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DYNAMICS OF WAVE PROPAGATION AND
CURVATURE OF DISCRIMINANTS

by Victor P. PALAMODOV

1. Introduction.

The dynamical characteristics of wave propagation like intensity,
energy-impulse tensor, density of 4-tensor are special Hermitian forms of
solutions of the wave, Maxwell and Dirac equation respectively. For a
generic Lagrange distribution solution the value of the Hermitian form is
a singular density that diverges fast at the locus (front) of the Lagrange
manifold. Meantime for an arbitrary Lagrange distribution of order zero the
divergence of the intensity integral is of logarithmic rate. We call residue
of the intensity integral the coefficient at the logarithmic term (Section 3).
The residue is a positive measure supported in the locus. To evaluate
this measure we choose an appropriate barrier function that vanishes on
the locus (Section4). We calculate the residue in terms of the symbol
of the distribution (Sections2 and 5). A substantial point of our proof is
inspired by an observation due to J.J. Duistermaat that concerns oscillatory
integrals [1], Section 1.3.

For any solution of the wave equation the residue of the intensity
integral is preserved by the corresponding Hamiltonian flow. This property
extends the classical conservation law of geometrical optics to singular
solutions and to rays passing through caustics. We state that the singular
energy-impulse tensor obeys the similar conservation law (Section 7).

The residue of an arbitrary Lagrange distribution of order zero is
equal to the delta-density of the Lagrange locus times a factor which is

Keywords : Fourier integral — Lagrange manifold — Contact bundle — Symbol -
Discriminant — Residue — Curvature — Conservation law.
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1946 VICTOR P. PALAMODOV

unbounded near any singular point of the Lagrange locus. This factor can be
represented in a purely geometrical form that does not depend directly on
a singular stratification of the locus (Section 8). It is essentialy equal to the
maximal minor of the curvature form of the locus. This gives an approach
to a uniform of asymptotics of a Lagrange distribution. We consider an
example in Section 9.

2. Lagrange distributions and symbols.

We write a Fourier integral in a smooth manifold X in the form

(2.1) I(¢,A) :/(;exp(27rz¢(x,0))A(:c,0)d0.

The integral is taken over an open cone © C RY \ 0. The space RV
(ancillary space) is endowed with a coordinate system 61, ...,0x (d is the
corresponding Euclidean volume form) and with the action of the group R,
of positive numbers ¢ : 6 — tf. Any coordinate system in the ancillary space
possessing the last property is called homogeneous. The phase ¢ is a real
smooth homogeneous function in X x © of degree 1, i.e., ¢(z, t0) = to(z, 6)
for t > 0. We assume that the phase is non-degenerate, that is, rank of the
Jacobian matrix of the functions ¢} ,...,#,, is equal N in any point of
the critical set C(¢) = { dg¢p = 0}. The amplitude A is a smooth complex-
valued halfdensity in X depending on the ancillary variables § € ©. We
suppose that the amplitude is supported by the set X xI" where I' is a closed
cone in © and A is asymptotically homogeneous of certain degree m. The
last condition means that A = A,, + R where A,, is a smooth halfdensity
that is homogeneous in 6 of degree m and the remainder satisfies for some
positive £ and for any compact set K C X

/ |DLD)RI* < Ok (6] + 1)2("“6"), i+j<m+N.
K

These conditions imply that (2.1) converges to a continuous functional
on the space of smooth halfdensities x with compact support:

16,400 = [ ([ exp(emol@,0))A(z,6)a0)x.
x \Je
We call v = m+ %N the order of the Fourier integral. Consider the mapping

(2.2) §:C() — LX), (@,0)— (2,d:6(z,0))

where T (X) denotes for the bundle of non-zero cotangent vectors in X.
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DYNAMICS OF WAVE PROPAGATION 1947

This mapping is an immersion and commutes with the action of the
group Ry hence its image A(¢) is a conic Lagrange variety.
Take another copy ©° of the cone ©. There are three differentials
d, dg and dgo in the de Rham complex Q*(X x © x @°). Set
d=d;+ ds and d° = dgo.
Take the function 09 = 3" 6,69. The form (dd°06°)"N = AN (dd°66°) will
be considered as a density in © x ©°. The product

a = (Anm)? A (dd°06°)"N

is a smooth density in X x © x 6°. Introduce the phase function in this
manifold

¥(z,9,6°) = ¢(x, 6+ 6°)

and consider the submanifolds
C'®) = {d°®=0}, Z={"=0}.

We have the natural isomorphism C%(®) N Z = C(¢). Choose the
coorientation of the manifold C°(®) N Z by means of the frame of 1-forms

(2.3) de),...,d®), d6?,...,d6%, &, =0®/06°, i=1,...,N.

These forms are independent since the phase ¢ is non-degenerate. Note
that this coorientation does not depend on the choice of the coordinates in
the ancillary space ©. Consider the 2-form dd°®; the quotient

(6]

= Crada)

is defined as a form of degree dim X up to a form £’ that satisfies
B’ A (dd°@)"N = 0.

The term 3’ belongs to the ideal in Q*(X x © x ©') generated by the
forms (2.3) since these forms are independent in any point of C(®) N Z.
The restriction of 3’ to the manifold C°(®) N Z vanishes consequently the
restriction of G to this manifold is a well-defined smooth density. Define the
halfdensity

o(I(6,4) =B | C(@)NnZ.

TOME 50 (2000), FASCICULE 6



1948 VICTOR P. PALAMODOV

This is a homogeneous halfdensity in C(¢) of degree v = m+ %N . Choosing

a smooth nonvanishing density dV in X we can write A,, = a,VdV
where a,, is a homogeneoues amplitude function. This implies the equivalent
formula

dV A ddO(960)AN
(—1ddO®)AN

(2.4) o(I(¢,A)) = am\/ C(9).

Suppose that the mapping ¢ : C(¢) — A(¢) is injective and hence is
a diffeomorphism. The direct image ¢, (o (1)) is called the symbol of the
Fourier integral I = I(¢, A). There is an ambiguity in the choice of the root
in (2.4). Take a local coordinate system Mg, ..., A, in A and consider the

density |dXo A ... A d),| in A(¢). Compare two densities:

dV A dd°(66°)V
(—2ddO®)AN

=8(¢) - |dAo A ... Ad),.

Here s(¢) # 0 is a function with real or imaginary values. The square root
of the left-hand side is equal to

(2.5) X(¢) =exp (%arg s(¢)z) |s(@)dro A... A d/\n|l/2

where the argument % arg s(¢) is multiple of iw and is well-defined up
to multiple of m. Therefore the halfdensity X(¢) is defined up to the
factor + and we have o(I) = a,,X(¢) by (2.4). The symbol is transformed
as a homogeneous density in A(¢) if we execute an arbitrary coordinate
change (z,6,8°) — (z,(,¢°%) by means of smooth homogeneous functions
¢ =¢(x,0),5=1,...,N in X x © of degree 1 and set (] = (;(z,6°).

Dimension descent. — Suppose that the phase function can be written
in the form ¢(x,0) = |n|~q(&) + ¥(x,n) in a neighbourhood of a point
(zo,60) where & = (&1,...,&k), n = (M,...,MN—k) are new homogeneous
coordinates in the ancillary space such that & vanishes in (z,6p) and ¢
is a non-singular quadratic form of the variables £&. The function 9 is
again a non-degenerate phase and by the stationary phase method we have
I(¢,A) = I(¢, B) (mod C'*°) where B is an asymptotically homogeneous
amplitude of order m' = m + %k such that

A |0]"/
/| det g|

where sgn(q) is the signature of the quadratic form.

B = exp (sgn(Q) %)
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DYNAMICS OF WAVE PROPAGATION 1949

Lagrange distributions. — Let A be a closed conic Lagrange manifold
in T3 (X). We call any generalized halfdensity in X of the form

(2.6) U=Y I(¢i,Au) (mod C™)

A-distribution (or Lagrange-distribution) if the sum the Fourier integrals is
locally finite in X, A(¢;) C A for each i and the amplitudes A ;) satisfy the
above conditions. This is in fact a special case of the general definition due
to Hormander [6].

We say that U is of order < v for a real number v if U can be written
in the form (2.6) where each term is of order < v.

Denote by D'O(A) the space of A-distributions in X of zero order.

