Annales de l'institut Fourier

Nicholas Buchdahl
 A Nakai-Moishezon criterion for non-Kähler surfaces

Annales de l'institut Fourier, tome 50, no 5 (2000), p. 1533-1538
http://www.numdam.org/item?id=AIF_2000__50_5_1533_0
© Annales de l'institut Fourier, 2000, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A NAKAI-MOISHEZON CRITERION FOR NON-KÄHLER SURFACES

by Nicholas BUCHDAHL

0. Introduction.

In Corollary 15 of [B], the classical Nakai-Moishezon criterion for a compact complex surface X was generalised to yield a characterization of the set of classes in $H_{\mathbb{R}}^{1,1}(X)$ which can be represented by a Kähler form, a result obtained independently by Lamari [L]. Under the assumption that $b_{1}(X)$ is even, this result was further generalised in Theorem 16 of [B] to the case of $\bar{\partial} \partial$-closed modulo $\bar{\partial} \partial$-exact $(1,1)$-forms. The purpose of this paper is to demonstrate that the assumption on $b_{1}(X)$ can be dropped entirely. Namely, the following will be proved:

Theorem. - Let X be a compact complex surface equipped with a positive $\bar{\partial} \partial$-closed $(1,1)$-form ω and let φ be a smooth real $\bar{\partial} \partial$-closed $(1,1)$-form satisfying $\int_{X} \varphi \wedge \varphi>0, \int_{X} \varphi \wedge \omega>0$ and $\int_{D} \varphi>0$ for every irreducible effective divisor $D \subset X$ with $D \cdot D<0$. Then there is a smooth function g on X such that $\varphi+i \bar{\partial} \partial g$ is positive.

Theorem 16 of $[\mathrm{B}]$ differs from this only in that it assumes $b_{1}(X)$ is even and that $\int_{D} \varphi>0$ for every effective divisor $D \subset X$; however, this inequality must hold for any effective divisor D with $D \cdot D \geq 0$ by Proposition 5 of that paper.

Keywords: Complex surface - Kähler metric - Nakai-Moishezon criterion.
Math. classification: 32J15-53C55-32C30.

Acknowledgement. - This first version of this paper was written during the second half of 1999 when the author was a visitor at l'Institut des Hautes Études Scientifiques. The author wishes to express his deep gratitude to IHÉS for its hospitality.

1. Proof of the theorem.

Let X be a compact complex surface. Since the theorem has already been proved in the case of even first Betti number, it will be assumed henceforth that $b_{1}(X)$ is odd. The same notation as in [B] is employed throughout, so $\Lambda^{p, q}$ denotes the sheaf of germs of smooth (p, q)-forms on X, with $\Lambda^{p, q}(X)$ denoting the global sections. A $\bar{\partial} \partial$-closed positive $(1,1)$ form $\omega \in \Lambda_{\mathbb{R}}^{1,1}(X)$ is chosen once and for all, its existence guaranteed by Gauduchon's theorem [G].

For any $f \in \Lambda^{1,1}(X)$ there is a function $g \in \Lambda^{0,0}(X)$, unique up to the addition of a constant, such that $\omega \wedge\left(f+g^{\prime \prime}\right)$ is a constant multiple of ω^{2} where $g^{\prime \prime}:=i \bar{\partial} \partial g$. Since $b_{1}(X)$ is odd, the proof of Lemma 8 in [B] implies that there is a unique form $\sigma_{0} \in \Lambda_{\mathbb{R}}^{1,1}(X)$ with the properties that it is d-exact and satisfies $\omega \wedge \sigma_{0}=\omega^{2}$. The harmonic representative of a closed (1, 1)-form f on X satisfying $\omega \wedge f=c \omega^{2}$ for some constant c is then $f-c \sigma_{0}$. This form is anti-self-dual with respect to ω, a manifestation of the fact that the intersection form on $H^{2}(X, \mathbb{R})$ restricted to $H_{\mathbb{R}}^{1,1}(X)$ is negative definite ([BPV], IV 2.13).

For a holomorphic line bundle L on X, there is a unique hermitian metric on L such that the corresponding hermitian connection has curvature f_{L} satisfying $\omega \wedge f_{L}=$ Const $\cdot \omega^{2}$. If $s \in \Gamma(X, \mathcal{O}(L))$ is non-zero and E is the associated effective divisor $s^{-1}(0)$, the equation of currents $2 \pi E=i f-i \bar{\partial} \partial \log |s|^{2}$ holds by the Poincaré-Lelong theorem ([GH]). Therefore $\int_{E} \varphi=\frac{i}{2 \pi} \int_{X} f_{L} \wedge \varphi$ for any smooth $\bar{\partial} \partial$-closed (1,1)-form φ. When the divisor E is given without reference to L, the notation f_{E} will be used to denote f_{L} for $L=\mathcal{O}(E)$.

