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UNIVERSAL REPARAMETRIZATION 0F A
FAMILY 0F CYCLES: A NEW APPROACH TO
MEROMORPHIC EQUIVALENCE RELATIONS

by David MATHIEU ̂

Introduction.

Let Z be a reduced analytic space of finite dimension (by 'analytic',
we will aiways mean 'complex-analytic').

Daniel Barlet proved that thé set Bn(Z) of compact n-cycles of Z is
an analytic space of finite dimension (see [Ba75]). Hère we consider thé set
C^ÇZ) of ail (closed) n-cycles; we can not hope to hâve o. finite dimensional
analytic structure on this set, but, roughiy speaking, we want to provide
some 'nice5 subsets oîC^ÇZ) with such a structure.

Let us be more précise: a subset oîC^ÇZ) rather easy to define and to
handie is thé set of cycles described by an analytic family ofn-cycles (Xs)sçs
parametrized by a weakiy normal analytic space S. Let \:S —> C^[Z\
s i—^ Xs be thé map associated with this family. Thé analytic structure
to be defined on ^(5) should not dépend on thé parametrizing space S.
So thé problem we raise can be rewritten as a problem of 'uni versai
reparametrization'; we prove:

THEOREM. — Let S be à weakiy normal ânalytic space of finite
dimension and {Xs)sçs be a 'semi-proper^ ^regular7 analytic family of n-

^ This article was revised during thé author's stay at thé Max-Planck-Institut fur
Mathematik (Bonn).
Keywords : Meromorphic and analytic families of cycles — Meromorphic and analytic
équivalence relations - Analytic structure on a quotient - Géométrie flattening.
Math. classification : 32C15 - 32C25 - 32H02 - 32H04 - 46G20 - 54B15.



1156 DAVID MATHIEU

cycles of Z. Then there exist a unique weakiy normal analytic space Q of
finite dimension^ and an analytic family ofn-cycles (Xc)cçç parametrized
by Q, such that for every weakiy normal analytic space F, and every
analytic family ofn-cycles (Yt)tçT satisfying:

Vte r , 3 s es, s.t. Yt=x^

then there exists a unique analytic map (p : T —^ Q such that thé family
(Yt)tçT is thé pull-back by (p of thé family (Xc)cëQ, ûAat is: for ail t e T,
Yt =X^}'

Let us comment on thé conditions we put on (Xs)sçs' I11 thé case of
compact cycles, thé map \ : S —> Kn(Z) is analytic with values in a finite
dimensional space. A sufficient condition, so that its image ^(6') may be
analytic, is then semi-properness, according to a theorem of Kuhimann (see
[Ku64], [Ku66]).

Hère \ is, at first sight, oniy continuous. Actually, there are some
analytic maps associated with thé family (Xs)sçs^ but they are defined
oniy locally on S and on Z, with values in a locally analytic subset of an
infinité dimensional Banach space. So two problems appear:

• we hâve to generalize Kuhimann's theorem to thé case of semi-
proper maps with values in infinité dimensional spaces; with this aim, we
use ideas of Barlet and Mazet (see [Ma74]);

• we hâve to put a regularity condition on thé analytic family of
n-cycles (Xs)s^s^ which ensures us that thé semi-local behaviour (on
a relatively compact open set of Z) of thé cycles détermines their global
behaviour: thé cycles should not (set-theoretically and topologically) escape
to infinity.

We can notice that thé natural candidate for thé underlying
topological space of Q is thé quotient space S/R^ of 6' by thé équivalence
relation defined by ^, which aiready gives us a one-to-one reparametrization
of thé family (Xs)sçs- So expressing it, we see that our problem is close to
thé problem of analytic équivalence relations studied by Grauert [Gr83].

In a last part, we introduce meromorphic families of n-cycles of Z,
parametrized by a weakiy normal space S, in a way similar to Remmert's
définition of meromorphic maps. We especially study thé case of a
meromorphic family of cycles without (set-theoretic) escape to infinity:
ils graph in 5' x C^ÇZ) is a finite dimensional analytic space.

ANNALES DE L'INSTITUT FOURIER



UNIVERSAL REPARAMETRIZATION 0F A FAMILY 0F CYCLES 1157

Then we give criteria, so that thé projection on S of an analytic subset
of S x Z defines a meromorphic family of cycles without (set-theoretic)
escape to infinity (thèse criteria are close to thé assumptions of Grauert's
theorem about meromorphic équivalence relations^ see [Gr86]); this can be
seen as a problem of géométrie flattening (see [Ba78]). A similar problem
has aiready been studied by Siebert [Si93].

We conclude with a theorem of universal reparametrization for semi-
proper regular meromorphic familles of cycles.

Acknowledgements. — This paper sums up my Ph.D. memoir [Mt99].
1 would like to thank my thesis advisor, Professer Daniel Barlet.

1. Preliminaries.

In this paper, ail analytic spaces are supposed to be reduced, of
finite dimension if thé contrary is not explicitly stated, and countable at
infinity; moreover, 'analytic subset' means 'closed analytic subset5, and
'neighbourhood5 means 'open neighbourhood5.

1.1. Semi-properness and quasi-properness.

1.1.1. Définitions. — Let X and Y be Hausdorff topological spaces.

DEFINITION 1. — A continuons map ^p : X —> Y is semi-proper (see
[AS71]) if, for every point y ofV, there exist a neîghbourhood V of y in Y
and a compact subset K of X such that

^(K) n v = (p(X) n v.

We collect below some properties of semi-proper maps:

LEMMA 1. — (i) If (p is semi-proper, then ^p(X) is closed in Y and
locally compact. Moreover, thé map ^ : X —> Y is semi-proper if and oniy
if (p : X —^ ^p(X) is semi-proper and ^p(X) is closed in Y. Eventually,
when ^p : X —» ^p(X) is semi-proper, there exists an open set V of Y,
containing ^p(X), such that y : X —» V is semi-proper.