Symbol. — Let m : A — X be the natural projection. Denote by A*
the open subset of A where the dimension of the kernel of the tangent
mapping drn : T(A) — T(X) is less or equal to k, k = 1,...,dim X. For
any point A € A¥ there exists a generating phase function 1 that depends
on k ancillary variables. Fix a family of non-degenerate phase functions 9,
a € A such that for any k =1,...,dim X

A* = J{A®Wa) 5 N(¥a) < K}

For each o we fix a choice of % arg s(¢q) in (2.5). Take an arbitrary non-
degenerate phase function ¢ such that A(¢) C A. We can choose a locally
finite covering © = |J©; by some open cones ©; such that for each j the
equation

(2.7) ¢(2,0) = 0oy | " ¢5(€) + Y (2, 6(0))

holds in ©; for a non-singular quadratic form ¢; and a homogeneous
coordinate system &, 6(4), & = a(j) in the ancilla~ry space. This equation
implies that the image of U; under the mapping ¢ is contained in A(%q).
Choose a smooth partition of unity {h;} in © such that supph; C ©; for
each j. Take an amplitude A as above, write I(¢, A) = > I(¢,h;A) and
apply the dimension descent to each term:

1(9,h;A) = exp ( sgn(q;) - ) I(a, By), (mod C)

where Bj; is a new asymptotically homogeneous amplitude which satisfies
the above conditions. Set

(2.8) o(I(¢,hjA)) = exp (sgn(q) %)U(I(ipa, Bj)).

TOME 50 (2000), FASCICULE 6
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The right-hand side is defined as a local section Y(v) of homogeneous
halfdensities in A of degree v.

To globalize this construction we consider the Keller-Maslov line
bundle £ in A. In the atlas {A(¢q)} this bundle is defined by the transition
mappings exp(sgn(gas) ‘—im) where g, is the quadratic form that joins the
phase functions ¢, and ¢g as in (2.7). The group of this bundle is reduced
to Z4 C U(l)

The halfdensities e, = X(do) are local sections of the bundle L.
Another choice of % arg(1,) corresponds to the generator —e,. Therefore
the right-hand side of (2.8) is well-defined as a section of the bundle Y(v)®L.
We set

o(I(¢,A)) =Y o (I(¢,h;A)).
J
We define symbol of an arbitrary Lagrange distribution U of order v by the
equation

o(U) = o(I(¢i, A4))
where the sum ranges over the terms I(¢;, A;) of order v. We have proved
in this way

ProprosiTioNn 2.1. — The symbol o(U) of an arbitrary A-distri-
bution U of order < v is well-defined as a section of the bundle Y(v) ® L.

Remark. — The absolute value of the halfdensity (2.4) coincides with
the principal symbol in the sense of [5], [2], up to the factor (27)N/2.

Contact bundle. — The manifold C*(X) = T§(X)/Ry is the variety
of all cooriented contact elements in X. This manifold has the canonical
contact structure. For a conic Lagrange manifold A in T (X) we set
A, = A/R,. This is an integral manifold of dimension dim A, = dim X — 1.
We call it contact Lagrange manifold. For a Fourier integral I = I(¢, A) of
order 0 we define formally the halfdensity
(29) 0ul) = o[ Lo (1)

dje|
in X x ©/Ry. The right-hand side is homogeneous of order zero hence
this halfdensity is well-defined. Take the direct image of this form by the
mapping 4~S The image is a halfdensity in A.(¢); it is equal to the symbol
o(U) considered as a section of the bundle T(0) ® £ if we push forward
both bundles to the manifold A.. We call this image contact symbol of U.

ANNALES DE L’INSTITUT FOURIER



DYNAMICS OF WAVE PROPAGATION 1951

Remark. — For arbitrary zero order A-distributions U, V' the product
o(U)a(V) = o(U)a(V) is a density in A.. It does not depend on the choice
of % arg s in (2.5).

3. Residue in regular points.

DEFINITIONS. — Let again X be a smooth manifold and A be a closed
conic Lagrange manifold in T (X). Consider the corresponding contact
Lagrange manifold A. and denote by p: A, — X the natural projection.

We call the image L = p(A.) locus of the Lagrange manifold. The
locus is a closed set since the mapping p is proper.

We shall say that A, is univalent at a point A and over the point
z = p(A\) € X if ) is the only point of the set p~1(z).

We call a point & € L regular if A. is univalent over z and the tangent
mapping dp:T(A¢) — Tx(X) is injective. Let L, denote the set of regular
points; it is a smooth open manifold of dimension n = dim X — 1. The
complement Ly = L\ L, is a closed subset of X.

Take a regular point y € L and a smooth function f defined in a
neighbourhood Y of y that has no critical points and vanishes in LNY. We
call it regular barrier for L.

For an arbitrary A-distribution U the square |U|? is a distribution
in X which is smooth in the compliment to the locus of A.

Denote by D°(X) the space of continuous functions in X with compact
support.

ProrosiTion 3.1. — Let y € L, and f be a regular barrier function
in a neighbourhood Y of y. For any U € D'°(A) we have

(3.1) /f  AUP =2y (p) - log Liow, pery)

as € — 0 for a distribution Xy € D'°(Y'). This distribution is positive and
supported by Y N L. It does not depend on the choice of the regular barrier
function.

We call the left-hand side the peripheral integral.

Proof. — The manifold A, coincides with a connected component of
the conormal bundle N*(L) over a neighbourhood of the point y. Therefore

TOME 50 (2000), FASCICULE 6
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o(z,0) = 0f(z), 0 € © is a generating function for A. where © is the
positive or negative ray in R \ {0}. Suppose that © = R, . We can write

(3.2) U(z) = /000 exp(2m0f(x)) A(z,0)dd (mod C™)

and the amplitude A(z,0) = a(z)0~/2 + O(6~1/2~¢) where € > 0 and a
is a smooth halfdensity in Y. Calculating this integral we get the explicit
formula

(3:3) U = (f +20)7"/2b(z) + O(|f171/>**)

where b = 4/ %z a. Hence

U= U B 1og ,
/f226p| ' /J:'?>e lfl +O( ) / P aF df 10g € +O(1)

In the last term we use the coorientation of the manifold L, by the
form df. This proves (3.1) with the coefficient

(3.4) Sr(o)=2 [ o 'f;'f ploL.

We have C(¢) = {f(z) = 0,60 > 0} and the manifold A is given by the
equation £ = 6df. Calculate the symbols

A2 A df A dgO a
(35) oU)= m \/:d‘ \/— e

Consequently the right-hand side of (3.4) can be written in the form

(3.6) Ty (p) = /A |oe(U)*p* (p)

where p* means the pullback operation. Obviously this form does not
depend on the barrier function. The local distributions ¥y glue together to
a unique distribution defined in an arbitrary open Y such that the inter-
section Y N L contains only regular points. This follows from (3.6).

ANNALES DE L’'INSTITUT FOURIER
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4. Locus and barriers.

DEFINITION. — For a contact Lagrange manifold A, and a point A € A,
we denote by 7()) the multiplicity of the natural projection p: A, — X in X
(¢f. (10.2)). Take an arbitrary point A where A, has finite multiplicity. This
point is isolated in the fibre p~!(y) hence there exists a neighbourhood A’
of A in A, which is univalent at this point. We call the set L' = p(A’) fold
of the Lagrange locus at y.

For an arbitrary point y in the locus L = p(A.) the number

() = Y _{r(N);p() = v}

is called the multiplicity of A, over y. If A, is closed and has finite
multiplicity over y, the locus is equal to a finite union of folds in a
neighbourhood of y.

Take an arbitrary point A = (y,£) € A, of finite multiplicity 7()),
choose a neighbourhood A’ of A and a submanifold H C X such that
Ty(H) = Ker{. Choose a smooth retraction q:Y — H where Y is a
small neighbourhood of y. Denote by u(\) the local multiplicity of the
composition gp: A, — H in the point A. For an arbitrary point y € X such
that A. has finite multiplicity over y we set

uy) = Y {u);p() = v}
We call u(y) the multiplicity of the locus L = p(A.) at y.

ProPOSITION 4.1. — If the multiplicity 7(]) is finite, the number p(\)
does not depend on the choice of H and q. We have 7(\) < pu()) < oo.

THEOREM 4.2. — Let A, be a closed contact Lagrange manifold over
a manifold X that has finite multiplicity and is univalent over a point y.

(i) There exists a real smooth function f defined in a neighbourhood Y
of y that vanishes in L and satisfies the conditions
(4.1) d'f(y) =0, i=0,...,u—1, d*f(y) #0, p=p)
where d* means the i-th total differential of a function.

(ii) There exists a set G C X of n-dimensional measure zero where
n =dim L = dim X — 1 such that f does not vanish in X \ (LU G) and is
a regular barrier at any point of L\ G.

