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PROJECTIVELY ANOSOV FLOWS
WITH DIFFERENTIABLE
(UN)STABLE FOLIATIONS

by Takeo NODA ̂

1. Introduction.

Recently, some relationships between flows, contact structures and
foliations on 3-manifblds have been noticed by several authors (for example
[4], [5], [10]). As is remarked in [10], the typical example is the Anosov flows.
For an Anosov flow on a 3-manifold, there exist two invariant foliations
called (weak) unstable and stable foliations. Then, by rotating the plane
fields which are tangent to these foliations by ^TT and — ^ T T , we obtain a
transverse pair of contact structures with different signs, which is called a
bi- contact structure in [10].

Bi-contact structures are not always induced by Anosov flows.
However, Mitsumatsu defined projectively Anosov flows in [10] and showed
that they have associated bi-contact structures and bi-contact structures
are always associated to projectively Anosov flows. For projectively Anosov
flows, there are two invariant plane fields and they are integrable, although
the integral submanifolds passing through an orbit may not be determined
uniquely in general.

It is shown by Mitsumatsu in [11] that every closed oriented 3-manifold
admits a bi-contact structure. But the invariant plane fields are of class C°
in general and they may not be uniquely integrable, so it is difficult to
study projectively Anosov flows in general case.

^ This author's research is supported by Research Fellowship of the Japan Society for
the Promotion of Science for Young Scientists.
Keywords: Projectively Anosov flows — Stable foliations — Bi-contact structures.
Math. classification : 57R30 - 58F18 - 53C12 - 53C15 - 58F15.



1618 TAKEO NODA

Ghys showed in [5], [6] and [7] that if an Anosov flow has smooth
invariant foliations then it can be represented as an algebraic Anosov flow
or a quasi-Fuchsian flow after changing the parametrization. Similarly, if
we assume the smoothness of the invariant plane fields, we can see the
topology of the flow more precisely. Indeed, it is proved in [4] that if the
invariant plane fields are of class C1 then they are uniquely integrable and
induce invariant foliations of class C1. We study projectively Anosov flows
by making use of informations on the invariant foliations.

In this paper, we consider projectively Anosov flows with differentiable
invariant foliations. The remarkable difference between Anosov flows and
projectively Anosov flows is the fact that invariant foliations of projectively
Anosov flows may have compact leaves. If there are compact leaves, they
are homeomorphic to the 2-torus as there are non-singular flows on them.
These compact leaves play an important role in considering the topology of
invariant foliations.

We first study the flows on the 2-torus which are extended in the
neighbourhood of the torus to projectively Anosov flows with differentiable
invariant foliations such that the torus is a compact leaf of one of these
foliations. We will give the necessary and sufficient condition for such flows.
This is a condition on the configuration of Reeb components and the linear
holonomies of closed orbits.

We further study the projectively Anosov flows on the torus bundle
over the circle. There exist models on T2 x I and if the invariant foliations
are of class C2 and with compact leaves then the projectively Anosov flows
on the torus bundles over the circle are topologically isotopic to finite
unions of these models. In this case, all the flows on the compact leaves are
topologically isotopic to linear foliations. In contrast with the local study
mentioned above, we will see that the global topology of the 3-manifolds
plays an essential role in extending flows to projectively Anosov flows in
the whole manifolds.

This paper is organized as follows. In Section 2, we review the
definition of projectively Anosov flows and some equivalent conditions,
which have been known in [4] and [10].

In Section 3, we introduce models on T2 x I and by using this, we
construct our main example. At the end of this section, we refer to an
example with non-uniquely integrable invariant plane fields.

In Section 4, we study the necessary and sufficient condition for
flows on r2 to be extended to projectively Anosov flows in the neighbour-
hood of T2.
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PROJECTIVELY ANOSOV FLOWS 1619

In Section 5, we state and prove the classification theorems of the
projectively Anosov flows on the torus budle over the circle.

I should like to express my gratitude to Professor Takashi Tsuboi
for his useful advice. I also thank Professor Yoshihiko Mitsumatsu for his
suggestions. In particular, Proposition 3.3 is due to him.

2. Definitions.

Throughout this paper, M is a closed oriented 3-manifold and
(^ : M —>• M is a smooth flow.

A flow (^ is called an Anosov flow if there exist a continuous
Riemannian metric on M and a continuous splitting TM = T(f) (D E^ (B E88

of the tangent bundle into a direct sum of line bundles, such that the
splitting is invariant under the flow and that for some A > 0, C > 0 the
following inequality holds:

||̂ (^)|| ^ Ae^KII, ||^(^)|| < A^e-^IHI,
for all t>0,vu C E^, V s € E88.

We can see that the constant A can be taken to be 1 by replacing the
original metric go with an average g = T~1 f^ (f)*go for sufficiently large T.
So we will assume that A = 1 and that any non-zero vector in E^ begins
growing bigger immediately along the flow.

It is well-known that the invariant plane fields E^ = T(f) (D E^ and
E8 = T(f) ® E88 are of class C1 and induce two codimension one foliations
^ and F6, which are called the (weak) unstable and stable foliation
respectively.

Notice that among the plane fields which are tangent to the flow, Eu

and E8 are the only ones which are preserved by <^. It follows that if we
take two plane fields $ and T] which are obtained by rotating E^ by the
angle of - TT and — ^ TT respectively then they cannot be integrable anywhere
and thus define a pair of contact structures with different signs. Recall that
if a contact structure is defined by a 1-form a then the sign of that contact
structure is determined by the sign of a A da with respect to some fixed
volume form of M

DEFINITION 2.1. — A pair of tangent plane fields ($,77) is said to be
a bi- contact structure if $ and rj are contact structures with different signs
and intersect transversely.

TOME 50 (2000), FASCICULE 5



1620 TAKEO NODA

It has been seen that if there is an Anosov flow then there is a
bi-contact structure such that the intersection of the plane fields is the
tangent space of the flow. But the converse does not hold in general. The
protectively Anosov flow is defined to be the flow along intersection of the
plane fields of bi-contact structure.

In the following definition, the oriented projectified S1 -bundle
S^^M/Tcf)} is defined to be the associated (R2 - {0})/R+-bundle of
the set of oriented lines in the normal bundle of the flow ̂ .

DEFINITION 2.2. — A flow <^ is called a protectively Anosov flow if
there are four continuous sections £^ ,£^ in S1 (TM/Tcf)) which are invariant
under the action induced by 0*, and if any orbit which is not contained
in £^_ or £^ is attracted to £^ (resp. £^) when t —> oo (resp. t —> —oo).

S^TM/T^)

Figure 1

PROPOSITION 2.3 (see [10]). — A flow (^ is a projectively Anosov
flow if and only if there exists a bi-contact structure (^rj) which satisfies
^ n j ] = T(f>.

Remark. — Eliashberg and Thurston defined in [4] a conformally
Anosov flow to be a flow (j^ if there exists a continuous Riemannian
metric and a continuous splitting TM/T(f) = E^' © E8, invariant under the
action d^, such that for some C > 0, the following inequality holds:

11^(^)11 ^ cJKII
IÎ WII - |H|'

foT&]lt>0,vu e^.v8 CE8.

