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QUANTITATIVE ESTIMATES FOR THE GREEN
FUNCTION AND AN APPLICATION TO THE

BERGMAN METRIC

by K. DIEDERICH and G. HERBORT

1. Introduction.

The pluricomplex Green function GD(Z,W) with a single pole w for
bounded pseudoconvex domains D CC C71 was introduced in [15]. Its
connection with the complex Monge-Ampere operator and other properties
were extensively studied in [5]. By a recent result of M. Carlehed, U.
Cegrell, F. Wikstrom [4] one has the following important fact for the case
of hyperconvex domains:

THEOREM 1.1.— Let D CC C71 be a bounded hyperconvex domain
and let (w/c) C D be a sequence with \imk-^oo^k == WQ G 9D. Then there
is a pluripolar set E C D such that for every z € D \ E

lim Go^iWk) = 0.
k—^oo

Since GD^'I w) has a logarithmic pole at w, it can be used as a weight
in Hormander's 9-theory in order to construct holomorphic Z^-functions
with certain prescribed properties. This has turned out to be a useful tool
in studying the Bergman theory of such domains D, the most recent result

Keywords: Pluricomplex Green function - Monge-Ampere equation - Order of pseudo-
convex extendability — Bergman metric.
Math. classification: 32U35 - 32F45 - 32T25 - 32T27.



1206 K. DIEDERICH and G. HERBORT

in this direction being the Bergman completeness of hyperconvex domains
which was proved in [2] and [12] using Theorem 1.1.

Considering Theorem 1.1 one might want to ask, whether the ex-
ceptional pluripolar set E (which might even depend on the choice of the
sequence (w^) converging to a fixed boundary point WQ € 9D) necessarily
appears. This seems to be unknown for general bounded hyperconvex do-
mains D CC C71. However, under a slightly stronger hypothesis on D, the
following statement was proved in [13]:

THEOREM 1.2.— Let D CC C71 be a bounded domain admitting a
bounded plurisubharmonic exhaustion function which is Holder continuous
on D. Then one has for any compact set K c D and any point WQ G oD

(1.1) lim sup|GD(-,w)| =0.
W—>Wo f^

Remark 1.3.— Notice, that, according to [6], all bounded pseudo-
convex domains in C71 with (^-smooth boundary satisfy the hypothesis of
Theorem 1.2.

It might be useful for future applications to go beyond the qualitative
result of Theorem 1.2, by asking under which circumstances (1.1) can be put
into a more quantitative form. An indication, that this might be possible
can be seen in the result of Carlehed who showed in [3] that one has on any
strongly pseudoconvex domain D with smooth (^-boundary the inequality

\r (^ ^\\ < r60^60^\GD{Z,W)\ ^ C—•———^-
\z — w\

for all z,w € D, with a constant C > 0. Here, as always in this article,
S D ( ' ) denotes the boundary distance in D.

The first goal of this article now is to show

THEOREM 1.4. — Assume that on the bounded pseudoconvex domain
D CC C71 there is a bounded plurisubharmonic exhaustion function
p : D —f [—1,0), such that for some number 0 < a < 1 and constants
C\^CQ. > 0 the inequality

(1.2) CMz)^\p(z)\^C,6^z)

holds everywhere on D. Then for any fixed number 0 < t <^ 1 there exists
a constant Ct ^> 1, such that for all compact subsets K C D and all w e D
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QUANTITATIVE ESTIMATES FOR THE GREEN FUNCTION 1207

satisfying

6o(w) < C^SoW

the pluricomplex Green function GD of D can be estimated by

sup|GD(-,^)|
K

f / cl-2nt( ,\\oiln / OD \ l/n

^nt(.w)\a/n(, ^D Y7"

^ f't-7^) (log^) +^H|iogMw)^\ SoW ) \ QoWJ

where RD denotes the diameter of D.

Remark 1.5.— Notice, that the second term on the right hand side
of this inequality is clearly dominating for w very close to 9D. However,
the first term becomes relevant near the other extreme, namely near
6i)(w)=Ct6D(K).

This theorem has a useful consequence for the sublevel sets of the
Green function, showing that they concentrate near the boundary with a
certain speed. Namely, one has

COROLLARY 1.6.— Let D be as in Theorem (1.4). Then there is for
any fixed number 0 < t <€ 1 a number 0 < 6f <C 1, such that for all w C D
with <5p(w) < 6f the sublevel set A(w,D) := {z € D : GD^Z.W) < —1} is
contained in the collar {z € D : 6o{z) < 6}^3nt(w)}.