TOME 50 (2000), FASCICULE 6



1954 VICTOR P. PALAMODOV

Proof of Proposition 4.1. — Choose a non-degenerate phase function
¢ Y x Q — R for the germ of the contact Lagrange manifold A, at A by
means of Proposition 10.2. We can assume that 2 C RF is a neighbourhood
of the origin. We have ¢ : C(p) = A, (y,0) — A. Therefore

(4.2) Ox(Ae)/(p"(my)) = Oy 0(C())/(my)
= O0y0(X x 0)/((#,0,,) + (my))
= A/, ¢,)

where m, stands for the maximal ideal of the point y in O(X), A denotes
the algebra of germs in the point w = 0 of real smooth functions in Q and
P(-) = ¢(y, ). If B is an algebra and G is a subset of B, we denote by (G) the
ideal generated in B by this subset. The quotient (4.2) is of finite dimension
7 = 7(A) by the assumption. By Tougeron’s Theorem [11] there exists a
local coordinate system w near the origin such that 1 is a polynomial in w.
Choose coordinates z1,z’ in a neighbourhood of y such that (y,dz;) = A.
The retraction q is given by g(z1,2z’) = 2’ + g2 where g; € m2. We have

p(A) = dim Oy o(X x ©)/((,¢,) + 7" (mn)),

where m;, denotes the maximal ideal of the point h = ¢(y) € H
and r = pq. At the other hand dz; = d;p(y,0) and the point (y,0)
belongs to C(¢). Therefore ¢(z,w) = 1 (mod m2) consequently we have
() + (r*(mn)) = r*(my)) hence

(4.3) p(A) = dim A/(¢,).

This proves the inequality 7(A\) < wp(X). At the other hand the inequality
T(A) < oo implies that w = 0 is an isolated zero of the system ¢, = 0 in Qc.
It follows that p < oo. O

Proof of Theorem 4.2. — Take the generating function ¢ as in the
previous proof. Denote by S the right-hand side of (4.2) and by Sc its
complexification. Consider the mapping 7 : Z — S¢ where Z C S¢ x Q¢
is the hypersurface given by a polynomial equation ¥(s,w) = 0 and Q¢
is a complexification of 2. This is a minimal versal deformation of the
germ (Zy, 0) if the polynomial is taken in the form (cf. for ex. [9], Chap. 5):

(4.4) U(s,w) = ¢Y(w) + s1 + Zsiei(w)

ANNALES DE L’INSTITUT FOURIER
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where e; =1, e3,, ..., e, are arbitrary real monomials whose images in (4.2)
form a linear basis. The discriminant set A of the deformation 7 is the
projection to Sc¢ of the set

C(w) ={w =0, ¥, =0}
in S¢ X Q¢. According to [7] there exists a holomorphic pseudo-polynomial
§=sT+6:(s)sT 4 4 6u(s)

in Sc¢ whose zero set coincides with A; here we denote s’ = (s2,...,8;).
This pseudo-polynomial satisfies (4.1). By the Malgrange’s Preparation
Theorem [8] there exists a smooth mapping of real germs ¢ : (X,y) — (S5, 0)
such that {(y) = 0 and a smooth positive function x(z,w) such that

(4.5) p(z,w) = x(z,w)¥ (((z),w).

This means that the deformation defined by the function ¢ is induced
from 7. It follows that the function

P(z,w) = ¥ (((z),w)

generates a neighbourhood of the point ) in the contact Lagrange variety A..

Set f(z) = 6(¢(x)). Take a point x € L and show that f vanishes in z.
The point (z,w) belongs to C(p) for some w € 2 hence ({(z),w) € C(¥) in
virtue of (4.5). Therefore f(z) = 6({(z)) = 0. From (4.5) and the condition
de|c(e) # 0 we conclude that d,3 # 0 in C(¢). At the other hand by (4.4)

de51(C(2)) = da¥(s,w) + O(w) #0

hence ds1(y) # 0. This implies (4.1) for the function f.

Now we check the statement (ii). The function ¥(z,w) can be
continued at Y x Q¢ as a polynomial in w. The set of real critical points of
this function with zero critical values coincides with C(y). The latter is the
real part of the critical set C(¢) in Y x Qc.

LEMMA 4.3. — The set C(v) is a smooth real manifold of dimension
n if the Q¢ is sufficiently small neighbourhood of Q¢.

TOME 50 (2000), FASCICULE 6
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Proof of lemma. — The differentials of the functions v,vy, ,..., ¥,
are independent in C(¢) since the phase ¢ is non-degenerate. Therefore
these differentials are C-independent in C(v) if the neighbourhood Q¢ is
sufficiently small. a

Denote by J the set of critical values of the mapping P : C(¢)) — X
and by D C Y the set of points z such that P~!(z) contains more
than one point. The set J has n-dimensional measure zero by the Sard’s
Theorem. Show that this is true for the set D too. It is sufficient to
prove this statement for the set D \ J. Take a point z in this set and
two points (z,ws) € C(v). We have det 9 (z,w+) # 0 hence there are
smooth C-valued local solutions w = w4 (2) of the system ¢’(2,w) = 0 such
that wy () = wy. Take the functions g4 (2) = ¥(z,w+(2)). The equations
9+(2) = g—(z) = 0 defines a manifold D C Y of dimension < n in a
neighbourhood of y since the differentials dg, and dg_ are independent.
To check the last fact we note that the differential of the mapping (2.2) is
injective for the phase ¥. The mapping d,v : C(¥)NY x Q — C*(X) is
an immersion too because of (4.5) provided the neighbourhoods Y and 2
are sufficiently small. This property holds also in the domain Y x Q¢ for
sufficiently small complex neighbourhood Q¢ of 2.

Let I be the set of real points y such that there exists a point
(y,w) € C(¢) with Imw # 0. It is of n-measure zero too. Really we have
(y,@) € C(v) hence y € D and consequently I C D.

Set G = JU D and take an arbitrary point x € L\ G. According
to (4.5) the function (z,-) has only one critical point (z,w) € C(v),
the point w is real and the form ¢/ (z,w) is non-singular. There is a
local smooth solution w = w(z) of the system ¢/,(z,w) = 0. The similar
statements are true for the function ¥ in the point (s,w) where s = {().
According to [7] we have

(4.6) 8(s1,8) =[] ®(s,w;(s")
j=1
where w;(s'),...,wn(s") are critical points of the function ¥(s,-). All the

factors are linear with respect to s; and one of them vanishes at the point
s = ((z). Let ¥(s,w;(s")) be a vanishing factor; all other factors do not
vanish since = & D.

At the other hand we conclude from (4.5) that
dop(z,w(2)) = x(2) dotp (2, w(2)) = x(2) dz ¥ (s,w1(s"))

ANNALES DE L’INSTITUT FOURIER
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where s = ((z). The left-hand side does not vanish since ¢ is non-
degenerate. It follows d;¥(s,w;(s')) # 0. We conclude from (4.6) that

d. f(z) = d6(s) :H\Ilsw] ) d ¥ (s,wi(s)) #
2
This implies that f is a regular barrier at x. O

COROLLARY 4.4. — The barrier has the following representation:

(4.7) J(@) = K(zw)p(aw) + 3 ki@ w)el, (@,0)

where ¢ is an arbitrary generating function of the germ A. and k, k; are
some smooth functions.

Really, the barrier vanishes in the set C'(v0). At the other hand by (4.5)
the functions ¢, ¢!, are generators of the ideal of this set.

Remark. — Note that the barrier f is not uniquely defined because
of the mapping ( is not unique. According to Theorem 4.7 the zero set of f
coincides with the locus L up to the subset I C G of measure zero. The
set I is empty if 7(z) < 2 and, moreover, any two local barriers f, f are
equivalent: f = hf where h # 0 is a smooth function in a neighbourhood
of z. This is not the case even for 7 = 3, since the real “swallow tail” (see
Fig.1) AN S does have 1-dimensional piece I (half of a parabola). This
piece is not covered by real points of C (1) hence another barrier function
need not to vanish in 1.

Suppose that a closed contact manifold p : A, — X has finite
multiplicity over a point y € X. The fibre p~!(y) is a finite set of points
AL, ..., Aq each of which has finite multiplicity. Take a neighbourhood Y
of y such that the manifold A, N p~!(Y) is the union of disjoint pieces A;
such that A\; € A;, j = 1,...,q. Each piece is univalent over y and we can
construct a function f; which vanishes in the fold L; = p(A;) by means of
Theorem 4.2 (i). The function f = f; --- f; vanishes in the locus L = |J L;
and satisfies 4.1. We call it barrier for the locus L in the point y.

THEOREM 4.5. — Let A, be a closed contact Lagrange manifold of
finite multiplicity T over a point y € X. There exists a neighbourhood Y
of y such that A, has finite multiplicity 7(z) < T over any point z € Y.