It is proved in [4] that a flow (^ is a conformally Anosov flow if and
only if there exists a bi-contact structure ($, 77) which satisfies $ H 77 = T(/).
Hence it is equivalent to the projectively Anosov flows.

ANNALES DE L'lNSTITUT FOURIER



PROJECTIVELY ANOSOV FLOWS 1621

The sections ̂  and £^ naturally define continuous tangent plane
fields E'^ and E8, which are called unstable and stable plane fields
respectively. If a bi-contact structure (^, rj) is given, Eu and E8 are described
as follows:

Eu = lim d^(Q = lim d^),
t—»'+oo t—^+oo

E8 = lim d<^(0 = lim d^^).
t—>—00 t—>—00

It is known that E^' and E8 are integrable in the sense that for every
point of M there exists some integral submanifold passing through that
point, but unlike the Anosov case, these integral submanifolds may not be
determined uniquely in general.

On the other hand, if E ' " ' and E8 are C1 -smooth then they are uniquely
integrable and define foliations ̂  and J^8. We call them (weak) unstable
and stable foliations respectively.

PROPOSITION 2.4 (see [4]). — Suppose (^ is a projectively Anosov flow
with ^-smooth unstable and stable foliations Fu and F8''. Then ̂  and
7s can be defined by 1-forms Ou and 0s such that

(1) {o^u^s) = o^u A das 4- Os A dau > 0.

Conversely^ suppose forms Ou and Os satisfy the inequality (1) and define
the foliations ̂  and F8, then any non-vanishing vector field on ̂  Fl F8

defines a projectively Anosov flow.

In the case of Anosov flows, there exist foliations T^ and F88

determined by the line fields -E^ and E88 respectively and they are called
strong unstable and stable foliations. However, in the case of projectively
Anosov flows, they do not always exist.

DEFINITION 2.5. — A strong Anosov splitting of a projectively Anosov
flow (^ is a continuous splitting TM = T(f> C E^ e E88 of the tangent
bundle into a direct sum of line bundles which is invariant under the flow.

Let L be a leaf in F^ (cr = u, s) and L be its universal covering. Then
(^ naturally induces a flow ^^ on L. Let TT^ : L —->• OL be the natural
projection to the orbit space OL of the flow <^|L-

PROPOSITION 2.6. — Suppose that a projectively Anosov How ^
admits a strong Anosov splitting. Then for each leaf L in F^ (a == u,5), the
orbit space OL of the induced flow 0*)^ on L is Hausdorff.

TOME 50 (2000), FASCICULE 5



1622 TAKEO NODA

Proof. — Since (^ admits a strong Anosov splitting, there exists
a continuous line field E0^ \ ̂  which is invariant under ^ | ̂  on L and
transverse to the orbits of (^\L on L. This line field is integrable though the
integral submanifolds may not be determined uniquely.

CLAIM 1. — There exists a C°-foliation Q tangent to E^^YL and
invariant under (f^ | ̂ .

Proof of Claim 1. — If E^^ \ ̂  is uniquely integrable at every point
of L, then the integral submanifolds give Q.

Suppose that the integral submanifold of Ea(T^ is not determined
uniquely at a point p of L. Since the integral manifolds are locally
represented as the solutions of an ordinary differential equation of class C°,
there exist infinitely many integral submanifolds bounded by two of them,
which are called maximal and minimal solutions (see [2], for example).

It is clear that E00 \ ̂  is not integrated uniquely at each point of the
orbit of p. Let t\ be one of the integral submanifolds of E0^^ at P and ^et 9
be a point of i\ which is different from p. For another integral submanifold
^2 at P sufficiently near ^i, there exists some real number SQ ^ 0 such
that (J)80 \L^q) 6 ^2- Then (j)'80^^) is an integral submanifold at q, but
^"^IL^) 7^ ^i since <^°|L(p) T^ P ' Thus we h9Lve shown that E00' \L is not
integrated uniquely at q. By applying the procedures above repeatedly, we
can see that E^IL is nowhere uniquely integrable.

For each point of L, take the maximal solution on the right side of the
flow 0*|^ and the minimal on the left. This gives a C°-foliation Q tangent
to E00 \ 'L. We can see that Q is invariant under (f^ \ J, since the maximal and
minimal solutions are invariant under <^|^.

The image of a leaf £ of Q by TTL defines an open set UL in OL. For
leaves £, m of Q, it holds that Ui D Um 7^ 0 if and only if U(, = Um- In fact,
if Uf, D Um 7^ 0 then there exists an orbit of (^\^ which intersects £ and m.
It implies that ^j^W = m ̂ or some real number r, so U^ = Um'

Take two distinct orbits 01, 02 m OL and points rci, x^ of the orbits
01, 02 respectively. Then the leaves ^i, ^2 o^G passing through a;i, x^ define
two open sets £/i, U'z in OL- If ^i H U^ = 0 then 01 and 02 are separated
by U\ and 1/2.

Suppose that U\ H £/2 7^ 0. In this case it holds that £/i = £/2 and there
exists a real number to such that (^iL^i) = ^2- Since ^2 is homeomorphic
to the real line, the points ^jL^i) and x^ are separated in ^2 by open
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PROJECTIVELY ANOSOV FLOWS 1623

neighbourhoods Vi and V^ of ^[ZO^i) and x^ respectively. It is enough
to show that Tr^Yi) D ̂ (V^) = 0. If Tr^Yi) H Tr^1^) ^ 0, there
exists an orbit c/ of <^|^ which intersects ^2 at least two times. Then there
exists a 2-disk in L bounded by segments in o' and ^2- By considering the
index of the vector field on the disk which generates <^|L? we can see that
this cannot occur. This implies that the preimages of Vi and V^ by TT^
separate o\ and 02 in OL. Thus we have proved that OL is Hausdorff.

By this proposition, we can construct examples which do not admit
strong Anosov splittings. See Remark 2 after Proposition 3.3.

3. Examples.

In this section, we give the models for projectively Anosov flows on
T 2 x I .

By definition, Anosov flows are projectively Anosov flows. There are
examples of projectively Anosov flows which are not Anosov flows. We only
consider such examples.

To study projectively Anosov flows, there are two viewpoints; one is
from bi-contact structures and the other is from invariant plane fields.

However, it is difficult to compute the invariant plane fields from a
given bi-contact structure. Moreover, even if it is possible, these plane fields
are only of class C° in general, so there is another difficulty in studying the
properties of integral submanifolds.

On the other hand, once invariant plane fields are given by C1-
1-forms which satisfy the condition in Proposition 2.4, a corresponding
bi-contact structure is easily obtained; indeed, given 1-forms 0^,05 such
that {Qu,^s) > 0, it follows that (o^ + as) A d{au 4- 0s) > 0 and
(au — Q;s) A d{au — c^s) < 0, so the plane fields defined by (au -(- o;s)
and {au — as) form a bi-contact structure.

Our first example is of this type.

