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EXTREMAL PROBLEMS
FOR CONDITIONED BROWNIAN MOTION

AND THE HYPERBOLIC METRIC

by R. BANUELOS^*) & T. CARROLI/t)

1. Introduction.

The expected lifetime of conditioned Brownian motion in a simply
connected planar domain D is by now quite well understood. It is sufficient
to consider the case when the Brownian motion is conditioned to exit
the domain at a particular boundary point /3. P. Griffin, T. McConnell
and G. Verchota [7] have shown that the expected lifetime increases as
the starting point moves away from f3 along a hyperbolic geodesic of D.
In effect, then, the greatest expected lifetime occurs when the Brownian
motion is conditioned to travel between two boundary points a and f3 of
D. An analytic expression for the expected lifetime in this case is, in terms
of the Poisson kernel Ki)(z, ̂ ) at z for a boundary point (,

2 ( KD^a)KD^(3)dm(z)
^ J D

where the above product of Poisson kernels is normalized to have the
constant value 1 along the hyperbolic geodesic joining a and (3: see [7].

In the case of a disk, Griffin, McConnell and Verchota were able
to show that the greatest expected lifetime occurs when the Brownian
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1508 R. BANUELOS & T. CARROLL

motion is conditioned to travel between diametrically opposite points and
its numerical value is (4 In 2 — 2)r2, r being the radius of the disk. An
alternative proof of this fact was found by Banuelos and Housworth [4],
p. 608. Griffin, McConnell and Verchota also found the best constant in
the Cranston-McConnell theorem in the case of simply connected domains.
Cranston and McConnell [6], in answer to a question of Kai Lai Chung,
proved that there is an absolute constant C such that the expected lifetime
of any conditioned Brownian motion in any planar domain is at most C
times the area of the domain. If the domain is simply connected, Griffin,
McConnell and Verchota [7] proved that the constant C can be taken to be
I/TT, that there are no simply connected domains for which the constant is
attained but that long, thin rectangles are asymptotically extremal.

In the other direction, it is in general not possible to give a lower
bound for the maximal expected lifetime of conditioned Brownian motion
in simply connected domains in terms of area as there are simply connected
domains of infinite area but with finite maximal lifetime. The first such
examples were constructed by Xu [12]; further examples may be found in
Banuelos and Carroll [3] and Griffin, Verchota and Vogel [8]. However, for
convex domains Xu [12] proved that the maximum lifetime is bounded
below by a constant times the area of the domain. The following problem,
raised in [7], goes far beyond this.

PROBLEM. — Is it the case that among all convex domains of
prescribed area a disk of that area has the smallest maximal expected
lifetime of conditioned Brownian motion ?

In [3] we found an expression which involves only the hyperbolic ge-
ometry of a simply connected domain and is an equivalent expression for the
maximal lifetime of the domain. This formula gives a deeper understand-
ing of the behavior of conditioned Brownian motion in simply connected
domains and it makes precise the statement that "conditioned Brownian
motion paths tend to follow hyperbolic geodesies." On interpreting the
above problem in these terms, several more general and more geometric
problems arise which lead us to several conjectures. The purpose of this
paper is to discuss these more general geometric conjectures and to prove
various special cases. In §2 we give the details which lead to these new con-
jectures; in §3 we prove a sharp upper bound estimate which arises out of
these conjectures. This result is a generalization of the Griffin, McConnell
and Verchota result and is in complete analogy with the classical result
for the Green's function of the unconditioned Brownian motion proved in
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EXTREMAL PROBLEMS FOR CONDITIONED BROWNIAN MOTION 1509

Bandle [2], p. 61. In §4 we verify the lower bound conjectures in certain
special cases.

2. A geometric conjecture.

Suppose that po^t-, x ^ y ) is the transition density function for Brown-
ian motion killed on the boundary of a domain D. Analytically, this quan-
tity is the Dirichlet heat kernel for jA in D. Let T-̂  denote the class of all
positive harmonic functions in D. Doob's conditioned Brownian motion is
a stochastic process in D which, given a function h in T-T^, has transition
density function

-^pD(t,x,y)h(y).

The measure on path space induced by this transition function is denoted
by P^ and the corresponding expectation by E^. If we denote by TD the
first time the Brownian path leaves the domain, the quantity of interest in
the present setting is

CD = s\ip{E^TD : x e D and h € H^}.
It is the maximal expected lifetime of conditioned Brownian motion in D
when the starting point and the conditioning positive harmonic function
are allowed to vary. Since the integral in time of the heat kernel gives the
Green's function for jA in D, we arrive at the analytic expression

E^rD=7^ I GD(x^y)h(y)dy.
i 1 ^ ) JD

It then follows from the Martin representation of positive harmonic func-
tions that one need only consider Martin kernel functions h(') == KD (•5^)
in the supremum defining CD. In this case, the paths of the conditioned
Brownian motion start from x and are conditioned to exit the domain at
the Martin boundary point (3. In this case we write E^TD-

When the domain D is simply connected, it is shown in [7] that,
for a fixed Martin boundary point or prime end /?, the expected lifetime
of Brownian motion conditioned by the Martin/Poisson kernel function
K D ( ' - > ^ ) increases as the starting point x moves away from /? along the
hyperbolic geodesic joining x and /3. If the second endpoint of this geodesic
is the prime end a, as x moves away from f3 towards a along the geodesic,
E^TD approaches the quantity

2 { KD(z^a)KD(z^)dm(z).
^ J D
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1510 R. BANUELOS & T. CARROLL

Here the product of Poisson kernels is normalized to have the constant
value 1 along the hyperbolic geodesic joining a and f3. We write E^TD
for this limit and think of it as the expected lifetime when the Brownian
motion is conditioned to travel between the boundary points a and f3. It
then follows, see [7], p. 234, that

(2.1) £D=sup(2 [ KD(z,a)KD(z^)dm{z): a,f3^QD\.
[7r J D )

In [3] we arrived at the same quantity, but only as an equivalent
expression for the maximal lifetime. We were, however, able to go one step
further and make the connection between the product of Poisson kernels
and the hyperbolic geometry of D much more precise; hence facilitating
the introduction of geometric function theory as a tool. We now present a
refinement of the expression given in [3].

