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UNIVERSAL REPARAMETRIZATION OF A
FAMILY OF CYCLES: A NEW APPROACH TO
MEROMORPHIC EQUIVALENCE RELATIONS

by David MATHIEU ()

Introduction.

Let Z be a reduced analytic space of finite dimension (by ‘analytic’,
we will always mean ‘complex-analytic’).

Daniel Barlet proved that the set B, (Z) of compact n-cycles of Z is
an analytic space of finite dimension (see [Ba75]). Here we consider the set
Cloc(Z) of all (closed) n-cycles; we can not hope to have a finite dimensional
analytic structure on this set, but, roughly speaking, we want to provide
some ‘nice’ subsets of C!°¢(Z) with such a structure.

Let us be more precise: a subset of C}°¢(Z) rather easy to define and to
handle is the set of cycles described by an analytic family of n-cycles (X;)ses
parametrized by a weakly normal analytic space S. Let x:S — Cl°°(2),
s — X, be the map associated with this family. The analytic structure
to be defined on x(S) should not depend on the parametrizing space S.
So the problem we raise can be rewritten as a problem of ‘universal
reparametrization’; we prove:

THEOREM. — Let S be a weakly normal analytic space of finite
dimension and (X;)ses be a ‘semi-proper’, ‘regular’ analytic family of n-
(1) This article was revised during the author’s stay at the Max-Planck-Institut fiir
Mathematik (Bonn).
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cycles of Z. Then there exist a unique weakly normal analytic space @ of
finite dimension, and an analytic family of n-cycles ()?C)CEQ parametrized
by @, such that for every weakly normal analytic space T, and every
analytic family of n-cycles (Y;)ier satisfying:

VteT, Is€ S, st. Yy =X,

then there exists a unique analytic map ¢ : T — @ such that the family

(Yi)ter is the pull-back by ¢ of the family (X.)ceq, that is: for allt € T,
Yi = Xy

Let us comment on the conditions we put on (X;)scs. In the case of
compact cycles, the map x:S — B,(Z) is analytic with values in a finite
dimensional space. A sufficient condition, so that its image x(S) may be
analytic, is then semi-properness, according to a theorem of Kuhlmann (see
[Ku64], [Ku66]).

Here x is, at first sight, only continuous. Actually, there are some
analytic maps associated with the family (X;)scg, but they are defined
only locally on S and on Z, with values in a locally analytic subset of an
infinite dimensional Banach space. So two problems appear:

« we have to generalize Kuhlmann’s theorem to the case of semi-
proper maps with values in infinite dimensional spaces; with this aim, we

use ideas of Barlet and Mazet (see [Ma74]);

e we have to put a regularity condition on the analytic family of
n-cycles (X;s)ses, which ensures us that the semi-local behaviour (on
a relatively compact open set of Z) of the cycles determines their global
behaviour: the cycles should not (set-theoretically and topologically) escape
to infinity.

We can notice that the natural candidate for the underlying
topological space of @ is the quotient space S/R, of S by the equivalence
relation defined by x, which already gives us a one-to-one reparametrization
of the family (X;)ses. So expressing it, we see that our problem is close to
the problem of analytic equivalence relations studied by Grauert [Gr83].

In a last part, we introduce meromorphic families of n-cycles of Z,
parametrized by a weakly normal space S, in a way similar to Remmert’s
definition of meromorphic maps. We especially study the case of a
meromorphic family of cycles without (set-theoretic) escape to infinity:
its graph in S x Cl°°(Z) is a finite dimensional analytic space.

ANNALES DE L’INSTITUT FOURIER



UNIVERSAL REPARAMETRIZATION OF A FAMILY OF CYCLES 1157

Then we give criteria, so that the projection on S of an analytic subset
of S x Z defines a meromorphic family of cycles without (set-theoretic)
escape to infinity (these criteria are close to the assumptions of Grauert’s
theorem about meromorphic equivalence relations, see [Gr86)); this can be
seen as a problem of geometric flattening (see [Ba78]). A similar problem
has already been studied by Siebert [Si93].

We conclude with a theorem of universal reparametrization for semi-
proper regular meromorphic families of cycles.

Acknowledgements. — This paper sums up my Ph.D. memoir [Mt99).
I would like to thank my thesis advisor, Professor Daniel Barlet.

1. Preliminaries.

In this paper, all analytic spaces are supposed to be reduced, of
finite dimension if the contrary is not explicitly stated, and countable at
infinity; moreover, ‘analytic subset’ means ‘closed analytic subset’, and
‘neighbourhood’ means ‘open neighbourhood’.

1.1. Semi-properness and quasi-properness.

1.1.1. Definitions. — Let X and Y be Hausdorff topological spaces.

DEFINITION 1. — A continuous map ¢ : X — Y is semi-proper (see
[AST1]) if, for every point y of Y, there exist a neighbourhood V of y in Y
and a compact subset K of X such that

P(K)NV =p(X)NV.
We collect below some properties of semi-proper maps:

LemMma 1. — (i) If ¢ is semi-proper, then ¢(X) is closed in Y and
locally compact. Moreover, the map ¢ : X — Y is semi-proper if and only
if p 1 X — o(X) is semi-proper and ¢(X) is closed in Y. Eventually,
when ¢ : X — p(X) is semi-proper, there exists an open set V of Y,
containing ¢(X), such that ¢ : X — V is semi-proper.

(ii) If p : X — Y is semi-proper and if Y’ C Y is such that o(X)NY’
is locally compact (for instance, when Y’ is open or closed in Y'), then the
restriction @|,~1(y7y 1 @~} (Y') — Y" is semi-proper.

TOME 50 (2000), FASCICULE 4
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(iii) The composition wop of continuous mapsyp : X — Y andn:Y — Z
is semi-proper in the following cases:

e ¢ is semi-proper and 7 is a homeomorphism (¢ semi-proper,
proper suffice when X, Y and Z are locally compact) ;

e @ is proper and surjective and m is semi-proper. On the other
hand, if the composition o ¢ is semi-proper, with ¢ surjective, then m is
semi-proper.

(iv) When X and Y are locally compact, Kuhlmann [Ku66] introduced
the following definition of semi-properness, which is, in that case, equivalent
to the previous one : for every compact set L of Y, there exists a compact
set K of X such that o(X)N L = p(K).

As far as semi-proper analytic maps are concerned, we have the
following result:

THEOREM 1. — Let X be an analytic space of finite dimension, Y be
an open set of an infinite dimensional Banach space E. Let ¢ : X — Y
be a semi-proper analytic map. Then ¢(X) is an analytic subset of finite
dimension of Y .

We refer to [Ma84] for the theory of infinite dimensional spaces.
We only insist on the fact that here ¢(X) is an analytic subset of finite
dimension of Y, and thus is an analytic space of finite dimension of the
classical theory.

This theorem is in fact a generalization of Remmert’s proper mapping
theorem, which puts together results of Kuhlmann (semi-proper case, see
[Ku64], [Ku66], and [AST1]; actually, our theorem enables us to give a new
proof of Kuhlmann’s) and results of Mazet and Barlet (infinite dimension
case, see [MaT74], [Ma84]).

The proof is long and technical; we refer to [Mt99].

The restriction of a semi-proper analytic map ¢: X — Y to an
analytic subset is seldom semi-proper itself. We shall obtain better results
in this way with a notion stronger than semi-properness.

DEFINITION 2. — An analytic map (or, at least, a map with analytic
fibers) ¢ : X — Y is quasi-proper (see [AS71]) if, for every point y of Y,
there exist a neighbourhood V of y in Y and a compact set K of X such
that, for every point y' of V N ¢(X) and every irreducible component C of
¢~ 1(y'), we have C N K # 0.

ANNALES DE L’INSTITUT FOURIER
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Thus, a proper map is quasi-proper, and a quasi-proper map is
semi-proper.