Example 3.1 (see [4]). — Let (x,y,z) be coordinates in T3 = M^Z3.
Take two 1-forms a = dz — cos{27rz) dx and (3 = dz — sin(27r^) dy. Then
(a,/3) > 0 and hence the foliations {a = 0} and {f3 = 0} serve as the
invariant foliations of a projectively Anosov flow.

These foliations have two compact leaves respectively and the flows
on the compact leaves are linear flows. In the neighbourhood of compact

TOME 50 (2000), FASCICULE 5



1624 TAKEO NODA

leaves of the stable foliaton, the orbits flow away from the compact leaves
with curving and finally wind around the compact leaves of the unstable
foliation as t —> oo.

In this case, the bi-contact structure is naturally given by the 1-forms
uj = a + (3 and rj = a — (3. But there is another interpretation for this
bi-contact structure, which is mentioned in [10].

Consider the two 1-forms UJQ = — cos(27rz) dx — sm(27rz) dy and
rjo = — cos(27rz) dx + sin(27rz) dy. The plane fields defined by these forms
are tangent to the lines parallel to the z-axis and induce linear foliations
on T2 x {z} for all z e -S1, the direction of which rotates counterclockwise
and clockwise respectively when z increases. Then c<;o and rjo define
positive and negative contact structures respectively (in [4], this way
of construction is called propeller construction). They are not transverse on
^z = 0}, {z = ^}, {z = i }, {z = H } (Mitsumatsu in [10] calls such a pair
a pre-bi-contact structure). Now take a function e(z) which does not vanish
on these tori, then (^Q + c(z) dz and 770 become transverse and therefore
they define a bi-contact structure. In particular, if we take e{z) = 2, then
they coincide with uj and rj above (see Figure 2).

o;o T]Q a /3

Figure 2. Protectively Anosov flow by propeller construction

Remark. — As to the construction by bi-contact structures, a similar
way works for any mapping tori of the 2-torus. However, the invariant plane
fields are more complicated and their smoothness is not guaranteed.

We construct our main example by generalizing the previous example.

Example 3.2 (T2 x J-model). — Let us review two basic foliations
'̂([0;], i) for i = 1,2 on T2 x J, which is defined by Moussu and Roussarie

in [12] (see Figure 3).

ANNALES DE L'lNSTITUT FOURIER



PROJECTIVELY ANOSOV FLOWS 1625

These foliations are defined respectively by the 1-forms

^i = 6\(z} ̂ z + ̂ {z}uj, ^2 = 02(z) dz + ̂ (z)uj,
where

• uj is a linear 1-form on T2;

• 0-t : I —^ R is a smooth function such that ^i(O) = ^i(l) = 1,
0(^) == 0, ^i decreases strictly for 0 < z < j and increases strictly
for ^ < 2^ < 1, and that all derivatives vanish at z = 0 - , 1;

• ^2 ' ' I —^ ^ is a smooth function such that ^(0) = 1, <92(1) == 0,
^2(1) = -1, ^2 decreases strictly for 0 < z < - and - < z < 1 and
that all derivatives vanish at z = 0, - 1;

• ^ : J —> R is a smooth function such that ^(0) = '0(1) = 0,
|^(-)| = 1 and |^(^)| increases strictly for 0 < z < j and decreases
for | < z < 1.

% = 1 i=2

Figure 3. Basic foliations on T2 x I

Now take two linear 1-forms cc^ and ujg on T2 such that ujy, A 0:5 > 0
and define two foliations on T2 x I as follows.

First, let ^u be one of the basic foliations ^([uju},!). Then it can be
defined by a 1-form ̂  = ^(2;) d^ -(- ^u{z}^u-

Secondly, let T8 be a smooth foliation on T2 x I which coincides with
the upper half part of some ^([c^L 2) in T2 x [^ \ ] and the lower half part
of the ^([^], 2) in T2 x \\, 1]. Then T2 x { j } is its unique compact leaf
ofJ'5. Let fl.s = Os{z)dz + ̂ s{z)^s be a 1-form which defines this foliation.

Suppose further that the linear holonomies of these foliations at
compact leaves are not trivial. This implies ̂ (0), ̂ (1), ̂ ( i) 7^ 0.

It is easy to see that ̂ , ̂  satisfy

(^ ̂ s) = «^ - V^) ̂  A ̂  A dz + 0.

Hence fl,u and ^s define the invariant foliations of a projectively Anosov
flow by Proposition 2.4.

TOME 50 (2000), FASCICULE 5



1626 TAKEO NODA

The projectively Anosov flows constructed on T2 x I by this way are
called T2 x I-models (see Figure 4).

jru ys

Figure 4. T2 x I-model

By gluing together finite number of T2 x J-models so that the resulting
foliations are smooth and transversely oriented, we can obtain examples of
projectively Anosov flows with smooth invariant foliations.

Remark. — In this example, the corresponding bi-contact structure is
interpreted in the same way as 3.1. The perturbation e(z) is defined by 0u
and Os and it varies with respect to z. It is easily observed that the type
^([c^], i) of invariant foliations is determined by the sign of e(z) at compact
leaves.

PROPOSITION 3.3. — Let (ff be a flow on T2. Then there exists a
projectively Anosov flow (^ on T3 == T2 x 5'1 such that (t)t\T2x{o} = (t)t•

Proof. — Let 0 : T2 -^ S1 = R/Z be a function such that 0(x, y) is
an angle which is made by the flow at (a*, y) and the a;-axis.

Then the two 1-forms on r3

a = sin (6{x, y) — 27rz) dx — cos (0(x, y) — 27rz) dy 4- dz,

f3 = sin (6(x, y) + 27rz) dx - cos (0(x, y) + 27rz) dy
satisfy a A da > 0 and f3 A d/3 < 0 and the plane fields defined by ker a
and ker/? intersect transversely. It follows that they define a bi-contact
structure on T3 and therefore a non-vanishing vector field on ker a D ker f3
is a projectively Anosov flow. Furthermore, its restriction to T2 x {0} is the
original flow.

Remark 1. — By this proposition we can give an example of a
projectively Anosov flow on T3 with non-uniquely integrable invariant
plane fields.

Consider a 2-torus T2 and a foliation which consists of two Reeb
components in the same direction such that their linear holonomies along
closed orbits are all equal to 1.

ANNALES DE L'lNSTITUT FOURIER



PROJECTIVELY ANOSOV FLOWS 1627

If we extend this fbliation by Proposition 3.3, the original torus is
invariant under the flow, therefore it is a leaf of invariant foliations. We
may assume that this torus is a compact leaf of the unstable foliation. Since
the linear holonomies of the stable foliation along the two closed orbits
are both trivial, those of the unstable foliation must be both less than 1.
However, these closed orbits have the opposite direction to each other and
therefore the unstable foliation cannot be uniquely integrable.

Remark 2. — The example constructed above is also an example of
projectively Anosov flows without strong Anosov splittings. Since there
exist Reeb components on the flow on the compact leaf, the orbit space
of the flow induced on the universal covering of the compact leaf is non-
Hausdorff. By Proposition 2.6, this flow does not admit a strong Anosov
splitting.