(11) If^) : X —> Y is semi-proper and if Y ' C Y is such that ^p(X) H V
is locally compact (for instance, when Y ' is open or closed in Y), then thé
restriction ^p\^-l(Y'\ '. (p~l(Yf) —> Y ' is semi-proper.

TOME 50 (2000), FASCICULE 4



1158 DAVID MATHIEU

(iii) Thé composition 7ro(p of continuons maps (p : X —> Y ând TT : Y —> Z
is semi-proper in thé following cases:

• (p is semi-proper ând TT is a homeomorphism ((p semi-proper, TT
proper suffice when X, Y ând Z are locâliy compact) ;

• (^ is proper ând surjective ând TT is semi-proper. On thé other
hând, if thé composition TT o (p is semi-proper, with y? surjective, then TT is
semi-proper.

(iv) When X ând Y are locâliy compact, Kuhimânn [Ku66] introduced
thé following définition of semi-properness, which is, in thât case, équivalent
to thé previous one : for every compact set L ofY, there exists a compact
set K ofX such thât (p(X) H L = (p(K).

As far as semi-proper analytic maps are concerned, we hâve thé
following resuit:

THEOREM 1. — Let X be an ânalytic spâce offinite dimension, Y be
an open set of an infinité dimensionâl Banach space E. Let ^p : X —> Y
be à semi-proper ânalytic mâp. Then ^p(X) is an ânalytic subset of finite
dimension ofY.

We refer to [Ma84] for thé theory of infinité dimensionâl spaces.
We oniy insist on thé fact thât hère ^p(X) is an ânalytic subset of finite
dimension of Y, ând thus is an ânalytic space of finite dimension of thé
classical theory.

This theorem is in fact a generalization of Remmert's proper mapping
theorem, which puis together results of Kuhimann (semi-proper case, see
[Ku64], [Ku66], ând [AS71]; actually, our theorem enables us to give a new
proof of Kuhimann's) ând results of Mazet ând Barlet (infinité dimension
case, see [Ma74], [Ma84]).

Thé proof is long ând technical; we refer to [Mt99].

Thé restriction of a semi-proper ânalytic map ^ : X —>• Y to an
ânalytic subset is seldom semi-proper itself. We shall obtain better results
in this way with a notion stronger than semi-properness.

DEFINITION 2. — An ânalytic mâp (or, ât leâst, a mâp with ânalytic
fibers) (p : X —^ Y is quasi-proper (see [AS71]) if, for every point y ofY,
there exist a neighbourhood V of y in Y ând a compact set K of X such
thât, for every point y ' ofV H ^p(X) and every irreducible component C of
^QA we have c n K ¥- 0-
ANNALES DE L'INSTITUT FOURIER
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Thus, a proper map is quasi-proper, and a quasi-proper map is
semi-proper.

Let ^ : X —)• Y be an analytic map. We say that an analytic subset
A of X is quasi-saturated for y? if for every point a G A, every irreducible
component of (^"^(a) n A is an irreducible component of (^"^(a). For
instance, any connected component of X is quasi-saturated. Moreover:

LEMMA 2. — (i) Let y : X —> Y be a quasi-proper map, and A
an analytic subset of X, quasi-saturated for (p. Then thé restriction
(p\^: A —^Y is quasi-proper.

(ii) Thé degeneracy set of order p of (p is quasi-saturated for (p. TAus,
if thé map (p : X —> Y is quasi-proper, so is ^jDeg^ : Deg^ —> Y. So
(by Theorem 1), (p(X) and (p(Degp y) are analytic subsets ofY.

Let us recall that thé (géométrie) corank of an analytic map is
defined by

gcork ̂  := min gcork^ y?, where gcork^ (p := dïm^ (^~l(p(x) ;
XÇ..K.

thé degeneracy set of order k is thé analytic subset Degp (p of X defined by
{x e X, gcork^ (^ >_ p}\ we note (see [Fi76])

Degy=Degëcork^l ^.

1.1.2. Quotient defined by a semi-proper analytic map. — We recall
that a continuous map (^ : X —> Y defines an équivalence relation Ry on X
by: x Ry y iff ^p(x) = (p(y). Then we hâve a canonical décomposition

t p ' . x -q-^ X/R^ ̂  ^(x) -—^ y,f^j
(h is a continuous bijection, and a homeomorphism when ^ is semi-proper).

Moreover, thé quotient space X/Ry is provided with a canonical
ringed structure Q = (X/R^,OQ): for every open set V of X / R y ,
^Q^} ''= ^*,^ Ox(y) is thé ring of functions q^ÇV) —> C which are
constant on thé classes of Ry (î.e., on thé fibers of (p).

We now state:

THEOREM 2. — Let X be a weakiy normal analytic space of finite
dimension^ Y be an open set of an infinité dimensional Banach space E.
Let (^ : X —> Y be a semi-proper analytic map. Let Ry be thé équivalence
relation defined by (p and Q := (X/Ry, Oq) be thé ringed quotient space.
Then Q is a weakiy normal analytic space of finite dimension.

TOME 50 (2000), FASCICULE 4



1160 DAVID MATHIEU

Thé proof we give in [Mt99] generalizes Cartan's ideas about proper
équivalence relations (see [Ca60]). We precisely show that Q is thé weak
normalization of ^(X).

