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THE ANALYTICITY OF q-CONCAVE SETS OF
LOCALLY FINITE HAUSDORFF f2n-2q>MEASURE

by Viorel VAJAITU

1. Introduction.

Let A be a closed subset of a complex space X. The question of
finding reasonable assumptions on A which guarantee its analyticity has
been studied over the years by various authors.

Hartogs [14] considered a continuous function / : D —> C, where
D C C^ is open, and showed that the graph Gf of / in D x C is pseudo-
concave (%.e., the complement of Gf in D x C is locally Stein) if and only
if / is holomorphic, that is Gf is analytic.

Grauert revealed in his thesis [13] a new interesting aspect of the
above question bringing into play thin complements of complete Kahler
domains. This topic was afterwards thoroughly studied by Diederich and
Fornaess ([6], [7]) and Ohsawa [19].

On the other hand, Hirschowitz [15] settled the case when X is non-
singular and A is pseudoconcave of locally finite Hausdorff (2n—2)-measure,
where n is the complex dimension of X.

In this article, using g-convexity with corners we introduce the notion
of q- concavity. (See §2 for definition. Note that for q = 1 we recover the
usual pseudoconcavity as used in [15] and [18].) For instance, if X is a
complex manifold of pure dimension n and A C X is an analytic subset
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Math. classification: 32F10 - 32C25.



1192 VIOREL VAJAITU

such that every irreducible of it has dimension ^ n—q, then A is ^-concave
[20]. Two more examples are given at the end of Section 2.

Our main result in this note, which establishes a converse of the above
result due to M. Peternell and generalizes Hirschowitz's theorem already
quotes above, is the following:

THEOREM 1. — Let X be a complex space of pure dimension n
and q a positive integer less than n. If A C X is a ^-concave subset such
that its Hausdorff ((2n—2q) -measure is locally finite, then A is analytic of
pure dimension n—q.

As an application (see also Example 2 in Section 2) we have:

COROLLARY 1. — Let T be a closed positive current of bidimension
(q, q) on a complex manifold M. If the Hausdorff 2q-measure ofSupp(T) is
locally finite, then Supp(T) is an analytic subset ofM of pure dimension q.

On the other hand, using [16], Theorem 1 yields the following remov-
ability theorem. (For q = 1 we recover the main result in [2].)

THEOREM 2. — Let M be a complex manifold of pure dimension n,
q a positive integer less than n, E C M a closed subset of locally finite
Hausdorff (2n—2q)-measure, and f a meromorphic mapping from M \E
into a complex space Y. If E does not contain any (n—q)-dimensional
analytic subset ofM and Y possesses the meromorphic extension property
in bidimension (q^n—q) (e.g., ifY is q-complete), then f is continued to a
meromorphic mapping from M into Y.

The organization of this paper is as follows. After a preliminary
section, we give in §3 the proofs of Theorems 1 and 2. The last section,
§4, establishes connections with the g-pseudoconcavity notion introduced
by M. Peternell [20].

2. Preliminaries.

(•) Let T be a metric space and S a subset of T. For p > 0 and e > 0
let h^(S) denote the infimum of all (infinite) sums of the form ^6(Sn)p

where S = USn is an arbitrary decomposition of S with 6(Sn) < e for
all n (6 = diameter). For p > 0 the Hausdorff p-measure hp is defined by
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ANALYTICITY OF (/-CONCAVE SETS 1193

hP(S) = sup^o h^(S) ^ +00. We define h°(S) to be equal to the cardinality
of S. The usual notion of ^-dimensional volume in a Riemannian manifold
agrees with /^ up to a constant factor depending only on n (for positive
integers k). Thus, if A is a pure ^-dimensional analytic set in a domain in
C", then /^(A) is equal to a universal constant (depending on k) times
the Riemannian volume of the set of regular points of A. For a detailed
discussion on Hausdorff measure, see [11].

(•) The definition of g-convexity is the same as in [I], namely; a
function ^ e C^^R), where D C C71 is an open subset, said to be
q- convex if its Levi form

^(^^EaS-^^^^
ij=l OZ^OZ3

has at least n-q + 1 positive (> 0) eigenvalues for every z e D. This
definition can be carried over to complex spaces by local restriction.