Let ¢: X — Y be an analytic map. We say that an analytic subset
A of X is quasi-saturated for ¢ if for every point a € A, every irreducible
component of p~'p(a) N A is an irreducible component of ¢~'¢(a). For
instance, any connected component of X is quasi-saturated. Moreover:

LEMMA 2. — (i) Let ¢ : X — Y be a quasi-proper map, and A
an analytic subset of X, quasi-saturated for . Then the restriction
©p|a: A—Y is quasi-proper.

(ii) The degeneracy set of order p of ¢ is quasi-saturated for ¢. Thus,
if the map ¢ : X — Y is quasi-proper, 50 is ¢|pegr, : Deg? ¢ — Y. So
(by Theorem 1), ¢(X) and p(Deg? ¢) are analytic subsets of Y.

Let us recall that the (geometric) corank of an analytic map is
defined by

geork p := mi;(l geork, ¢, where gcork, ¢ := dim, ¢ lp(z);
€

the degeneracy set of order k is the analytic subset DegP ¢ of X defined by
{z € X, gcork, ¢ > p}; we note (see [Fi76])

Deg ¢ = Deggcorknp+1 0.

1.1.2. Quotient defined by a semi-proper analytic map. — We recall
that a continuous map ¢ : X — Y defines an equivalence relation R, on X
by: z R, y iff o(x) = ¢(y). Then we have a canonical decomposition

p: X —1» X/R, — p(X) —> Y,
(h is a continuous bijection, and a homeomorphism when ¢ is semi-proper).
Moreover, the quotient space X/R, is provided with a canonical
ringed structure Q = (X/R,,0gq): for every open set V of X/R,,

Oq(V) = ¢xr, Ox(V) is the ring of functions ¢~'(V) — C which are
constant on the classes of R, (i.e., on the fibers of ¢).

We now state:

TueoREM 2. — Let X be a weakly normal analytic space of finite
dimension, Y be an open set of an infinite dimensional Banach space E.
Let ¢ : X — Y be a semi-proper analytic map. Let R, be the equivalence
relation defined by ¢ and Q := (X/R,,Oq) be the ringed quotient space.
Then Q) is a weakly normal analytic space of finite dimension.

TOME 50 (2000), FASCICULE 4
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The proof we give in [Mt99] generalizes Cartan’s ideas about proper
equivalence relations (see [Ca60]). We precisely show that @ is the weak
normalization of p(X).

1.2. Analytic families of cycles.

1.2.1. Definitions. — For this section, we refer to [Ba75].

Let sym”* CP be the quotient of (CP)* under the action of the k-th
symmetric group of permutations Gy; it can be properly embedded in
@Dr-1, . Sn(CP), where Sj,(CP) is the h-th component of the symmetric
algebra of CP. If U is a polydisc of C", let

o« H{U,@®,_,, . ;Sn(CP)) be the Banach space of maps continuous
on U, analytic on U, with values in @,_, ., S»(C?), and

e H(U,sym* CP) be the analytic subset of the previous space,
containing the maps with values in sym* CP.

If B is a polydisc of CP, sym* B is the image of B* in sym* CP.

Then we have: there exists a natural bijection between the set of
ramified covers of degree k over U included in U x B and the set of analytic
maps U — sym* B.

Let Z be an analytic space.

A n-cycle of Z is a locally finite (formal) linear combination X :=
Zie ; m;X; of irreducible analytic subsets of dimension n X; of Z (pairwise
distincts), together with non-negative integers m; (called multiplicities).
The support of the cycle X is the analytic subset | X|:=J,.; X; of Z.

A scale E = (U, B,j) on Z is the data of an open set V of Z, two
polydiscs U and B of C™ and CP respectively, and an analytic isomorphism j
of V onto an analytic subset A of a neighbourhood of U x B in C"*?. The
domain of the scale is the open set Wg := j71((U x B) N A) of Z.

i€l

If X is a n-cycle of Z, the scale E = (U, B, j) is said to be adapted to X
if j71(U x dB) N |X| = 0. In this case, the analytic subset j(|X|) can be
seen, thanks to the projection U x B — U, as a ramified cover Xg over U,
every irreducible component of j(|X|) carrying the multiplicity of the
corresponding irreducible component of X. We denote by k := degp X the
degree of the ramified cover Xg, and by Fg(X):U — sym* B the analytic
map associated with Xg (according to the previous paragraph); moreover,
the restriction Fg(X)|g belongs to H(U',sym* B), where U’ is a relatively
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compact polydisc in U (in the sequel, we shall always assume that such a
polydisc is fixed when we consider a scale).

Let S be a weakly normal analytic space. Let (X;)ses be a family of
cycles of Z parametrized by S. This family is said to be analytic, if, for
every so € S, for any scale E = (U, B, j) on Z adapted to X,, there exists
a neighbourhood Sg of sg in S such that conditions (a) and (b) hold:

(a) for every point s of Sg, E is adapted to X and degp X = degp X, ;
(b) the map fg: Sg x U — sym* B, (s,t) — Fg(X,)(t) is analytic.
Furthermore, when b) holds, we have

(c) the map fg:Sgp — H(U',sym* B), s — Fg(X,)|g is analytic.

The graph of an analytic family of cycles (X)ses is the analytic subset
of S x Z defined by G := {(s,2) € S x Z such that z € |X,|}. Conversely,
here is a useful construction of an analytic family of cycles (see [Ba75],
Theorem 1):

ProrosiTioN 1. — Let Z and S be analytic spaces, S being normal,
G be an analytic subset of Sx Z, 1 : G — S and p : G — Z the
restrictions to G of the projections on S and on Z. Suppose that, for all
irreducible component G; of G, the projection m; : G; — S is surjective
and of constant corank n. Then the irreducible components I'}, of the fibres
77 1(s) = {s} x p(nr~1(s)) of m can be provided with multiplicities mY,
generically equal to 1, such that the cycles (X5 := (p(T'Y), m¥))ses define
an analytic family of n-cycles of Z parametrized by S.

1.2.2. Topology of the set of n-cycles. — Let C!°°(Z) be the set of
n-cycles of Z, provided with the topology generated by finite intersections
of the following sets:

QF(E) := {X € C°°(Z) such that E is adapted to X
with degp(X) =k},

defined for all scales F on Z and all integers k. This topology is Hausdorff.
Besides, every cycle has a countable fundamental system of neighbourhoods.

With every family of cycles (X;)secg, we associate a map

x:8 — Cl°(2),

s— X, .

TOME 50 (2000), FASCICULE 4
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We shall say that the family (X;)ses is continuous if the map x is
continuous.

With these notations, the condition (a) above can be written:
(a) Sp C x~H(Q%E= X (E)),
and implies that x is continuous in sg.

Actually, the neighbourhood x~!(f24¢8 Xs0 (E)) verifies clearly (a),
and (b) as well, and we shall always set Sg = x~1(Q29%8= Xs0 (E)).

We shall often have to work with finite families of scales; we introduce
here some notations.

Let (Xs)ses be a continuous family of n-cycles of Z parametrized
by S, and x:S — Cl°¢(Z) the associated mapping. Let so be a point of S,
and € be a finite family of scales (E;);c; adapted to X, — with, say,
E; = (Ui, By, ji), and k; := degp, Xs,, U CC U;, W; the domain of E;,
and Sg, := x 1 (QF(E;)). Set

Qe = ﬂﬂk"(Ei)» Sg 1= nSEi =x"' (), We:= U Wi;

i€l i€l iel
we call Wg the domain of the family £, and we shall say that the family of
scales £ covers a subset A of Z if A C Weg.

When the family of cycles is moreover analytic, we have an analytic
map

fe =] feuse :Se — [] H(T;,sym*B;).