1.2. Analytic families of cycles.

1.2.1. Définitions. — For this section, we refer to [Ba75].

Let symk Cp be thé quotient of (O3) k under thé action of thé A:-th
symmetric group of permutations ©/c; it can be properly embedded in
®/i=i k ^hÇCP), where Sh(CP) is thé h-th component of thé symmetric
algebra of CP. If U is a polydisc of C^ let

• H(U^@^^ j^ShÇCP)) be thé Banach space of maps continuous
on [/, analytic on U, with values in ©/i==i k ^h(CP), and

• H(U", syrn^ 03) be thé analytic subset of thé previous space,
containing thé maps with values in symk CP.

If B is a polydisc of CP, syrn^ B is thé image of B^ in sym^ CP.

Then we hâve: there exists a natural bijection between thé set of
ramified covers of degree k over U included inU x B and thé set of analytic
maps U —> symk B.

Let Z be an analytic space.

A n-cycle of Z is a locally finite (formai) linear combination X :=
^içi T^i^i °f irreducible analytic subsets of dimension n Xi of Z (pairwise
distincts), together with non-négative integers mi (called multiplicities).
Thé support of thé cycle X is thé analytic subset \X\ := IJiçj -^ of Z.

A scale E = (L^B.j) on Z is thé data of an open set V of Z, two
poly dises U and B of C n and C p respectively, and an analytic isomorphism j
of V onto an analytic subset A of a neighbourhood of U x B in C71"1"^. Thé
domain of thé scale is thé open set WE := j~l((U x B) H A) of Z.

If X is a n-cycle of Z, thé scale £'==([/, £?, j) is said to be adapted to X
if j'"1^ x OB) H \X\ = 0. In this case, thé analytic subset J'(|^|) can be
seen, thanks to thé projection U x B —^ U, as a ramified cover XE over U,
every irreducible component of J'(|X|) carrying thé multiplicity of thé
corresponding irreducible component of X. We dénote by k := deg^ X thé
degree of thé ramified cover XE-, and by FE^X) : U —> sym^ B thé analytic
map associated with XE (according to thé previous paragraph); moreover,
thé restriction FE{X)\U' belongs to H(U^ sym^ B), where U ' is a relatively

ANNALES DE L'INSTITUT FOURIER
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compact polydisc in U (in thé sequel, we shall aiways assume that such a
polydisc is fixed when we consider a scale).

Let S be a weakiy normal analytic space. Let (Xs)s^s be a family of
cycles of Z parametrized by 5. This family is said to be analytic, if, for
every SQ e S, for any scale E = ([/, B,j) on Z adapted to Xgo, there exists
a neighbourhood SE of SQ in S such that conditions (a) and (b) hold:

(a) for every point s ofS^, E is adapted to Xs and degg Xs = deg^Xso ;

(b) thé map ̂  : SE x U -^ sym^ B, (s, t) ̂  FE{Xs)(t) is analytic.

Furthermore, when b) hoids, we hâve

(c) thé map Î E ' - S E —^ HÇU^ sym^ B), s ̂  FE{Xs)\u' is analytic.

Thé graph of an analytic family of cycles (Xs)s^s is thé analytic subset
of S x Z defined by G := {(s, z) e S x Z such that z e \Xs\}. Conversely,
hère is a usefui construction of an analytic family of cycles (see [Ba75],
Theorem l):

PROPOSITION 1. — Let Z and S be analytic spaces^ S being normal,
G be an analytic subset of S x Z, TT : G —> S and p : G —> Z thé
restrictions to G of thé projections on S and on Z. Suppose that, for ail
irreducible component Gz of G, thé projection TT^ : Gi —> S is surjective
and of constant corank n. Then thé irreducible components F^ ofthe fibres
7^~l(s) = {s} x ^(Tr"'1^)) of TT can be provided with multiplicities m^,
generically equal to 1, such that thé cycles (Xg := (p(F^), m^sçs define
an analytic family ofn-cycles ofZ parametrized by S.

1.2.2. Topology of thé set ofn-cycles. — Let C^ÇZ) be thé set of
n-cycles of Z, provided with thé topology generated by finite intersections
of thé following sets:

fl^E) := {X (E C^{Z) such that E is adapted to X
with degE(X)=k},

defined for ail scales E on Z and ail integers k. This topology is Hausdorff.
Besides, every cycle has a countable fundamental System ofneighbourhoods.

With every family of cycles (Xs)ses, we associate a map

^—^(Z),

s — — X s .

TOME 50 (2000), FASCICULE 4



1162 DAVID MATHIEU

We shall say that thé family (Xs)sçs is continuons if thé map \ is
continuous.

With thèse notations, thé condition (a) above can be written:

(a) SECX-'^^^ÇE))^

and implies that \ is continuous in SQ.

Actually, thé neighbourhood ^^(^^^(E)) vérifies clearly (a),
and (b) as well, and we shall aiways set SE = ^"^(f^6^ xso (E)).

We shall often hâve to work with finite familles of scales', we introduce
hère some notations.

Let (Xs)sçs be a continuous family of n-cycles of Z parametrized
by S, and \ : S —^ C^ÇZ) thé associated mapping. Let so be a point of S,
and £ be a finite family of scales (^)iej adapted to Xgo — with, say,
Ei = (Ui.Biji), and ^ := deg^ X^, U[ CC ^, Wi thé domain of E,,
and^:=x- l(^^(^))•Set

^:=F|^(^), Se:=Ç}SE,=x~1^). We:=[jW,^
i^I ici ici

we call We thé domain of thé family S, and we shall say that thé family of
scales £ covers a subset A of Z if A C IV^.