Let X be a complex space. X is said to be q-complete if there exists
a g-convex function y? e C°°{X,R) which is exhaustive, i.e., the sublevel
sets [x C X ; (p(x) < c},c e R, are relatively compact in X. We choose the
normalization such that 1-complete spaces correspond to Stein spaces.

Following [8] and [20] a function (p e C°(X,R) is said to be q- convex
with corners on X if every point of X admits an open neighborhod U
on which there are finitely many g-convex functions /i,..., fk such that
^p\u = max(/i,..., fk). Denote by Fq(X) the set of all functions g-convex
with corners on X.

We say that X is q-complete with corners if there exists an exhaustion
function (p e Fq{X).

DEFINITION 1. — Let X be a complex space. A subset A of X is
said to be ^-concave (in X) if A is closed and every point of A has an open
neighborhood Q such that ^l\A is q-complete with corners.

From [24] (see also [25]) we deduce immediately:

COROLLARY 2. — Let TT : X -^ Y be a finite surjective holomorphic
map of complex spaces and A C Y a closed subset. Then A is q-concave in
Y if and only ifTr'^A) is q-concave in X.

Subsequently we give some facts on ^-completeness with corners which
allow us to reduce the proof of Theorem 1 to the case when X is a domain
inC71.
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1194 VIOREL VAJAITU

PROPOSITION 1. — Let Y be an analytic set in a complex space X.
IfY is q-complete with corners, then Y has a neighborhood system of open
sets which are q-complete with corners.

Proof. — By ([3], Lemma 3) if ^ € Fq(Y) and rj € C°(Y,R), rf > 0,
then there exists an open neighborhood V of Y in X and -0 ^ Fq(y) such
that |'0—^| < 77 on V. The method ofCol^oiu ([4], Theorem 2) or Demailly
([5], the proof of Theorem 1, p. 287) can easily be adapted to our case. D

PROPOSITION 2. — Let X be a complex space and y?, '0 be continu-
ous exhaustion functions on X such that there is an open neighborhood fl, of
the set {(p =^} inX with (p € Fp(^U{(p < -0}) and ^ e Fq(flU{^ < ̂ }).
Then X is (p -h q) -complete with corners.

Proof. — Let A := {A € C°°(R, M); Y > 0, A" ^ 0}. For A e A define
$A : X -> R by

^ := l/(exp(-A(^)) +exp(-A(^))).
It is straightforward to see that ^S>\ is exhaustive for X and it is {p + q)-
convex with corners on ^2. Now we let e > 0 be continuous on X such that
{|</? - '0| ^ e} C ^; define W- == {(p - ̂  ^ -e} and W+ = [<p - ̂  ^ e}.
Clearly W-, TV+ are closed subsets of X and W- U W+ U ̂  = X. The proof
is concluded if we show the next

CLAIM. — There is A € A such that (S>\ is p-convex with corners
on W- and q-convex with corners on W-^-.

But this follows by adjusting the arguments in [22]. We omit the
details. D

PROPOSITION 3. — Let U^ V be open subsets of a complex space X
such that U is p-complete with corners and V is q-complete with corners.
Then U U V is (p + q)-complete with corners.

Proof. — Consider exhaustion functions / € Fq{U) and g € Fq(V)
for U and V respectively. Let a € C°°(U,R) with 0 ^ a ^ 1, a(x) = 1 if
x ^U\V or x eU nV and f(x) ^ g{x) + 1; a(x) = 0 if x € U H V and
/(a*) > g(x) + 2. Set D :=UUV. Define y? on D by setting

f / on U\V^
^ = ̂  af + (1 - a)(l + g) on UnV,

[ 1 + g on V\U.
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ANALYTICITY OF g-CONCAVE SETS 1195

Then (p is continuous and exhaustive for D.

Let b e C°°(V,R) with 0 ^ b ^ 1, &(.r) = 1 if g(x) ^ y?(:r) + 1 and
b^x) = 0 if g(x) > ^p{x) 4- 2. Define '0 on D by setting

^ r ^ + ( i - & ) ( i + ^ ) on y,
T \1+^ on [7\V.

Then ip is continuous and exhaustive for D.