1.2.3. Comparison of the topologies of C!°°(Z) and H(U,sym* B).
We provide H(U,sym* B) with the topology induced by the following
metric:

k
D(X,Y):=sup { inf z;(t) — Yoy (1)),
teﬁ (UEGk ; | ( ) |)

where X and Y belong to H(U,sym* B), with X(t) := [z1(t),...,zk(t)]
and Y (t) := [y1(t),...,yx(t)] for t in U, the points z;(t) and y;(t) lying
in B.

The major result is the following one (see [Ba75], Theorem 2):

ANNALES DE L’INSTITUT FOURIER
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PropositioN 2. — Let E := (U, B,j) be a scale on Z, let X, be
a cycle belonging to Q¥(E) (so to H(U,sym* B)). Let F := (V,C,h) be
a scale on U x B, such that X, belongs to Qf(F). Thus there exists a
neighbourhood V of X, in H(U,sym* B) which is included in Qf(F).
This proposition implies that the map
H(U,sym* B) — Cl°°(U x B),

which maps a ramified cover Xg over U to the cycle X N (U x B) of U x B,
is continuous.

In order to generalize this proposition to global cycles of Z, we denote

o by Cl°°(W, Z) the set of cycles of an open set W of Z which are
intersections with W of cycles of Z, provided with the topology of Clo¢(W).

e by ]_LCG ; H(U;,sym* B;) the set of I-uples of ramified covers
associated with the same (global) cycle of Z.

Now, we can state:

ProrosiTioN 3. — Let £ be a finite family of scales, with the above
notations. The following map is continuous:

C —
H'EI H(U'iasymkiBi) - C‘}SC(WE,Z%
’ X — X N Wg.

The proof follows easily from the previous proposition. It is a bit
technical, but no more complicated, to prove this last proposition:

ProposiTioN 4. — Let E = (U, B, j) be a scale. The following map is
continuous:

(C:LOC(Z) D) Qk(E) I H(U,symk B),

1.2.4. Regular analytic families of cycles. — In Theorem 3 below, we
consider the quotient S/R,, where x:S — Cl°°(Z) is the map associated
with an analytic family of n-cycles (X;)ses. We work with a finite family £
of scales, and want to deduce the analyticity of the ‘global’ quotient S/R,
from the analyticity of the ‘local’ quotient Sg/Ry,. To be sure that the
latter quotient is an open set of the former, or, as we explain in the
Introduction, to be sure that the local behaviour (on the domain Wy of &)
of (Xs)ses determines its global behaviour, we need to put some conditions
on the analytic family of cycles.

TOME 50 (2000), FASCICULE 4
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First of all, we say that a finite family of scales £ well determines the
continuous family of cycles (X;)scs around X, if the map

(C°(Z) D) X(Se) — Cl°(We, Z),
Xs— XsNWe

is injective; that is to say, two cycles X, and X, for s, s’ € Sg, coincide as
soon as their intersections with Wg coincide.

Such a phenomenon can occur: set D, := {z € C, such that |z| < a};
then (X5 := {z € Dy, suchthat 2(z —1—35) = 0})56131/2 is an analytic
family of 0-cycles of Dy parametrized by D, /9; X, equals either {0} + {1+ s}
or {0}; for v € N*, set s, = —1/v, then, for any finite family £ of scales
adapted to Xy = {0} (its domain W; is then a relatively compact open set
of D1), and for v large enough, X;, " Wg = Xo N Wg = {0} but X, # Xo:
thus the family is not well determined by £ around Xjy. The pathology comes
from the fact that an irreducible component of X, , namely {1 —1/v},
converges to the point 1 lying in the boundary 8D, .

Precisely: a subset X of C}°°(Z) escapes to infinity in a cycle X, € X if
there exist a sequence (X;);en of cycles in X and irreducible components T';
of | X;| such that

e (X;)jen converges to Xg in cloc(2),
o for every compact set L of Z, we have I'; N L = @ for j large enough.

We say that a continuous family (Xs)ses of n-cycles of Z escapes to
infinity in X, if x(S) does.

We give now a property equivalent to non-escape to infinity:

PROPOSITION 5. — Let X be a subset of C1°°(Z), and set Xo € X. The
following properties are equivalent:

(i) X does not escape to infinity in Xg;

(ii) there exist a compact set Ly of Z and a neighbourhood Vy of X,
in C!°°(Z) such that every irreducible component of every cycle in Vo N X
intersects Lg.

Furthermore, when these conditions are satisfied for the subset x(S)
associated with an analytic family of n-cycles (X;)ses, there exists a finite
family of scales adapted to X, which well determines (X;)ses around X, .

Proof. — The equivalence is quite clear. To prove the last statement,
it suffices to cover Ly with a finite family of scales adapted to X, . O

ANNALES DE L’INSTITUT FOURIER
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Besides, when a family of cycles (X;)ses doesn’t escape to infinity
in any cycle, the projection 7: G — S of its graph onto S is quasi-proper:
for so € S, set Loy and V, given by property (ii), let So be a neighbourhood
of s, relatively compact in the open set x~!(Vy); then it is easy to check
that the condition of Definition2 holds with Sy and the compact set
(§O X Lo) NG of G.

Consider now the 1-cycles of C2 defined by

X, = {(z,y) €C? st.y= z"},
with v € N*, and X, := {y = 0}; the scale E := {|z] < %, lyl < %} is
adapted to every cycle X, and well determines the set of cycles (X, ),en.
However, it is clear that (X, N Wg), converges to Xo N Wg in C}°¢(Wg, Z)
but (X,), does not converge to Xg in C}°¢(Z).

To avoid also this kind of pathology, we give a last definition, which
includes non-escape to infinity (that is, a set-theoretic control) plus a
topological control (which will enable us to deduce the semi-properness of a
map fe from the semi-properness of x).

DEFINITION 3. — The subset X of Cloc(Z) is said to be regular if the

following condition holds for every Xy € X : there exist a compact set Lg
of Z and a neighbourhood V, of Xy in C}°(Z) such that

e every irreducible component of every cycle of Vo N X intersects Ly ;

o X does not topologically escape to infinity in X, that is: there
exists a relatively compact neighbourhood Wy of Ly in Z, such that, if
(Xy)ven and X are cycles in Vo N X such that (X, N Wy),en converges to
X N W, in Cl°¢(Wy, Z), then (X,),en converges to X in C\°¢(Z).

A continuous family (X;)ses of n-cycles is regular if x(S) is.

Remark. — If X is a subset of C}°°(Z), we define its graph in C1°(Z)x Z
as follows:

G:={(X,2)st.z€|X|} C XxZ C C(2) x Z.

The study of this graph yields equivalent conditions to set-theoretic
and topological non-escape to infinity:

LemMa 3. — The following assertions are equivalent:
(i) p:G —» X is quasi-proper;

(if) X does not escape to infinity and is locally compact.

TOME 50 (2000), FASCICULE 4



1166 DAVID MATHIEU

Assume that X does not escape to infinity and is locally compact.
For a given Xy € X, set Ly, V) as in Proposition 5; let Wy be a relatively
compact neighbourhood of Ly in Z.

The map h:VyNX — C}SC(WO,Z), X — X N Wy, is continuous and
injective. Set 9) := h(Vo N X); thus, 9 is a subset of C°¢(Wp, Z), which is
locally compact and does not escape to infinity. Let H denote the graph
of 9) in Cl°(Wy) x Wy; set

Ow, =GN (X xWp) and H:Gw, - H, (X,2)— (X NWp,2).
LemMmA 4. — With these notations, the following assertions are
equivalent:
(i) X does not topologically escape to infinity in Xy ;
(if) h is a homeomorphism;

(iii) H is semi-proper.

2. Regular semi-proper analytic families of cycles.

From now on, by ‘cycle’ we shall always mean a n-cycle of a reduced,
finite dimensional analytic space Z.