Proof. — The multiplicity is additive with respect to the fibre hence
we may suppose that the fibre p~!(y) contains only one point A. Take a
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generating function ¥ (z,w) of the germ A, ) as in the proof of Theorem 4.2.
Set ¢(w) = ¥(y,w) and choose a coordinate system w such that ¢ is a
polynomial. Take a closed ball B in C* centered in the origin that does not
contain any common zero of the functions ¢, ¢/, except for the origin. Let A
be the Banach space of bounded functions in B that are holomorphic inside
the ball. Consider the sequence of continuous linear mappings

(4.8) AL 2 A2 F(,¢))F -0

where F denotes the algebra of formal power series in w, the mapping « is
generated by the mapping A — F that transforms a function to its Taylor
series at the origin and P(ao,...,ax) = aod + Y a;®;. The composition of
these mappings vanishes.

LEMMA 4.6. — The sequence (4.8) is exact.

Proof of lemma. — Consider the algebra Q of rational functions in C*
that are holomorphic in B. Let m the maximal ideal of the origin and I be
the ideal generated by the polynomials ¢, ¢’ in Q. We have m" C I for some
natural h by the Hilbert’s theorem. Therefore m* F C IF. Any series f € F
can written in the form f = a + g where a € A, g € m?F. This implies
that « is surjective.

Take an arbitrary element a € Kera. We have again a = ag + ¢
where ag is a polynomial and g € m"A. We have m"A C TA = P(A*+?1)
hence g belongs to the image of the first mapping in (4.8). This implies the
equation aag = 0 consequently ag = bop + ) b;¢; for some formal power
series by, .. ., bg. Cutting out the terms of degree > h in these series we get
the representation ag = b+ g’ where b € I and ¢’ € m". We have again
g’ € I hence ag € I. This implies the inclusion Ker a C P(A*+1). ]

It follows that the cokernel of the mapping P is of finite dimension 7.
Choose a point s € S and consider the mapping P, similar to P
constructed by means of the function 1 (z,-) instead of ¢. We have the
continuous family of bounded operators P, : A¥*! — A such that P, = P.
According to Lemma 4.6 the space Cok P, is of dimension 7. It follows that
dim Cok P, < 7 for any point z close to y. At the other hand we have the
equation

dim Cok P, = Y _ dim 7,/ (4(z, ), ¥, (,))

where F,, denotes the algebra of formal power series at the point w and the
sum is taken over all common zeros w of the functions ¥(z, -), ¢/, (z, -). It can
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be checked by the the above arguments. For any real common zero w of the
above functions we have dim F,,/(v,¥.,) = 7(X\') where X' = ¢(z,w) € A.
Therefore 7(z) < dim Cok P, and the theorem follows. |

Remark. — It is easy to show that the number of folds in a point x
does not in fact exceed 7 — 1 for any point x close to y.

Remark. — Suppose that the manifold A, is univalent over a
point y and (y,£) € Ac. The hyperplane M, = {£(t) = 0,t € T,(X)}
is a metric tangent to the locus L = p(A.) in y in the sense that
dist(z, H) = o(dist(z,y)) as ¢ € L, x — y for some (and hence for any)
submanifold H through y whose tangent space in y coincides with M,

DEerFINITION. — Two points Ay € C*(X) will be termed opposite
if Ay = (z, £ £). We say that a subset S in C*(X) is symmetric if for
arbitrary point s € S the opposite point is also contained in S. Consider
the projection C*(X) — C*(Z)/Zy which identifies opposite points. The
image is the manifold of non-cooriented contact elements. Let A. be a
closed symmetric contact Lagrange manifold; its image As in C*(X)/Zs
is a manifold too. We define the symmetric multiplicity 75(y) of As and
the symmetric multiplicity us(y) of the locus as above taking the sums
for all points of A; over y. This gives the numbers 75(y) = %T(y) and
us(y) = %u(y) Note that above results hold for any symmetric manifold A,
and with the multiplicities 75 and us instead of 7 and p.

5. Main result.

THEOREM 5.1. — Let A. be a closed contact Lagrange manifold of
finite multiplicity over each point of X. There exists a positive Hermitian
form ¥(-,-) defined in D'°(A) with values in (D°(X)) such that

(5.1) / pUV = [Zy(U,V)(p) + o(1)] log L p € D*(X)
f22e €
where

(5.2) (U V)(p) = / oo (U)7:(V)p* (p).

c

DEFINITION. — We call X(-,-) the residue form.
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COROLLARY 5.2. — For any U,V € D'O(A) there exists a integrable
complex-valued measure m(U,V') supported in L such that

(5.3) (U V)(p) = /L pm(U,V), peDYX).

Proof of corollary. — For any A-distribution U of order zero the local
density X(U,U) is positive. According to the Schwartz’s Theorem [10] this
density is a non-negative measure m(|U|?) supported by the locus. The
complex-valued measure m(U, V) = %atasm(lsU + tV|?) satisfies (5.3). O

Remark. — Suppose that a contact Lagrange manifold A, is symmetric
and decomposed in two opposite pieces A, = A U A_. The corresponding
folds coincide: p(A4+) = p(A_) but any A distribution U is orthogonal to
arbitrary A_-distribution U_ with respect to the Hermitian form X.

6. Logarithmic asymptotics.

Proof Theorem 5.1. — It is sufficient to prove the theorem for the
case V = U; the Hermitian form X(U,V) is reconstructed uniquely by
means of the standard method. We construct the distribution ¥ locally.
The local constructions are locally uniquely defined and therefore they
will glue together in a global quadratic mapping ¥(U,U) satisfying (5.1)
and (5.2).

It suffices to prove (5.1) and (5.2) for an arbitrary smooth non-negative
functions p. Really, arbitrary function p € D°(Y) can be represented in the
form p; — p2 where p; 2 € D°(Y) are non-negative. For arbitrary continuous
function p > 0 with compact support we can find non-negative functions
p—, p+ € D(Y) that are close to p and satisfies p_ < p < p,. The peripheral
integral of p|U|? is monotone with respect to p. Therefore it is bounded
by the product [[ p4|oc(U)|? + o(1)]log 1/€ from above and by the similar
product with p_ from below. We can make the integrals [ p4|o.(U)|? as
close one to another as we like by choosing the approximations in such
a way that max(p; — p—) — 0. This proves (5.1) and (5.2) for arbitrary
p € D°(Y). From now on we assume that the function p is non-negative
and smooth.

Suppose first that A, is univalent over a point y. Choose a barrier f
of the locus L = p(A.) defined in a neighbourhood Y of y. If this
neighbourhood is sufficiently small, we can write U = I(¢,A4) in Y
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where A = A,, + R is an asymptotically homogeneous amplitude of
order m = — %N . We suppose that the amplitude A vanishes for || < %
and is homogeneous of degree m for |§] > 1. Fix a continuous function h,
0 < h < 1in R that is equal to 1 in 1-neighbourhood of the origin. Compare

the integral (3.1) with another intensity-type integral

(6.1) I(r) = /Xpl/exp(27m¢)hrAd0‘2, h-(6) = h(r~'|6]).

The integral (6.1) diverges as r — oo because the density |A|?>dfd6° is
homogeneous of order 0. It can be written in the form

I(r) = / pexp(2m®(z,6,6°))h,(0)A(z, 0)h, (6°) A(z, 6°) d d6°
X xOx0°

where ®(z;60,6°) = ¢(x,0) — ¢(x,0°).

We assume that X is an open set in a coordinate space R®*! and
calculate the integral by the method of [1], Section 1.3. By the method of
dimension descent we can transform the integral (2.1) modulo C*°(X) to
another Fourier integral with a phase function of the form ¢(z, §) = z6—~(6)
where 7 is a homogeneous function of degree 1 and the dimension of the
ancillary space is equal to N = n + 1. We write

®(y,£,0) = y& —v(0) + &Y' (0) +v(0 - &)

by means of new coordinates 0, £ = 6 —0°, y = 2 —~'(0) where v’ = 9/96.
The critical set for the integral (6.1) is given by the equations

B, =0, @, =0.