4. Flows on the compact leaves.

One of the greatest differences between Anosov flows and projectively
Anosov flows is the fact that the invariant foliations of projectively Anosov
flows may have compact leaves. If compact leaves exist, they must be 2-tori
since there is the restricted flow on every leaf.

We have already seen in Proposition 3.3 that every flow on T2 can be
extended to a projectively Anosov flow on T3 but we have also remarked
that the invariant foliations of the extended flow are often not smooth, or
even non-uniquely integrable.

In this section, we observe equivalent conditions for a flow on T2 to
be extended locally to a projectively Anosov flow with invariant foliations
of class C1 (this implies that these foliations have linear holonomies along
closed orbits). Here a local extension means to give a pair of foliations in
the neighbourhood ofT2 which satisfies the condition in Proposition 2.4.

TOME 50 (2000), FASCICULE 5



1628 TAKEO NODA

As preliminary, let us review the foliations on T2 with closed leaves.
These foliations are topologically conjugate to unions of the foliations on
S1 x [0,1] which are denned by the following types of 1-form:

0:1 = dy -h ̂ (y) dx, ^ = (1 - 2^/) dy + ̂ (y) dx,

where ( x ^ y ) e S1 x [0,1], and ^(y) is a smooth function such that
-^(0) = '0(1) = 0 and \^(y)\ > 0. The foliations denned by u\ and 0:2 are
called slope components and Reeb components respectively. Furthermore, the
Reeb components is called plus (resp. minus) if ^(y) < 0 (resp. ^{y) > 0)
with respect to the positive direction of S1.

The following theorem gives equivalent conditions for a flow to be
extended to a projectively Anosov flow.

THEOREM 4.1. — A C^-now on T2 can be extended to a projectively
Anosov flow on T2 x (—£^e) so that the invariant foliations are of class C1

and T2 is a compact leaf of the unstable foliation if and only if the foliation
defined by the Bow has no Reeb component or all of the following three
conditions hold:

(a) there exist only minus Reeb components^

(b) the closed orbits in the negative direction are between two Reeb
components'^

(c) all linear holonomies of the flow along closed orbits in the positive
direction are greater than the inverse numbers of those in the negative
direction.

Here the direction of the closed orbits is denned as the direction of
some closed orbit with non-expanding holonomy.

We may remark that if a flow on the 2-torus is extended to a
projectively Anosov flow near the 2-torus, that 2-torus is a leaf of one of
the invariant foliations, since it is invariant under the flow.

To prove this, we need the following lemma.

LEMMA 4.2. — Let T be a transversely oriented codimension one
foliation of class ̂  (r >_ 2) on a 2-manifold and let c be a closed leaf of F
with a holonomymap h{y)^ where h(0) = 0. Then in the neighbourhood ofc,
F is ^-conjugate to a foliation defined by C^-l-form a = dy 4- i^{x^y) dx
such that ^y(x^ff) = — log /^(O), where (x,y) are coordinates in S1 x (—a,a).

ANNALES DE L'lNSTITUT FOURIER



PROJECTIVELY ANOSOV FLOWS 1629

Proof of 4.2. — It is enough to show that the holonomy map h(y)
is (^-conjugate to that of such a foliation.

Suppose that ^'(0) 7^ I. By the theorem of Sternberg [16], which
is improved by Yoccoz [20], h is (^-conjugate to the linear function
y i-̂  (/i'(0))^/. Then T is (^-conjugate to the foliation defined by the 1-form
a == dy + (log/i'(O))^/da;, which has the holonomy map y \—> (/z/(0))^/.

In the case of ^'(O) = 1, we cannot apply the theorem of Sternberg,
so we have to rewrite a foliation with holonomy h(y) explicitly.

To do this, let us define the following functions:

(x > 0),

(x < 0),

s(x)
s(x)= u(x) =

s(x) + s(l — x)

Then u{x) is a smooth increasing function such that u(x) = 0 for x < 0,
u(x) = 1 for x > 1 and 0 < u(x) < 1 for 0 < x < 1.

Consider the foliation on S1 x (—a, a) = [0,1] x (—a, a)/(0, y) ~ (1, y)
such that a leaf passing through (0, yo) is defined by the equation

y = yo + u(x) {h(yo) - yo).

This foliation has a compact leaf S1 x {0} and the holonomy map along this
leaf is h{y). Put the function g(x^ y) to be the ^/-coordinate of the intersection
of the leaf passing through ( x ^ y ) and {0} x (—a, a) (see Figure 6). Then
we can generally describe the leaf passing through a point (x 1,^/1) by the
equation

y = 9{xi,yi) -}-u(x}(h{g{x^,y^)) - ̂ 1,2/1)).

h(g(xi,yi))

Figure 6

TOME 50 (2000), FASCICULE 5



1630 TAKEO NODA

This foliation is defined by the 1-form

a = dy + ̂ {x, y)dx, where ^(x, y) = -u\x) (h(g(x, y)) - g{x, y)).

It holds that

^0) = -u\x)(h\g(x^)) - l)gy(x^)

=-u\x){hfW-l)gy(x^)=0.

Thus we have proved the lemma.

Proof of 4.1. — Suppose that a flow on T2 with Reeb components is
extended to such a projectively Anosov flow on T2 x {—e, e). Let ̂  be the
linear holonomy of ̂  along the closed orbit in the positive direction of the
original flow. By the definition of the direction of closed orbits, it is clear
that A^ is less than 1.

If there exists a plus Reeb component, there exists a closed orbit
in the negative direction which contained in the boundary of the Reeb
component. However, the holonomy of ̂  along this orbit is expanding and
that of F8, which coincides with that of the flow, is contracting. This is a
contradiction.

Consider a closed orbit in the negative direction. Since the holonomy
of ^rn along this orbit is expanding, that of J^8 must be also expanding.
If this orbit is a component of the boundary of a slope component then
the other component of the boundary is also a closed orbit in the negative
direction but the holonomy off8 along it is contracting. This cannot occur.

By comparing the linear holonomies along the closed orbits, we can
deduce that all of the linear holonomies of T8 along the closed orbits in
the positive direction are greater than X^ and that those in the negative
direction are greater than (A^)"1. This implies the condition (c), and thus
we have proved the necessity.

Now, let us prove the sufficiency. To do this, it is enough to find a pair
ofC^-l-forms a, {3 which satisfies (a, f3) > 0 and such that

• a defines the product foliation of the foliation by the flow on
T2x(-e^^

• f3 defines a foliation on T2 x (—£, e) with a compact leaf T2 x {0}.

Remark that the property (a,/3) > 0 is invariant under the action
of an orientation preserving C^-diffeomorphism H of T2 x (—£,£) , since
(ff*a, H* f3) == H^{a,(3}. Furthermore, we only have to show the case
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where the stable foliation, which is defined by a, is of class C2. In fact, by
the Whitney approximation theorem, the C^-l-form a can be approximated
by a (^-l-form a and if (a, /3) > 0 for sufficiently good approximation a
then {a, (3} > 0.