2.1. Analyticity of the quotient.

If (Xs)ses is a family of cycles, we define an equivalence relation in S
as follows:

s~§ & Xs =Xy
In fact, this relation is exactly the equivalence relation R, defined by the
map X : S — Cl°(Z) associated with (Xs)ses-

If the family (X,)ses is continuous, the quotient S/R, is a Hausdorff
topological space. Moreover, we have a canonical ringed structure Og/g,
on S/Ry.

This relation is not necessarily an analytic equivalence relation in the
sense of [Gr83]; nevertheless, we have:

LeEMMA 5. — Let (X;)ses be an analytic family of cycles, such that,
for every sg € S, there exists a finite family £ of scales well determining
the family of cycles around X,,. Then the equivalence classes of the
relation defined by (X;)ses locally coincide with the fibers of the analytic
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map fg : S¢ — [[5 H(T},sym*B;). Especially, these classes are analytic
subsets of S.

Proof. — Set s, s € Sg. First, fe(s) = fe(s') implies the equality of
the ramified covers defined by X, and X, over U %, 8O over U; too, and
this, for all 4, thus X, N We = X N Wg; finally, we obtain X; = X, since
the family of scales £ well determines (X;)ses around X,,; conversely,
Xs = Xy clearly implies that fe(s) = fe(s). a

We can state now the following theorem:

THEOREM 3. — Let Z and S be finite dimensional analytic spaces,
S being weakly normal. Let R, be the equivalence relation defined by an
analytic family (X)ses of n-cycles of Z. Assume that

for every point sg of S, there exists a finite family £ of scales which
well determines the family of cycles around X, and such that the
analytic map fe =[], frise : Se — fe(Se) C [1, H(U},sym* B;)
is semi-proper onto its image.

(H)

Then the ringed quotient space (S/Ry,Os/r,) is a weakly normal, finite
dimensional analytic space.

Proof. — Let (X;)s be an analytic family of n-cycles satisfying (H).

Let g: S — S/R, be the canonical surjection. Let o := g(so) in S/R,,.
For the family of scales £ given by (H), the map

fe:8¢ — H H(U},sym"* B;)

is analytic and semi-proper onto its image.

Now, since [[, H(U},sym*: B;) is included in [], H(U}, ®r Sn(CP)),
with the induced topology, the map

fe:8e — [[ H(T:, ©n Sn(CP))

is still semi-proper onto its image.

By Lemma 1, (i), there exists an open set w of
[1a(T, @ suc)
i h=1,...k
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such that the map fg:S¢ — w is semi-proper: furthermore, this map is
defined in a weakly normal space, with values in an open set of a Banach
space, thus we can apply Theorem 2.

It follows that the quotient Sg/Ry, is an analytic space (of finite
dimension), which topologically coincide with ¢(Sg) (by Lemma 5); the
latter is a neighbourhood of tq in S/R,, and we have an isomorphism of
ringed spaces: Ogs, /r,, = Os/r,|4(Se).

Therefore, the ringed space (S/Ry,Og/g,) is analytic in a neigh-
bourhood of any of its points: so it is an analytic space, which is
moreover weakly normal, as the quotient of a weakly normal space
(see [KK83], 72.4). O

2.2. Semi-properness of x and semi-properness of fg.

DEFINITION 4. — An analytic family of cycles (Xs)ses is said to be
semi-proper if the map x : S — x/(S) is semi-proper.

ProposiTioN 6. — The condition (H) holds in particular when the
analytic family of cycles is regular and semi-proper.

Proof. — Let X,, be a cycle in x(S). Let Lo, Vo, and Wy be
respectively the compact set of Z, the neighbourhood of X, in Cl°¢(2),
and the relatively compact neighbourhood Wy of Ly in Z given by the
regularity of the family in X, (see Definition 3).

Let us consider now a finite family & of scales (E; = (U, By, j:))icI
adapted to X, and such that the family &’ of scales (E;" = (U}, B;, j;))icI
covers Wy: so Lg C Wy C Wger C We; we note

Qe = Q% (Ey),

where k; := degp, X;,, and Sg := x"1(Q¢). The open set Q¢ is a neigh-
bourhood of X;, in Cl°°(Z); if we add a finite number of scales (i.e. we
restrict ¢), we can moreover assume that Qg is included in V.

It is then clear that this family of scales £ well determines the family
of cycles around X, .

Since x is semi-proper, by Lemma 1, (ii), the restriction
X|se : Se — x(S¢)
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is semi-proper. In order to prove the semi-properness of the map
fe:Se — fe(Sg), we shall prove that in the commutative diagram

Se —1%, (Sg)c Clo°(2)

lh
fe(Se) C [IS H(T, , sym*: B))

the mapping h: x(Sg) — fe(Sg) is a homeomorphism. The semi-properness
of fg will then follow from Lemma 1, (iii).

Let us show that h is a homeomorphism:

o h:x(Sg) — fe(Se) is a bijection: it is clear that h is surjective.
Furthermore, if h(X,) = h(Xy), that is, if X, and Xy coincide in
[1; H(U;,sym*:B;), then X, and X, coincide on the domain of £ (see the
proof of Lemma 5). Since £ well determines the family of scales around X,
X, and X, coincide in C}°¢(Z) and h is injective.

e h is continuous by Proposition 4.

o h7! is continuous: let (s,),en and s be points in Sg, such
that (fe(s,))ven converges to fe(s) in fe(Sg) IS H(U,,sym* B;).
According to Proposition 3 (applied to the family &), (X5, N Wer)pen
converges to X5 N W in Cl°¢(Wg,, Z). Since the family (X;)ses is regular,
with Wy C W, it follows that (X, ),en converges to X in CI°°(Z), so
in x(Sg) — note that the non-topological escape is crucial here. O

2.3. Universal reparametrization.

We give now another version of Theorem 3. This version exhibits a
universal property of our construction, and, contrary to Theorem 3, will
be generalizable to the meromorphic case. This is the result announced in
our Introduction:

THEOREM 4. — Let (X;)ses be a regular semi-proper analytic family
of n-cycles of Z parametrized by a weakly normal space S. Then, there exist
a unique weakly normal, finite dimensional analytic space (), homeomorphic
to x(S), and an analytic family of n-cycles ()?c)ceQ, satisfying:

For every weakly normal analytic space T, and every analytic family
of n-cycles (Y;)ter such that

Vte T, 3s € S, such that Y; = X,
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there exists a unique analytic map ¢ : T — Q, such that the family
(Yi)ter is the pull-back by ¢ of the family (X)ceq, that is to say : for all
LET, Y, = Xy,

Proof. — Let Q := (S/Ry,0Ogs/r,) be the weakly normal analytic
space given by Theorem 3 (that we can use thanks to Proposition 6), and
for ¢ = ¢(s) € Q, set X, =X, (this is independent of the choice of s). It is
easy to verify that this family is analytic.

Moreover, if T and (Y;):er satisfy the given condition, let us define:

(p:T_)Qa
t — q(s), if s is such that YV; = X, ;

then the desired properties hold for . Let us only check that ¢ is analytic:
let £ := (E;); be a finite family of scales adapted to X, = Y;,, chosen
as in the proof of Theorem 3; set as usually Qg := [, Qdees; Xso (EY)
and Sg := x"1(Q¢).

Set also Tg := £71(Q¢), where £ : T — CI°°(Z) is the map associated
with (Y)ter. Since this family is analytic, the map

c
ge:Te — HH(ﬁ: ,sym®: B;)

1

is analytic. —
Y cez) IS H(T},sym* B,)

1 fe 1
J ] J\A ]
Se—2— q(Se) ——» x(Se) = e NX(S) —— fe(Se)

T

Te —— §(Te) = Qe NET) —— ge(Te)

ge

Note that hoX :q(Sg) — fe(Se) is the weak normalization of fg(Sg).
Now the map gg:Te — ge(Te) C fe(Se) can be lifted to the weak
normalizations (see [Fi76], 2.30); since T¢ is already weakly normal, the
analytic map thereby defined is nothing else than ¢ : Tg — q(S¢). a

Remark. — We explain in [Mt99] how to use Theorem 3 in the study of
analytic equivalence relations R C X x X in the sense of Grauert. Any scale
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adapted to Xy obviously well determines the family of cycles around X
since these cycles are equivalence classes; then, the semi-properness of fg
is also clear when S = Z = X: all cycles adapted to E intersect the closure
of the domain WEg of the scale.