When thé family of cycles is moreover analytic, we hâve an analytic
map

h := \{fE,\Se ' ' S e —^ II HÇU^sym^Bi).
i i

1.2.3. Companson of thé topologies of C^ÇZ) and HÇU.sym1'B).
We provide H(U, symk B) with thé topology induced by thé following
metric:

k

D(X,r) := sup ( inf ^ \x,(t) - y^(t)\\
tçu v<7€tofc ^i /

where X and Y belong to H(U,symk B), with X(t) := [x^( t ) , . . . ,Xk(t)]
and V^) := [ y i ( t ) , . . . , yk ( t ) ] for ^ in [7, thé points Xi(t) and ^(^) lying
inB.

Thé major resuit is thé following one (see [Ba75], Theorem 2):

ANNALES DE L'INSTITUT FOURIER



UNIVERSAL REPARAMETRIZATION 0F A FAMILY 0F CYCLES 1163

PROPOSITION 2. — Let E := (U,BJ) be a scale on Z , let XQ be
a cycle belonging to ^(E) (so to H(U,symkB)). Let F := (V.C.fa) be
a scale on U x B, such that XQ belongs to ^(F). Thus there exists a
neighbourhood V ofXo in H(U, sym^ B) which is included in ̂  (F).

This proposition implies that thé map

HÇU^sym^)——C^(U x B),

which maps a ramified cover XE over U to thé cycle X H (U x B) of U x B,
is continuous.

In order to generalize this proposition to global cycles of Z, we dénote

• by C^(W, Z) thé set of cycles of an open set W of Z which are
intersections with W of cycles of Z, provided with thé topology of C^ÇW).

• by nfej HÇUi.sym^Bi) thé set of J-uples of ramified covers
associated with thé same (global) cycle of Z.

Now, we can state:

PROPOSITION 3. — Let £ be a finite family of scales^ with thé above
notations. Thé following map is continuons:

ff HÇU^sym^B,) —.C^O^.Z),
x^xnWe.

Thé proof follows easily from thé previous proposition. It is a bit
technical, but no more complicated, to prove this last proposition:

PROPOSITION 4. — Let E = (U, B, j) be a scale. Thé following map is
continuons:

(C^(Z) D) ^(E) -— ̂ sym^),

X i—> XE'

1.2.4. Regular analytic families of cycles. — In Theorem 3 below, we
consider thé quotient S / R ^ , where \:S —^ C^Z) is thé map associated
with an analytic family of n-cycles (Xs)sçs- We work with a finite family 8
of scales, and want to deduce thé analyticity of thé 'global5 quotient S/R^
from thé analyticity of thé 'local' quotient S s / R f g ' To be sure that thé
latter quotient is an open set of thé former, or, as we explain in thé
Introduction, to be sure that thé local behaviour (on thé domain Ws of £)
of (Xs)sçs détermines ils global behaviour, we need to put some conditions
on thé analytic family of cycles.

TOME 50 (2000), FASCICULE 4
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First of ail, we say that a finite family of scales £ well détermines thé
continuous family of cycles (Xs)sçs around Xso if thé map

(C^(Z) D) ^(Se) -^ C^{We, Z),
X, — Xs H We

is injective; that is to say, two cycles Xs and X s ' , for 5, s ' e Se, coïncide as
soon as their intersections with We coincide.

Such a phenomenon can occur: set Da := [z e C, such that \z\ < a};
then (Xs := {z C Di, such that z(z - 1 - s) = 0})sçD^^ is an analytic
family ofO-cycles of^i parametrized by ^1/2; Xs equals either {0}+{l+s}
or {0}; for v ç N*, set Sy == -l/^, then, for any finite family £ of scales
adapted to XQ = {0} (ils demain We is then a relatively compact open set
of Di), and for v large enough, X^ H We = XQ H We = {0} but Xs, + XQ:
thus thé family is not well determined by £ around XQ. Thé pathology cornes
frorn thé fact that an irreducible component of Xs,, namely {1 - l/^},
converges to thé point 1 lying in thé boundary 9D\.

Precisely: a subset X ofC^Z) escapes to infinity in a cycle XQ e X if
there exist a séquence (Xj)jç^ of cycles in X and irreducible components Tj
of \Xj\ such that

• (Xj)jç^ converges to XQ m C^ÇZ),

• for every compact set L of Z, we hâve F^ H L = 0 for j large enough.

We say that a continuous family (Xs)s^s of n-cycles of Z escapes to
infinity in Xso if %(S) does.

We give now a property équivalent to non-escape to infinity:

PROPOSITION 5. — Let X be a subset ofC^Z), and set XQ e X. Thé
following properties are équivalent:

(i) X does not escape to infinity in XQ ;

(ii) there exist a compact set LQ of Z and a neighbourhood VQ of XQ
in (^^(Z) such that every irreducible component of every cycle in VQ H 3C
intersects Lo.

Furthermore, when thèse conditions are satisfied for thé subset \(S)
associated with an analytic family ofn-cycles (Xs)ses, there exists a finite
family of scales adapted to Xso which well détermines (Xs)sçs around Xso.

Proof. — Thé équivalence is quite clear. To prove thé last statement,
it suffices to cover LQ with a finite family of scales adapted to Xso. D

ANNALES DE L'INSTITUT FOURIER
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Besides, when a family of cycles (Xs)sçs doesn't escape to infinity
in any cycle, thé projection TT : G —^ S of ils graph onto 5 is quasi-proper:
for SQ ç S, set LQ and VQ given by property (ii), let SQ be a neighbourhood
of SQ, relatively compact in thé open set x'^o); then it is easy to check
that thé condition of Définition 2 hoids with SQ and thé compact set
(So xLo)nGoîG.

Consider now thé 1-cycles of C2 defined by

X,:={(^)eC2, s.t.2/=^},

with v e N*, and XQ := {y = 0}; thé scale E •= [\x\ < ̂  \y\ < |} is
adapted to every cycle Xy and well détermines thé set of cycles (X^)^ç^-
However, it is clear that (X^ H WE\ converges to XQ H WE in ̂ (WE, Z)
but {Xy)^ does not converge to XQ in C^ÇZ).