These equations are equivalent to £ = 0, y = 0, the second differential
of ® in any point of this variety is equal to y€ and the signature of the
differential is equal to (n,n). Write the amplitude in the form A = avdz
where dz is the volume form R™*! and a is a homogeneous function of
degree — % (n + 1). The stationary phase method yields

10) = [ olheatr'0).0) a8+ 0()

as r — oo. This integral diverges as O(logr) since the form |a|2df is of
order 0 for |#| > 1. Therefore

I(r) = / o(7(8))a(+'(8),8)| (e v d6) - logr + O(1)
5(0)
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where S(0) is the unit sphere in the ancillary space ©, eg is the Euler field
in © and V denotes the contraction operation. We have

d|f| A (eg v ) = (0] d6
hence |a(v',0)|?ep V d0 = |o.(I)|? and
. 2
(6.2) I(r) =/A p*(p)|e(D)|” - logr + O(1).
For a positive € we denote

X(e)={zeX; [f(a)l z¢}, L(e)=X\X(e), Ar=hA,
B(y,0,6°) = A(z,0)A(z,6°), B(y,6,6°) = Ar(x,0)A,(x,6°)

and estimate the integral
(6.3) J(e) = / / pexp(2m ®)B df d6°
X(e)JO

2
- / pl / exp(2m®)Adg| > 0.
X(g)

Write
J(e) = J(r,e) + I(r) — I(r,e),

J(re) = /X( )/pexp(27m<I>)(B — B,)dfde¢°

where the last integral is non-negative too and
(6.4) I(r,e) = / / pexp(2m @) B, df d6°
L(e)

2
:/ p‘/exp(27rz<I>)Ar dg| >o.
L(e)

To estimate J(r, ) we need the following

LEMMA 6.1. — For an arbitrary compact set K C X there exists a
positive number c such that the inclusion x € K N X (¢) implies |¢g| > ce
for any 0 € ©.

Proof. — The function ¢(z, ) restricted to the unit sphere S(0) in
the ancillary space is the phase function of the contact manifold A.. We
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can apply the equation (4.7) to this function. Taking in account the Euler
equation ¢ = ) 0;¢) we get

fl@)=>_ ki(z,0)¢),(z,0)

for some smooth homogeneous functions «;(z,0) of order 0 in X x ©.
This equation implies Lemma 6.1 for the constant ¢ such that c¢=2 >
> lkj(z,0)? forz € K, 0 €©.

LEMMA 6.2. — We have (

(o

(6.5) [Jrol < =g el € Zamm

for odd and even N respectively with some constant C.

Proof. — Take the field ¢t = (2m)~!|¢y|> 3, 45,0/00;. We have
t(2m®) = 1, consequently

(6.6) J(r,e) = / /pt(exp(Qm‘b))grB dé dg°
X(e)
where g,.(8,60°) = 1 — h,(0)h,.(6°). Integrating partially yields
(6.7) J(r,e) = — / / pexp(2m ®) <t(ar) +divta,)addde® dz
X (¢)

where a, = g,a, @ = a(z,0°). By Lemma 6.1 we have Y _ [t(6;)| < C/e. The
function divt = )" 9t(6,)/06; is homogeneous of order —1 and again by
Lemma 6.1 we conclude | div¢| < Ce~2|0|~! hence

|t(ar)| < |t(gr)a| + |t(a)] < Ce~H o™
where the constant C does not depend on r. We have used here the estimate
_ _ -1
[t(he)| = [t(16)r~ R (r~H|0])] < C(el6])
which follows from
r R (Y6l < Cl61Y, (6N < (ce)

Therefore |t(a,) + divta,| < Ce~!|9|™~!. Repeating this transformation
[%N + 1] times we obtain the equation

J(r,e) = / / pexp(2m®)a,(z,0,60%) do d6° dx
X(e)
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where the amplitude function satisfies the estimate

Ce~N-1|g|~N-1/2 for N odd,

Ce N2~V -1 for N even.

|a’7'(x7 07 00)| S {

This implies that the integral over © converges absolutely. Then we integrate
partially with respect to the field t° which stems from ¢ by the substitution
6 — 6°. Then we get a representation like (6.6) with an amplitude function
b, that satisfies

|l~)r($,0, 00)' < C5—2N_2(|0| . |00|)—N—1/2

for N odd which yields

J(re) < C’E‘?N_2/ pdzx

do |2 C
< . .E.D.
X() /rslol |9|N+1/2| = rg2N+2 Q

The case of even N is similar. O

By (6.5) for odd N

2 C
OSJ(&‘)SI(T)-FJ(T‘,E)S/A plo(a)| logr + —5s

since of (6.2) and (6.4). Now we tie the parameters by the equation
r = e~ 2N~2 and conclude that

68 [ eWP=re N2 [ o) o5+

c

This inequality is valid for even N as well.

Now we prove the asymptotics (5.1). Let G be the set of critical
values of the mapping p : A, — X and T be the set of points z such that
cardp~1(z) > 3. Theset GUT C L is closed and of n-dimensional measure
zero. Really, it is true for the set G since of the Sard theorem. For any point
x € T'\ G there are at least two points (z, £; 2) € A such that the covectors
&1 and & are not collinear. The corresponding folds L1, Ly has transversal
intersection in z hence T is contained in the finite union of transversal
intersections L; N L;. Each of these sets is a n — 1-dimensional manifold.
This implies that n-dimensional measure of T is equal to zero too.
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For a number 7 > 0 we denote by G(n) the n-neighbourhood of the
set G UT. Choose a smooth function 9n, 0 < g, < 1 that is equal to 1
in G(n) and 0 in X \ G(2n)) and write

(6.9) [ owE= [ aplvP+ [ plor
X(e) X(e) X(e)

where we set p, = (1 — gy,)p.

The first term can be estimated by means of (6.8):

1
610 [ aplUP<EN+2) [ guplo)f -log 2 +0).
X(e) A €

Here and below we write p instead of p*(p).

The support of the density g,p|o(U)|? is contained in the set
p~1(G(n)). The measure of this set tends to the measure of the set p~!(G)
as 7 — 0. By the Sard theorem mes G = 0 hence mes p~!(G) = 0 by
Proposition 10.4. Therefore mes p~!(G(n)) — 0 as n — 0 and consequently

(6.11) /gwpr—m as n — 0.
Ac .
By Proposition 3.1 the second term of (6.9) has the asymptotics

2 1
Aw%wﬁ=/%pwnd%g+om as € — 0.
By (6.8) this yields
[onlo@) +ot1)
<@ < [ plo@F +@N +2) [ aaplo@)] + o)

where

Q(e) = —(loge) ! / plUP?

X(e)
and o(1) — 0 as € — 0. This helps to conclude

[ orlo@)” < tim Q) < Ty Q)
< [mlo@)* + N +2) [ gplo@]

The left-hand side and the right-hand sides have the same limit [ pla(U )|2
as 7 — 0 which follows from (6.11). This proves (5.1) and (5.2) for the case
when A, is univalent over y. '
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In the general case we have p~'(y) = {A1,...,)\;}. For a small
neighbourhood Y of y the manifold A.(Y) = p~!(Y) consists of g disjoint
pieces Ay,...,Aq. We apply Theorem 4.2 to each piece A; and get the
corresponding set G; C Y which has n-dimensional measure zero.

We assume that the above set G contains the union |J; G;. Write

U)? =Y _|UiP+ > U,

i#j

where U; is a A;-distribution for ¢ = 1,...,q. The peripheral integral of
the first sum fulfils (5.1), (5.2) and the density |o.(U)|? is equal to the
sum of the densities |o.(U;)|%, i = 1,...,q. We show that the peripheral
integral of the density an@Uj brings no contribution to the logarithmic
asymptotics if i # j. Really we have U; = O(|fi|~'/?) according the
calculation of Proposition 3.1 and

paUT; = O(fil /2 +15517/2).

The right-hand side is locally integrable in the set X \ (L; N L;) and also
in a neighbourhood of an arbitrary point y € L; N L; such that the forms
dfi(y) and df;(y) are independent.

Suppose now that the forms dfi(y), df2(y) are dependent in a point
y € L\ (GUT)). The point belongs to Ly N Ly and the corresponding
points of the fibre Cj(X) are opposite. This means that the relation
df2(y) = cdfi(y) holds for some ¢ < 0. No fold L;, j > 2 contains the
point y since y ¢ T. We have

(6.12) ppUiUs = ppara(fi+02)"Y2(f2—00) "2+ 0(| 1|72+ f2| 71/3).

The remainder is locally integrable. Show that the integral of the main
term in (6.12) is bounded as e — 0 for an arbitrary test function p supported
in a neighbourhood Y of the point y. Choose a coordinate system z1,z’ in Y’
such that z; = f1. We have fa(z) = (u(z') — z1)h2(x) where the factor hq
is smooth and positive in Y. According to the construction of Section 4 we
can write the barrier function in the form f = hgq, q(z) = z1(z1 — u(z’))
where h is a smooth function. It does not vanish in y sincey € L\ (GUT)
hence h™! is bounded in a neighbourhood Y of y.