If the flow has no Reeb component, we can define the stable foliation
by the 1-form

a = dy + i^(x,y)dx

for some coordinates. Consider the foliation such that a leaf passing through
{xo, yo^zo) is defined by the equation

z = e-^-^zo,

where A > 0. This foliation can also be defined by the 1-form

/3 = Az dx + dz

for the same A. Then it holds that

(a, /3) = (A - ̂ y(x, y)) dx A dy A dz.

This is positive for sufficiently large A.

Suppose that the flow has Reeb components which satisfy the
conditions (a), (b) and (c).

In this case, we decompose the flow along closed orbits into three
types of components, which are homeomorphic to S'1 x [0,1], and construct
corresponding unstable foliations separately.

First of all, by condition (c), we can define the linear holonomy Xu of
the unstable foliation along closed orbits in the positive direction so that
A^ which is smaller than all linear holonomies along the closed orbit in
the positive direction and greater than the inverse numbers of those in the
negative direction. Put A == — logA^, which is a positive number.

Type I : neighbourhoods of accumulating closed orbits. If the flow has
an infinite number of closed orbits, there exist accumulating closed orbits.
It is clear by condition (b) that these orbits are in the positive direction.
Consider the neighbourhood of such a closed orbits. Let h(y) be a holonomy
map of the flow along this orbit. By the same argument as in the proof
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of Lemma 4.2, we can describe the stable foliation in the neighbourhood
of this orbit by the 1-form

a = dy + ̂ {x, y) dx, where ^(x, y) = -u\x) (h{g(x, y)) - g(x, y)).

By the smoothness, we can see that if \y\ is small, h(y) and g ( x ^ y ) are
C1 -close to the identity map and the projection to the second coordinate
respectively. Then by taking sufficiently small neighbourhood, it holds that

I^/O^)! = |-^)(^(^)) - iW^?/)| < ^
for arbitrarily small 6 > 0. Take the 1-form

(3 = Az da; + dz,

then for sufficiently small 6 it holds that

(a, (3) = (A - ipy(x,y))dx /\dy /\dz > 0.

Type I I : pairs ofReeb components. By condition (b), we can see that
Reeb components always appear in pairs, since one of the closed orbits
in a Reeb component is in the negative direction and this orbit is put
between two Reeb components. Consider a pair of minus Reeb components
on S'1 x [0,1] such that S1 x {0}, S1 x {|} and S1 x {1} are the closed
orbits. We will rewrite this foliation into some adequate form and afterwards
construct the unstable foliation, which is defined by 1-form (3.

Take a small number a > 0. By Lemma 4.2, this foliation can be
defined by the 1-form OQ = dy -1- ipo(x^y)dx in 5'1 x [0,2a). Consider the
foliation on S1 x (a, 3a) defined by the 1-form

/3a-y\ /y-a\
^^(-^J^^^J^

where u is the function defined in Lemma 4.2. Using a partition of unity,
we obtain a 1-form a = 0{x^ y) + ̂ (x, y) on 6'1 x [0,3a) which coincides
ao on S1 x [0,a] and ai on S'1 x [2a,3a). Apply the same argument to
the neighbourhoods of the other closed orbits, S1 x ( j — 3a, - -t- 3a) and
S1 x (1 - 3a, 1]. Here let 0(x,y) = -1 in the neighbourhood of S1 x {^}
by reason of orientation. As to the remaining parts, 5'1 x [3a, - — 3a] and
S1 x [- + 3a, 1 — 3a], define a by describing each leaf explicitly in the same
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way as the proof of Lemma 4.2. For example, if a leaf passing through
(po, 3a) is connected to (pi, j - 3a), the leaf is denned by the equation

/ y — 3a \ . .
x=po+u^ ^ ) ( p i - P o )

t - 6 a -

and we can define a by taking the total differential (see Figure 7).

S1

Figure 7

By construction, the functions 0{x, y) and ^(x, y) have the following
properties:

• 0(x,y) = l f o T O < ^ y < a , l - a < y < , l and 0(x,y) = -1 for
j - a < i / < j + a ;

• 0^{x, y) = 0 for 0 < y < 3a, j - 3a < y < j + 3a, 1 - 3a < y ^ 1;

• ^(x,y) > Ofora < y < | -a and ^(x,y) < 0 for j 4-a < y < 1-a;

, e-^M^0), e'^^'2) and e-^^'1) are the linear holonomies along
the corresponding closed orbits.

Let us construct the unstable foliation. Consider a foliation such that
the leaf passing through the point (rco, yo.zo) is defined by the equation

^ ^-A{x-x,) ^W
w(yo)

z = e ^

where w(y) > 0 for 0 < y ^ 1. This foliation can also be defined by the
1-form

(3=Azdx- ^(y)
w(y)

zdy + dz.

TOME 50 (2000), FASCICULE 5



1634 TAKEO NODA

For these a and /?, it holds that

(2) {a^)= (A^^+^^^^^+^^^-^^^d^Ad^Ad^.

Let us show that (2) is positive. By condition (b), we have

^y(x, 0), ̂ y{x, 1) < A, ^Cr, j) < -A,

and we can easily see that (2) is positive for 0 ̂  y < a, 1 - a < ^/ < 1 + a,
l - a ^ ? / < l b y taking smaller a according to circumstances. Since
\^(y)\ > 0 for a < y < j - a and j + a < y < 1 - a, it is possible to take
a function v(y) so that ^(x,y)v(y) is arbitrarily large for a < y < 1 - a
and j + a < ^/ < 1 - a. Put w{y) = e./^^, then (2) is positive for
an adequate function v(y). In particular, we can define w(y) so that all
derivatives vanish at y = 0,1.

Type I I I : slope components. Consider a slope component on S1 x [0,1].
By the same argument as above, we can define the stable foliation by 1-form
a = 0(x, y) dy + ̂ (x, y) dx such that

• 0(x, y) = 1 for 0 ^ y < a, 1 - a < y ^ 1;

• 0x(x,y) = 0 for 0 ^ y < 3a, 1 - 3a < y < 1;

• ^{x, y) > 0 for a < y < 1 - a;

, Q-^y(x,o)^ g-v^(a;,i) ^g ^^ linear holonomies along the correspon-
ding closed orbits.

Construct the unstable foliation in the same way as above. Then the
same equation as (2) holds and by the same reason, we can find (3 such that
(a,^)>0.

Thus we have constructed local extensions for all parts of the flow
and by construction, we can connect these with each other. Therefore there
exist local extensions for all flows which satisfy (a), (b) and (c).

We can see by this proposition that if there are Reeb components,
the orbits near the Reeb components wind around the closed orbits, which
are contained in the boundaries of the Reeb components, as t -» ±00. See
Figure 8.
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Figure 8. Orbits near Reeb component

Remark. — The extension we have constructed above is only a local
one and it seems difficult to extend these flows globally into flows on some
3-manifolds. At present, no examples are known such that the invariant
foliations are of class C1 and have a compact leaf where the restricted flow
has Reeb components. On the other hand, we see in the next section that if
the manifold is a T^bundle over 5'1 then the flow restricted to a compact
leaf must be isotopic to a linear flow.