In addition, for strongly pseudoconvex domains, we can state a slight
improvement of Theorem 1.4, namely:

THEOREM 1.7.—Suppose D CC C77' is a strongly pseudoconvex
domain with smooth C^-boundary. Then there is a constant C > 0, such
that one has for any compact set K C D and any point w € D with
6r)(w) < C~16D(K) the inequality

sup^MI^^.
K OD(K)

In particular there exists a number C\ > 0 such that for all w € D with
^D(w) < (7f1 the relation

{z e D : GD{Z,W) < -1} C {z e D : SD(Z) < C^D(w)}

holds.

TOME 50 (2000), FASCICULE 4



1208 K. DIEDERICH and G. HERBORT

In [10] the Bergman distance function dp on pseudoconvex domains
D C C71 was studied that admit a continuous plurisubharmonic exhaustion
function p which satisfies an estimate of the form

C^ ^ \p\ ̂  G*^

with certain constants (7,(7*,m > 0. For these domains an effective lower
bound was obtained for dp^.z0) (with a fixed z° e D). Namely, there exist
constants C, C' > 0 and 60 > 0 such that da{z, z°) ̂  C\ log | logC"<^(^)| |,
whenever 6o{z} < 60. This result applies for example to all those domains,
which can be represented as intersections of finitely many C^-smooth
bounded pseudoconvex domains.

We will show in this article two applications of Theorems 1.2 and
Theorem 1.4 to questions about the boundary behavior of the Bergman
differential metric BD of D. We have at first:

THEOREM 1.8.— Let D CC C71 be a pseudoconvex domain admit-
ting a bounded uniformly Holder continuous plurisubharmonic exhaustion
function and having the property, that any point q € 9D is a peak point
for the family P{D) := C°(D) H PSH(D) of continuous functions on ~D
plurisubharmonic on D. Then we have for any q € 9D and any vector
X € C71 \ {0}

lim BD^W'^X) = +00.
w—>q

Remark 1.9. — Note, that no finite type assumption is made in this
theorem. For instance, all regular domains (in the sense of [7]) satisfy the
hypothesis of the theorem.

Before stating the second result on the boundary behavior of BD we
remind the reader of the definition of two invariants associated to boundary
points of D:

DEFINITION 1.10.— Let D CC C71 be a pseudoconvex domain and
w° € 9D a boundary point such that 9D is C°°-smooth near w°.

a) The boundary 9D is called pseudoconvexly extendable of an order
m ̂  2 at w°, if there is an open neighborhood U ofw° and a C3-function
p on U, such that p(w°) == 0, the surface S := {p = 0} is smooth and
pseudoconvex from the side {p < 0} and for some constant C > 0 the
estimate

-c(6D(z) + \z - w°|2) < p(z) < -\z - w0!"

holds on D D U.

ANNALES DE L'lNSTITUT FOURIER
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b) The number

N(9D', w°) := inf { m ̂  2 : 9D is pseudoconv. ext. of order m at w°}

is ca22ed the order of pseudoconvex extendability of9D at w°.

An important analytic local invariant of 9D at w° is

DEFINITION 1.11.— Let D^w° be as in Definition 1.10. Then the
number

he (w°)

:= sup [ s : lim inf% 0) BD 0; X) = oo nontangentially, VX e C71 \ {0} \
{ z^w° )

is called the growth exponent of the Bergman metric at w°.

Remark 1.12.— For further details and properties concerning the
order of pseudoconvex extendability and the growth exponent of the
Bergman metric see [8] and [9].

Using Theorem 1.4 we can show

THEOREM 1.13. — Assume that the pseudoconvex domain D CC C71

has C°°-smooth boundary near w° 6 9D. If the type of 9D at w° is finite,
then we have the inequality

hD^ ^ N(aD-,^y
The structure of this article is as follows: Section 2 contains the

proof of Theorem 1.4, which, in fact, is completely parallel to the proof of
Theorem 1.1 from [13]. The short Section 3 then contains what is needed
to get Corollary 1.6 and the estimate in the strictly pseudoconvex case as
stated in Theorem 1.7. Starting with Section 4 we turn to the boundary
behavior of the Bergman metric showing at first the basic comparison
lemma (Proposition 4.1) between the Bergman metrics on D and on
the sublevel set A{w, D) of the pluricomplex Green function of D. The
boundary behavior of such sublevel sets is studied in Section 5. The proof
of Theorem 1.8 in Section 6 is then very short. Section 7, finally, contains
the proof of Theorem 1.13.

TOME 50 (2000), FASCICULE 4



1210 K. DIEDERICH and G. HERBORT

2. Proof of Theorem 1.4.

As said already we can completely follow the pattern of the proof of
Theorem 1.1 from [13]. For this we always assume in this section, that the
domain D and the exhaustion function p with the exponent 0 < a < 1
have been chosen as in Theorem 1.4. We fix a compact subset K C D and
introduce two auxiliary functions depending on the choice of points z G K
and w € D\K^ a number rjw > 0, which will be chosen later and an integer
k > 0. We put

(2.1) ^(C) :=max{^(C^),-^}

and

(2.2) y^(C) :=max{C?^(C,w),-A;}.