Finally, it easy to see that S := {^ < 1 -{-(?} C V and ^ = g on 5';
hence ^ € Fg(5'). Similarly, T := {^ < 1 + ^} C £7 and (p = / on T; so
(p € Fp(T). The conclusion then follows from Proposition 2. D

COROLLARY 3. — Let A and B be p-concave and q-concave sets in
the complex spaces X and Y respectively. Then A x B is (p + q) -concave
in X x Y.

Proof. — Since the assertion is local, we may assume that X and Y
are Stein spaces, X \ A is p-complete with corners, and Y \ B is ^-complete
with corners. Then X x Y\A x B = X x (Y\B) U (X\A) x Y is (p+g)-
complete with corners by Proposition 3. D

For a complex space X we introduce [20] the set Gq(X) as follows:
For Xo € X let Gq(xo) be the set of all functions g : X —> R such that
there are: an open neighborhood U of Xo (which may depend on g) and
/ 6 Fq(U) with f{xo) = g(xo) and / ^ g\u. Then put

G,(X):=C7°(X,M)n Q Gq(x).
xex

Clearly F^(X) C Gq(X) C C°(X,]R).

Note that given an open set D(^X, an e > 0, and a function
g e Gq(X), there is a function h € Fq(D) such that |/i — p| < £ on D. See
[20], Lemma 1. But we cannot use this fact and the classical perturbation
procedure (see for instance [8]) to get a globally defined h since we do not
know that given v € Gq(X) and 6 e G^°(X,R) there is Co > 0 such that
v + \0 € Gq(X) for every A 6 M, |A| < ^o. However we can avoid this
difficulty since we show:

LEMMA 1. — The set Fq(X) is dense in Gq(X) in the sense that
given an arbitrary g € Gq(X) and rj € C°(X, R), rf > 0, there is / G Fq{X)
such that \f—g\ < rf.

TOME 50 (2000), FASCICULE 4
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Proof. — We do this in three steps.

Step 1). Fix x e X and e > 0. By definition there is an open
neighborhood ^ of x and y? € F^(^) with <^(a;) = p(:r) and ^ ^ ^ on
^. Let W, U be open neighborhoods of a;, W € (7 € f^, such that y ^ g - e
on £/; then let 6> € C^(£/, R), 6> = -1 on 9W and (9(.r) - 1. If c > 0 is small
enough, then ^ := (^+c(9 e ^g(<7), ^ < g on <W, ^ > g on a neighborhood
V of a; in TV, and \^ - g\ < 2e on (7.

Step 2). The above step shows that for all compact subsets K, L of X,
L a neighborhood of K and e > 0, there are: a finite set of indices I (which
depends on K and L), open sets V, € IV, € ̂  C L such that {VJ^J cover
K, functions /, e Fq(Ui) with |/, - ̂ | < 2e on IV,, /, > g on V, and /, < ^
on <9T^.

Step 3). Let {^}^N be an exhaustion sequence for X by compact
sets, .PCo=0 (by convention set JG-i = 0), and ̂  C int (K^) for all v.
For each ^ apply Step 2to K = K^\ int (^_i), L = J^+i \ int (^-2),
and e = (minL77)/2. We therefore obtain open sets V^^W^^U^ such
that the family {W^} is locally finite, {V^}^ is a covering of X, and
functions f^ e Fq(U^) as in Step 2 from above. Then define / : X -> R by
/(a;) = max{f^(x) ; a* C H^}, where the maximum is taken over all indices
z, v such that W^ 3 x. It is straightforward to see that / is continuous,
/ € Fq(X), and g < f < g + 77. Q

Remark. — It can be shown that for 9 > dim(X) the set Fq(X) is
dense in the above sense even in (7°(X,]R).

From ([20], Lemma 4) we quote:

LEMMA 2. — Let U be a complex space, V a complex manifold of
pure dimension r, and f e Fq^r(U x V) such that sup/ < oo. Consider
g : U -^ R denned by

g(x) = sup{/(:r, ̂ /); y e V}, x C U.
Assume that for some Xo e U there is VoCV with g{xo) = f(xo, ?/„). Then
g e Gq(xo).