To avoid aiso this kind of pathology, we give a last définition, which
includes non-escape to infinity (that is, a set-theoretic control) plus a
topological control (which will enable us to deduce thé semi-properness of a
map fs from thé semi-properness of \}.

DEFINITION 3. — Thé subset X ofC^OC(Z) is said to be regular if thé
following condition hoids for every XQ e X : there exist a compact set LQ
of Z and a neighbourhood VQ of XQ in C^ÇZ) such that

• every irreducible component of every cycle ofVo H JC intersects LQ ;

• X does not topologically escape to infinity in XQ^ that is: there
exists a relatively compact neighbourhood WQ of LQ in Z , such that, if
(X^)^N and X are cycles in VQ H X such that {X^ H TVo)^eN converges to
X H Wo m C^(WQ, Z), then (X^)^ converges to X in C^(Z\

A continuous family (Xs)sçs ofn-cycles is regular if\(S) is.

Remark. — If X is a subset of C^ (Z), we define its graph in C^ (Z) x Z
as follows:

G := {{X,z) s.t. z e \X\} C X x Z C C^(Z) x Z.

Thé study of this graph yieids équivalent conditions to set-theoretic
and topological non-escape to infinity:

LEMMA 3. — TAe following assertions are équivalent:

(i) p : G —^ X is quasi-proper',

(ii) X does not escape to infinity and is locally compact.

TOME 50 (2000), FASCICULE 4



1166 DAVID MATHIEU

Assume that X does not escape to infinity and is locally compact.
For a given XQ ç X, set Lo, VQ as in Proposition 5; let WQ be a relatively
compact neighbourhood of I/o in Z.

Thé map h : VQ H X -^ ^{Wo.Z), X •-> X H IVo, is continuous and
injective. Set 2) := /i(Vo H X); thus, 2) is a subset of ^(IVo, Z), which is
locally compact and does not escape to infinity. Let "H dénote thé graph
of^inC^TOxH^set

Gwo^=G^(^xWo) and H:Qwo -^ K (X,z) ̂  (X n WQ^).

LEMMA 4. — With thèse notations, thé following assertions are
équivalent:

(i) X does not topologically escape to infinity in XQ ;
(ii) h is a homeomorphism ;

(iii) H is semi-proper.

2. Regular semi-proper analytic families of cycles.

From now on, by 'cycle5 we shall aiways mean a n-cycle of a reduced,
finite dimensional analytic space Z.

2.1. Analyticity ofthe quotient.

If (Xs)sçs is a family of cycles, we define an équivalence relation in S
as follows:

s ~ s' ^=> Xs = Xs'.

In fact, this relation is exactiy thé équivalence relation R^ defined by thé
map \ :S -^ C^ÇZ) associated with (Xs)sçs-

If thé family (Xs)sçs is continuous, thé quotient S/R^ is a HausdorfF
topological space. Moreover, we hâve a canonical ringed structure O S / R
on S / R ^ .

This relation is not necessarily an analytic équivalence relation in thé
sensé of [Gr83]; nevertheless, we hâve:

LEMMA 5. — Let (Xs)sçs be an analytic family of cycles^ such that,
for every SQ e S', there existe a finite family £ of scales well determining
thé family of cycles around Xso. Then thé équivalence classes of thé
relation defined by {Xg)sçs locally coïncide with thé fibers ofthe analytic

ANNALES DE L'INSTITUT FOURIER



UNIVERSAL REPARAMETRIZATION 0F A FAMILY 0F CYCLES 1167

map fe : Se —^ nf HÇU^sym^Bi). Especially, thèse classes are analytic
subsets of S.

Proof. — Set 5, s ' ç Ss. First, fe(s) = fs{s') implies thé equality of
thé ramified covers defined by Xs and Xs' over U\, so over Ui too, and
this, for ail 2, thus Xs H Ws = X^ H W^; finally, we obtain Xs = X^ since
thé family of scales £ well détermines (Xs)sçs around Xsy; conversely,
Xs = Xg/ clearly implies that fs(s) = fe^s'). D

We can state now thé following theorem:

THEOREM 3. — Let Z and S be finite dimensional analytic spaces,
S being weakiy normal. Let R^ be thé équivalence relation defined by an
analytic family (Xs)sçs ofn-cycles of Z. Assume that

(for every point SQ ofS, there exists a finite family £ of scales which
, . J well détermines thé family of cycles around Xso, and such that thé
{ ) } analytic map fe = ̂ ÎE,\Se '' Se -^ fe{Se) C ̂ HÇU^sym^Bi)

[ is semi-proper onto ils image.

Then thé ringed quotient space { S / R ^ O S / R ^ ) is a weakiy normal, finite
dimensional analytic space.

Proof. — Let (Xs)s be an analytic family ofn-cycles satisfying (H).

Let q : S —» S/R^ be thé canonical surjection. Let to := q(sQ) in S / R ^ .
For thé family of scales £ given by (H), thé map

fs'^s—^^HÇU^sym^Bi

is analytic and semi-proper onto ils image.

Now, since Y[, HÇU^sym^Bi) is included in 1̂  H(U',^H 5^(0^)),
with thé induced topology, thé map

fE:Se^]^H(U^ChS^))

is still semi-proper onto ils image.

By Lemma 1, (i), there exists an open set uj of

\{H(u^ (9 5,(n)
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such that thé map fs : Se —^ ^ is semi-proper: furthermore, this map is
defined in a weakiy normal space, with values in an open set of a Banach
space, thus we can apply Theorem 2.

