of E(A) is not even a tempered
distribution on X~. In particular, it does not even map to 

The same statement holds for G(A) as well.
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