We denote by d(a, 6; D) the hyperbolic distance between the points
a and b in D arising from the hyperbolic metric cr^(z) in D. The normal-
ization we adopt is that in which the metric o~D(z) has constant curvature
—4. Alternatively, taking any conformal mapping g(z) of D onto the unit
disk [7,

(2.2) a^) = au(g(z))\g\z)\ = ̂ ^.

We refer the reader to [5] and [10] for an account of the hyperbolic metric
in the simply connected case.

Suppose that a and f3 are prime ends of D and that F is the
hyperbolic geodesic that joins them. In [3] we were able to compare
the quantities d(^,r;P) and KE>{z,a)Ki)(z^ f3) and hence obtained an
expression involving hyperbolic distance which is, up to a constant, the
maximal expected lifetime. In retrospect, it is clear that there has to be
an exact relationship between these two quantities, in accordance with the
principle outlined by Ahlfors [I], p. 6: d{z,F',D) is a conformal invariant
which depends on one internal point and two boundary points, namely the
endpoints of F. Hence, any function of d{z, F; D) has the same dependence
and, more importantly, any other conformal invariant of this type -
for example, KD^Z^O^K^^Z^ (3) ~ arises in this way. We now determine
explicitly the functional dependence in this specific case, the result being
an improvement on Lemma 1 in [3], both in terms of its content and its
proof.

LEMMA 1. — Suppose that D is a simply connected domain and
that r is a hyperbolic geodesic in D whose endpoints are the prime ends a
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EXTREMAL PROBLEMS FOR CONDITIONED BROWNIAN MOTION 1511

and (3. Then, for z in D,

Ko(z, a)Ko{z, (3) = sech2 [2d(z, F; D)],

where the above product ofPoisson kernel functions is normalized to equal
1 on the hyperbolic geodesic F.

Proof. — We map D conformally onto the unit disk U so that the
prime ends a and (3 correspond to -1 and 1 respectively. By composing
with an appropriate automorphism M(z) = (z - r)/(l - rz), -1 < r < 1
which fixes -1 and 1, we may arrange that the image of z lies on the
imaginary axis, say at ir. By conformal invariance,

KD{z,a)KD(z^)=Ku(ir,-l)Ku(ir,l)= f3—7^ .
\1 + r2/

It also follows from conformal invariance that

d(z^D)=d{^r^-l^^U)=d(ir^U)=l\og]-^.
2 1 — r

So solving for r we find that r = tanhd(^r; D) and substituting this into
the above expression for the product of Poisson kernels, we obtain

KD^O)KD(Z^) = ̂ -tanh^^r;^^ ̂  1
V 1 + tanh2 d(z, F; D) ) cosh2 [2d(z, F; D)] '

which proves the lemma. Q

From Lemma 1 and the results of Griffin, McConnell and Verchota
(2.1) we obtain an expression for the maximal lifetime of conditioned
Brownian motion in a simply connected domain D which is an improvement
of Theorem 1 in [3], namely

CD = sup ^ J [ sech2 [2d(z, F; D)] dm(z) \,

the supremum being over all hyperbolic geodesies in D.

We now propose to review Griffin, McConnell and Verchota's Problem
in the light of this expression for CD. It is suggested that the maximal
expected lifetime of conditioned Brownian motion in a convex domain is
greater than that for a disk of the same area. The maximal expected lifetime
of Brownian motion occurs when the Brownian motion is conditioned to
travel between boundary points and, in the case of a disk, the maximum
occurs when the boundary points are diametrically opposite. Thus an
equivalent question is whether there corresponds to each convex domain
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1512 R. BANUELOS & T. CARROLL

D of finite area, boundary points a and /? such that the expected lifetime
E^TD of Brownian motion conditioned to travel between a and /3 in D is
greater than the lifetime of Brownian motion conditioned to travel between
diametrically opposite boundary points of a disk of the same area as D.
Bringing Lemma 1 and (2.1) to bear at this point, we see that the problem
may be thought of as follows: is it the case that, for each convex domain
D, there is a hyperbolic geodesic F in D such that

2 f sech^d^.r;^)] dm(z) ̂  2 f sech2^^,?*;^*)] dm(z)
7r JD 7r JD*

where D* is a disk of the same area as D and r* is a diameter of that disk?

When written in this way, the function (2/7r) sech^^x) seems out of
place and indeed it would be very surprising if the resolution of the problem
was to depend on this specific function rather than on its general properties.
The most obvious of these is that (2/7r) sech^a") is a decreasing function
on [0,oo). Hence we arrive at the more general problem, which we choose
to state as a conjecture.

CONJECTURE 1. — To each convex domain D of finite area there
corresponds a hyperbolic geodesic F such that for each non-negative, non-
increasing function if;(x) on [O.oo),

(2.3) f ^(d(z^D))dm(z)^ [ ^(d(^,r*; D*)) dm(z)
JD J D*

where D* is a disk of the same area as D and F* is a diameter of £>*.
Equality holds for some non-constant function ̂  if and only ifD is a disk.

For example, if in addition D was symmetric in its longest diameter
it would be natural to expect that the correct choice of F would be this
diameter.

Given c positive, we may take ^(x) = I[Q^)W in (2.3), in which case
(2.3) becomes
(2.4) area{^ e D :d(z,T',D) < c} ^ a rea{^€ P* : d(z,F*;D*) < c}.
On the other hand, suppose that (2.4) holds for a certain geodesic F in D
and all positive c. We wish to show that (2.3) holds for the same geodesic
r and each permissible function ^. The validity of inequality (2.4) for each
positive c is equivalent to the statement that (2.3) holds for each ^ of the
form l[o,c)(^), with c positive. Hence, (2.3) holds for those simple functions
'0 of the form

n

(2.5) ^>J[o,c.)(^
i=0

ANNALES DE L'lNSTITUT FOURIER
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where each o^ and each ci is positive. Suppose that a non-negative, non-
increasing function ^(x) on [0, oo) is given. By redefining ^ at a countable
set of points, an operation which affects neither of the integrals in (2.3), we
may assume that ^ is right continuous. The function ̂  may then be written
as the pointwise limit of an increasing sequence of functions {^(rc)}^:^,
each having the form (2.5). (We omit the straightforward proof.) It then
follows from monotone convergence that (2.3) holds also for the given
function '0. Thus Conjecture 1 may be reformulated as follows.