Of course, we can only prove a particular case of Grauert’s result
(Theorem 6 of [Gr83]), precisely the case when all equivalence classes are of
constant pure dimension (we build them as n-cycles!). On the other hand,
the gain of our point of view is that it enables us to distinguish an ambient
space Z and a parameter space S.

By the way, we make the following informal comment: our condition
of semi-properness (on the family of cycles) is similar to the one of Grauert
(semi-properness of the quotient map). But, to this semi-properness w.r.t. S,
we must add a condition of ‘quasi-properness w.r.t. Z’, namely, the non-
escape to infinity.

3. Meromorphic families of cycles.

Theorem 4 provides with an analytic structure the subset of Cl°°(2)
described by an analytic family of cycles; to generalize it to wider subsets
of Cl°¢(Z), we will introduce here the notion of meromorphic family of
n-cycles; we also study this notion for itself.

3.1. Definition.

The definition of a meromorphic family of n-cycles is similar to
Remmert’s definition of a meromorphic map (see [Re57]): a generically
defined and analytic map ®: X---+Y is a meromorphic map, if there exist a
proper modification o : X —» X and an analytic map ¢ X — Y such that
 generically coincides with ®. One can described X as an analytic subset
of X x Y it is precisely the closure of the graph of the generic map X — Y.
This set is called the graph, Gr(®), of the map.

Similarly, a meromorphic family of cycles parametrized by a weakly
normal space S, is an analytic family parametrized by a dense Zariski open
set of S, such that there exists a proper modification o : S—»S , such that S
parametrizes an analytic family of cycles, generically equal to the previous
one. We shall always associate a graph in S x C}°°(Z) with this family, but
we will be able to provide this graph with an analytic structure only with
further conditions.
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In order to express that definition in an way easier to handle, we shall
use a graph in S X Z.

Let S and Z be analytic spaces (S weakly normal), G be an analytic
subset of S x Z. We note N and m the respective dimensions of G
and S, m and p the restrictions to G of the projections on S and on Z;
since 771(s) = {s} x p(n~1(s)), p(r~1(s)) is an analytic subset of Z, and
geork, ™ = dim, p(7~'(s)).

Such a map 7 is said to be geometrically flat (see [Ba78]) if G is the
graph

{(s,2) such that z € | X;|} C Sx Z

of an analytic family of n-cycles (X;)ses, or, equivalently, if the irreducible
components X! of the analytic subsets p(m~!(s)) can be provided with
multiplicities m? such that the family of cycles (X, := (X!, mi))ses is
analytic.

We shall say that the map 7:G — S defines an analytic family of
n-cycles if there exists a union Gy of irreducible components of G, such
that the restriction m|g, : Gg — S is geometrically flat.

This situation presents no problem since it suffices to ‘forget’ some
irreducible components in order to get a geometrically flat morphism.
This is no longer the case in the following example (however elementary):
7m:G —» S is the blow-up of the origin in S := C?: in that case, the fibre
771(0) = {Oc2} x P1(C) contains an infinity of ‘limit’ cycles, which depend
on the sequence (s, )nen converging to 0.

We give now the following definition:

DEFINITION 5. — Let M(m) denote the set of all couples (S,0),
where S is a weakly normal space and o : S—»Sa proper modification
such that the strict transform of w defines an analytic family of n-cycles.

We say that the map m : G — S defines a meromorphic family of
n-cycles of Z if M(x) is non-empty.

Before studying this definition — and especially constructing this
meromorphic family—, we describe a basic construction and recall some
elementary facts about proper modifications and strict transforms.

3.1.1. A basic construction. — Let 7 : G — S be a map (with notations
as above) and A be an analytic subset of S, such that the restriction of 7 to
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G\ 71 1(A) =771(S\ A) onto S\ A is geometrically flat: that is to say, we
have an analytic family of n-cycles (X;)ses\a of cycles of Z parametrized
by S\ A, with supports | X;| := p(7~1(s)).

‘We show here how to build a continuous family of cycles from this one.

Let x:S\ A — Cl°(Z) be the map associated with the family
(Xs)ses\a- This map has a graph

[:={(s,X,), s€ S\ A} C S xCl(2).
Let T be the closure of T in S x C°¢(Z), ps and pc be the restrictions to T

of the two projections, and

% = pe(T).

We call X the set of cycles defined by 7. Note that these are not the
limits of the cycles (Xs)se s\ a: We take the limits of the couples (s, Xs)ses\a-

Since the map pc:T —» X C Cl°¢(Z), (s,X) — X is continuous,
(X)(s,x)cF 18 & continuous family of cycles in C;?°(Z) parametrized by r
and going all over X.

SxZ>G —2—7Z
S > S\A —X— x(S\A)
SN

— D
SxC(Z) 5T ——» % C Cloo(2)

We eventually check that

LEMMA 6. — If (s, X) belongs to T', then | X| is included in p(m~1(s)).

3.1.2. Proper modifications and strict transforms. — First, we note
that if S is weakly normal and o: S —» Sisa proper modification, then
we can assume, as we shall always do afterwards, that S is weakly normal
too: it suffices to compose o with the weak normalization of g, which is a
proper modification. Let

o G be an analytic subset of S x Z;
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o A be a nowhere dense analytic subset of S;

. 0:S — S be the proper modification of S with center A (so,
A := 071(A) is a nowhere dense analytic subset of S);

. G l)e the strict transform of G by o, namely, the smallest analytic
subset of S x Z containing (¢ x Idz)~}(m=1(S \ A)).

We note 7, 7 := o X Idz and p := p o 7 the projections of G on §,
G and Z respectively.

Then we have

A) 1 is proper;

B) for all 5 € S, p(71(3)) C p(7~'(0(3))) (hence, geork(z )T <
geork 4(5),) T), With equality for § ¢ A.

We come back now to meromorphic families of cycles.

3.1.3. Meromorphic families of cycles. — Let m:G — S be a map
defining a meromorphic family of n-cycles: thus M (m) # Q} and let
0:S — S be the proper modification of S with center A, and (X §)§€§ the
analytic family of n-cycles given by Definition 5. Let X : S — Cloc(Z) be the
map associated with (X3)s.

According to the point B) above, we have
|Xsl = H(F1(8) = p(r~'(0(3))), if §¢A.
and if we note, for every s € S\ A
X = ~§’

where 3§ is the single pre-image of s, it is easy to verify, using the isomorphism
ol3\x: S\ A — S\ A, that (X)ses\4 is an analytic family of n-cycles of Z
parametrized by S\ A.

Thus, we can make the construction described above; let x: S\ A —
Clo¢(Z) denote the map associated with this family, I' the graph of x in
(S\ A) x C°°(Z), ps and pc the restrictions to ' of the projections, and

X(m) := pe(T).

LemMA 7. — With these notations, we have T := (o x X)(S), and
X(m) = X(S). Moreover, T and %(7) do not depend on the choice of
(S,0) € M(m).
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Proof. — We easily prove that the map

is well-defined, continuous, proper and surjective.
It follows that T := o x X(5) and X(5) = X(r).

T p

G G Z
S

— % 58 5 S\A——»x(S\A)

|

NE)

Now, if (5‘1 ,0') is another couple in M (), it is easy to check that we
have (o’ x X¥')(S") = (o x X)(S) = T; this yields the last assertion. a

This lemma enables us to give this definition:

DEeFINITION 6. — The continuous family of n-cycles (X )( .X)eF
is called (the) meromorphic family of n-cycles defined by m : G — S,
and T is called (the) graph of this meromorphic family of n-cycles.