We will study the following three integrals:

Zfc(^w) := f^V^kWU^
(2.3) ^w) := ^iv^r^^w)71

Z(^w) := ^IG^.^K^^)71.

The main load in proving Theorem 1.4 consists in showing suitable upper
and lower estimates for the integral Z(^, w) as formulated precisely in the
following two lemmas

LEMMA 2.1.— There is a constant C* > 0 (depending on n and p )
such that for all z € K and all w € D with 6o{w) < D{ ) the estimate

(2.4) 1^ w) ^ C*^-* (V(^) log ̂ ^ '^(w)

holds.

In formulating the decisive lower estimate for I ( z , w) we specify the
free constant r]w > 0 from (2.1). We get

LEMMA 2.2. — If, for 0 < t <€ 1, the number r]w is defined to be

(2.5) ^ := IpHI-̂

then we have for all z € K and w € D with 6i){w) < ̂ o(^ K) the estimate

(2.6) Z(^w) ^ \GD^W)\ - C^(w)|log 60 (w)|

ANNALES DE L'lNSTITUT FOURIER
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with some unimportant constant C[ > 0. Furthermore, the constant
6o(t,K) is given by

6^K)=mm(6^a)^6D(K)\

with a constant 6^(t,o) not depending on K and the constants C^C^
from (1.2).

Before showing these lemmas we explain at first, how Theorem 1.4
follows immediately from them:

Proof of Theorem 1.4.— Notice that one has according to (2.5)
and (1.2) the inequality rj^ ^ C^ 6^°'{w). Hence we get from (2.4)
and (2.6)

\GD{Z,W)\ ̂  C^(w)|log<^ (w)| +Z(^w)

^ C^(w) log<^ (w) + G* fv(^) log 2^y/n^-^/^)
D \ OD[J\)/

^ C^(w) \og6 (w) + C* fv(^) log 2R^/n^-2nt^n^
D \ OD[K)/

If we put, for instance,

(7<:=max{c^,2——^}
I ^i oi(^a)J

Theorem 1.4 follows immediately, since z € K was chosen arbitrarily. D

We now come to the proof of the upper bound for I(z,w) from
Lemma 2.1. The main tool for it is the following lemma by Z. Blocki ([!]):

LEMMA 2.3.— Assume that z^i,...,^ : D -> R- are bounded
plurisubharmonic functions such that u(Q —^ 0 for ^ —> QD. Then one has

( K î) A ... A (dd^n) ^ n!|K|̂  • • . 11^-iH^ / I^Kd^)".
JD JD

Applying this to u := V^^ and z»i = ' ' ' = Vn = U^^ and observing
that ||vj[|oo ^ rfw for all j = 1,... ,n, we get the inequality

(2.7) I^w) ̂  n!<-1 / ^^(dd^r-
JD

TOME 50 (2000), FASCICULE 4



1212 K. DIEDERICH and G. HERBORT

With this we can estimate

ik{z^w)= [ iv^i^re^)71
JD

a \ nw- / r \ ^
^ (dd^r) ( I^F^ro,^)) / \JD )
=(27^)n-l(Z,(^w))l/n

^Cn^d I^J^y^r) n.
\JD )

(Here we used the fact that all the positive measures {d^U^^Y have total
mass (27^)n, see e.g. Lemma 2.1 in [13].)

So, we have shown, that for all k

(2.8) %(^w) ^ C^~* ( ( {U^dd^kT^ n.

Now notice, that for k -^ oo one hos \V^^\ / \GD(',W)\ and, hence, by
Beppo Levi,

(2.9) Ik^w) -^ I(z^w).
k—>oo

Furthermore, since all (dd^^ have the same mass as the measure
(27^)7^(^, where 6w denotes the Dirac measure at w, they tend for k —> oo
in the weak-star topology to (27^)n^. Hence, we even have

/ /(dd^r -^ (27^)n/(w)
J D k^00

for any bounded continuous function / on D. Applying this to / := \Uz ^|,
we get for k —> oo

/ l^wK^^^)" -^ (27^)n|£/^(w)| ^ (27^)n|^(w,^)|.
JD

Combining this with (2.8) and (2.9), we get the estimate

(2.10) Z(z,w) ^ CnrJl~^\GD(w,z)\l/n.

This inequality implies Lemma 2.1, since one also has

LEMMA 2.4. — Let -D, p, a be as in Theorem 1.4. Then there exists a
constant Cp > 0, such that for any compact set K C D the estimate

(2.11) ^|G^(C,^)| ^ C7^V(^)log^—)%(C)

holds for all points < G D with 60^) ̂  ^o(K).