Consider the manifold C; x R™ where C, is the closed upper
half-plane in the complex plane of the variable z = z; + y@ and
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the pseudopolynomial ¢(z,z') = z(z — u(z’)) in this manifold. The
function ¢~'/2 has analytic continuation to this manifold from the
domain z; > |u(z’)|. The key point of our arguments is that boundary

value ¢~'/?(x; 4+ 02,2') of this continuation coincides with the product
ihy'*(f1 +00)2(fp — 0a)"V/2.

Represent the above integral as follows:

/ pna1az(f1 +00)V2(f —m)"V2 = /
X ()

q“l/zadx+/ q_l/zadx
Y(e) Z(e)

where
Y(e)={g®>¢e}, Z()=X()-Y(e), adz=ipyh;" *aras.

The last term is bounded by a constant C that does not depend on ¢.
Really, we have the following inequality for the line integral as z’ is fixed:

f/ |q|‘1/2adw1l < Ce™'2|R(e)]
R(e)
where |R(g)| is the length of the real 1-chain

R() ={h e >q>¢}.

The function A~ is bounded hence by Lemma 6.3 (i) we have R(¢) < Ce'/?
and our statement follows.

To estimate the integral over Y (g) we define in C; x R™ the function

0
a(zy +y1,2') = a(z) —I—ya%z.

It coincides with a and satisfies 8a/0z = 0 at y = 0. Consider the n-chain

C(e) = {l¢*(z,2")| =¢; y > 0}

in C4 x R™ and set I'(e) = Y (¢) U C(g). We have

/ ag~?dz :/ ag~ 2 dz A da! —/ ag Y% dz Ada'.
Y (e) I'(e) C(e)

The integral over C(e) is bounded as ¢ — 0 since the n-volume of
C(e) is equal to O('/2). This follows again from the 1-dimensional estimate
given in Lemma 6.3 (ii).
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At the other hand the chain I'(¢) is closed and by the Cauchy-Green
formula

/ dq_1/2dz/\dx'=/ﬁq_l/2d2/\dml—/ 22 4z A do nda’
) r A 0z

where T is the union of semi-circles |z| = 1, y > 0 and A is the open set
in C4 x R™ such that 8A = I' — I'(¢). The integral over A is uniformly
bounded in virtue of the estimate |0a/0z| < Cy, whereas the integral over T’
does not depend of €.

Now to complete the proof it remains to take in account

LEMMA 6.3. — Let a,b be arbitrary complex numbers and q(z) =
22 +az+b.

(i) The curve
M(e) = {2z €C, |g(2)| =€}

satisfies the inequality | M (€)| < Ce'/? holds for 0 < € < 1 with a constant C
that does depend on a,b.

(ii) For an arbitrary o € [0,27) the curve
A(a,e) = {0<|g(z)| <, argq =a}

satisfies the similar inequality |A(c,e)| < Ce'/? for 0 < ¢ < 1 with a
constant C that does depend on a,b,c.

Here | M| stands for the length of a curve M. A proof is elementary. O
Remark. — The last lemma can be generalized for an arbitrary
polynomial ¢(z) = 2" +a;2" "'+ - - in the form | M (g)|+|A(a, €)| < Cpel/™.

Remark. — Comparing (6.2) and (5.1) we conclude that the
asymptotics (5.1) of the intensity integral in the configuration space
coincides with the asymptotics of the similar integral (6.1) in the frequency
domain if we tie the parameters by the equation re = 1.

7. Conservation laws for Lagrange solutions.

Consider the wave equation in the space-time X x R where X is a
Riemannian manifold. Write it by means of local coordinates z!,...,z"
in X:

O}u — G10;(9¥0;Gu) = 0.
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Here u is a function, 8; = 8/0z%,i = 1,...,n, the tensor g% is inverse to
the metric tensor g;; and G = y/det g;;; the summation in i, j is assumed.
Set

U=Guvdz, dr=dz;A...Adz,
and write the wave equation for the halfdensity U:
(7.1) OU - 8;(¢¥0;U) =0

where 9;, ¢ = 1,...,n are the corresponding Lie derivatives. The symbol of
the wave equation (7.1) is equal to pz + p; where

(7.2) pa(z;€,7) = g9 (2)6&; — 7%, p1 = —2v-18i(g"7)¢;.

Consider the Hamiltonian system defined by the function ps:

dx,; Wi dt
o = 29" (z)¢&;, Fie —27,
(7:3) d¢ dr
S5k _ 9, g £ —
ds akg (x)€2€]7 ds 07 s € R7

with the initial data

(7.4) (2(0),£(0)) € Ao, t=0, 7%(0) = g"(2(0))&(0)¢;(0),

where Ao is a Lagrange manifold in 7*(X). Let A C T*(X x R) be the
union of the trajectories of (7.3). This is a Lagrange manifold. The system
(7.3) defines the Hamiltonian flow P in the cotangent space. Its projection
B; to the space-time is called bicharacteristic flow; the trajectories of this
flow are bicharacteristic rays. The locus L = p(A) of the Lagrange manifold
A is the union of bicharacteristic rays with the initial data (7.4). The
bicharacteristic flow in L has focal points in singular points of L.

If the Lagrange manifold Ay is symmetric (see Section 3), then the
manifold A generated by the flow (7.3) is also symmetric. This follows from
the property that the system (7.3) preserves its form if we change z,¢, 7, s
to x,—§, —T, —s.

Remark. — Consider the Cauchy problem for (7.1) with some initial
data wug,u; for ¢ = 0 that are Ag-distributions in the sense of Section 2.
This problem has unique solution U and this solution is a A-distribution.
This follows from the general theory [3], [6] under certain loose assumptions.
Moreover the order of U does not exceed v if ug,u; are of order v and v+ 1
respectively.

TOME 50 (2000), FASCICULE 6



1970 VICTOR P. PALAMODOV

THEOREM 7.1. — Let A, be a closed contact Lagrange manifold over
X that is invariant with respect to the flow P and has finite multiplicity.
For arbitrary solutions Uy,Uz € D’'(A) of (7.1) the residue of the density
U,U, is preserved by the bicharacteristic flow B, i.e.,

/E(Ul,Ug)B;(g) = Const
for an arbitrary continuous function g with compact support in Y.

Proof. — According to Theorem 5.1 it is sufficient to check that for an
arbitrary solution U € D’(A) of the wave equation any local symbol o(U) is
conserved by the flow. The symbol satisfies the transport equation [3], [6]:

(75)  Lpo(U) +qo(U) =0, ¢=v=Ip -3 Z aikgzgk

Here L,, means the Lie derivative with respect to the Hamiltonian
field (7.3). By (7.2)

i (9¢:85)
o=y, 5 LD o

and hence L,,o(U) = 0. This implies that the density o.(U1)o.(Uz) (which
is globally defined) is constant along any trajectory of the system (7.3). O

Energy. — Let U be a A-distribution U of order —1 that satisfies (7.1).
Define the energy density

E(U) = - (|U{)* + ¢ 8,U8;0).

N =

This density has residue X(E(U)) since the derivatives of the distribution U
are A-distributions of order 0. We call it singular energy. The conservation
law in geometrical optics can be generalized to the singular energy:

ProrosiTION 7.2. — Suppose that the conditions of Theorem 7.1
fulfilled. Let U be an arbitrary A-solution of (7.1) of order —1. The singular
energy of U is preserved by the bicharacteristic flow and we have

o(EW)) = (V).
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Proof. — We can suppose that the manifold A is symmetric:
A = A; UA_. Take a point y € L, and choose a small neighbourhood Y
of this point. The function f = t — ¢(z) is a regular barrier if ¢ is an
eikonal function, that is, a solution of the equation ¢*/9;$0;¢ = 1. Write
the solution in the form U = Uy + U_ where

Us = Az (2)(f £ 00)/2 + O(|f1M/**%)

and A, are smooth halfdensities in Y (¢f. Proposition 3.1). This equation
can be differentiated by terms. This yields
; . 90,60, A4l
U,UL 8,0, = |AL 2 L2858 4 o(1) =
g +Y3Y+ | +' 4It_¢)l () 4lt—¢l
Therefore ¢“/¥(8;Uy,0;Uy) = |A4|>/4d(t — ¢) where ¥ is the residue
form. We can change the index + to — in this formula, whereas
Y(0;U4,0;U-) = 0. Finally

+0(1).

y |[A4* +]A-|?
1']2 i ,a- = ———m_—
For the time-derivative we have
AP+ 1A
(UL, Uy) = 1A+
( t t) 4|t _ ¢|

which implies the equation
25(E) = g¥%(8,U,0;U) + Z(Uy, Uy)

|42 + A2 "2
= LT E=T — op (loe(UD)R).
The density |o(U/)|> is kept constant by the flow P according to
Theorem 7.1. This implies conservation of L(E).