It follows that thé quotient Ss/Rfe is an analytic space (of finite
dimension), which topologically coincide with q{Se) (by Lemma 5); thé
latter is a neighbourhood of to in S / R ^ , and we hâve an isomorphism of
ringed spaces: OS,/R^ = OS/R^\ ç(%).

Therefore, thé ringed space { S / R ^ O S / R ^ ) is analytic in a neigh-
bourhood of any of ils points: so it is an analytic space, which is
moreover weakiy normal, as thé quotient of a weakiy normal space
(see [KK83], 72.4). Q

2.2. Semi-properness of^ and semi-properness oî fe'

DEFINITION 4. — An analytic fâmily of cycles (Xs)sçs is said to be
semi-proper if thé map \ : S —^ •\{S} is semi-proper.

PROPOSITION 6. — Thé condition (H) hoids in particular when thé
analytic fâmily of cycles is regular and semi-proper.

Proof. — Let X^ be a cycle in ^(5). Let LQ, VQ, and WQ be
respectively thé compact set of Z, thé neighbourhood of Xso in (^(Z),
and thé relatively compact neighbourhood WQ of LQ in Z given by thé
regularity of thé fâmily in Xso (see Définition 3).

Let us consider now a finite fâmily £ of scales (Ei = (^,B^,^))^j
adapted to X^ and such that thé fâmily 8 ' of scales (J^/ = (U[, B,,j',)),çj
covers WQ: so LQ c WQ c W^ C We\ we note

^:=n^w-
i

where ki := deg^ X^, and Ss := x"1^). Thé open set ̂  is a neigh-
bourhood of XSQ in (^(Z); if we add a finite number of scales (i.e. we
restrict ^), we can moreover assume that ̂  is included in Vo-

lt is then clear that this fâmily of scales £ well détermines thé fâmily
of cycles around Xso.

Since \ is semi-proper, by Lemma 1, (ii), thé restriction

X| se''Se——x{Se)
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is semi-proper. In order to prove thé semi-properness of thé map
îs '- S s —» fe(S^), we shall prove that in thé commutative diagram

Se x{s£ )) x(%)c C^(Z)

MSe)c]^H(U[,sym^B,)

thé mapping h : \(Ss) —> fe{Se) is a homeomorphism. Thé semi-properness
of je will then follow from Lemma 1, (iii).

Let us show that h is a homeomorphism:

• h:\(Ss) —> fe^Ss) is a bijection: it is clear that h is surjective.
Furthermore, if h(Xs) = h(Xs'), that is, if Xs and Xs' coïncide in
[], H{U[, sym^Bi), then Xs and Xs' coïncide on thé domain of £ (see thé
proof of Lemma 5). Since £ well détermines thé family of scales around Xso,
Xs and Xs' coïncide in C^ÇZ) and h is injective.

• h is continuous by Proposition 4.

• h~1 is continuous: let (^)^çN and s be points in 6^, such
that (/^))^N converges to /^(5) in fs(Ss) C ]~[f HÇU^sym^Bi).
According to Proposition 3 (applied to thé family £'), (X^ H H^/)^N
converges to X^ H W^ in ̂ (IV^, Z). Since thé family (Xs)s^s is regular,
with WQ C We', it follows that (XsJ^N converges to Xs in (^(Z), so
in \(Ss) — note that thé non-topological escape is crucial hère. D

2.3. Universal reparametrization.

We give now another version of Theorem 3. This version exhibits a
universal property of our construction, and, contrary to Theorem 3, will
be generalizable to thé meromorphic case. This is thé resuit announced in
our Introduction:

THEOREM 4. — Let (Xs)sçs be a regular semi-proper analytic family
ofn-cycles ofZ parametrized by a weakiy normal space S. Then, there exist
a unique weakiy normal, finite dimensional analytic space Q, homeomorphic
to x(S), and an analytic family ofn-cycles (Xc)ceQ, satisfying:

For every weakiy normal analytic space T, and every analytic family
ofn-cycles (V^teT such that

W e F, 3 s e S , such that Yt=Xs,
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there exists a unique analytic map (p : T —> Q, such that thé family
(Yt)t<ET is thé pull-back by ^ of thé family (Xc)cçQ^ that is to say : for ail
ter, Yt=x^.

Proof. — Let Q := [ S / R ^ O S / R ^ ) be thé weakiy normal analytic
space given by Theorem 3 (that we can use thanks to Proposition 6), and
for c = q(s) ç. Ç, set Xc = Xg (this is independent of thé choice of s). It is
easy to verify that this family is analytic.

Moreover, ifT and (Yf)tç,T satisfy thé given condition, let us define:

^:r—ç,
11—> ç(s), if s is such that Yt = Xg ;

then thé desired properties hold for (p. Let us oniy check that ^ is analytic:
let £ := (Ei)i be a finite family of scales adapted to Xso = Yfo, chosen
as in thé proof of Theorem 3; set as usually f^ := f^ ^^^^{Ei)
and^:^-1^).

Set aiso Te := ^-l(^), where $ :T -^ C^{Z) is thé map associated
with (Yt)tçT- Since this family is analytic, thé map

9e : Te —— H H(U1,, sym^B,)

is analytic.