The key proposition for the proof of Theorem 1 is:

PROPOSITION 4. — Let X and Y be complex manifolds such that
Y is of pure dimension r and p-complete with corners. Let A be a (q + r)-
concave subset in X x Y such that the natural projection TT : A -^ X is
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proper. Then 7r(A) is (^ +p—l) -concave in X. In particular, ifY is Stein
(i.e. p = 1^), theji 7r(A) is q-concave.

Proof. — Set m := q + P—l. We may assume without any loss in
generality that X is Stein. The statement of the proposition follows from
the next claim.

CLAIM. — For every relatively compact Stein open subset U of X,
the set U \ 7r(A) is m-complete with corners.

In order to show this, consider a relatively compact open subset V of
Y which is p-complete with corners and such that 7^~1(U x 7r(A)) C U x V.
Then K :== U x 9V is compact and disjoint from A. Now, since U x V \A is
(m 4- r)-complete with corners by [20], there exists an exhaustion function
^€F^r{UxY\A).

Let A := maxj< ̂  and define a : U \ 7r(A) — ^ M b y setting

a{x) = max{^(;c, y), y G V}, x € U \ 7r(A).

Clearly a is continuous. Consider 0 be a 1-convex exhaustion function on
U and then define (^ : U \ 7r(A) — ^ R b y setting

(p = ̂ +max(A,cr).

Then (p is continuous and exhaustive. To conclude the proof, in view of
Lemma 1, it suffices to show that ip 6 Gm (x) for ever x € [7\7r(A). Indeed,
two cases may occur:

a) If a(x) > A, then a € Gm{x) by Lemma 2. Since y? = a + ^ on a
neighborhood of a:, we get ^ € G^(a;).

b) If o'(x) ^ A, then 6(x) + A = ̂ (x) and since A + ^ ^ ^ o n £ / \ 7r(A),
y? € G-t(x), a fortiori, (p € Gm(x).

The proof is complete. D

(•) Denotes by A^) the open polydisc in Ck of polyradius ( ^ , . . . , t)
centered at the origin. Let n and q be positive integers such that q < n.
We define the (9, n-q) Hartogs figure in C7'1 = C9 x C""9 to be the open
set Hq C C71 given by

Hq := ((A^l) \A^) x A^l)) U (A^l) x A^OO)

where 0<^, 5<1. Put Hq := A^l), i.e. the envelope of holomorphy of Hq.

TOME 50 (2000), FASCICULE 4



1198 VIOREL VAJAITU

Following [16] we say that a complex space Y possesses the meromor-
phic extension property (in bidimension (q^n—q)) if every meromorphic
map / : Hq —>• Y extends to a meromorphic map / : Hq —> Y.

By [16] every (/-complete complex space possesses a meromorphic
extension property in bidimension (g, n—q) for every integer n > q.

DEFINITION 2. — M be a complex manifold of pure dimension n.
We say that a closed subset A C M is pseudoconcave of order q if for every
injective holomorphic map f : Hq —> M such that f(Hq) H A is empty, the
set f(Hq) n A is also empty.

In this set-up, a variant of Proposition 4 for Y == C^ is straightforward.
See ([10], Lemma 3.6).

Also by ([24], Corollary 5) one has: A closed subset A of a pure
dimensional complex manifold is pseudoconcave of order q if and only if A
is q- concave.

Pseudoconcavity of order q is easier to handle; though it does not suit
to complex spaces. One has the next examples:

1) Let M be a Stein manifold of pure dimension n and K C M a
compact set. Then K \ K is (n-l)-concave in X \ K. (See [23].)

2) The support of a closed positive current of bidegree (g, q) on a pure
dimensional complex manifold is g-concave. (This follows by [12], Corollary
2.6 and the above remark.)

3. Proof of Theorems 1 and 2.

Proof of Theorem 1.

We remark that it suffices to show that A is analytic and for this we
distinguish three steps.

Step 1). — Here we reduce the proof to the case when X C C71' is
open. For this we need:

LEMMA 3. — Let Z be a complex space, X C Z an analytic subset,
and A C X a closed subset (not necessarily analytic). If A is q-concave in
X and X is r-concave in Z , then A is (q + r)-concave in Z.