3.2. Meromorphic families of cycles without escape to infinity.

Suppose that M(m) # 0. Let MNE(m) denote the set of (S,0) in
M(r) such that the analytic family (Xj) 5 does not escape to infinity,

5

that is to say: the set of cycles X(S) does not escape to infinity. Since
X(S) = X(r) for every (S, o) in M(r), we have

MNE(T) #0 <= MNE(m) = M().

The next proposition provides T’ with an analytic structure, together
with a universal property:
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ProposiTION 7. — Let 7 : G — S be a map such that MNE(r) # 0.
Then there exists a unique couple (A, o)) € M(r) such that for every couple
(8’,0") € M(m), there exists a unique analytic map 3 : S’ — A such that
o' =aof.

Proof. — Set (S,0) € M(x).

We will apply to the map o X X:. S — §x Cloc(Z) the proof of
Theorem 3: it will yield that the quotient S/R, x4 is a weakly normal, finite
dimensional analytic space A, homeomorphic to T.

Since the analytic family ()?g)g cg does not escape to infinity,

there exists, for every S0 € g, a finite family of scales which well
determines it around X; 5o (Proposition 5). Thus we have an analytic
map fe = IL fE 5 :Sg —» fg(Sg) whose fibers coincide in Sg with the
fibers of ¥ (Lemma 5).

Set a relatively compact neighbourhood V' of o(3p) in S; thus the
analytic map o x fg:o “tvyn Sg — V x fg(Sg) is proper — by routine
topological arguments (the properness of o suffices) — and its fibers
coincide with those of o x X. It comes from the proof of Theorem 3
that 4 := S /Roxx is a weakly normal, finite dimensional analytic space.
This space A is homeomorphic to (o x X)(S) = I'; it is clear now that
the projection a := pg:T' — S is a proper modification A — S; the strict
transform 74 : G4 — A defines an analytic family of cycles, which is nothing
else than the continuous family (X), yc (that we call the ‘meromorphic
family of n-cycles’ defined by 7): so (4, ) belongs to M(m) = MNE(n).

The other assertions are easy to check (set 3:= o' x X' : S’ — A=T).
O
3.3. Geometric flattening.

Here we put some conditions on a map 7:G — S, so that its strict
transform, after a proper modification, may be geometrically flat.

We recall that the non-normal locus N(S) of S is a nowhere dense
analytic subset of S.

THEOREM 5. — Let G be an analytic subset of S x Z, where S and Z
are analytic spaces, S being weakly normal. Assume that there exist a
nowhere dense analytic subset ¥ of S, containing N(S), and an integer n
such that
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1) the restriction of 7 to every irreducible component H® of the open
set H:= G\ 7 }Z) = 7~}(S\ X) is of constant corank n and maps H*
onto S\ X.

Thanks to Proposition 1, we have thus an analytic family (Xs)ses\s
of n-cycles of Z parametrized by S\ ¥, and this enables us to construct T'
and X, using the ‘basic construction’.

If the following condition is moreover satisfied:

2) for every sg € S, there exist a compact set Ly of Z and a relatively
compact neighbourhood Sy of sg in S such that, for every s € Sy and every
cycle X, € X included in p(r~1(s)), there exists a neighbourhood V; of X3
in C1°¢(Z), such that every irreducible component of every cycle in Vi N X
intersects Lg ;

then 7 defines a meromorphic family of n-cycles without escape to
infinity.

Remarks. — Set G = H = 7—1(S \ X): it is an analytic subset of G,
exactly the union of irreducible components of G not included in 7=1(X).
Actually, the irreducible components of H are exactly the intersections
with H of irreducible components of Gf. Note that 771|5,,(Z) is nowhere
dense in Gy, whereas this is not necessarily true for 7~!(Z) in G. We will
prove below that 7|g,, : Gy — S satisfies 1) and 2), and defines the same
set X of cycles as 7.

Condition 2) implies the non-escape to infinity of X, but asks for
more: this non-escape should be defined ‘uniformly with respect to S’.

Before going further, we give a special case when 1) holds:

1 bis) G is of pure dimension N, and 7 is quasi-proper and maps every
irreducible component of G onto S.

Since 7 is quasi-proper, the image A := w(Deg ) of the degenerate
locus is an analytic subset of S, thanks to Lemma 2, ii). Moreover, it
is nowhere dense. The non-normal locus N(S) of S is a nowhere dense
analytic subset of S too, and so is ¥ := A U N(S). Finally, it is easy to
check that the projection 7:771(S\ ¥) — S\ X is of constant corank n,
and maps every irreducible component of 771(S\ £) onto S \ .

Remarks.

o Some points in this paragraph have been inspired by ‘Lemma (n)’
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and ‘Proposition (n)’ of [Gr86], or by the proofs and clarifications given
in [Si93).

o The proof of Theorem 5 is partly similar to the one of Proposition 7:
we want to explain that T is an analytic space of finite dimension (and
thus ps:T — S a proper modification of S), and that the family of cycles
(X) (s,x)eT 18 analytic and without escape to infinity — but here, we have
no more the assumption that MANE(r) is non-empty, and the point is
precisely to build (at least locally) a couple (§ ,0) of this set. There are two
main steps in this proof, which we separetely prove below: first, we explain
that conditions 1) and 2) move (with the same associated set X of cycles)
from a map 7 to its strict transform 7 induced by a proper modification;
then, we show how to build, when one has a quasi-proper map 7:G — S,
a local blow-up of an open set of S such that the maximal corank of the
local strict transform 7 is strictly less than the one of 7. So, by induction,
we can get a map of constant corank, satisfying 1) and 2); first of all, we
study such a map.

3.3.1. Special case: T of constant corank. — We prove here the

ProposITION 8. — Suppose that S is normal. Let 1 : G — S be a
map of constant corank and satisfying conditions 1) and 2). Then 7 defines
an analytic family of cycles without escape to infinity ; furthermore we have
X =x(S), if x : S — C°(Z) is the map associated with this family.

Proof. — We shall precisely show that m|g, is geometrically flat.
Since S is normal, and 7 of constant corank, it suffices to prove that every
irreducible component G* of Gy is mapped onto S (Proposition 1). We
already know that m(G?) contains S\ .

For s € X, let Ly be the compact set of Z and Sy be the
neighbourhood of sy given by condition 2). Let (s,),en be a sequence
of points of Sp \ ¥ converging to sq. For every v, by assumption, G contains
at least one point, so, as well, one irreducible component, of 771(s,).
This irreducible component can be written {s,} x X} , where X} is an
irreducible component of | X,, | and then intersects Lo; hence, there exists
a point z, of Lo N Xgu such that (s,,z,) lies in G®. Since z, € Lo,
there exists a sub-sequence (z,, )xen converging to a point z of Lo, and
(80, 2) = limg_,00(Sy, , 21, ) is a point of G%, g.e.d.

Thus, we have an analytic family of n-cycles parametrized by S,
whose graph is Gy. We can now see that the graph I' of the associated
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map x: S — C¢(Z) is closed in S x C!°°(Z) and homeomorphic to S, and
that X coincides with x(S). Finally, condition 2) implies that the family is
without escape to infinity. O

3.3.2. Stability of conditions 1) and 2) and of X by strict trans-
formation. — Let 7:G — S be a map satisfying conditions 1) and 2), and
0:S — S be a proper modification of S with centre A.

By B), we have, if s := o(8):
B(E(3) =p(r'(s)) if 5 ¢ A;
then, in particular, for every point § outside A U o7 1(D):
BEF(®) = |X,| if §¢M:=AUs™'(T);
and it is easy to verify that the family of cycles (X, (s)), e\At is analytic.