CONJECTURE 2. — To each convex domain D of finite area there
corresponds a hyperbolic geodesic T such that, for each positive c, the
Euclidean area of the region [z G D : d(z, F; D) < c} is at least as great
as that of the region {z € D* : c?(^,r*;D*) < c}, where D* is a disk of
the same area as D and F* is a diameter of D*. Equality holds for some
positive c if and only if D is a disk.

Regions of the form {z € D : d(z^ F; D) < c} are conformally invariant
although their Euclidean areas are not. The conformal invariance of these
regions allows us to refine our conjecture even further. In the case of the
strip S = {z : \lmz\ < Tr/2}, when the geodesic F is the real axis, the
region {z € S : d{z,r',S) < c} is simply a substrip St = {z : \lmz\ < t}
where 0 < t < Tr/2. We need to know how c and t are related.

Taking F(z) = (e^ - l)/^ + 1) in (2.2), we may verify that the
hyperbolic metric for the strip S is

1
^(^) 2 cos(Im z)

Suppose that z is in S and that .TO is real. The hyperbolic geodesic from z
to ~z in 6' is the Euclidean line segment [z, ~z\. If 7 is any curve from z to XQ,
we may reflect it in the real axis and adjoin this to 7 to produce a curve
joining z to ~z. This last curve has hyperbolic length twice that of 7 and at
least that of the line segment [z,~z\. Since the hyperbolic length of [z,~z] is
twice that of [z, Re z], we deduce that the hyperbolic length of 7 is at least
that of the line segment [^,Re^]. Thus Re z is the point on the real axis
which is hyperbolically closest to z and

d(z,R,S)= d(z,Rez',S)

= d(i\lmz\,0;S)
p\lmz\

= / as(iy)dy
Jo

TOME 50 (2000), FASCICULE 5



1514 R. BANUELOS & T. CARROLL

/.|Im2;|

./O

^

7o 2 cos ^/

= ,ln(sec|Im2;|+tan|Im2;|).

The function c = 2-1 ln(sect+tanf) is increasing on [0, Tr/2) and its inverse
function on [0, oo) is t = arctan[sinh(2c)]. Hence,

(2.6) {z C: S : d(z, R; 6') < c} = St where t = arctan[sinh(2c)].

Suppose now that D is a simply connected domain and that F is a
hyperbolic geodesic in D. There is a conformal mapping f(z) of the strip
S onto D under which the real axis, a geodesic in 6', corresponds to the
geodesic F in D. By conformal invariance of hyperbolic distance,

{z C D : d(z^D) <c}= { z e D : d(f-\z)^S) < c}
= {z C D : f-\z) C St}

= f(^
where, by (2.6), t = arctan[sinh(2c)]. When D is the unit disk U and
r is the interval (-1,1), we may take the conformal mapping to be
F(z) = (ez - l)/^ + 1). Thus Conjecture 2, and hence Conjecture 1,
may be reformulated as follows.

CONJECTURE 3. — To each convex domain D of area TT there
corresponds a conformal mapping f(z) of the strip S onto D such that,
for each t in (0.7T/2), the area of f(St) is at least as great as the area of
F(St) where F(z) = (e^ - l)/(e^ + 1). Equality holds for some t if and only
ifD is a disk of area TT.

For a simply connected domain D, a geodesic F in D and for t in
(0.7T/2), we set

(2.7) S(t^D) = {z e D : d(z^D) < 2-1 ln(sec^ + tan^)}
and

(2.8) A(t^D) =area6^,r;D).

Hence S(t,T;D) is f(St) where / maps the strip S conformally onto D
and maps the real line onto r. Our aim is to study the Euclidean area
A(t, r; D) of this region with particular reference to convex domains and
Conjecture 3. However, we first investigate the corresponding upper bound
for which we have a complete and satisfactory solution.

ANNALES DE L'lNSTITUT FOURIER
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3. A generalization of the Griffin,
McConnell, Verchota inequality.

With the above more general geometric formulations of the original
problem, it is natural to ask about a sharp upper bound for A(t, F; D) and
about extensions of the sharp inequality of Griffin-McConnell-Verchota.
We begin here with such a sharp inequality for A(^, F; D) and then relate
it to the Griffin-McConnell-Verchota result in Theorems 2 and 3 below.

THEOREM 1. — Suppose that D is a simply connected domain of
finite area and that T is a hyperbolic geodesic in D. Then the function
A(^,r;D) is an infinitely differentiable function oft on [0.7T/2). Moreover,
A"(t, F; D) > 0 on (0,7T/2) so that A(t, F; D) is strictly convex. In partic-
ular,

2
(3.1) A(t, F; D) < - area (D)t for 0 < t < 7T/2.

7T
For a given positive A, we denote by RL a rectangle of side length L and
width A/L and denote by FL the line of symmetry of length L of RL- Then
FL is a hyperbolic geodesic in RL and to each positive e there corresponds
a positive LQ such that, for L ̂  LQ,

(3.2) A(t, YL\ RL} > ——^At for 0 < t < 7T/2.
7T

In terms of conformal mapping the inequality (3.1) asserts that for
any conformal mapping of the strip S onto a domain of finite area A, the
area of the image of the substrip St is strictly less than 2At/7r. The second
part of the theorem asserts that long, thin rectangles are asymptotically
extremal for the estimate (3.1). They were shown by Griffin, McConnell
and Verchota to be asymptotically extremal for the Cranston-McConnell
Theorem on conditioned Brownian motion for simply connected domains.
We shall return to this point later.

Proof. — Let f(z) be a conformal mapping of the strip S onto D
under which the real axis in S and the geodesic F in D correspond. Since
A(t, F; D) is the area of f(St),

A{t^D)= ff l/'^pdm^)

= I F ^(x+iy^dxdy
J -t J -oo

= ( H ( y ) d y ,
JQ

TOME 50 (2000), FASCICULE 5



1516 R. BANUELOS & T. CARROLL

where
H(y) = I " {\f'(x + iy)\2 + \f'{x - iy)\2) dx.

J —00

In [7], Griffin, McConnell and Verchota show that the function H{y) is
bounded on [0, a) for each a with 0 < a < Tr/2. Then, by the Paley-Wiener
Theorem [9], p. 174, f ' ( z } is the inverse Fourier transform of a function
0(0 for which e^l^C) belongs to L^R) for each a in [0.7T/2). Thus,

i r ° °
ff^)=^ / ^)e^d^ h r z e S .

27r7-00

PlancherePs theorem then yields
1 r00

H(V)=- m^-^+^dC
Z7r J-oo

i y00
= - / I^OFcosl^C^dC.