Se-

(

q[

y

Q
î
J
Ss)-

C^(Z)
Se f

J ~ "
—L^ x(S£)==fîsnx(S)

J

]^H(U^sym^Bi

fe(Se)

Te ^)=^n^(T) 9e(Te)
9e

Note that ho\: q(Se) —>> fe{Se) is thé weak normalization of fe(Se)'
Now thé map g e ' ' T e —^ 9e (Te) C fe{Se) can be lifted to thé weak
normalizations (see [Fi76], 2.30); since Te is aiready weakiy normal, thé
analytic map thereby defined is nothing eise than (p : Te —^ q(Se)- D

Remark. — We explain in [Mt99] how to use Theorem 3 in thé study of
analytic équivalence relations -R C X x X in thé sensé of Grauert. Any scale
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adapted to XQ obviousiy well détermines thé family of cycles around XQ
since thèse cycles are équivalence classes; then, thé semi-properness of /E
is aiso clear when S = Z = X: ail cycles adapted to E intersect thé closure
of thé domain WE of thé scale.

Of course, we can oniy prove a particular case of Grauert's resuit
(Theorem 6 of [Gr83]), precisely thé case when ail équivalence classes are of
constant pure dimension (we build them as n-cycles!). On thé other hand,
thé gain of our point of view is that it enables us to distinguish an ambient
space Z and a parameter space S.

By thé way, we make thé following informai comment: our condition
of semi-properness (on thé family of cycles) is similar to thé one of Grauert
(semi-properness ofthe quotient map). But, to this semi-properness w.r.t. 5,
we must add a condition of 'quasi-properness w.r.t. Z\ namely, thé non-
escape to infinity.

3. Meromorphic families of cycles.

Theorem 4 provides with an analytic structure thé subset of C^ÇZ)
described by an analytic family of cycles; to generalize it to wider subsets
of (^(Z), we will introduce hère thé notion of meromorphic family of
n-cycles', we aiso study this notion for itself.

3.1. Définition.

Thé définition of a meromorphic family of n-cycles is similar to
Remmert's définition of a meromorphic map (see [Re57]): a generically
defined and analytic map $ : X--^Y is a meromorphic map, if there exist a
proper modification a : X —» X and an analytic map (p : X —> Y such that
(p generically coïncides with <I>. One can described X as an analytic subset
of X x Y: it is precisely thé closure of thé graph of thé generic map X —^ Y.
This set is called thé graphe Gr(<E>), ofthe map.

Similarly, a meromorphic family of cycles parametrized by a weakiy
normal space 5, is an analytic family parametrized by a dense Zariski open
set of 5, such that there exists a proper modification a : S —» 5, such that S
parametrizes an analytic family of cycles, generically equal to thé previous
one. We shall aiways associate a graph in S x C^(Z) with this family, but
we will be able to provide this graph with an analytic structure oniy with
further conditions.
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In order to express that définition in an way easier to handie, we shall
use a graph in S x Z.

Let S and Z be analytic spaces (S weakiy normal), G be an analytic
subset of S x Z. We note N and m thé respective dimensions of G
and 5, TT and p thé restrictions to G of thé projections on 5' and on Z;
since Ti-"1^) = {s} x j^Ti-"1^)), ^(Tr'"1^)) is an analytic subset of Z, and
gcork^^ TT = dirn^ j^Tr-^s)).

Such a map TT is said to be geometrically flat (see [Ba78]) if G is thé
graph

{(s,z) such that z e |Xs|} C S x Z

ofan analytic family ofn-cycles (Xs)sçs^ OT^ equivalently, if thé irreducible
components X] of thé analytic subsets ^(Tr"1^)) can be provided with
multiplicities m^ such that thé family of cycles (Xs := (X^m^))s^s is
analytic.

We shall say that thé map TT : G —> S defines an analytic family of
n-cycles if there exists a union G H of irreducible components of (5, such
that thé restriction TT\G^ : G H -^ S is geometrically flat.

This situation présents no problem since it suffices to 'forget' some
irreducible components in order to get a geometrically flat morphism.
This is no longer thé case in thé following example (however elementary):
TT : G —^ S is thé blow-up of thé origin in S := C2: in that case, thé fibre
Tr"1^) = {Oc2} x Pi(C') contains an infinity of 'limit' cycles, which dépend
on thé séquence (sn)n^ converging to 0.

We give now thé following définition:

DEFINITION 5. — Let .M (TI-) dénote thé set of ail couples (5',cr),
where S is a weakiy normal space and o- : S —» S a proper modification
such that thé strict transform O/TT defines an analytic family ofn-cycles.

We say that thé map TT : G —> S defines a meromorphic family of
n-cycles ofZ if M.(^) is non-empty.

Before studying this définition — and especially constructing this
meromorphic family—, we describe a basic construction and recall some
elementary facts about proper modifications and strict transforms.

3.1.1. A basic construction. — Let TT : G —^ S be a map (with notations
as above) and A be an analytic subset of 5, such that thé restriction of TT to
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G \ TT'^A) = TT^ÇS \ A) onto S \ A is geometrically fiât: that is to say, we
hâve an analytic family of n-cycles (Xs)sçs\A of cycles of Z parametrized
by S \ A, with supports \Xs\ := j^TT"1^)).

We show hère how to build a continuous family of cycles from this one.

Let \:S\A —> C^ÇZ) be thé map associated with thé family
(Xs)ses\A- This map has a graph

r := {(5,x,), s e s\A} c s x c^(z).

Let F be thé closure of F in S x C^ÇZ), ps and pc be thé restrictions to F
of thé two projections, and

x:=pc(r).

We call X thé set of cycles defined by TT. Note that thèse are not thé
limits ofthe cycles (Xs)sçs\A'' w^ take thé limits ofthe couples (s, Xs)sçs\A'

Since thé map pc:T —» X C C^ÇZ), (s,X) ^ X is continuous,
(X), ^-\çr ls a continuous family of cycles in C^ÇZ) parametrized by F
and going ail over X.

S x C^(Z) D F —pc—^ X C ^(Z)

We eventually check that

LEMMA 6. — If (s, X) belongs to F, then \X\ is included in j^TT"1^)).