Although M is a nowhere dense analytic subset of S , this could be no
more true for 771(M) in G. To have this property, we shall work with an
analytic subset of G, namely

G =715\ M)=G\7 (M),
which is exactly the union of the irreducible components of G non included
in 771(M).
Let 7 and 5 denote the restrictions to G of 7 and 5. We have still
PEY) =p(FIE)) = |X| if5¢ M, s=0(3),
and property B) holds with 7 and p instead of 7 and p.

‘We prove now:

PROPOSITION 9. — The map 7 : G — S (with M) satisfies conditions
1) and 2), and defines the same set X of cycles as m. Moreover, T is
quasi-proper.

Proof. — Remark that M contains the non-normal locus N(S) of S,
and that p is of corank n.

« First, we shall prove that 7 is quasi-proper. With this aim, we begin
with a lemma:
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LeEMMA 8. — For every point Gy := (80, 20) € @, there exists a cycle Yy
of X, such that

(i) 2o lies in |Yp|;
(ii) (o(30),Yo) belongs toT.

Sketch of the proof. — It is enough to prove the lemma for | go lying in
71 (M) since we can set Yy := p(F~1(50)) = | X,(s0)| for 0 ¢ M.

Since %_1(1\7 ) is nowhere dense (by construction of G), one can build
an analytic map ¢:D — G, where D := {z € C, || < 1}, such that
#(D) is analytic in a neighbourhood of go and intersects 7—(M) only
in ¢(0) = go. Set E := {(¢,9) € D x G, such that 7(¢(t)) = 7(g)}. Then
we can check that the projection §: E — D defines an analytic family of

cycles parametrized by D\ {0}, with 61 (t) = {t} x {T((t))} X X, 24507
if t £ 0.

E — DxG

|

G ——qg 2
¢ l J
S S

Thus, arguing as in the proof of Proposition 8, we prove that § : E — D
generates an analytic family of cycles parametrized by all D. The cycle
thereby defined over 0 satisfies (i) and (ii). O

z

D

————————->

The quasi-properness of 7 follows easily from this lemma: every
irreducible component B of every (projection on Z of a) fiber of 7 contains
an irreducible component of a cycle lying in T'. Thanks to 2), this latter
irreducible component intersects a compact set Lg if it lies over a neigh-
bourhood Sy; so B intersects Ly if it lies over §0 := 07 1(Sp) (here one sees
why it is important, to have a non-escape ‘uniformly with respect to S’).

» We go on with the proof of Proposition 9. We have an 1som01rph1°m
outside M (not only between S and d S but also between G and G), s
condition 1) is satisfied by 7 outside M.

We have an analytic family of n-cycles ()? 5)s 3\

S\ M, associated with a map X: S \ M — Cloc(Z), let T denote the graph

77 parametrized by
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of in (S\ M) x Clc(Z), pc and p3 the projections of T to Cloc(Z) and S,
Ide the identity in C°¢(Z) and lastly X := pe(T') the set of cycles defined
by 7.

The map o x Id¢:T — T, (5,X) — (0(3),X) is well-defined,

continuous, proper and surjective. Thus, the sets of cycles defined by G
and G coincide.

It remains to show that the continuous family of cycles (X )(~ x)eF
S,

defined thereby satisfies condition 2): for a point 3y € g, consider the
neighbourhood Sy of sp := 0(8p) and the compact set Ly of Z given by
condition 2) applied to G; then, one can check easily that condition 2)
moves from 7 (with Sy and Lg) to 7 (with Sp := 0~(Sp) and Lo). ]

Remark. — Proposition 9 implies some properties for the initial
map 7

ProposiTiON 10. — Let m# : G — S be a map satisfying (with
a nowhere dense analytic subset ¥ of S) conditions 1) and 2); set
Gy = m~}(S\X); then mg, satisfies 1) and 2), defines the same
set of cycles as m, Is quasi-proper and surjective onto S. Moreover,
Ty (Degm|g,) is a nowhere dense analytic subset of S. Finally, the
map ps : I — S is surjective.

Proof. — The above construction can be applied to G, strict transform
of G by Ids; so we have A =0, M =¥ and G = n~1(S\ ) = Gy. The
first assertions follow. The assertion (ii) of Lemma 2 implies that g, (Gx)
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is an analytic subset of S, containing the dense open subset S\ ¥ by 1):
s0 T\, (GH) = S. The same assertion implies that also 7|g,(Deg 7|g,,) is
an analytic subset of S; since it is included in X, it is nowhere dense.

Finally, for every s € S, there exist (s,2) € Gy, and a cycle X of X,
such that z lies in |X| and (s, X) in T: the surjectivity of pg:T — S
follows. O

3.3.3. Local lowering of the maximal corank. — Here we prove the
following result:

ProrosiTioN 11. — Let 7 : G — S be a quasi-proper map between
analytic spaces G and S. Let sy be a point of w(Degm) and ¢ be
the dimension of the fiber 7~ 1(so). Then there exists a (local) blow-up
c:V >V ofa neighbourhood V' of sg, such that the strict transform
% : G — V is of maximal corank strictly less than q.

Proof. — We develop here the proof of Corollary 1.2 of [Pa94] (for
other results about local geometrical flattening, see [HLT73|, Theorem 2,
and [Si93], I, Lemma 3.3).

We locally describe (see [Fi76], 3.3) the map m:G — S as the
projection p of a proper analytic subset Z of the product V x W to V,
where V is an open set of S, and W an open set of C9. There exists an
analytic function F: V x W — C such that Z C F~1(0). We develop

V(y,t) eV x W, F(y,t) Z@ﬁ
BENa

with ©g € Og(V). Let I be the (proper) ideal of Og(V) generated by
the ©3.

Let now o:V’ — V be the local blow-up with center I, and
p':Z' — V' be the strict transform of p: Z — V by o. For every s; € V',
the ideal (o*I )36 of Oy s is invertible, then principal, let’s say generated
by g := ©g, o 0. For y’ near enough s, for all 3, we factorize

Os(c(¥)) = 9(¥) - 65(%),

where 6 is holomorphic in a neighbourhood of sj. Thus

Flo(),t) =g() f(y/,t), with f(y/,t):= Y 65()

BeNg
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We can now check that Z’ is included in f~1(0) and that f does not
vanish identically on any fiber of p’: so

geork,, p’ < dim({y'} x W) n f71(0) < q.

This yields that the maximal corank of p’ over V' is strictly less
than gq.

Then we globalize ‘in G’: thanks to the quasi-properness of m, all
irreducible components of 7-fibers over an open set V; of sg in S intersect
a compact set Lo of G. We cover this compact set with a finite number of
V; x Wj; for every j, we have as above an ideal I; in Og(V;). We blow up
V:=%nN(N; V;)byao: V —» V along the ideal (I1; Ij)1v; every ideal 0*I;
is still invertible (see [Hi73], Lemme 1.12.3), so the previous result remains
valid, and the strict transform 7:G — V of Ta=1(v): Glr-1(vy — V is of
maximal corank strictly less than q. O

3.3.4. Proof of Theorem 5. — We will prove Theorem 5 by an induction
on the maximal corank of 7. Condition 1) implies that the (minimal) corank
of m is n.

Suppose first that the maximal corank of 7 is also n. Then, it suffices to
take the normalization v: § —» S it is a proper modification (along N(S)),
so, by Proposition 9, the strict transform (after a possible restriction to
some irreducible components) is a map satisfying conditions 1) et 2), and
of constant corank; and by Proposition 8, it defines an analytic family of
cycles without escape to infinity (these cycles going all over X), and =
defines a meromorphic family of cycles without escape to infinity.

Suppose now that the theorem is true when the maximal corank of 7
is strictly less than q.

Let m:G — S be a map satisfying conditions 1) and 2), let g be
its maximal corank. We can already work with the map m|g,,, which also
satisfies 1) and 2) and defines the same set of cycles as 7 (Proposition 10).