7r ./-oo

This representation for the L2 integral means of f ' ( z } together with the
integrability property of 0(C) imply that H(y) is infinitely differentiable on
[0,7r/2). Thus A(t,r;D) is differentiable on [0.7T/2) with derivative H(t)
and

d2 1 f00

-^A(t,r;D)=H\t)=- / 2Csinh(2^)|^C)|2dC•
ai 7r J —00

This last integral is positive for t in (0, Tr/2) and it follows that the function
A(t, r; D) is strictly convex on (0, Tr/2). We note that A"(0, F; D) = 0.

We now turn to the proof of the estimate (3.2) for long, thin
rectangles. First we observe that because of the convexity of the function
A^.TL'.RL}, it is sufficient to prove that A'(Q,YL\RL\ the derivative of
the area function at 0, satisfies

A^O,!^;^)^2—^.
7T

For a positive, the Schwarz-Christoffel transformation

f_ ( - ) -^ f , dw,
Jo \/w2 — o2 Vw2 — 1

maps the upper half plane H = {z : Im z > 0} onto a rectangle R and we
assume that the scaling factor Ka is chosen so that the area of R is the
given number A. The imaginary axis in the upper half plane is mapped by
fa(^) to a line of symmetry of the rectangle and will be our geodesic F.

We now find a formula for A'(0,r;J?) in terms of the conformal
mapping fa{z). The function Fa(z) = fa(^ez) maps the strip 5' conformally

ANNALES DE L'lNSTITUT FOURIER



EXTREMAL PROBLEMS FOR CONDITIONED BROWNIAN MOTION 1517

onto the rectangle and sends the real axis to F. Thus,

/oo

A'(0,r;^)= 2 ^(x^dx
-00

/oo

= 2 e^f^ie^dx
-00

/•oo

= 2 / yl/^)!2^
Jo= 2^ r ^

"./o (a^y^O+y2)

=^-rf^_-^_^v
l-aa./o Vc^+y2 i + y 2 ) y

9K'2
= i^1-'1/'1)-

The lengths of the sides of R are Kali and J^a^2 where

i = I ' 1 dx
1 70 Vx2 - a2 v/l-r^2

and

/•° da;
Ja = 2 / ,

7o ^a2 - a;2 vT^2

Since the factor Ka was chosen so that (Kali) (Ka.1'2) = •^••i we find that

04
(3.3) A\0, r; 7?) = ̂ ^_^ ln(l/a).

Thus we need upper bounds for I\ and /2i fo1' ^ close to 0.

First, since \/1 — a2 ^ \/1 — a*2 for 0 < x ^ a, we find that

^—=r—==—== (I+O(D).
VI - a2 Jo VCL2 - x2 VI - a2

as a —^ O4". The estimate for Zi requires a little more work. We set
a = a(a) = l/V^l/a), so that a < a(a) < 1 for small a and a(a)
approaches 0 as a tends to 0. We also use the estimate cosh"1 x ^ ln(2.r)

TOME 50 (2000), FASCICULE 5



1518 R. BANUELOS & T. CARROLL

valid for x > 1. Then, for all sufficiently small positive a,

r ——dx— [ 1 dx
1 ~ Ja Vx2 - aVi - x2 + 7a \/a*2 - aVi - a*2

i r _d:f__ i f1 _dx_i r __d:f__ i /ll
— a2 7a ^/x2~~a2 \/a2 — a2 7^

^ ^^-i/^//,\ i / ^ / o ^-i: cosh 1 (a/a) + — (Tr/2 — sin 1 a)

^ r,——^ln(2a/a)+
Vl — a

1 [ln(l/a) ^-^nin^/a) +ln2] + ________
2./l-a21n(l/a)

= (l+o(l))ln(l/a) osa-^O^.
The estimates for I\ and 1^ together with (3.3) lead to

2A
^•^=w-^^^

2A
^ (l-a2)7rln(l/a) ( l+o(l)) ln(l/a)

94
=^(1+0(1))

as a —> O"^. The line of symmetry F of the rectangle is parallel to the side of
length Kali and we complete the proof by showing that this side becomes
arbitrarily long as a tends to 0~1". First, I\ —> oo as a —> O^ since

A ^ [va dx -cosh-^lA/a^ln^/Va).
^a V-C — »

Since A = K^I\I^ and ^2 is clearly greater than TT, it must be that the scale
factor Ka tends to 0 as a —^ O4'. Hence, the side length Kali = A/^Ka^}
becomes unbounded as a —^ 0^. D

Just as Conjectures 1 and 2 are equivalent, the distributional-type
inequality (3.1) has as a consequence an inequality which may be considered
to be the companion upper bound to the lower bound conjectured in (2.3).

THEOREM 2. — Suppose that D is a simply connected domain of
finite area A and that F is a hyperbolic geodesic in D. Then, for each
non-negative, non-increasing function ̂ (x) on [0, oo)

r 94 y^^
(3.4) / ^{d(z,r',D))dm{z) ^ — / ^(2-1 ln(sec^ + tan^)) dt.

J D 7r JQ
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EXTREMAL PROBLEMS FOR CONDITIONED BROWNIAN MOTION 1519

Strict inequality holds in (3.4) unless ^(x) is constant. Moreover, for each
fixed function ̂ {x) having the stated properties, asymptotic equality holds
in (3.4) for the rectangles RL and geodesies FL of Theorem 1 in that, as
L —> oo,

[ 2A />7r/2

(3.5) / ^(d(z,r^RL))dm(z) -^— / ^(2~1 ln(sec^ -htan^)) dt.
JRL 7r Jo

Proof. — Given c positive, we let t = arctan[sinh(2c)], so that
0 < t < 7T/2 and 2~1 ln(sec^+tan^) = c. Since, by (2.7) and (2.8), A(t, F; D)
is the Euclidean area of {z C D : d(z^ F; D) < c}, we obtain from (3.1) that

2A
area {z e D : d{z,Y\D) < c} < —arctan[sinh(2c)].