A real divisor on X is by definition a finite formal sum of the form $D=\sum_{i} \nu_{i} D_{i}$ where $D_{i} \subset X$ is an irreducible effective divisor on X and ν_{i} is a real number; D is effective if $\nu_{i} \geq 0$ for all i, in which case the usual notation $D \geq 0$ is employed; similarly, $D \geq E$ iff $D-E \geq 0$. As for integral divisors, the notation f_{D} is used to denote $\sum_{i} \nu_{i} f_{D_{i}}$.

The intersection form on $H^{2}(X, \mathbb{R})$ is denoted by the dot product symbol. Thus $E \cdot E$ is the self-intersection number of an effective divisor
E in X, realised by the integral $-\frac{1}{4 \pi^{2}} \int_{X} f_{E} \wedge f_{E}$. The notation extends by \mathbb{R}-linearity to all real divisors, and is further extended to denote the pairing between $\bar{\partial} \partial$-closed (1,1)-forms: $\varphi \cdot \psi:=\int_{X} \varphi \wedge \psi$ for $\bar{\partial} \partial$-closed $\varphi, \psi \in \Lambda_{\mathbb{R}}^{1,1}(X)$. If $\psi=i f_{D}$ for some real divisor D, the notation $\varphi \cdot D$ may also be used in place of $\frac{1}{2 \pi} \varphi \cdot i f_{D}$.

Lemma 1. - Let $E \subset X$ be an effective integral divisor such that $E \cdot E=0$. Then for any $\varepsilon>0$ there is a smooth function g such that $i f_{E}+g^{\prime \prime} \geq-\varepsilon \omega$.

Proof. - If there is no smooth function g on X such that $i f_{E}+g^{\prime \prime}+$ $\varepsilon \omega$ is positive in a neighbourhood of E, the Hahn-Banach Theorem implies the existence of a current T and a constant c such that $T\left(i f_{E}+\varepsilon \omega+g^{\prime \prime}\right) \leq c$ for every smooth function g and $T(\psi)>c$ for every smooth 2 -form ψ whose $(1,1)$-component is positive in a neighbourhood of E.

It follows immediately that T is a $(1,1)$-current, that $\bar{\partial} \partial T=0$, that c must be non-positive, that $T\left(i f_{E}+\varepsilon \omega\right) \leq c$, that $T(\psi) \geq 0$ for any smooth $(1,1)$-form ψ which is positive in a neighbourhood of E and finally that the support of T must be contained in E. By Lemma 32 of [HL], it follows that $T=\sum_{i} h_{i} E_{i}$ where h_{i} is a non-negative constant and E_{1}, E_{2}, \ldots are the irreducible components of E. Since $E \cdot E=0$ and $b_{1}(X)$ is odd, $[E]=0$ in $H^{2}(X, \mathbb{R})$. Hence $E_{i} \cdot E=0$ for all i, and this gives a contradiction since then $c \geq T\left(i f_{E}+\varepsilon \omega\right)=T(\varepsilon \omega)>c$.

It can therefore be supposed that E is the zero set of a section s of a holomorphic line bundle L which has a hermitian connection whose curvature form f satisfies if $>-\varepsilon \omega$ in an open neighbourhood U of E. After rescaling s if necessary, it can be assumed that $\{x \in X||s(x)| \leq 1\} \subset U$.

Let χ be a smooth convex increasing function on \mathbb{R} such that $0 \leq$ $\chi^{\prime}(t) \leq 1$ for all t, with $\chi(t)=t$ for $t \geq 0$ and with $\chi(t)=-1$ for $t \leq-1$. Then $i \bar{\partial} \partial\left(\chi\left(\log |s|^{2}\right)\right)=\chi^{\prime}\left(\log |s|^{2}\right) i \bar{\partial} \partial \log |s|^{2}+\chi^{\prime \prime}\left(\log |s|^{2}\right) i \bar{\partial}\left(\log |s|^{2}\right) \wedge$ $\partial\left(\log |s|^{2}\right) \leq \chi^{\prime}\left(\log |s|^{2}\right) i f$, so $i f-i \bar{\partial} \partial\left(\chi\left(\log |s|^{2}\right)\right) \geq\left(1-\chi^{\prime}\left(\log |s|^{2}\right)\right) i f \geq$ $-\varepsilon \omega$, as required.

Remark. - The above proof also works in some cases when $b_{1}(X)$ is even. For example, if E is irreducible (with $E \cdot E=0$), or if every effective divisor on X has non-negative self-intersection.