8. Residue and geometry of locus.

DEerFINITION. — Let X be a smooth manifold of dimension, A,
be a contact Lagrange manifold over X, L be its locus. Take a point
A = (y,€) € A, and consider the tangent mapping dpy:Tx(Ac) — Ty(X).
We call the image T)(L) of this mapping singular tangent space to the
corresponding fold L’ of the locus. The singular tangent space is contained in
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the tangent hyperplane Ker £ C T, (X); its codimension in this hyperplane
is equal to the number k& = dim Ker dp),. We call the number k defect of A,
in A (over y).

Choose a local coordinate system z,...,Z, in a neighbourhood Y
of y and consider the local Euclidean metric ¢ = Y dz?. Calculate the
curvature form Q(z) of the locus at a point € L,. For this we take a
regular barrier function f for a fold L’ of the locus at this point such that
g(df(z")) =1+ O(z — z') and set

Q(z) = d2f($)sz(L)-

Choosing an orthonormal basis in T,(L’) we write the quadratic form
Q(z) in a normal form where the diagonal elements ki, ..., kK, are main
curvatures of the hypersurface L'. It is shown in [9] that k largest main
curvatures Ki,...,K; tend to oo as x — y. The sign of the product
K(z) = K1--- ki changes when the point = crosses the stratum Ly in the
locus of points of multiplicity 2. This sign relates to the sharpness of the
singularity of an arbitrary A -distribution [9]. Other n — k curvatures are
small comparing with the first k of them: «;/k; — 0 for any i <k < j.

We show in this section that the singular function |K| is a common
factor of residue densities of A-distributions of order 0. We shall use the
quantity Qi = [tr(A* Q)| rather than K. It follows from the aforesaid that
the quotient Q/|K| tends to 1 as £ — y. Now we specify the choice of
coordinates zg, ..., T, in Y by imposing the condition

(8.1) A= (y,dzo) and the forms p*(dz,),...,p*(dzx) vanish in T, (L).

We show that for any fold L’ of the locus L and any point x € L’ the
function Q(z) is equivalent to the Gaussian curvature of the intersection
of L’ with the subspace Tx1+1 = Tp+1(Z), ..., Tn = Tn(x).

Denote by &, the delta-distribution 6.(p) = [; pdz/dzo. Note that
the restriction of the form dz/dzg to the variety L, is equal to (1+0(1))dS
as x — y where dS is the Euclidean hypersurface density in the coordinate
system Ig,...,Z,. This follows from the fact that the contact element
(0, Ker dzg) belongs to A..

THEOREM 8.1. — Let p:A. — X be a closed contact Lagrange
manifold of finite multiplicity over a point y such that the set p~!(y)
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consists of one point A. There exists a neighbourhood Y of y such that for
any A-distribution U in Y of order 0 the following relation holds:
(8.2) Z(IUlz) ~ ka (5[,,
where k is the defect of A. in \ and b is a non-negative continuous function
in A..

We write here and later a = bifa/b— lasz — y.

The factor Qx is unbounded as z tends to a non-regular point of
the locus and is multivalued in the intersection of folds of the locus. The
factor b is considered here as a function in the locus L, and is multivalued
too. To calculate the coefficient b we compare the symbol of U with a
special halfdensity. According to (8.1) the coordinate projection py shown
in Proposition 10.1 is a bijection in a neighbourhood A’ of A. Therefore the
form

7wk = pr(derr1 Ao Adzy Adwy Ao A dwg)

does not vanish in A’. Therefore we can write |o.(U)|?> = b|m| for a smooth
non-negative function b in A’.

CoMPLEMENT 8.2. — The equation (8.2) holds for the function b as
above.

Proof of Theorem 8.1. — We apply Theorem 5.1 and calculate the
contact symbol o.(U). For this we choose a contact generating function

p:YxQ—R

for the germ A. at the point A as in Proposition 10.2 where 2
be a neighbourhood of the origin in R¥. Take an arbitrary point
(z,w,) € C(p) where the quadratic form ¢!, is non-singular. There exist
a neighbourhood Z of z and a unique smooth solution w = w(z) of the
system

¢ (z,w) =0
in Z such that w(z) = w,. Set
f(z) = ¢(z,w(z)).

The function f is a barrier for a fold L’ of the locus L at the point z. We
have

df = dzp = dzo + O(|w()]).
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This implies that g(df) =~ 1. Taking derivatives of the identity
¢l (z,w(x)) = 0 we get the equations

/

(83) <p.:w = _()OZM We»
(84) D P va(ws) = —vg(l,), Gg=1,....k
J

where ¢! (z,w(z)) — ¢/, (y,0) =0 as z — y. By (8.3) we obtain
85) [ =l + 205w, + (w)eluws = = (W )luwl + ¢

Take arbitrary smooth tangent fields vi,...,vx in Y such that
v;(f) =0,i=1,...,k and apply the equation (8.5) to these fields:

(8.6) F, = {d2f('u,<,1)]-)}’1C = —ty(w) ¢!, v(w) +d2p(vi,v}), 4,5 =1,..., k.

The notation v(w) stands here for the matrix {v;(w;(z))}¥. The
left-hand side is equal to the restriction of the curvature form of L to the
subspace V in T, (L) spanned by the fields vy, . . . , vx. The second term in the
right-hand side is smooth in C(y) and hence is bounded. Calculate the first
term. By (8.4) we have v(w) = —(¢/,,) " *v(y,) where v(pl,) = {v;(¥),,)}-
Substitute this equation to (8.6):

F, = ="(p,)(po.) " tu(el,) +0(1)

and find det F, ~ (det v(y,))?(det " ,)~1. We specify the fields v; = t; to
maximize the determinant of F,:

L0 ghmeE) o
U 0m ¢, (z,w(z) dzo

i=1,...,n

where the choice of coordinates is subjected to (8.1).

These fields are independent continuous and tangent to L’ since
ti(f) = 0. Moreover t; — 0/0x; as x — y. Really we have ¢, = 1,
¢l = w; — 0 according to (8.1). Consider the vectors t;(¢[,), i = 1,...,n.
They span the space T;(L) and g(t;,t;) — 6;; as ¢ — y. By (10.1) we find

(8.7) ti(pn,) =6 +0(1), i=1,...,n, j=1,...,k,

hence the first k vectors are independent at the point (y,0), while the
last n — k vectors vanish at this point. Therefore the function |det v(y),)|
is equal to 1+ o(1).
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This is the maximal value of this function up to the factor 1 + o(1).
Therefore

(8.8) Qi(e)  |det Fy (2)] ~ | det ¢, |
for this choice of the fields v;.
Calculate the contact symbol of U by means of (2.9):

Am|2 A (ddOGOO)/\(k+1)

2 _1gl
loeO" = 101 g7 7 aao ey | )

where ®(z,0,0°) = ®(x,0 + 6°) and ¢(x,0) = |0|p(x, |0 71604, ...,10|"26k)
is a generating function for a neighbourhood of the point A in A. We choose
ancillary coordinates 6 = (6o, 01, ... ,0%) so that ¢(y;1,0,...,0) = \. Write
A, = avdz where

dz =dzoAds’ AdZ, di’ =dz;A...Adxg, dZ=dzpeiA...Adz,.
The form (dd°®)"(*+1) factorizes in Y through the product
det(®’, ./ )go dzo Adz’ AdOY A ... A d6R.
We have (@, ,/)po = (P}, )y when 8° = 0. At the other hand
det(®L, )5 = @y det gl
The right-hand side is equal to 1 + o(1) according to (8.7). Therefore

dz A (dd°660)Nk+1)

~ di A AN ~ |81¥dz A d
A0 A (—ddopyrern ~ 2N 6 d6y, ~ |6]*dé A dw,

asw = (|6]7161,...,]0|716x) — 0, consequently
|00(U)|2 ~ |al? - |9|(k+1)l dz A dw|.

The factor |a(x,6)|? - |6]**+Y) is a homogeneous amplitude of order zero. It
is equal to the pull back of b under the projection py.

At the other hand the product (dd°®)"*+1) contains the term
dz, dgg® A (dgdgo®)"*. For the first factor we have the equation

dzodgo® ~ dzo A dé
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because of (10.1). Therefore
deodge® A (dgdgo®)"* =~ det{gpq, }idzo AdO1 A ... AdBK AdOS A ... AdBR.