7T

We may assume that the function ^(x) occurring in (3.4) is right
continuous. As stated earlier, each right continuous, non-negative, non-
increasing function ^ on [0, oo) is an increasing limit of step functions
{'0n}^=i and each ̂  may be written in the form

fc(n)

(3.6) ^(a;)=^a^l[o,c,.)(^
%=i

where a^ is positive for each z and the c^n are positive and strictly
increasing. Because of monotone convergence, it suffices to prove (3.4) for
each step function '0^, and in this case

. W /.
/ ^n{d{z,r;D))dm(z)= V a^n / l[o,c^)(^r; D)) dm(z)
JD ^ JD

k{n)

= ̂  a^n area [z € D : d(z, F; D) < c^n}
1=1

< Y ^ o^n—arctan[sinh(2c^^)].
1=1

We may write

arctan[sinh(2c,,n)] = \{t G [0,7r/2) : 2~1 ln(sec^ + tan^) < c^n}\
/.7T/2

= \ l[oc^)(2 - lln(sec^+tan^))^,
Jo
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and so it follows that
r 9 A ^W /.-n-

/ ^(d(^r;D))dm(2;) < —^^^/21[o,c^)(2- lln(sec^4-tan^))^
7r 1=1 •70

2A /^ kw
= —j ^Q /^,nl[o,c,,n)(2-lln(sec^+tan^))^

7r </0 1=1
2A />7r/2

= — \ ^^"^(sec^-Han^))^.7r Jo
Thus, (3.4) does hold for each step function ̂  of the form (3.6).

We now turn our attention to the case of equality in (3.4). If 0 < a <
b < oo then

fc(n)

W - ̂ (b) = Jim^n(a) - ̂ (6)) = Jirn^ ̂  a^l(^(c^).
1=1

This last limit does exist as a consequence and, if ^ is not constant on
[0,oo), we may choose the numbers a and b so that the limit is positive.
Since the area function A(t, F; D) is strictly convex on (0, Tr/2) and since
A(0, r; D) = 0 and A(7r/2, F; D) = A, there is a positive number e such
that

2A
A(t,r;D) < —t - e for arctan[sinh(2a)] ^ t ̂  arctan[sinh(2^)],

or, equivalent ly,
2A

area{z e D : d(z, F; D) < c} ^ — arctan[sinh(2c)] - e, for c e [a, &].

Using this inequality we find that, for each n,

/ ^n(d{z^D))dm(z)
JD

fc(n)

= ̂  a,̂  area {z e P : d(^, F; D) < c,,n}
1=1
fc(n) ^ fc(n)

^ S ̂ "^ arctan[sinh(2c,^)] - e ̂  <^,nl(a,b](cz,n)
1=1 %=i

2A /l7r/2 fc(n)

"= ^- y ^(2~1 ln(sec^+ tan^)) dt - e ̂  a,^l(^^(c,^).

On taking the limit, we obtain that strict inequality holds in (3.4).

Next we show that long, thin rectangles are asymptotically extremal
for (3.4) for each fixed function ^(x) under consideration. We again use
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the sequence (3.6) of step functions {^n}T' Given a positive number 6, the
monotone convergence theorem allows n to be chosen so that

F^/2 ^ /.7T/2

/ ^^-^(sec^+tan^))^ / ^(2~1 ln(sec^ + tan^))^ - e.
^o Jo

For this n and for sufficiently large L,

/ ^(^,r\;^))dm(^)
J^L

^ I ^n(d(z^r^RL))dm(z)
JRL
n

= ̂  Q^ area{^ € J?L : d(z, FL; ̂ z.) < c^n}
1=1
n 2 - €(by(3.2)) ^ ^Q^n———Aarctan[sinh(2c^)]

%=i
(2 - e)A F172

= -———— / ^n(2~1 ln(sect + tan^)) d^7r Jo

^t2^^4 ^ /2^(2- lln(sec^+tan^))^-6(2~e)A.
7r Jo TT

Since this holds for each positive e, once the rectangle is sufficiently long
and thin, asymptotic equality holds in (3.4) for such regions. D

Strict inequality holds in (3.4) if the function ^ is non-constant. We
now prove that strict inequality holds uniformly over all geodesies in the
domain, at least when the function ^ is continuous. This will be important
when we come to make the connection with the Cranston-McConnell
Theorem.

THEOREM 3. — Suppose that D is a simply connected domain of
finite area A and that -0 is a non-negative, non-increasing, non-constant
and continuous function on [0, oo). Then

[ 2A /l7r/2
(3.7) sup / ^(d(z^D))dm(z)<— \ ^(2-1 ln(sec^ + tan^W,

r J D 7r Jo
where the supremum is over all geodesies F in the domain D.

Proof. — We choose a conformal mapping f(z) of the unit disk U
onto the simply connected domain D. There is a one-to-one correspondence
between geodesies in U and geodesies in D under the mapping /. Let us
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denote the geodesic in the unit disk with endpoints e^ and e^ by ^s t and
its image under / by F^. Then,

( ^{d(z^^D))dm(z) = f ^ (d(f\z), f(7^); D)) \f\z^dm(z)
J D J j j

= /l^(^7^;^))|//(^|2dm(^.
Ju

Let us consider the function

g^t) = f ̂ (d{z^^U)) l/'^l^m^)
J u

on the rectangle

.R={(^):5e[0,27r], te[0,27r]} .

By (3.4) the function g is finite at each point of R and we claim that g(s, t)
is continuous on R. It will follow that g{s,t) assumes its supremum value
on R for a certain choice of the pair (s, t). Because ^ is non-constant, strict
inequality will hold in (3.4) for this extremal geodesic I\< and (3.7) will
follow.

We complete the proof of the theorem by proving the continuity of the
function g(s, t). Suppose that (sQ.to) is a point in R and that 6 is positive.
Since D has finite area A, it is possible to find an r in (0,1) for which the
area of f(D(0, r)) exceeds A - e/(4^(0)). For each z in D(0, r), we denote
by Wz the point on 7^ to which is hyperbolically closest to z in U. We take
some fixed point w on ^so,to and note that the hyperbolic distance from w
to z is uniformly bounded over all z in D(0, r). It follows that there is a
positive Co such that d(z, -fso^U) ̂  Co for z in D(0, r). In addition, there
is a limit to how close Wz can be to the unit circle when z is in D(0,r):
that is, the set of points Wz as z varies over the disk D(0,r) will lie in a
compact subset of the unit disk.