Lemma 2. - Suppose $\psi \in \Lambda_{\mathbb{R}}^{1,1}(X)$ satisfies $\bar{\partial} \partial \psi=0, \psi \cdot \psi=0$, $\psi \cdot \omega \geq 0$ and $\psi \cdot D \geq 0$ for every effective divisor $D \subset X$. Then for any
$\varepsilon>0$ there is a smooth function g such that $\psi+g^{\prime \prime} \geq-\varepsilon \omega$.

Proof. - By Lemma 7 of [B], ψ can be approximated arbitrarily closely in L^{2} norm by forms of the kind $p-g^{\prime \prime}$ where p is smooth and positive and g is smooth. Following exactly the same argument as used in the proof of Theorem 11 of [B], a sequence of smooth functions g_{n} and smooth positive (1,1)-forms p_{n} can be found such that $\left\|\psi+g_{n}^{\prime \prime}-p_{n}\right\|_{L^{2}(\omega)}$ is converging to 0 and g_{n} is converging in L^{1} to define an almost-positive closed (1,1)-current $P=g_{\infty}^{\prime \prime} \geq-\psi$. Applying the same arguments as in the proofs of Theorems 11 and 16 in $[\mathrm{B}]$ shows that for any given $\varepsilon>0$ there is a real effective divisor D_{ε} and a smooth function g_{ε} such that $-i f_{D_{\varepsilon}}+g_{\varepsilon}^{\prime \prime} \geq-\psi-\varepsilon \omega$. The construction of D_{ε} is such that it can be assumed that $D_{\varepsilon^{\prime}} \geq D_{\varepsilon}$ for $\varepsilon^{\prime}<\varepsilon$ and the coefficient of an irreducible component common to both D_{ε} and $D_{\varepsilon^{\prime}}$ is the same in both.

Now take a sequence of positive numbers ε converging monotonically to 0 . Since $\chi_{\varepsilon}:=\varepsilon \omega+\psi-i f_{D_{\varepsilon}}+g_{\varepsilon}^{\prime \prime}$ is positive, $0 \leq \chi_{\varepsilon} \cdot \chi_{\varepsilon}=$ $\varepsilon^{2} \omega \cdot \omega+4 \pi^{2} D_{\varepsilon} \cdot D_{\varepsilon}+2 \varepsilon \omega \cdot \psi-4 \pi \varepsilon \omega \cdot D_{\varepsilon}-2 \pi \psi \cdot D_{\varepsilon}$. The hypotheses on ψ and negativity of the intersection form restricted to $H_{\mathbb{R}}^{1,1}(X)$ therefore imply that the cohomology classes $\left[D_{\varepsilon}\right] \in H^{2}(X, \mathbb{R})$ are uniformly bounded. After passing to a subsequence if necessary, the corresponding sequence of harmonic representatives can be assumed to converge smoothly. Moreover, the inequality $0 \leq \omega \cdot \chi_{\varepsilon}=\varepsilon \omega \cdot \omega+\omega \cdot \psi-2 \pi \omega \cdot D_{\varepsilon}$ implies that the increasing sequence of non-negative numbers $\left\{\omega \cdot D_{\varepsilon}\right\}$ is bounded above and hence converges. Therefore the sequence of forms $\left\{f_{D_{\varepsilon}}\right\}$ converges smoothly to a closed (1,1)-form $f_{\mathcal{D}}$ satisfying $f_{\mathcal{D}} \cdot f_{\mathcal{D}}=0=\psi \cdot f_{\mathcal{D}}$ and $\omega \wedge i f_{\mathcal{D}}=c \omega^{2}$ for some constant $c \geq 0$. Since $\left[i f_{\mathcal{D}}\right]=0$ in $H^{2}(X, \mathbb{R})$ it follows $i f_{\mathcal{D}}=c \sigma_{0}$.

If $c=0$, it follows from the fact that $\left\{\omega \cdot D_{\varepsilon}\right\}$ is non-negative and increasing that $\omega \cdot D_{\varepsilon}=0$ for all ε; in this case $D_{\varepsilon}=0$ for all ε and therefore $\psi+g_{\varepsilon}^{\prime \prime} \geq-\varepsilon \omega$ as required.

If $c>0$, the identity $\psi \cdot \sigma_{0}=0$ and Proposition 5 of [B] imply that $\psi+g^{\prime \prime}$ is a non-negative multiple of σ_{0} for some smooth function g. If there is a non-zero integral effective divisor E on X such that $E \cdot E=0$, since $\left[\sigma_{0}\right]=0$ in $H^{2}(X, \mathbb{R})$ it follows that $\sigma_{0} \cdot E=0$ and by Proposition 5 of [B] again, that σ_{0} is a positive multiple of $i f_{E}$; in this case, the desired result follows from Lemma 1 . If X has algebraic dimension 1, it is well-known that X is an elliptic surface ([BPV], VI 4.1) and therefore such a divisor E exists.