ANNALES DE L'lNSTITUT FOURIER
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Proof. — Let Xo e A and £/ be a Stein open neighborhood of Xo in
Z such that U\X is r-complete with corners and (U\A) r\X is (/-complete
with corners. Since (U\A) r\X is analytic in U\A^ there is by Proposition
1 an open subset Q, of U \ A which is ^-complete with corners and contains
(U \ A) H X. Therefore U \ A = (U \ X) U ̂  is (q + r)-complete with corners
by Proposition 3. D

To complete Step 1, we let x C A, then take a coordinate patch
i : U —> D C C1^ around x € X with D Stein; hence U is isomorphic to
the closed analytic subset i(U) of D, hence b{A D U) is g-concave in i(U).
Put p := q-^-N—n. Note that N—p = n—q. Therefore i(Ar\U) is p-concave
in D by Lemma 3 since b{U) is (N—n) -concave in D. On the other hand,
t(AnU) as a closed subset of P has its Hausdorff (27V—2p)-measure locally
finite.

Step 2). — We give here some general facts for further reduction of
the proof of Theorem 1.

Let E C C71 be a locally closed set with /i271-2^1^) = 0 and
suppose 0 € E. Then there is a complex (n-g)-plane T through 0 such that
^(EnF) = 0 ([21], Lemma 2). Hence for a suitable unitary transformation
a of C71 we have /^(a(E) H (C71"9 x {0})) = 0. By ([21], Corollary 2),
a{E)n(9B(r) x {0}) is empty for (/z^-almost all r > 0. (Here B(r) denotes
the open unit ball in Cn~q of radius r.) Since o-{E) is also locally closed in
C71 and 0 € cr(E), there is r > 0 arbitrary small and a polydisc P in Cq

centered at the origin such that a(E) D (B(r) x P) is closed in B(r) x P
and ff{E) D (9B(r) x P) is empty. In particular, the canonically induced
projection map TT from a{E) H (B(r) x P) into B(r) is proper.

If furthermore h^-^^E) < oo, then Tr-^) is finite for (/i271-^)-
almost all z € B{r) ([21], Corollary 4).

Recall that a set T C C71 is said to be locally pluripolar if for every
a € r there is a connected neighborhood U 3 a and a plurisubharmonic
function (p on U, ̂  ^ —oo, such that F Ft ?7 C {y = —oo}. In fact, if T is
locally pluripolar then by [17] one can take U = C71, so r is pluripolar. Note
that for n == 1 pluripolarity of a set in C means that it is of zero-capacity
as used in [18]. Also it is easy to check that for U C C1 open and S C C71

of zero Lebesgue measure, the set U \ S is not pluripolar.

Step 3). — Here we conclude the proof.

By Steps 1, 2, and Proposition 4 it remains to show the next lemma.

TOME 50 (2000), FASCICULE 4
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LEMMA 4. — Let U C Cn~q be an open set, A the open unit disc
in C, and A C U x A9 a closed subset such that the canonical projection
TT : A —> U is proper. If A is q-concave and Tr"1^) is finite for z in a non
pluripolar subset of U, then A is analytic of pure dimension n—q.

Proof. — For q = 1 this is precisely the lemma due to Hartogs-
Oka-Nishino [18]. For q > 1 we proceed as follows. Notice that it suffices
to show the analyticity of A. In order to do this we let pj : A9 —> A,
j = l , . . . ,g , denote the projection onto the j^ component of A9, then
let crj; : A —f U x A naturally induced by pj. Then o~j is proper and
Proposition 4 implies that o~j(A) is 1-concave in U x A for all indices
j = l , . . . ,g . Furthermore if we consider Tij : cr^(A) —> U canonically
induced, we arrive at the case q = 1. So the sets crj(A) are analytic for
all j.

Now, if L : U x A^ -^ {U x A) x • • • x (U x A) (the prod-
uct is taken g-times) is given by i(z, t i , . . . , tq) = ((z, t i ) , . . . , (z, tq)),
then A = i~l(o'-^_(A) x • • • (7g(A)) , whence the lemma. Thus the proof of
Theorem 1. D

Proof of Theorem 2.