5. Topology of the invariant foliations.

In this section, we assume that the invariant foliations are (^-smooth,
and study the relationship between the topology of these foliations and the
global properties of the manifold.

The following is one of the results from this viewpoint, which is stated
in [10].

PROPOSITION 5.1. — If the unstable and stable foliations of a
protectively Anosov flow are differentiable then they cannot have Reeb
components.

To prove this, we need the following theorem of Tamura and Sato
in [18].

THEOREM 5.2. — Let T be a Reeb foliation on S1 x D2 and let T '
be a transversely oriented foliation on S1 x D2 transverse to F. Then there
exists an annular leaf L ofF and a half Reeb component T'^,^ in T ' such
that 9L = L H 9(S1 x D2) consists of two compact leaves of F ' \9(slxD2)
and that L coincides the compact leaf of T^,^.

Proofof5.1. — Assume that the unstable foliation F^ and the stable
foliation T8 are of class C1 and that ^u has a Reeb component. Then by
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Theorem 5.2, there exists an annular leaf of the restriction of T8 to the
Reeb component. The restriction of this annular leaf to the compact leaf of
the Reeb component consists of two circles and they are two closed orbits
Co and ci of the flow (see Figure 9).

Let A^ be linear holonomies of F^ along Ci for a == u, s and i = 0,1.
Since CQ and c^1 are isotopic in the compact leaf of the Reeb component
and in the annular leaf of the half Reeb component, it holds that

Ao = (Ai)~\

for a = u, s. However, since Co and c\ are closed orbits of a projectively
Anosov flow, both of the ratios of linear holonomies Ag/A^ and Af/A^ must
be greater than one. This is a contradiction.

Figure 9

Applying the theorems ofNovikov [14] (see also [I], [17], for example),
we can obtain two corollaries from this proposition.

COROLLARY 5.3. — Projectively Anosov flows on a 3-manifold whose
universal cover is S3 or S2 x R cannot have differentiable unstable and
stable foliations.

COROLLARY 5.4. — If a projectively Anosov flow has differentiable
invariant foliations, then every compact leaf of those foliations is
incompressi ble.

As the preliminaries for the proof of the main results, we must study
the relationship between certain orbits of the flow and the topology of the
invariant foliations.

Let p be a point such that its orbit converges to p transversely (it may
be a closed orbit), and let D be a disk passing through p and transverse to
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the flow. Then there exists an increasing sequence tn such that the points
^(p) are contained in D and converge to p as n —^ oo. We can take an
orthogonal coordinate induced by ̂  and T6 on D which has p as the
origin and satisfies the inequality

(^ \\d^y)(t>\Vu)\\ cJM
v / 11^)^)11 - Ml?
for some A, C > 0, for any (a-, i/) e D, ^ e R such that ^(.r) e P, and for
all Vu € T(^) (^ n D), Vs G T(^) (JT5 n D). Let (^, 77^) be the coordinates
of^^p).

For a = u^s, we can take holonomy maps 9^ of .P7 along the orbit
from p to ^(p). Then we can define the return map Tn = (9^, 9^) on a
sufficiently small neighbourhood of the origin 7V^ (0,0), where

Ne(^ r]) = {(x^ y) e D : \x - ̂ | < e, \y - rj\ < e}.
Since r^ preserves the foliations defined by ^u H D.T8 H D, the image of
Ne^ (0,0) will be represented as the following:

r,(AUO,0)) = {(^) € P : ^n - a, < x < ̂  + a^,

fin-b^ <y<rjn-^-b^},

where a^,b^ > 0. If £n is sufficiently small, we can uniquely define the
returning time Tn(x, y) for {x, y) € 7V^ (0,0) which satisfies ^T7l(a^) (x, y) =
rn(x,y).

LEMMA 5.5. — There exists an increasing, diverging sequence {t^}
such that for all n > 0, the following inequality holds:

^^ >Ae^.max{an}

Proof. — First, take the {t^} as follows:

i' = inf Tn(x,y).
(^)€A^(0,0) nv -7

Suppose that there exists k > 0 such that

min^} ,../
——-A— < Ae0^.
max{a^}

If we consider the images of the points the lines which pass through the
origin and have slopes ±1, we can find from the mean value theorem that
there exists a point such that the slope of the image of that point is less
than Ae^. This contradicts (3).
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Now we introduce the following important proposition, which
describes a relationship between the dynamical systems and the invariant
foliations of projectively Anosov flows.

PROPOSITION 5.6. — Let the orbit of a point p converge to itself
transversely. Then there exists a leaf of ̂  or F8 near p whose holonomy
is non-trivial.

To prove this proposition, we need the following theorem of Imanishi.

THEOREM 5.7 (see [8]). — Let (M,JF,0) be a triple consisting of a
compact manifold M of dimension n, a codimension one foliation T on M
and a flow (f):M xR—> M with the orbits transverse to leaves off'. Let C
be a leaf curve and let (-t^to) be the domain of the holonomy map Q(£).
If to is finite then the leaf L passing through 0(^(0), to) is a holonomy limit
leaf.

Here the holonomy map Q(£) is defined such that the lift of-^to the leaf
of T containing 0(^(0), t) along orbits of (p passes through 0(^(1), 0(£)(t)),
and the domain (—t^to) is the maximal connected subset containing zero
where 0(£) can be defined. We say that a leaf L^ is a holonomy limit leaf
if for any e > 0 there exists t, -e < t < E, such that the leaf passing through
4>(x, t) has holonomy.

Proof of 5.6. — Suppose that there exists some 6 > 0 such that all
leaves of^ and T8 which intersect 7V<$(0,0) have trivial holonomies. Then
by Theorem 5.7, the two holonomy maps Q^, (a = u, s) can be defined on
7V<<,(0,0) for all n > 0. So we can take En = 6 for all n.

Taking a sufficiently large ni, we may assume that (^m^ni) e
^/2(0^0), and that

mm{^} , ,>4,
max{a^}

by the previous lemma.

Since 9^ cannot be a contraction, ̂  - a^ < -6 or 6 < ̂  + a^
must hold. Then it implies that b^ > 26 therefore (O^)"1 is a contraction
map. This contradicts the triviality of the holonomy of J^8.

In the remainder of this paper, we consider the manifolds which are the
torus bundles over the circle. For an orientation preserving diffeomorphism
/ : T2 —> r2, let Tf = T2 x [0,1]/~, where the equivalence relation ~ is
defined by (a-, 0) ~ (/(.r), 1).

ANNALES DE L'lNSTITUT FOURIER



PROJECTIVELY ANOSOV FLOWS 1639

The diffeomorphism / is isotopic to a linear map Ay defined by an
element of SL(2, Z) and the resulting manifold can be classified with respect
to the eigenvalues of this linear map as follows:

• Af has no real eigenvalues.