We have {¢5,o. }1 ~ |0]7 ¢!, hence det ¢}, ~ |0]~* det ¢/, In this way we
obtain

2 la|?-10|kd6y dz
"'~ ———.
O Gl oo
Applying (8.8) we get
2 |0| 2 2 k dx dz
" = 7 |o(U)|" =~ 01 Qr — = bQy —
o ~ g7 [ @) laf - 0+ Qu T = bQu 5
since d|6| = d6,. |

Remark. — The above theorem can be applied to A-distribution U
of arbitrary order v of singularity. Take an arbitrary pseudo-differential
operator P of order —v in X. It is easy to check that the PU is a
A-distribution of order 0. Whence the its local structure of PU can be
described by (8.2).

9. Examples.

Take an arbitrary point A of a Lagrange manifold A, where the defect
is equal to 1 and find out a barrier f at this point by the method of
Section 4. The barrier is equal to f(z) = §({(z)) where § is the discriminant
of the generating function ¥ and ¢ is a smooth mapping ¢(p(A)) = 0. The
generating function can be given by the following simple formula:

U(s,w) =w™ + 5, 1w 4 530+ 89
where 7 = 7(A) < oo. Consider the simplest cases:

Case T = 1. — We have 6; = 4sg and the discriminant set is the
origin. The pullback (~!(0) is the regular part of the locus L.

Case 7 = 2. — We have 8, = 27s% + 4s3; the discriminant curve
82(s0, 81) = 0 has the cuspidal point at the origin. Calculating the curvature
near the cusp we obtain

Q1(s0,81) < (—s1)7 /2

where a < b means that both quotients a/b,b/a are bounded.
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Case T = 3. — The discriminant set A is given by the equation
83 = 25653 — 1285252 + 165055 + 144505255 — 2757 — 45253 =
or in the parametric form

so =3t —uv?, s; =83 —2uv, sy =6 —u, u,veER.

It is shown in Figure 1. The locus A has two folds in any point of the curve
M given by the equations 4sg = s3, s; = 0, sy < 0. For any point s € M
there are two points of the manifold A. of local multiplicity 7 = 1 whose
projection is equal to s. The continuation of M to the half-space s; > 0 is
the half-parabola denoted I. For each point s € I there are two complex
conjugated points of C(¥) over s. The tangent plane Ker dsg in the origin
belongs to A.(¥) and the sp-axis is the singular tangent to the locus A.
The cusp curve C = L, \ M can be given in the parametric form

so=3vt, 51 =8v% sy=6v%, veR.

We have 7(s) = 2 for any point s € C.

According to Section 8 the function @; is equal to the curvature of
the intersection of A with the plane s, = Const. To estimate the quantity
Q1 we note that u? = s3 — 12sp and the parameter u vanishes in C. We
take u and s; as parameters in the piece s; < —e&|s| of the discriminant
surface and find

Q1 (50, 81,82) < 8%50/0s2 < |usz| 712,

This estimate is uniform for any € > 0. In the opposite piece sy > €|s| the
estimate Q; < s; ! holds.

S2

S0
Figure 1
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10. Generating functions and multiplicities.

Let X be a smooth manifold, & C R¥ be an open set and ¢ :
X x 2 — R be a smooth function such that the forms dy, dy[, ,..., del,
are independent at any point of the set

Clp) = {(z,w) € X x Q; p(z,w) =0, ¢, (z,w) =0}.

This condition implies that C(p) is a manifold of dimension dim X — 1.
Consider the mapping

3 :C(p) — C*(X), (z,w)r— (z,Kerdyp(z,w)).

The differential of the mapping @ is injective at each point. Denote
by A.(p) the image of this mapping. This is a contact Lagrange variety,
possibly, with self-intersections. We say that the phase function ¢ generates
the contact Lagrange manifold A.(¢p).

Given a phase function ¢ = ¢(z,0) in Y x © that generates a conic
Lagrange manifold A, the phase function ¢(z,w), w € Q generates the
contact manifold A, where € is the intersection of the unit sphere in
the ancillary space with the cone ©. Vice versa, let ¢ = ¢(z,w) be a
phase function for the contact Lagrange manifold A.. Then the function
o(z,0) = Oop(z, 05101, .. ,00—10k) defined in Y x © generates the Lagrange
manifold A where © is the cone in R¥*! spanned by the set {(1,w); w € Q}.

Take an arbitrary point A € A.; let k be defect at this point, i.e., the
dimension of the kernel of dpy : Tx(Ac) — Ty(X), y = p(A). Choose a local
coordinate system zg, ..., Z, centered at the point y = p()) such that the
condition (8.1) is satisfied. Recall some known facts:

Proposition 10.1. — The coordinate projection
priAe — RFXRY ) (2,0) — (Thy1s .- sZnjwi,-- . wk), A+ (0,0)

is a local coordinate system in A..

The manifold A, satisfies the equations z; = z;(#,w) in this
coordinate system where z;(Z,w), j = 0,...,k are smooth functions in
an open set W C R** x RF.
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ProprosiTioN 10.2. — The function

k
(10.1) p(z,w) = xo—mo(ﬁz,w)+z wj(zj—z;(2,w)), &= (Tk+1,---,Tn)

defined in R¥*+! x W generates the germ of A, at ) and fulfils the condition
Yiw(y,0) = 0.

Proof. — The form o = dzo + Z’f widz; + Y, vjde; defines the
canonical contact structure of the manifold C*(X) in a neighbourhood of A
consequently it vanishes in A, that is,

3:130 afﬂj _ .
6.’130

axj
a_zq_’_;wj_a_x;_}_vq:()’ q=k+1,...,n.

By means of these equations it is easy to check that the function ¢(z,w)
generates the germ of A.. Calculate the second derivatives:

0z;(0,0) \*

1 .0) = __{ i\Y, } )

©iow (¥, 0) o0,
These derivatives are equal to zero since the forms dzi,..., dry vanish
in T)\(Ac). O

Mappings of finite multiplicity. — Let f : X — Y be a mapping of
smooth manifolds. The multiplicity of the mapping f in a point g € X is
the number

(10.2) m(zo) = dimg Oq, (X)/f*(M(y0))Ozo(X), o = f(2o)

where O(X) stands for the sheaf of smooth functions in X and m(y) means
the maximal ideal of yg in the algebra Oy, (Y'). In particular, the multiplicity
in a point xg is equal to 1 if and only if the differential df (x¢) is injective.
The multiplicity of f over a point yo € Y is by definition the sum

m(yo) = Y _{m(a), f(z) =yo}-

ProrosriTion 10.3. — For an arbitrary proper mapping f: X — Y of
smooth manifolds the set of points y € Y where f is of finite multiplicity is
open. The multiplicity function m(y) is upper semi-continuous.

It can proved by means of arguments of Theorem 4.1.
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ProposiTION 10.4. — Let f: X — Y be a proper mapping of smooth
manifolds of equal dimensions that has finite multiplicity over each point
of Y and Yo C Y be a set of measure zero. The pullback Xo = f~1(Y) is
of measure zero too.

Proof. — Let C(f) C X be the set of critical points of f. The
function y — card f~!(y) is locally bounded according to Proposition 10.3.
The mapping f is a local diffeomorphism in X \ C(f). Therefore the set
Xo \ C(f) is of measure zero. Now we show that the set C(f) is also of
measure zero. It is sufficient to check this statement locally. Take a point
zg € X and a coordinate system z1,...,x, centered at xy. Let y1,...,yn
be a local coordinate system in Y centered at yo = f(zo) and y; = y;(x)
are local equations of the mapping f. The set C(f) is given by the equation
j(z) = 0 where j = det{0y;/0z;} is the Jacobian of f. We show that the
function j is not flat at . This will imply the conclusion mes C(f) = 0.
Suppose the opposite, that is, j € "m*(z,). Consider the ideal I generated
by the subspace f*(m(yo)) in the algebra O, (X). Its codimension is equal
by definition to the local multiplicity m(zo).

The codimension is finite since of inequality m(zg) < m(yo) < 0.
By Nakayama’s lemma I contains the ideal m(zo)* for some number k. At
the other hand the germ of j belongs to this ideal. Let Y3, ...,Y, be some
polynomials of the coordinates 1, . ..,z such that Y; — y; € m(zo)**! for
j =1,...,n. The ideal I(Y) generated by these polynomials is contained
in I and we have I C I(Y) + m(zo)f. By Nakayama’s lemma these ideals
coincide. Take the Jacobian J = detdY/dz. We have J — j € m(zo)*
consequently J belongs to the ideal I = I(Y).

At the other hand we have

Res [y, | = o

according to the property of the Cauchy-Poincaré residue (see for ex. [4],
Ch.III). This implies that the function J does not belong to this ideal.
This contradiction completes the proof.
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