Denote by A° := the set of points x G A such that / extends
meromorphically onto a neighborhood of x. Then A' := A\A° is closed and
as the complement to A is locally connected in M these local meromorphic
continuations of / in points of A° glue together to a unique meromorphic
map from M \ A' into Y.

Now, we assert that A! is pseudoconcave of order q. For this we let
^ : Hq —> M be an injective holomorphic map with ^{Hq) D A' = 0. Then
/ o $ is meromorphic from Hq into V, hence it extends to Hq', therefore
/ extends over ^(Hq), and by definition ^(Hq) C A°; whence the desired
assertion.

Finally, by Theorem 1, if A7 is not the empty set, then A' is analytic
of pure dimension n—q. But this contradicts the hypothesis, whence the
proof. D

ANNALES DE L'lNSTITUT FOURIER
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4. A final remark.

Motivated by M. PeternelPs work ([20], §7) we give:

DEFINITION 3. — Let X be a complex space of pure dimension n.
A closed subset A of X is said to be g-pseudoconcave if there is an analytic
subset B C X such that

1) A\B=A.
2) For each point x 6 A \ B there is a locally closed analytic subset

Y of X which passes through x, Y C A, and Y is a complex manifold of
dimension n—q.

As an example, if A is analytic and dinia; A > u—q^ \f x € A, then A
is g-pseudoconcave.

Let now r be a non-negative integer and suppose X is purely dimen-
sional. We say that X has property {Er), if there is (^ € Fn-\-r{X XX\^x),
where Ajc is the diagonal set of X x X, such that ^p(x^,x) —> +00 if
Xy —> a*, x^ 7^ x^ Vrc € X. Condition (Er) holds locally on X if every point
of X admits an open neighborhood U which satisfies (Er).

The next proposition is an easy consequence of ([20], Lemma 9).

PROPOSITION 5. — Let X be a pure dimensional complex space
such that {Er) holds locally. Then every g-pseudoconcave subset of X is
{q + r)-concave.

The importance of the condition (Er) resides in the fact that, for
example, if a Stein space X fulfils {Eo), then every locally Stein open
subset of X is Stein. It is easy to check for a Stein manifold that (Eo)
holds. However, this fails, in general, if we allow singularities. For example,
we let X be the Segre cone in C4, X = {xy = zw}. Clearly the hypersurface
A = {x == z •==• 0} is 1-pseudoconcave. Now, if (J%) would hold locally on
X, then A will be 1-concave; and as X has isolated singularities X \ A will
be Stein. But this is absurd since X \ A is biholomorphic to (C2 \ {0}) x C.

COROLLARY 4. — If X is a complex manifold, then every q-
pseudoconcave subset ofX is also g-concave.

Example 3. — For every positive integer q there is an open subset
X of C9"1"1 and a q-concave subset A C X which is not q-pseudoconcave.

TOME 50 (2000), FASCICULE 4



1202 VIOREL VAJAITU

To do this we consider a compact subset K of C2 such that K \ K
contains no analytic disc. See [26] for the existence of K. Put X :=
(C2 \ K) x C9-1 and A := (K \ K) x {0}. Then A is not g-pseudoconcave
in X; however, by Example 1 in §2 and Corollary 3 it is easily seen that
K \ K is g-concave in X. D

The corresponding version of Theorem 1 reads:

THEOREM 3. — Let A be a closed subset of a pure n-dimensional
complex space X such that A is g-pseudoconcave and its Hausdorff
(<2n—2q)-measure is locally finite. Then A is analytic of pure dimension
n—q.

Proof. — If L : U —> D is a local path of X, where D is an open
subset of C^, then i(A ft U) is (N-n + g)-pseudoconcave in D. Now we
conclude by the above corollary and Theorem 1. D

Acknowledgements. — A part of this work has been supported by
an ANSTI grant No. 5232/1999.

BIBLIOGRAPHY

[1] A. ANDREOTTI, H. GRAUERT, Theoremes de finitude pour la cohomologie des
espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.

[2] E.M. CHIRKA, On the removable singularities for meromorphic mappings, Ann.
Polon. Math., 70 (1998), 43-47.

[3] M. COLTOIU, n-concavity of n-dimensional complex spaces, Math. Z., 210 (1992),
203-206.