In this case, / is called elliptic and /n is isotopic to identity for
some n. Then Tf is finitely covered by the 3-torus T3, so we consider first
the case of T3 and then the elliptic case as its corollary.

• Af has only one real eigenvalue.

In this case, / is called parabolic and there exists only one isotopy
class of a closed curve on T2 which is invariant under /. By taking the
double-covering according to circumstances, Tf can be represented as a
non-trivial ^-bundle over T2.

• Af has two different real eigenvalues.

In this case, / is called hyperbolic and there exist two foliations on
r2 corresponding to the eigenvectors, which are invariant under /. In this
case, Tf admits an Anosov flow defined as the suspension of /.

Then we have the following theorems.

THEOREM 5.8. — Suppose that a projectively Anosov flow on T3 has
invariant foliations of class C2. Then it is topologically isotopic to a finite
union of T2 x I-models. In particular, both invariant foliations have finite
number of compact leaves.

THEOREM 5.9. — For a non-trivial S1-bundle M over T2, there exists
no projectively Anosov flow on M whose unstable and stable foliations
are of class C2. (In this case, M is represented as Tf for a parabolic
diffeomorphism f.)

THEOREM 5.10. — Let M be a T2-bundle over S1 with hyperbolic
monodromy. (M = Tf for hyperbolic f.) Suppose that a projectively
Anosov flow on M has invariant foliations of class C2 and that at least one
of these foliations has compact leaves. Then it is topologically isotopic to
a finite union ofT2 x I-models. Moreover, the flows on the compact leaves
are isotopic to the linear flows on T2 in the directions of the eigenvectors
off.

As to the eliptic case, we can deduce the following corollary from
Theorem 5.8.
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COROLLARY 5.11. — For a T2-bundle M over S1 with elliptic
monodromy (M = Tf for elliptic /), there exists no protectively Anosov
flow on M with differen liable (im) stable foliations.

Proof. — Suppose that there exists such a projectively Anosov flow (^
on Tf for elliptic /. We may assume that / = Af G SL(2,Z) such that
f^ == Id^ for some n. Remark that there exists no invariant direction
under / since / has no real eigenvalues. We can realize an n times
covering of Tf as Tf-n = T2 x [0,n]/(;r,0) ~ (/"'(^n) and the covering
transformations are generated by f(x,y) = (f(x),y 4- 1). Then Tfn is
homeomorphic to the 3-torus and the induced projectively Anosov flow <^
is invariant under the covering transformations. By Theorem 5.8, this flow
is isotopic to a finite union of T2 x J-models.

Take a compact leaf L of the unstable foliation. If L is isotopic to
r2 x {y} then the map f\L'L—^ f{L), regarded as an automorphism of the
2-torus by the identification of L with f(L) in Tf^n, is isotopic to /. Since L
and f(L) are compact leaves of the unstable foliation, the restricted flows
on them are isotopic to the same linear flow. However, there exists no linear
flow preserved by /. It is a contradiction.

If L is not isotopic to T2 x {y}, we can take yo such
that T = T2 x {yo} intersects L transversely. The diffeomorphism
f\T: T2 x {yo} —> T2 x {yo +1}? which is naturally identified with /, maps
TnL to f(T)r\f(L). The homology classes of these intersections in ifi(r^n)
coincide and are not trivial, since they are determined by the intersection
classes [T] • [L] and [/(T)] • [/(L)] and T and L are isotopic to /(T) and
f(L) respectively. Thus we can see that T H L contains a non-trivial loop
in T whose homology class is invariant under /j^. It is a contradiction.

Before proving the theorems, let us review classifications of foliations
on T3 and T2 x I , which are given by Moussu and Roussarie in [12].

THEOREM 5.12. — Let T be a transversely orientable foliation of class
C2 without a Reeb component, defined on T3 orT2 x I (then T is supposed
to be tangent to the boundary). Then

(i) If T has no compact leaves, it is topologically isotopic to a linear
foliation F ' on T3.

(ii) IfF has at least one compact leaf, it is topologically conjugate to
a foliation F' on T2 x (S1 resp. I) which is isotopic to a finite union of
foliations of type ^'([0;],%), where uj is a linear form ofT2 and i = 1 or 2.
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The linear form uj and the index i can vary from one component to another,
however, by reason of orientability, i = 1 except for a finite number of
components and components such that i = 2 appear in pairs in the case
ofT3.

Here .F([cc;], z) (i = 1,2) are the foliations defined in 3.2.

DEFINITION 5.13. — Two exfoliations FQ and Fi on T2 are R-C7'-
cobordant if there exists an orientable foliation F of class (7 on T2 x [0,1]
which gives a cobordism between FQ and Fi and have neither Reeb
components nor half Reeb components.

THEOREM 5.14. — Let FQ and Fi be C2-foliations on T2 and let F
be a C2-foliation on T2 x [0,1] which gives an R-C2-cobordism between FQ
andFz. Then

(i) IfT has compact leaves in the interior ofT2 x [0,1], both FQ and F\
are isotopic to linear foliations on T2.

(ii) I f J ^ has no compact leaves in the interior ofT2 x [0,1], it gives an
isotopy between FQ and F\.

By using these results we can show the following proposition, which
tells that projectively Anosov flows on T2 x I are represented as T2 x I-
models.

PROPOSITION 5.15. — Suppose that a projectively Anosov flow on
T2 x I has unstable foliation ̂  and stable foliation T8 of class C2, and
T2 x {0},T2 x {1} are the only compact leaves of^. Then

(i) 7s has a unique compact leaf in int(T2 x I ) .

(ii) The hnear holonomies along the compact leaves of ̂  and F8 are
non-trivial.

(ii) The flows restricted to T2 x {0},T2 x {1} are C°-isotopic to linear
flows.

Proof. — (i) Since 7s is transverse to the boundaries, it gives two
codimension one foliations FQ and Fi on the tori T2 x {0} and T2 x {1}
respectively. By Proposition 5.1, we can apply Theorem 5.12 for ^ru and
Theorem 5.14 for F8 and thus we see that ̂  is topologically equivalent
to a foliation of type T(^\, 1) or '̂([0;], 2). We also see that if ^s has no
compact leaves in the interior, F8 defines an isotopy between FQ and Fi. In

TOME 50 (2000), FASCICULE 5



1642 TAKEO NODA

this case, by the theorem of Denjoy [3] (see also [I], [17], for example), FQ
and F\ either have compact leaves or are topologically isotopic to a linear
foliation.

We consider each of the cases in the following. (Actually, we will see
that all of the cases in Case I will be eliminated.)

Case I: F8 does not have compact leaves in the interior.

In this case F8 defines an isotopy between -Fo 9Ln(^ F\. Then there are
two subcases according to the topology of -Fo and F\.

Case I-a: FQ and F\ have compact leaves.

In this case, FQ and F\ have slope components or Reeb components.