ANNALES DE L'lNSTITUT FOURIER
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Proof of Lemma 2.4. — We proceed analogously to [5]. First we note
that we have (1.2). Let, now, x € K be arbitrary and Bj;,K ••= B(x; w^1).
We put

fmax^C^O.log^—^l if (,^D\B^K
'MC):=<! |1 | RD )

^RD if ceJE?a;^
where

C=2aC^8y(K)\og 2RD

'6o(K).
Note that

inf \p\^C2 mf % ̂  C^S^K).
0±Sx,K oBx,K

With this choice of C we, therefore, have

Gp^-qpl^-G mf Ip^log^^
9Bx,K ^HD

on QB^ K -

The above definition of 0a;, hence, is consistent, and we obtain a
negative plurisubharmonic function <^ on D serving as a candidate for
GD{'.X).

Let now C e D be a point with ^(C) ^ ̂ °. Then C ^ B^,^ and

|GD(C^)|^ |^(C)| ^c|p(c)|

^2a^-l^(^)log^y)lp(C)l
/ 97? \

^p(^Wiog^)%(C)

with Cp = 2"^. This proves Lemma 2.4. D

In order to show the lower bound for T{z, w) as stated in Lemma 2.2,
we use the following result shown in [13]:

LEMMA 2.5.— Let D CC C71 be a hyperconvex domain admitting a
continuous plurisubharmonic exhaustion function a : D —^ [—1,0) which is
uniformly Holder continuous on D with exponent (3 > 0. Then there is a
constant C > 0 (depending on (3) and for any compact subset K C D a

TOME 50 (2000), FASCICULE 4



1214 K. DIEDERICH and G. HERBORT

constant 60 > 0 (only depending on K and (3), such that one has for any
z G K and w G D \ K with 6r){w) < 60 the estimate

sup { GD«, w) : |C - z\ < RD exp (-a~2(w))}
^^(^w)+C|(7(w)||log|a(w)||.

As can be seen from [13], the proof of the lemma yields some more
precise information on the number 6o(K, /?), namely, SQ is of the form

(2.12) W,{3) =min{(5i(/3),^W}

where ^i(/3) is independent of K and 6^(K) > 0 is a number such that

(2.13) \cr(x)\ < inf |a| \/x C D with SnW < 6^K) .
K

In the situation of Theorem 1.4 we apply Lemma 2.5 for getting Lemma 2.2
with

(2.14) a=at:=-(-p)\

Then we get with /3 = ta the estimate

Ct da ^ i i -̂ /^it s.ta
2<5p ^ \(T\ ^ C^D '

This implies that the number

W) •= ̂ W
^1

satisfies (2.13) such that the number 60 in Lemma 2.5 becomes in this case

(2.15) 60 = 6o(^ K) = min ( 6^(ta}, ̂ ^(^)l

As we will see in the following, this is the number 6o(t^ K) needed in
Lemma 2.2, such that the number 6\(t^a) used there is, in fact, ^i(t,a) =
6\(ta). With this we can now give the

End of the proof of Lemma 2.2.— The measure {dd^Uz.wY is sup-
ported in the ball Bz,w '•= B(z,RD^p(—'nw)) = ̂ (^^Dexp^a^T^w))).
We, therefore, obtain for all z e K and w with ^p(w) < 6^(1^ K) the
inequality

J^w).^)" inf |G^(.,w)|
Bz,w

=-(27i-)"supG£)(-,w)
B«,w

^ \GD(Z,W)\ - (271-)"(7tMw)||log|(Tt(w)||

ANNALES DE L'lNSTITUT FOURIER
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where the inequality and the constant Ct come from Lemma 2.5. This
finishes the proof of Lemma 2.2 (and, hence, also of Theorem 1.4). n

3. Proofs of Corollary 1.6 and Theorem 1.7.

We start with the proof of the corollary. Let for this p, t and Ct be as
in Theorem 1.4. We take w C D such that

and put

Then we have

Hence we get

<^(w) < ^-l/3nt

K := [x e D : 6o(x) ̂  ^-^(w)}.

^(w) = 6y(w)SD(K) < C^SoW.

T^'^^) (-A:^(w)^/ 2Rn V^

+^(^log^)l

^^)log^

<Ctt6ttaloglfor6D(w)<6t
Ot

< 1

provided 6t <^ 1. This means that A(w, D) D K = 0 as claimed. D

In showing Theorem 1.7, it suffices to prove the first claim, since the
second follows from it as in the proof of the corollary. First we choose a
<5i > 0 such that on {w 6 D : <^(w) < 6^} the orthogonal projection to QD
is well-defined. We denote the image of w by w*. Let now F : D x QD —> A,
where A denotes the unit disc in C, be a continuous function with the
properties:

i) F ( ' ^ q ) is a holomorphic peak function at q € 9D defined on a fixed
neighborhood of -D;

ii) with some constant C^ > 0 one has for all w 6 D with ^(^O < ^i

|l-F(w,w*)|^C72^H.