[4] M. COLTOIU, Complete locally pluripolar sets, J. reine angew. Math., 412 (1990),
108-112.

[5] J.-P. DEMAILLY, Cohomology of g-convex spaces in top degrees, Math. Z., 204
(1990), 283-295.

[6] K. DIEDERICH, J.-E. FORMLESS, Thin complements of complete Kahler domains,
Math. Ann., 259 (1982), 331-341.

[7] K. DIEDERICH, J.-E. FORISLESS, On the nature of thin complements of complete
Kahler domains, Math. Ann., 268 (1984), 475-495.

[8] K. DIEDERICH, J.-E. FORTRESS, Smoothing g-convex functions and vanishing
theorems, Invent. Math., 82 (1985), 291-305.

[9] K. DIEDERICH, J.-E. FORN^ESS, Smoothing g-convex functions in the singular case,
Math. Ann., 273 (1986), 665-671.

[10] G. DLOUSSKY, Analyticite separee et prolongement analytique, Math. Ann., 286
(1990), 153-170.

ANNALES DE L'lNSTITUT FOURIER



ANALYTICITY OF ^-CONCAVE SETS 1203

[11] H. FEDERER, Geometric measure theory, Berlin-Heidelberg-New York, Springer,
1969.

[12] J.-E. FORN^ESS, N. SIBONY, Oka's inequality for currents and applications, Math.
Ann., 301 (1995), 399-419.

[13] H. GRAUERT, Charakterisierung der Holomorphiegebiete durch die vollstandige
Kahlersche Metrik, Math. Ann., 131 (1965), 38-75.

[14] F. HARTOGS, Uber die aus der singularen Stellen einer analytischen Funktion
mehrerer Veranderlichen bestehende Gebielde, Acta Math., 32 (1909), 57-79.

[15] A. HIRSCHOWITZ, Entre les hypersurfaces et les ensembles pseudoconcaves, Ann.
Scuola Norm. Sup. Pisa, 27 (1973), 873-887.

[16] S. IVASHKOVICH, A. SILVA, The Hartogs type extension theorem for meromorphic
mappings into ^-complete complex spaces, Boll. U.M.I., (8) 2-B (1999), 251-261.

[17] B. JOSEFSON, On the equivalence between locally polar and globally polar in (C71,
Arkiv for Mat., 16 (1978), 109-115.

[18] T. NISHINO, Sur les ensembles pseudoconcaves, J. Math. Kyoto Univ., 1 (1961/62),
225-245.

[19] T. OHSAWA, Analyticity of complements of complete Kahler domains, Proc. Japan
Acad., 56, Ser. A, (1980), 484-487.

[20] M. PETERNELL, Continuous (^-convex exhaustion functions, Invent. Math., 85
(1986), 249-262.

[21] B. SHIFFMAN, On the removal of singularities for analytic sets, The Mich. Math.
J., 15-16 (1968/69), 111-120.

[22] V. VAJAITU, g-completeness and g-concavity of the union of open subspaces, Math.
Z., 221 (1996), 217-229.

[23] V. VAJAITU, On P-complete morphisms of complex spaces, Geometric Complex
Analysis, Proc. the third International Research Institute, Math. Soc. Japan,
Hayama 1995; Eds. J. Noguchi, H. Pujimoto, J. Kajiwara, and T. Ohsawa, pag.
653-665.

[24] V. VAJAITU, Invariance of g-completeness with corners under finite holomorphic
surjective maps, Bull. Belg. Math. Soc., 5 (1998), 713-718.

[25] V. VAJAITU, A Levi problem for continuous strongly g-plurisubharmonic functions,
C. R. Acad. Sci. Paris, 328 (1999), 573-578.

[26] J. WERMER, Polynomially convex hull and analyticity, Arkiv for Matem., 20
(1982), 129-135.

Manuscrit recu Ie 16 juin 1999,
accepte Ie 17 janvier 2000.

Viorel VAJAITU,
Institute of Mathematics of the Romanian Academy
P.O. Box 1-764
RO-70700 Bucharest (Romania).
vvajaitu@stoilow.imar.ro

TOME 50 (2000), FASCICULE 4