If X has algebraic dimension 0 , then by [BPV], IV 6.2, there are only
finitely many irreducible curves on X so that for ε sufficiently small, the real divisors D_{ε} are independent of ε. Hence $f_{\mathcal{D}}=f_{D}$ for some genuine real effective divisor D on X satisfying $D \cdot D=0$. By Lemma 4 in $\S 3.5$ of Ch. V of [Bou], the symmetric negative semi-definite intersection matrix M associated with the irreducible components of a connected component of D has a 1-dimensional kernel, and the entries in a generating vector \mathbf{v} all have the same sign. Since \mathbf{v} must be a multiple of a column of the cofactor matrix of M, after multiplying by a real constant it has positive integer entries. This implies that there is an effective non-zero integral divisor E on X with $E \cdot E=0$, so the desired result follows from the previous paragraph.

The proof of the main theorem can now be completed. Let $\varphi \in$ $\Lambda_{\mathbb{R}}^{1,1}(X)$ be a $\bar{\partial} \partial$-closed form satisfying the hypotheses of the theorem. By the proof of Theorem 14 of $[\mathrm{B}]$, there is a form $u \in \Lambda^{0,1}(X)$ such that $\tilde{\varphi}:=\varphi+\partial u+\bar{\partial} \bar{u}$ is positive; (the hypothesis that $b_{1}(X)$ be even in that theorem is used only in the final sentence of the proof).

By Proposition 5 of [B], $\tilde{\varphi} \cdot \varphi$ is strictly positive. Let t_{0} be the smaller solution of the equation $\left(\varphi-t_{0} \tilde{\varphi}\right) \cdot\left(\varphi-t_{0} \tilde{\varphi}\right)=0$, and set $\psi:=\varphi-t_{0} \tilde{\varphi}$. Since $(\varphi-t \tilde{\varphi}) \cdot(\varphi-t \tilde{\varphi})>0$ for t satisfying $0 \leq t<t_{0}$, the sign of $\omega \cdot(\varphi-t \tilde{\varphi})$ cannot change for such t so $\omega \cdot \psi \geq 0$. Since $(\varphi-\tilde{\varphi}) \cdot(\varphi-\tilde{\varphi})=-2\|\bar{\partial} u\|^{2} \leq 0$, it follows that $t_{0} \leq 1$ and therefore for any effective divisor $E \subset X$, $\psi \cdot E=\left(1-t_{0}\right) \varphi \cdot E \geq 0$.

The form ψ therefore satisfies the hypotheses of Lemma 2. Applying that lemma, given $\varepsilon>0$ there is a smooth function g_{ε} such that $\psi+g_{\varepsilon}^{\prime \prime} \geq$ $-\varepsilon \omega$, so if ε is chosen so small that $t_{0} \tilde{\varphi}-\varepsilon \omega>0$, it follows that $\varphi+g_{\varepsilon}^{\prime \prime}>0$, as required.

Remark. - The methods of this paper show that if $\varphi \in \Lambda_{\mathbb{R}}^{1,1}(X)$ satisfies the hypotheses of the theorem except for the condition that $\int_{E} \varphi$ be positive for every effective $E \subset X$ with negative self-intersection, there is an effective real divisor D on X such that $\varphi-i f_{D}$ is $i \bar{\partial} \partial$-homologous to a positive form.

BIBLIOGRAPHY

[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Berlin-Heidelberg-New York, Springer, 1984.
[Bou] N. Bourbaki, Groupes et Algèbres de Lie, Ch. 4,5,6, "Éléments de mathématiques" Fasc. XXXIV, Paris, Hermann, 1968.
[B] N. P. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier, 49-1 (1999), 287-302.
[G] P. Gauduchon, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, 285 (1977), 387-390.
[GH] P. A. Griffiths and J. Harris, Principles of Algebraic Geometry, New York, Wiley, 1978.
[HL] R. Harvey and H. B. Lawson, An intrinsic characterisation of Kähler manifolds, Invent. Math, 74 (1983), 169-198.
[L] A. Lamari, Le cône kählérien d'une surface, J. Math. Pures Appl., 78 (1999), 249-263.

Manuscrit reçu le 15 novembre 1999, révisé le 16 mars 2000, accepté le 27 avril 2000 .

Nicholas BUCHDAHL,
University of Adelaide
Department of Pure Mathematics
Adelaide 5005 (Australia).
nbuchdah@maths.adelaide.edu.au