TOME 50 (2000), FASCICULE 4



1216 K. DIEDERICH and G. HERBORT

(Such a function is constructed for instance in [11].) Furthermore, we notice
that one has for any two points a, b € A the estimate

(3.1)
a-b
1-ab

^1-4 i -H
1- |a|

This yields for all points z e K C D and w € D with SD(U>) < 6\

\GD(Z,W)\ < iG^(F(z,w*),F(w,w*))\

F(z,w*) -F(w,w*)
2 ^jl-F^w^F^w*)

(3.2) 1 , / 1-|F(w,w*)|\
l̂og(l-4ĵ ;;)

, 1 . /, , C^DM \
^-^[1-^_^^)

However, from the Hopf Lemma applied to the plurisubharmonic function
|F(-, w*)| — 1, we obtain with a constant £3 > 0 which can be chosen to be
independent of w*

|F(.,w*)|-l^-C'3^(.).

In particular, we obtain (since z € K)

-llogfl^ CMW) '210^1 ^-jF^u,*^
, 1 , /. ,C'2<5D(W)'^ _ log ( 1 - 4 v /

^ \ (^aoDi^),

If now

6o(w) < ̂ D(K)

we obtain from (3.2)

^ I M ^ ^ (^ C26o(w)\ SC2 6D(W)

^^^-^^-w^J^^W)-
This implies the claim.

4. A comparison lemma for the Bergman metric.

The basic tool allowing to deduce estimates on the Bergman metric of
a bounded domain D CC C71 from estimates on the Green function G£)(-, •)
of D is the following fundamental comparison lemma:

ANNALES DE L'lNSTITUT FOURIER
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PROPOSITION 4.1.— For any bounded pseudoconvex domain D CC
C71 there is a constant Ci > 0, such that for all (w, X) e D x (C^ \ {0})
the following estimate holds:

(4.1) ^-BA^,D){^X) ^ BD(W',X) ^ C!BA(^D)(W;X).

The proof of this proposition is based on the well-known fact, that
for arbitrary bounded domains ^ CC C71 the Bergman kernel K^{z) :==
K^{z,z) can be characterized by the extremal property

(4.2) K^z) = max {\f(z)\2 : f e H2^)^ ||/||^ := ||/||̂  ^ l]

and the quantity ^ x C71 9 (^ X) •—> b^{z', X) := K^{z)B^{z; X) is given
by the variational problem

(4.3) b^X) = max{ \(Of{z)^X)\2 : / € H2^)^^) = 0, ||/||^ ^ l}

where H2^) := L2(Q)n(9(^). Therefore, the following interpolation result
can be used for proving Proposition 4.1.

LEMMA 4.2.— Let D CC C71 be a bounded pseudoconvex domain
and fix a point w € D and a number S > 0. Denote by As(w,D) the
sublevel set

AS(W,D):={GD^W)<-S}.

Then we can find for every function f e H2{As{w,D)) a function f e
H2^) such that

i) f(w) = f(w)

ii) Qf{w) = 9f{w)

iii) the estimate

/As(w,D)

holds with R := max^|^|.

We will show at first, how this lemma implies Proposition 4.1:

TOME 50 (2000), FASCICULE 4



1218 K. DIEDERICH and G. HERBORT

Proof of Proposition 4.1. — Choosing S = 1 in Lemma 4.2 we get for
any nonzero / € H2{A(w,D)) because of (4.2) resp. (4.3)

|2
fW \fWKo(w) ̂ |/||2 -W+4e^6) y

Â(w,D)

and

|(cVH,x)|2W(w),X)
6i,(w,X)^ >^ -^(l+4e^6) n^^

for all X € C72'. Here the constant CD can be defined as

G^l^e^2.

Taking the supremum over all / € 7:f2(A(w,P)) with ||/HA(W,Z)) = 1 we
get at first

(4.4) KD(W) ̂  Cp(l+4e4n+6)^A(w.D)H

and taking the supremum over all / € i:f2(A(^u,Z5)) with ||/HA(W,D) = 1
and f{w) = 0 we also get

(4.5) b^X) ̂  c^l^e^)^^^

for any X G C^

Putting together (4.3) and (4.5) yields

^^^^^.(TTie-Te)5^)^^

the lower estimate of Proposition 4.1. The upper estimate follows similarly
using (4.4). D

It remains to show Lemma 4.2:

Proof of Lemma, 4.2. — The proof is a refinement of the argument
showing Proposition 3.6 of [12]. We denote for small T > 0 by Dr the set
Dr := [z G D : dist(^aD) > r}. Furthermore, let -^i € C^^) be a
non-negative polyradially symmetric function with f^ ^i d^z = 1. We
put

^r(z) := T-^^T-1^) for Z € C71.