We want to explain that T is an analytic space of finite dimension.
This is a local problem. Let (sq, Xo) be a point of I'; we can suppose that sq
lies in the nowhere dense analytic subset ¥ N 7(Deg? ) (otherwise, the
maximal corank of 7w over a neighbourhood of sg is strictly less than g
and one can skip the following two paragraphs). So, q := dim 7 !(s)
and [Xo| & p(m7!(s0))-

According to Proposition 11 (we recall that 7|, is quasi-proper, by
Proposition 10), there exist a neighbourhood V' of sq in S (we note T'y
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and Xy the corresponding subsets of I' and ¥) and a proper modification
o:V — V (precisely a blow-up), such that the strict transform 7:G —» V
is of maximal corank strictly less than q.

Then, thanks to Propos1t10n 9, there exists an analytic subset Gof G
such that the projection 7:G — V verifies conditions 1) and 2), and defines
a set of cycles x equal to Xy, and this map 7 is of maximal corank strictly
less than q.

Thus the induction assumption implies that 7 defines a meromorphic
family of cycles without escape to infinity, that is to say, there exists
a proper modification o:V’' —» V such that the strict transform
7' : G’ — V' defines an analytic family of cycles (X, )s ey without escape
to infinity. Let x':V’ — Cl°°(Z) the map associated with this family.
We have x/'(V') = X = Xy, and, in particular, X, = X;B for a point
sy € (00d)(sp) C V"

G’ @ GHIw“(V) VA
1% 1% V. o> V\E — x(V\%)

p |

— 7,

I, Xy

i

= 124 ~

r X

X X'

{
L X » X'(V')

Now, we will use again the arguments of the proof of Proposition 7.
For every s’ € V', we can choose a finite family £ of scales adapted to
the cycle X/ 2 and well determining the family of cycles around it. Let
fL:VE — Hze 1 H(U} ,sym*iB;) be the associated analytic map, and Vj
be a relatively compact neighbourhood of sg in V. Since the composition
ooo:V' — V is proper, so is the map

(000) x ft:(00d) W (Vo) NVE — Vo x fE(V'e).
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So we can use Theorem 3.

. ’ -
We obtain that V'/R = .

analytic space, which can be identified to a neighbourhood of (sg, Xp) in T.
So this last space is provided with a finite dimensional, weakly normal
analytic structure such that the map ps:T' — S is a proper modification
and (X )(s’ x)er an analytic family of n-cycles without escape to infinity,
defined by the strict transform of 7 by pg. All that precisely means that =
defines a meromorphic family of n-cycles without escape to infinity. O

is a finite dimensional, weakly normal

3.4. Universal reparametrization of a semi-proper regular
meromorphic family of cycles.

Here, we want to generalize Theorem 4 to the case of meromorphic
families of cycles. So we need to introduce regularity and semi-properness.

DeFiNiTION 7. — Let MRSP(m) denote the set of (S,0) in M(x)
such that the analytic family (X g)g c5is regular and semi-proper, that is to
say: the set X(S) C C1°°(Z) is regular and the map X : S — X(S) = X(r) is
semi-proper.

The meromorphic family of n-cycles defined by amap w: G — S is a
semi-proper regular meromorphic family of n-cycles of Z if MRSP(x) # 0.

First, we extend Theorem 5:

PropPosSITION 12. — Let m : G — S be a map satisfying condition 1)
of Theorem 5. Suppose that the following conditions hold:

For every so € S, there exist a compact set Ly of Z and a relatively
compact neighbourhood Sy of sg in S such that, for every s € Sy, and for
every cycle X, of X included in p(n~!(s)), there exists a neighbourhood V;
of X in Cl°°(Z), such that

2) every irreducible component of every cycle in V1 N X intersects Lo ;

3) there exists a relatively compact open set W1 in Z, such that, if for
some cycles (X)), eny and X in Vi N X, (X, N W1),en converges to X N W,
in C'°¢(W1, Z), then (X,),en converges to X in C\°°(Z).

Then the meromorphic family of n-cycles defined by 7 is regular.

Moreover, if pc : T —» % is semi-proper, then this meromorphic family
of n-cycles is semi-proper (so MRSP(r) # 0).
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Proof. — We can prove, as for condition 2) in Theorem 5, that
condition 3) moves to the strict transforms of 7, and implies the topological
non-escape — and so the regularity — of the analytic family of n-cycles we
finally obtained.

Assume that pc:T' —» X is semi-proper. Since o x X is proper and
surjective, the semi-properness of ¥ = pco (o xx) comes from Lemma 1, (iii).
O

Now, we can state:

THEOREM 6. — Let m : G — S be a map such that MRSP(r) # 0,
i.e. defining a semi-proper, regular meromorphic family of n-cycles.

There exist a weakly normal analytic space @Q of finite dimension, and
an analytic family of n-cycles (XC)CEQ such that for every weakly normal
space T, every map p : H — T, where H is an analytic subset of T X Z,
such that M(p) # 0, satisfying

X(p) C X(m),

there exists a meromorphic map ® : T---Q, such that the family (Y3): is
the pull-back of the family (X.).cq by the analytic map ¢ : Gr(®) — Q.

Proof. — By assumption, there exists a (,§ ,o) such that the induced
family (X3); is regular and semi-proper: so, by Theorem 3, Q: = S/ R; can
be provided with a weakly normal, finite dimensional analytic structure.

Let us consider now the couple (A, ) given by Proposition 7 (7 is
such that MNE(m) # 0). The weakly normal space A is homeomorphic
to T; we have an analytic family of cycles (X )(s,x)ea- The map
pc:A =T —» X(m) C C°°(Z) is the map associated with this family;
it is semi-proper (thanks to Lemma 1, (iii): indeed, X = pc o (¢ x X) is
semi-proper, with o X X surjective); since X(7) is moreover regular, this
family (X)(s,x)ca is regular and semi-proper; so we can apply Theorem 4
to it: there exist a weakly normal analytic space @), and an analytic family
of n-cycles (XC)CEQ7 such that for every weakly normal analytic space B,
and every analytic family of m-cycles (Y;)sep (associated with a map
€: B — Cl°°(2)), satisfying

§(B) C pe(A) = X(m),

there exists a unique analytic map ¢ : B — @, such that the family (Ys)oeB
is the pull-back by ¢ of the family (X;)ccq.

ANNALES DE L’INSTITUT FOURIER



UNIVERSAL REPARAMETRIZATION OF A FAMILY OF CYCLES 1187

Assume now that we have a weakly normal space T, amap p: H — T,
where H is an analytic subset of T' x Z, such that M(p) # 0, satisfying

X(p) C X(m) ;

that especially yields that X(p) is regular, so without escape to infinity;
by Proposition 7, there exist a couple (B,3) in MNE(p) (where B is a
weakly normal space homeomorphic to the graph A C T x C!°°(Z)), and an
analytic family of cycles (Y)(;y)ep, associated with a map £: B — C)°°(2),
such that

Since X(p) C X(m), we are in the conditions, above recalled, of
Theorem 4; there exists a map ¢: B — @, such that the family ()« v)en
is the pull-back by ¢ of the family.

G

X(p)

Finally, since we have a proper modification 8: B — T, we have
a meromorphic map ®:7---+Q (with Gr(®) = B), satisfying the desired
properties. O

Remark. — We briefly explain in [Mt99] the links between these
theorems and the formerly known results about meromorphic equivalence
relations (see [Gr86], [Si93]). Here, we only make the following comments:

o the condition of regularity that Grauert puts on the fibration defined
by a meromorphic equivalence relation is close to the condition 2) defined
on the set X in our Theorem 5;

o the condition of fibre cycle-separability defined by Siebert on the
fiber cycle space generated by a generically open map is similar to our
condition of non-escape to infinity;
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« in our situation, we must add the assumption ‘pc :T — X is semi-

proper’, which is more or less obvious in the case S = Z = X (or in the
case of families defined by the fibers of a map).
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