Since Euclidean and hyperbolic distances are comparable in any given
compact subset of the unit disk, if we are given e' positive and less than
1, say, there will therefore be a positive 6 such that whenever \s — SQ\ < <5,
t-to\ < 6 and z € D(0,r),

\d{z^so^U)-d(z^s^U)\ < e ' .
Since ^ is uniformly continuous on [0, Co -(- I], we can choose e' such that

\Mz^^U))-^(d{z^^U))\ < ̂

for all z in D(0, r). Then,

I IW^^o^o;^))-^^^;^))!!/'^)!2^^) < —A= e
«^Z)(0,y) Zi^s. 2i
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Using the triangle inequality in the usual way, the remaining term in the
estimate for \g(so,to) - g(s,t)\ is at most the integral

[ [Mz^^U^+^z^^U^^^z^dm^z).
^U\D(0,r)

Since the function ^ is decreasing, this quantity is bounded above by 2^(0)
times the area of the image of U \ D(0,r), which we have arranged to be
less than e/(4^(0)). Thus \g(so,to) - g(s,t)\ < e whenever \s - SQ\ ^ 6 and
\t - to\ ^ 6, proving the desired continuity of the function g . D

When stating the above results we chose the hyperbolic distance
d(z, r; D) as the representative of those conformal invariants which depend
on two boundary points and one internal point, this in order to emphasize
the connection with (2.3). This was simply one possible choice, however,
and the choice of the product of Poisson kernels is one which brings
out more strongly the connection with the maximal expected lifetime of
conditioned Brownian motion. We state this as a separate theorem, though
it is but a reincarnation of Theorem 2 above.

THEOREM 4. — Suppose that D is a simply connected domain of
finite area A, that a and f3 are prime ends of D and that Ko(z,a) and
Kr)(z, 0) are Poisson kernels for D with poles at a and f3 respectively and
normalized so that their product is 1 on the hyperbolic geodesic joining a
and f3. Then, for each non-negative, non-decreasing function (f)(x) on (0,1]

r ^ A /•7T/2
(3.8) / ^Kr>^a}KD(z,f3))dm{z)^— / ^o^t)dt.

J D 7T JQ

Strict inequality holds in (3.8) unless (f) is constant. Moreover, for each fixed
such function (f), asymptotic equality holds in (3.8) for the rectangles RL
and geodesies FL of Theorem 1 in that, as L —> oo,

r r ^ A /.7T/2

(3.9) / ^KH^z,a)K^(z^))dm(z)^— / 0(cos2^,
JRL ^ Jo

where a and f3 are the endpoints of the longer line of symmetry I\ of RL.

Proof. — Since sech^rr) is a decreasing function on [0, oo) and takes
values in (0,1], the composed function

^(x) = (^(sech^rr)), x C [0, oo)
is a non-negative, non-increasing function on [0,oo). Since by Lemma 1,
sech2 [2d{z, F; D)] = Ko{z, a)Kr)(z, (3), where F is the geodesic determined
by the prime ends a and f3,

f ^{d(z^D))dm(z)= [ ^(Ko^a) Kr>{z,t3)}dm(z).
J D J D
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Since sech2 [ln(sec^ + tan^)] = cos21,
/•7T/2 /.7T/2

/ ^-^(sec^+tan^U^ / (f)(cos2 t)dt.
Jo Jo

The inequality (3.8) now follows directly from (3.4), together with the case
of equality, while (3.9) follows from (3.5). D

This proof also shows that Theorem 3 may be reformulated as stat-
ing that for a non-negative, non-decreasing, non-constant and continuous
function (f)(x) on (0,1],

r 9,4 r^/^
(3.10) sup / (f>{KD(z,a)KD{z,13)}dm(z) <— <^(cos2^,

Q',/3 JD 7T Jo

where the supremum is over all pairs of prime ends a and f3 of D. By
choosing (f)(x) = (2/7r):r, we deduce that for a simply connected domain D
of finite area

2 r i
sup- / KD(z,a)KD{z,/3)dm(z) < - area(D).
a,/? 7T JQ TT ' /

Hence, by virtue of (2.1), the maximal expected lifetime of conditioned
Brownian motion in a simply connected domain satisfies

CD < — area(£>),
7T

a result first proved by Griffin, McConnell and Verchota. In fact, their de-
termination of the best constant, I/TT, in the Cranston-McConnell Theorem
in the simply connected case is the main result in [7]. There are no sim-
ply connected domains for which equality holds but they show that, for
instance, long thin rectangles are asymptotically extremal.

Griffin, McConnell and Verchota also consider the situation where
the Brownian motion is conditioned to start and to end in the interior
of the simply connected domain and show that I/TT is still the best
constant even in this case. It would therefore be interesting to know if
the product of kernel functions in (3.10) can be replaced by the quantity
GD{z,a)GD{z^)/GD(a^).

Thinking of KD^Z.O) Ko(z^) and Kp^z.a) K^(z,f3) as the
Green's function of the conditioned Brownian motion in the domain D
and the rectangle RL, respectively, we see that Theorem 3 is in complete
analogy with the classical results for the Green's function of the uncondi-
tioned "ordinary" Brownian motion in D, namely

(3.11) sup { (f>(GD(w,z))dm{z)<^ [ 0(G^(0,^))^,
weDJo J D *
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for all non-negative, non-decreasing functions (f). Here D* denotes the disk
of the same area as D centered at the origin. Furthermore, equality holds
if and only if D is a disk. This result, which holds for general domains in
any dimension, can be found in C. Bandle [2].

4. Evidence for Conjecture 1.

Conjecture 1 is not true for general simply connected domains since,
as discussed earlier, there are simply connected domains of infinite area for
which the maximal expected lifetime of conditioned Brownian motion CD
is finite. Here is another point of view that shows this more directly and
that brings out the connection with our conjectures. We set

Dn=U\ [ j \le2k7^^/n^2k7^i/n\,
k=i ̂  J

so that Dn is the unit disk with n symmetrically arranged radial slits
removed, each extending to within a distance 1/n of the origin. No point in
Dn is more than a distance 7r/n from the boundary of Dn. Hence, by the
Koebe 1/4-Theorem, at any point z in Dn the hyperbolic metric cr^(z)
satisfies

aD-{z^^)>-^•
The part of the domain Dn lying outside the disk P(0,1/^/n) consists of
n truncated sectors, Sk, k = 1, 2, ..., n,

o f it 1 -. , 2(k-l)7r 2k7r}Sk = S re^ : —= < r < 1 and ————/— <t < —— " > .
f V71 n n J