ANNALES DE L'lNSTITUT FOURIER
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With it we define on Dr the weight functions

$,(z) := (In + 2)V.(2) + e^ + r\z\2

with Vr ••= GD(-,W) * ̂ T and
^^(2^+2)Gp(•,w)+eGD(••w).

Finally, we choose a cut-off function x € C°°W with |x'| < 25-1 and such

that
f 1 for a: < -25

^^{ofoTX^-S.

Let us now take an arbitrary / e ̂ (A,(w, D)) and define the (0, l)-form

a^^d-z,-=9(x^-f)=X'^-f9V..

j=i
It is smooth and its support is contained in the ̂ j^-25'^ ^ ~s}c

As(w, D). We also observe that the weight function <&. satisfies on Dr the

estimate

(4.6) $^1+^2

and on supp(a,-) we have

(4.7) $r>- (471+4)5.

Next we want to convince ourselves that

(4.8) I \^\2e-'s'rd2nz<oo.
J D-r

11^ / MI <- F' for all w G D C > 0 a constant, hence,̂̂ ,» .̂̂ > ̂  ̂ j;,,, (̂ , ̂ «,, ̂  .̂ .i-
ity (4.8) therefore follows.

As a next step the Levi form of $. can be estimated from below by

(4.9) C^ > e^QVr ®OVr^ e-^QVr ®~QVr on suppa,.

If we write Q = (Q,k) tor the inverse of the coefficient matrix of C^, we
obtain using at first (4.9) and then (4.7) the crucial estimate

f ^Q^^'a^e-^d2^

^f i^oyA^e-^2"^
JsuppOt^.

^4^-2g(4n+6)S)]y||2^^^^
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This shows, that the methods of the proof of Lemma 4.4.1 from [14]
apply to the pseudoconvex open set Dr for small r > 0. We obtain a
solution Ur € C°°{Dr) of the equation 9ur = Or satisfying the estimate

(4.10) f {u^e-^d^z^^S-2^^6^ f l/I'd2^
v DT Jsuppa^.

< 45'-2e(4n+6)-sllfll2^'0 e \U\\As(w,D).

This shows, in particular, that the Alaoglu-Bourbaki theorem applies to
the family of I^-functions defined by

^ ( e-^/V on Dr
1 0 on D\Dr.

v.- :=

Hence there is a sequence {rk)k of parameters converging to 0 and a
function v e L2{D), such that

f^d^z^^e^w^^
and Vk -^ v in the weak-*-topology on L2(D) as k -^ oo.

We, now, claim, that the function u := e^^v has the following
properties:

i) The Z^-estimate

/ H2 d^z ^ e^2 f HV^ d^z ^ 4^-2e(4n+6)5+^21| f||2 / ,
J D J D "As(w,D)

holds.

ii) There is a holomorphic function /on D with f = ̂ oG^-.w) -f-u
almost everywhere.

iii) One has /(w) = /(w), <9/(w) = Qf(w).

Namely, the first claim follows from the definition of v together
with (4.6). In order to prove the second assertion we put /i := ^:oG^(., w) •
f-u. Since u e L2(D), so is /i. It, therefore, suffices to verify <9/i = 0 on
D\{w} in the distributional sense. This can be done exactly as in the proof
of Proposition 3.6 in [12]. For the convenience of the reader we mention the
essential steps also here. For this we denote by { • , •) the inner product on
12 W ^P- on (p,g)-forms with coefficients in this space. We choose a
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smooth (0, l)-form /3 with compact support in D \ {w} and calculate for
large k with -ff meaning the formal adjoint of 9

{e^^v^^P) = (e^Vr^e^-^'ff^)

= (e^Vr,,^) + {e^Vr,, (e^-*^ - lW

= (a,,,/?) + (t^, (e^*-^) _ i)^)
(4.11)

= {X ° ̂  • f^f3) + (ur,, (e^-*^ - \YP).

From (4.10) we get

IKII^^-^4^6)5!!/!)2

uniformly in k and Beppo-Levi gives \\((^(^ - <I>.rJ) - l)i?/3||.D -» 0 as
k —> oo. Altogether the Cauchy-Schwarz inequality, therefore, gives as
estimate for the second term of the right-hand side of (4.11)

(Ur,, (e^-^) - iW ̂  0 for k -^ oo.

This yields

(A, ̂ /3) = (X ° GD(-, w)f, ̂ f3) - (u, ̂ f3}

= lim {x ° ̂  • /, i?/3) - lim (e*/2^, i?/3)
/c—»oo fc—^oo

=0.