First, suppose that there exists a slope component in FQ. Then there
exists a closed orbit CQ which is a component of the boundary of this
slope component, and the holonomy of FQ (or F8) along this orbit is not
expanding. Let c\ be the closed orbit which corresponds to CQ by the isotopy
ofF8.

liFU is of type ̂ (t^], 1) then the foliation on the annular leaf bounded
by Co and c\ is a slope component. Hence the directions of the orbits Co
and ci are the same, and one of the holonomies of F^ along CQ and c\ is not
contracting. This is a contradiction (Figure 10 (1)).

In the case where Fu is of type ^([c^], 2), the foliation on this annular
leaf is a Reeb component and the directions of the orbits CQ and c\ differ.
Then the holonomy of F\ (or F8) along c\ is not contracting. Now take
the orbit c^ such that c\ and c[ bounds the slope component of F^ and
the holonomy of F^ along c^ is not expanding. Then one of the holonomies
of Fu along Co and c'i is not contracting and this is also a contradiction
(Figure 10 (2)).

Secondly, suppose that there exists a Reeb component. If Fu is of
type F([uj},2) then F ' " ' and F8 cannot be transverse (Figure 10 (3)), so
we may assume that Fu is of type ^([c^], 1). Then one of the orbits which
are contained in the boundary of the Reeb component has non-expanding
holonomy. Let do be this orbit and let d\ be the other orbit which is a
component of the boundary of the annular leaf containing do. The directions
of the orbits do and d\ are the same, so both do and d\ have non-expanding
holonomies of F8. However, one of the holonomies of Fu along do and di is
not expanding. This is a contradiction (Figure 10 (4)).
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(1)

(3)

Figure 10

Case I-b: FQ and F\ are isotopic to an irrational linear foliation.

In this case, all orbits of the flows on the boundary are dense. So
applying Lemma 5.5, we can see that the flows in the neighbourhood of the
boundaries are absorbed into compact leaves of ̂  as t —>• +00. Then there
exists e > 0 such that

^=^2xJ-(U^(^2x[o^)))u(U^(^2x(l- . ,1]))
teR t€R

is a non-empty closed set. Since the minimal set of the flow restricted to
K has an orbit which converges to itself transversely, the unstable or the
stable foliation has non-trivial holonomy by Proposition 5.6. However, both
of them do not have holonomies in int(r2 x J). This is a contradiction.

Thus we have shown that Case I can never occur.

Case II: F8 has compact leaves in the interior.

Suppose that 7s has more than one compact leaf. If there exists a
subset A in the interior ofT2xI such that FS\A\^ topologically equivalent
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to the product foliation of T2 x intJ, then both of the holonomies of ̂
and T8 are trivial in A and it contradicts 5.6. Thus we may assume that
there exists a subset B in the interior of T2 x I such that 9B consists of two
compact leaves of .P3)^ and that there exists no compact leaf in the interior
of B. Since F8 can be regarded as the unstable foliation of the inverse
flow (^~*, we can apply the same discussion as above to ^{B and ^FS\B'
It follows that there exist compact leaves of ^n in the interior of T2 x I .
This contradicts the assumption. Therefore 7s contains only one compact
leaf and we have thus proved (i).

(ii) The flows on the compact leaves are isotopic to linear foliations.
Approximating these orbits by closed curves on the leaves, we can easily
see by Lemma 5.5 that linear holonomies are non-trivial.

(iii) It is obvious by (ii) and the smoothness of the foliations.

Now we can give proofs for the main theorems.

Proof of 5.8. — By Proposition 5.1, we can apply Theorem 5.12 to
the unstable and stable foliations ^^T8. Thus we know that ^:u and J^8

are topologically isotopic to either linear foliations or unions of foliations of
type F{[uj\^i) where i = 1 or 2.

If both ̂  and J^8 are isotopic to linear foliations, their holonomies are
trivial. However, a minimal set of the flow contains an orbit which converges
to itself transversely and it contradicts Proposition 5.6. Therefore, at least
one of the invariant foliations is not isotopic to a linear foliation.

Now we may assume that ̂  is a union of foliations of type ^([c^], i).
Then using Proposition 5.15 to each component which is homeomorphic
to T2 x J, we know that 7s is also represented as a union of foliations on
T2 x Z, and that compact leaves of^ and f8 appear alternatively in T3.

Now it remains to prove that the number of components is finite. If
there are infinitely many components, then there will be also infinitely many
compact leaves, and some compact leaf must have trivial linear holonomy.
This contradicts 5.15 (ii).

Proof of 5.9. — It is shown by Levitt [9] and Thurston [19] that if a
(^-foliation on a non-trivial S1 -bundle over T2 has no compact leaves, then
it is isotopic to the foliation which is a pull-back of a linear foliation on T2

by the natural projection.

Suppose that both F'^ and T8 have no compact leaves. Then they are
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isotopic to pull-backs of linear foliations on T2 and the holonomies of these
foliations are both trivial. This contradicts Proposition 5.6.

Next, assume that ^u has compact leaves. If we get rid of a compact
leaf and glue two copies of it on both sides of the boundaries, we obtain
a manifold with boundaries, which is homeomorphic to T2 x J, and the
original manifold can be made over again by gluing together the boundaries
by another parabolic diffeomorphism g. Thus we can assume that ^ru is
a foliation on T2 x I such that the boundaries T2 x {0} and T2 x {1}
(identified by g) correspond to a union of compact leaves.

In this case, by the theorem of Moussu and Roussarie and by a
discussion similar to the one of the previous theorem, ̂  is a finite union of
T2 x J-models. Furthermore, from the gluing condition ofg, the flows on the
compact leaves of ^7n and J:s are all isotopic to the linear foliation of T2 by
closed leaves, which is (/-invariant. However, the holonomies of ^:u and J78

along these orbits are both trivial and it contradicts Proposition 5.6.

Proof of 5.10. — As the compact leaves are incompressible by
Proposition 5.1, they are isotopic to fibers of M.

The same argument as in the previous theorem also enables us to
regard the invariant foliations as a finite union of T2 x J-models. In this
case, the gluing condition allows the flows on the compact leaves to be
isotopic to the linear flows on T2 in the directions of the two eigenvectors
oiAf.

If the flows on compact leaves of both J^ and 7s have the same
direction, the approximation of the orbits by sufficiently long closed curves
on the leaves will lead to a contradiction of Lemma 5.5. Therefore they
differ. We have thus proved the theorem.

Remark. — For a hyperbolic automorphism /, Tf admits an Anosov
flow by the suspension of /. In the case of projectively Anosov flows
on Tf which have invariant foliations without compact leaves, we have the
following theorem.

THEOREM 5.16 (see [13]). — Let M be a T2-bundle over S1 with
hyperbolic monodromy. Suppose that a projectively Anosov flow on M has
invariant foliations which are of class C2 and do not contain compact leaves.
Then the flow is actually an Anosov flow given as the suspension of the
monodromy.
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The bi-contact structures for the Anosov flows by suspensions can be
obtained by propeller constructions with rotations less than TT. Therefore,
as to bi-contact structures, we can deduce the following corollary:

COROLLARY 5.17. — If protectively Anosov flows on T2-bundles
over S1 have invariant foliations of class C2, the accompanied bi-contact
structures are obtained by propeller constructions.
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