Suppose that F is a geodesic in Dn which enters one of the sectors Sk and
that z is a point on F in this sector. At z we draw the two largest disks
tangent to r and contained in Dn, one on each side of F. The geodesic F can
never enter either of these two tangent disks [II], Section 10.3. Together
these disks block the entrance to the sector and so once a geodesic F enters
a sector Sk it cannot leave it. Thus we see that a geodesic can enter at
most two of the sectors Sk and these exceptional sectors, together with
the disk P(0,2/^/n)^ have area at most 67r/n. In the case of a point lying
elsewhere in Dn, we let 7^ be the curve of shortest hyperbolic length from
z to r: since it begins outside the disk of radius 2/^/n and must leave the
sector in which z lies in order to reach F, it has Euclidean length at least
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1/V^. Hence, on using the lower bound on the hyperbolic metric mentioned
earlier,

d(z^Dn) = [ a^{w) \dw\ ̂  - ^ 1 = vn

J^^ 47T ^/U 47T

Given a positive number c, we choose n so that v/n/(47r) > c. Then the
area of the set {z : d(z, F; Dn) < c} is at most CTT/H for any geodesic F in
^n-

This shows that there are domains D for which the area of the regions
{z : d{z, r; D) < c} in Conjecture 2 (or, equivalently, A{t, F; D) if one
prefers the formulation in Conjecture 3) are as small as we wish, uniformly
for every geodesic F in the domain D. Moreover, if ^ is a non-negative, non-
increasing function on [0, oo) with limit 0 at infinity, it follows that 'there
is a domain D so that the integral J^ ̂ (d(z, F; D)) dm(z), which features
in Conjecture 1, is as small as we wish, uniformly for every geodesic F
in the domain. In addition, these examples show that the condition in our
conjectures that the domain be convex cannot be weakened to the condition
that it be starlike.

We begin the account of our positive results in the convex case
by computing explicitly the area function A{t,T;U) for the unit disk
U = {z : \z\ < 1} when F is a diameter of the disk. Related formulas
may be found in [5], §7.20.

LEMMA 2. — Suppose that T is a diameter of the unit disk U. Then,

(4.1) A(t^U)=2t^(2tl^ for0<t<7r/2.
sin't '

Proof. — We may assume that the diameter F in U is the geodesic
(-1,1) so that the required area A(t, F; U) is the area of the image of the
substrip St under the conformal mapping F{z) = (e^ - l)/^ + 1) of the
strip 6' onto U. For s e (-7r/2,7r/2), the line {z : ^sz = s} is mapped by
the exponential function to the ray arg/z = s in the right half-plane and
the image of this ray under the Mobius map (z - l ) / ( z + 1) is a circular
arc through -1, F(is) and 1. Since F(is) = ztan(5/2), it follows that
A(t, r; U) is the area of the Lens-shaped region, symmetric in the real axis
and bounded by two circular arcs, each passing through -1 and 1 and in
one case also through i tan^/2) and in the other also through -ztan^/2).

Since the center of the circle, of which the upper circular arc forms
a part, lies on the negative imaginary axis at a point equidistant from 1
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and from ztan(^/2), we find that it lies at —icoit. Thus the radius of this
circle is coU + tan(^/2) = csct and the arc subtends an angle 2t at the
center of the circle. The area of the sector of the disk of radius csc t which
is determined by the arc is therefore t csc21. We require only the area of the
region lying above the real axis and so we subtract the area of the triangle
with vertices —1, 1 and —icott which is cott. Twice the result is the area
A(t, r; U) of the Lens-shaped region and is 2t csc21 — 2 cot t as required. D

4.1. A Differential equation for A(t, (—1,1); U).

It turns out that the function A(t, (—1,1); U), which we believe
to be extremal in certain circumstances, satisfies a simple differential
equation. Significantly, sub-solutions of this differential equation majorize
the function A(^, (—1,1); [/), which gives a possible method of verifying
our conjectures.

LEMMA 3. — The function

U(t) = ̂ -8in^
sin t

satisfies the differential equation

(4.2) sin2 ty"{t) - 6y(t) + 8t = 0 on (0, Tr/2).

Furthermore, if V(t) is a C2 function on [0,7r/2] for which V(0) = 0,
y(7r/2) = TT and V"(t) > 0 on (0,7r/2) and that satisfies the differential
inequality

(4.3) sin2 t y " ( t } - 6y(t) + 8t <^ 0 on (0, Tr/2),

then

V(t) ̂  U{t) for 0 < t < 7T/2.

Proof. — It is a straightforward calculation to show that the function
U(f) satisfies the differential equation (4.2). In fact, after a simplification
one obtains

, _ _^_ ^tcost
{t) ~ o^2 . _ . _ 3 . •sin t sin t
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Then
„ _ 12t cos21 _ 12 cost 4t

u W ~ ~ 4 ~ — . 3 . "̂sin41 sin3t sin2t
12t 12 cost 8t

sin4 t sin31 sin2 t
6 r 21 2 cost 4

~^tsin2^ [sin2^ sint 3

= -^ h) -1^1 •sin t \_ o J

We now suppose that V(t} has the properties stated in the second
part of the lemma. We divide (4.3) by t and take the limit as t tends to 0
from the right. Since ̂ '(0) is finite and V(0) = 0, we find that V(0) ^ 4/3.
The strict convexity of V(t) then implies that V(t) > 4t/3 on (0,7r/2).

We now consider the auxiliary functions U\[t) == U(t) — 4^/3 and
V\(t) = V(t) — 4^/3: on (0,7r/2) both are positive and they satisfy

(4.4) sin21 U[\t) - 6Ui (t) = 0

and

(4.5) sin2 tV^t) - 6Vi(t) ^ 0.

We multiply (4.4) by V\{t) and (4.5) by U^(t) and subtract to obtain

ViW\t) - U,(t)V{\t) ^ 0 on (0,7r/2).

Integrating by parts and using Vi(0) = (7i(0) •=- 0, we find that

ft(V,(s)U[f(s)-U,(s)V{\s))ds
Jo

=fyi(5)^K^I^-/^K^)^(^)-fcM^(^l^-f^\ Jo / V Jo /
=Vz(t)U[(t)-U,(t)V{(t)^

so that this last quantity is non-negative on (0,7r/2). Dividing across by
U\{t)V\(t) (which is positive) yields

UW ^ v{(t)
Ui(t) " V,(f)

and integrating from t to n/2 gives
w/2 7T/2

logUi(t) ^logVi(t) ,
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for any t in (0,7r/2). Since U(7r/2) = V(7r/2), it follows that V^(t) ̂  U^t),
as required. Q

We are now ready to formulate our final extremal problem for convex
domains.