This proves ii).

The equalities iii) follow immediately from i). Namely, on an open
neighborhood U of w one has (7p(-,w) ^ -36', hence, f - f = u almost
everywhere on U. From i) we get

~|2/„ / - / e-<s>d2nz<oo.
Ju

Therefore and because of the factor (2n + 2) in the definition of <I>, the
holomorphic function / — / must vanish to at least second order at w. This
finishes the proof of Lemma 4.2. n
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5. The boundary behavior of the sublevel sets
of the Green function.

The next essential tool needed for the proof of Theorem 1.8 is the
convergence property

(5.1) lim diam(A(w,P)) =0
W—>-WQ

for the sublevel sets of the pluricomplex Green function for any point
WQ G 9D. In order to formulate the exact hypothesis which allows us to
show (5.1), we remind the reader of the following definition from [13]

DEFINITION 5.1. — We say that a bounded domain D CC C^ satisfies
property (P^) at a point WQ G 9D if for any compact set K C D

lim sup \Gr){z^w)\ = 0.
w^wo z^K

Remark 5.2. — Theorem 1.2 as stated in the Introduction says, that
any domain D CC C71 admitting a bounded uniformly Holder continuous
plurisubharmonic exhaustion function satisfies property (P+) at any of its
boundary points.

We will show in this section

PROPOSITION 5.3.— Let D CC C71 be a domain satisfying property
(P^) at every boundary point. Assume, furthermore, that any point WQ €
9D is a peak point for the family P(D) := C°(D) H PSH(D) of continuous
functions on D plurisubharmonic on D. Then one has for all WQ € 9D

lim diam (A(w, D)) = 0.
IV—»WQ

As a first step in the proof of this proposition we will show, that the sublevel
sets A(w,D) cannot come arbitrarily close to any point of 9D \ {wo} as
w —»• WQ. For this we will need the hypothesis concerning plurisubharmonic
peak functions, but not yet property (P*). We claim:

LEMMA 5.4.— Let D CC C72 be a pseudoconvex domain, such that
any point WQ (E 9D is a peak point for the familyP{D) := C°(D)nPSH(D).
If then K\ C 9D is compact and L C D is a set with L D K\ =0, then, for
every s > 0, there is an open neighborhood Us D K^ with Us H L = 0 and
such that

Go{z,w) > -s
for all (z, w) C (Us H D) x L.
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Proof of Lemma 5.4.— We put 6 := ^dist(^i,L). Let q € K^ be
arbitrary and ^ e 'P(^) a plurisubharmonic function on D, continuous on
D, with ^(q) = 0 and ^(z) < 0 for z € Z> \ {g}. We then define for any
w € -L with the constant

Cq := 2 log2^/^
min \^(z)\

z-q\^36"' / 1

the function

v^(z) :=
{ j y __ dyi i j

max C^(2:),log1———' \ for |^ - w\ ̂  <$
^D J

|z — w|
^S ~~<^— Ior \z — w\ < 6.2HD

Notice, that v^ is well-defined, since for z € D with \z - w\ = 6 it follows
Cq^(z) ^ log *j^. Namely, for such 2: we get \z - q\ ̂  |w - q\ - \z - w\ ^
4^ — 6 = 36 and, hence,

Wz) = -W(z)\ ̂  -C, min _|^| = 2 log —— < log {z ~ w{

8B{q,36)nD ^RD ^RD

The function 2;^, therefore, is for each w e L plurisubharmonic on D and,
even, a candidate in the definition of G£)(',W). Hence,

GD^W)^C^(Z)

if |.z — w\ > 6 and w € L. The function -0 being continuous, we can, after
fixing a number s > 0, find an open neighborhood U8 of 9, such that
U^ H Z = 0 and Cq^(z) > -s on £/J D D. The claim of the lemma now
follows from the compactness of K\, namely, we can cover K\ by finitely
many such neighborhoods Uj for a finite number of points q € K\. The
union Us of these neighborhoods has the desired property. D

We are now ready for the

Proof of Proposition 5.3.— Let WQ € 9D. It suffices to prove:

Claim. — For any number m > 0 there is a number 6 > 0, such that
A(w, D) c B(wo, ̂ ) for all w € D with |w - wo| < 6.

We apply Lemma 5.4 to the compact set

K^ := 9D H \ z e ~D : \z - WQ\ ̂  — \
I rn\
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and the set

L:=Dr\B[wo—}\ 2mJ

with s = - obtaining an open neighborhood Um of K\ such that

A(w, D) H Um = 0 for w € L.

The set

K ^ : = ^ z ^ D :\Z-WQ\^ —, z^Um\

is a compact subset of D. By property (P*) one has

lim sup |G^(^,w)|=0
w^wo z(EK2

meaning, that for small enough 6' > 0

A(w, D) H K^ = 0 for w <E D H 5(wo,^').