CONJECTURE 4. — To each convex domain D of finite area A there
corresponds a hyperbolic geodesic F such that the function A(t,Y\D)
satisfies the differential inequality

(4.6) sin^^-G^+^^O,
7T

on (0,7r/2).

After an appropriate scaling, one sees that it follows from Lemma 3
that Conjecture 3 is correct if Conjecture 4 is so.

4.2. Verification of Conjecture 4
for Lens-shaped regions.

We saw in the course of proving Lemma 2 that each of the regions
Ut = S(t, (—1,1); [/), t € (0,7r/2), is a Lens-shaped region, symmetric in
its longest diameter (—1,1) and bounded by two circular arcs. Thus these
regions are convex domains and one may ask if Conjecture 4 holds for
these domains. We show that the conjecture does hold in this special case
by showing, more generally, that from the point of view of the differential
inequality (4.6), a subdomain S(t,F;D) performs better than the original
domain D. We first set up some notation in which the role of the geodesic
is suppressed. For a simply connected domain D and a fixed hyperbolic
geodesic F in D, we write S(t;D) for S(t,F;D), t € (0.7T/2) and write
A(t\ D) for its area, that is for A(t, F; D). Now S(t', D) is a simply connected
domain in its own right and F, which is a hyperbolic geodesic in D, is also
a geodesic in the hyperbolic metric for S(t', D). Thus we may consider the
regions S(r", S(t; D)), and begin by showing that each has the form S(x; D)
for an appropriate x depending on r and t.

LEMMA 4. — Suppose that D is a simply connected domain, that
r is a hyperbolic geodesic in D and that 0 < t < Tr/2. Then S{t', D) is a
simply connected domain and F is a geodesic in the hyperbolic metric for
S(t; D). Moreover, for 0 < r < Tr/2,

S(r,S(t^D)) =S{2rt/7r;D).

TOME 50 (2000), FASCICULE 5



1530 R. BANUELOS & T. CARROLL

Proof. — We choose a conformal mapping f(z) of the strip S onto
the domain D such that the real axis in S is mapped to the geodesic F in D.
Since *9(^; D) is the image under / of the substrip St == {z : \^sz\ < t}^ we
see that fi{z} = f(2tz/7r) is a conformal map of the strip S onto S{t; D).
Since the real axis is a geodesic in S and ft maps the real axis onto F (as
did /), it follows that F is a geodesic in the hyperbolic metric for S(t'<, D).
For each r with 0 < r < Tr/2, 5'(r,r; S(t',D)) is, by definition, the image
of the substrip Sr under the mapping ft. But this is also the image of the
substrip Sx, with x = 2rt/7r, under the mapping /, that is S(2rt/^\ D). D

For a simply connected domain D of finite area A(D) and a fixed
geodesic F in D we write

L(t; D) = sin21 -^A(^; D) - 6A(t; D) + 8A^ t,

for 0 < t < 7T/2. Thus Conjecture 4 states that if D is convex then F may
be chosen so that L(D, t) ^ 0 on (0, Tr/2). We now prove

THEOREM 5. — Suppose that D is a convex domain of finite area
and that F is a geodesic in D. Then, for each r and t in (0, Tr/2),

(4.7) L(r; S(t', D)) < L(2rt/^ D).

Proof. — Lemma 4 tells us that

A(r;^;P))=A(2^/7r;D),

so that on differentiating with respect to r we obtain

A" (r; S(t; D)) = (I)2 A"('2rt/7r;D).

Hence,

L(2rt/7r;D) = sin^r^A'^/Tr;!)) - 6A(2rt/^D) + ^^IW2^Zrt/TT;

and
7T 7T

^ sin2 rA"(2rt/7r; P) - 6A(2^/7r; D) + 8A(^ D^L(r;5(^;D)) = (2t} sin^A'^/Tr;?) -6A(2^/7r;D) + ̂ ^^r.

On subtracting, the terms involving A(2rt/7v',D) cancel and we deduce
that
L(2rt/^D)-L(r,S(t;D))

f^-f^sin^A-f^D^^f^^^-A^^I.
. 9 / Z / i \ I LL \ . 9 \ .a

sin2 — - — sin2^ 4"
V 7T Y V T T y J V 7T / 7T [ 7T J
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The estimate (3.1) states that A(t\D) < 2tA(D)/7r and so

L(2rt/^D) -L(r;^;D)) > sin2 (2rt} - f^Vsin^ Aff(2rt/^ D).
\ 7T / \7r / /

Since A(t; D) is a strictly convex function of t by Theorem 1 and since both
r and ^ lie between 0 and Tr/2, it suffices to show that the function of two
variables

,. ,. . /2rt\ 2t ./(r, t) = sin — - — sin r
\ 7T / 7T

is positive on the rectangular region R = {(r,t) : 0 < r,t < Tr/2}. This is
easy to show. First the function f(r,t) can have no critical points inside
the rectangle R since the partial derivative fr(r,t) is never 0 in R. Now,
f(0,t) = 0 for t € [0,7r/2]. For r C [0.7T/2], we find that /(r,0) = 0 and
/(r,7r/2) = sin r-sin r = 0. Finally, for t G [0,7r/2], f(7r/2,t) = smt-^t/TT
which is non-negative. Thus /(r, ^) is continuous on the closed rectangle, is
non-negative on the boundary and has no critical points inside the rectangle
and it follows that /(r, t) is positive on the rectangle. D

COROLLARY 1. — Conjecture 4 holds for symmetric Lens-shaped
regions.

Proof. — Suppose that D is a symmetric Lens-shaped region which
may therefore be thought of as the intersection of two disks of equal radius.
By scaling D if necessary, we may assume that D coincides with S(t, U) for
a suitable t in (0,7r/2), the implied geodesic F being the diameter (-1,1)
of the unit disk. By Theorem 5, for each r in (0,7r/2),

L(r; D) = L(r; 5 ;̂ U)) < L(2rt/^ U).

But by Lemma 3, L('',U) is identically zero on (0,7r/2) and we conclude
that the area function A(-;D) satisfies (4.6). D
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