Hence, we obtain for all w € D with |w — Wo| < 6 := min{^', ̂ }

A(w, D) H f^ \ B fwo, -L-} } = (A(w, D) H £/^) U (A(w, D) H ̂ 2) = 0.
V \ m ) )

Since this implies A(w, D) C J9nB(wo, ^;) for such points, Proposition 5.3
has been proved. D

6. Proof of Theorem 1.8.

This is now very brief. Namely, take (w, X) € D x C71. Proposition 4.1
says that

BD(W,X) ̂  C^BA^,D)(^,X)

with some constant C\ > 0 independent of w. Furthermore, a trivial
argument yields

(6.1) ^(^^^^diam^L^))-

Since, however, Proposition 5.3 applies in the given situation, the right-
hand side in (6.1) goes to infinity as w tends to WQ. This implies the
theorem. D
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7. Proof of Theorem 1.13.

Again, this proof is, of course, based on the ^-technique for the
construction of good candidates of holomorphic I^-functions contributing
to the variational problems which give JC^(w) and 6^>(w,X) (see (4.2)
and (4.3)). The main tool obtained by this method is contained in the
following lemma which is a suitable modification of Lemma 4.2.

LEMMA 7.1. — Let D CC C71 be a pseudoconvex domain. Fix a point
w € D and a unit vector X € C71. Assume, we are given a negative
plurisubharmonic function V^ on D, such that on an open neighborhood
ofw the function z —> V^^z) — log \z — w\ is bounded from above, and
denote for any number S > 0

Asfw^V^} := [z : V^\z) < -S}.

Then we can find for every function f € H2(As{w^V(<w>))) a function
f € H2^!)) with the following properties:

i) /(w) = f(w)

ii) Of(w) = 9f(w)

iii) ll/ll2^ ^ (1 + 45-26(4n+6)5+l+^)||/||^^^^^, where RD :=
max- |^|.

Because of the complete analogy to the proof of Lemma 4.2 we do
not prove this lemma here.

We now come to the proof of Theorem 1.13.

Let 0 < t <C 1 be arbitrarily small and choose T] ^ 2 such that D is
pseudoconvexly extendable of order 77 at a given boundary point w°. Let
p be a corresponding extending function defined on an open neighborhood
U of w°. More precisely, suppose that p satisfies

(7.1) -c(6D(z) + \z - w°|2) ^ p(z) ^ -\z - w°|77

on D H U.

It suffices to show:

Claim. — One has

(7.2) ^(^1_2^.
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Let us next choose a pseudoconvex domain D\ C U D {p < 0} with C3-
smooth boundary and the following properties:

1) There exists an open neighborhood U\ CC U of w° such that

QD^HUz = { p = 0 } n£/i.

2) DnUz cD^nUi.
3) On l/i the inequality \p\ ̂  G'6c^ holds with some constant C 1 ' .

Because of the well-known localization property of the Bergman
metric it suffices to do all work on the domain

D := D H U,

instead of P.

Let, now, U'z CC U\ be another open neighborhood of w° and choose
w € D D 1/2 arbitrarily. We define for any unit vector X € C71 the function

A.):^-^)^^.
v^^)

Lemma 7.1 with this domain J9, the function V^ := C?jr^(',w) and *? = 1
applied to this function / yields a function / € H^^D) such that

{9f(w)^X}
^(w,X)>———,———^G*

lA(w,Di)n£>
ID

and, hence,

(7.3) ^(^^) ^ ^*n—^——
II./ llA(w,Di)nD

with an unimportant constant C*.

It, therefore, remains to estimate the norm ||/||^^ ̂  }nD'

For this we notice, that on D C U D D

I^-W^K^I^C'^V)
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and, hence,

I/^KI——I™^
\/Kb(w)

(7.4) < {\z - w°\ +\w- w°^ l̂ MI
^/^H

^W-"°l)^
By Lemma 1.6 we have with some number ^ <$: 1 for all w € DI with
^Di (^) < ^ the estimate

A(w,^l)c{^<^2 n t(w)}•

Inserting this into (7.4) we see that, on D n A(w, Di) one even has

|/(.)| ̂  c"^-^^ + |w - w°|) W^

if ^Di(^) < ^t- By integration we obtain for such points w

\\f\\A(^)nD ^ C^^W + \w - w°\) .

Finally, we observe that, on a cone within D with vertex at w°, we can
estimate

^2nt/^ ^_ ̂  _ ^0| ^ CS^^^W).

This, together with (7.3) proves

^^^"^^^
for all w sufficiently close to w° and inside a cone within D with vertex at
w°. This proves the Claim (7.2) and, therefore, Theorem 1.13. D
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