3.1.2. Proper modifications and strict transforms. — First, we note
that if 6' is weakiy normal and a : S —» S is a proper modification, then
we can assume, as we shall aiways do afterwards, that S is weakiy normal
too: it suffices to compose a with thé weak normalization of S, which is a
proper modification. Let

• G be an analytic subset of S x Z-,
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• A be a nowhere dense analytic subset of 5';

• a : S —^ S be thé proper modification of S with center A (so,
A := o•~l(A) is a nowhere dense analytic subset of S');

• G be thé strict transform of G by a, namely, thé smallest analytic
subset of S x Z containing (a x ïdz)~l(7T~l(S \ A)).

We note TT, r := a x ïdz and p := p o r thé projections of G on S,
G and Z respectively.

Then we hâve

A) T is proper;

B) for ail s ç. 5, p(7^~l(s)} C ^(Tr"1^^))) (hence, gcork^^Tr ^
gcork^^) ̂  7r), with equality for s ^ A.

We corne back now to rneromorphic families of cycles.

3.1.3. Meromorphic families of cycles. — Let TT:G —> 5 be a map
defining a meromorphic family of n-cycles: thus .M(7r) 7^ 0, and let
a : S —» 6' be thé proper modification of S with center A, and (Xs)~ ^ thé

SÇ:u

analytic family ofn-cycles given by Définition 5. Let \\ S —> C^ÇZ) be thé
map associated with (Xs)s-

According to thé point B) above, we hâve

\X,\=p(7r-\s)) =p(7r-\a{s))), if s i À.

and if we note, for every s ç. S \ A

Xg '.= X§ ,

where s is thé single pré-image of s, it is easy to verify, using thé isomorphism
a|5\A '- S \ A —> 6' \ A, that (Xs)sçs\A ls an analytic family of n-cycles of Z
parametrized by S \ A.

Thus, we can make thé construction described above; let \ : S \ A —^
C^ÇZ) dénote thé map associated with this family, F thé graph of \ in
(6'\ A) x (^(Z), ps and pc thé restrictions to F of thé projections, and
x(7r):=pc(r).

LEMMA 7. — With thèse notations, we hâve F := (a x x)(S), and
X(7r) == )c(S). Moreover, r and X(7r) do not dépend on thé choice of
(S,a)eM(7r).
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Proof. — We easily prove that thé map

ax^-^r,
s^(a(s)^X,)

is well-defined, continuous, proper and surjective.

It follows that r := a x ^(5) and x(S) = X(7r).

~ T P

1175

Now, if (6", a') is another couple in .M(Tr), it is easy to check that we
hâve (a' x x ' ) ( ^ ) = (a x x)(6') = F; this yieids thé last assertion. D

This lemma enables us to give this définition:

DEFINITION 6. — Thé continuons family of n-cycles (X)(sx}çr
is called (thé) meromorphic family of n-cycles defined by TT : G —^ 5,
and F is called (thé) graphofthis meromorphic family of n-cycles.

3.2. Meromorphic families of cycles without escape to infinity.

Suppose that M.(7r) ^ 0. Let MAf£(7r) dénote thé set of (S, a) in
M(7r) such that thé analytic family (X§)^ ç does not escape to infinity,
that is to say: thé set of cycles x(S) does not escape to infinity. Since
x(S) = X(7r) for every (5, a) in .M(Tr), we hâve

MA^(Tr) ̂  0 <=» MA/'f(7r) = M^).

Thé next proposition provides F with an analytic structure, together
with a universal property:

TOME 50 (2000), FASCICULE 4



1176 DAVID MATHIEU

PROPOSITION 7. — Let TT : G —> S be a map such that MN£(^) ̂  0.
Then there exists a unique couple (A, a) 6 .M(Tr) such that for every couple
( S ^ a ' ) e A^Tr), there existe a unique analytic map f3 : 6" —> A sucA that
o-' = a o /3.

Proof. — Set (S, a) ç A^(7r).

We will apply to thé map a x ^:S -^ S x C^ÇZ) thé proof of
Theorem 3: it will yield that thé quotient S/Rax^ ls a weakiy normal, finite
dimensional analytic space A, homeomorphic to F.

Since thé analytic family (Xg)~ ^ does not escape to infinity,
~ ^~-~

there exists, for every SQ € 5', a finite family of scales which well
détermines it around Xso (Proposition 5). Thus we hâve an analytic
rnap fe = FL/^ je ' ' S e —^ fe(Ss\ whose fibers coïncide in Se with thé
fibers of \ (Lemma 5).

Set a relatively compact neighbourhood V of a(so) in 6'; thus thé
analytic map a x fs : a'1^) n Ss —> V x fe^Sç) is proper — by routine
topological arguments (thé properness of a suffices) — and its fibers
coincide with those of o- x \. It cornes from thé proof of Theorem 3
that A := S/RO- x^ is a weakiy normal, finite dimensional analytic space.
This space A is homeomorphic to (a x x)(1^) = F; it is clear now that
thé projection a := ps .* F —>• S is a proper modification A —» <?; thé strict
transform TTA '- G A —^ A defines an analytic family of cycles, which is nothing
eise than thé continuous family (X), ^çp (that we call thé 'meromorphic
family of n-cycles' defined by 7r): so (A, a) belongs to .M(7r) == .M.A/Ï(7r).

Thé other assertions are easy to check (set f3 := o ' x \1 :6" —^ A = F).
D

3.3. Géométrie flattening.

Hère we put some conditions on a map TT : G —^ 5, so that ils strict
transform, after a proper modification, may be geometrically fiât.

We recall that thé non-normal locus N(S) of S is a nowhere dense
analytic subset of S.

THEOREM 5. — Let G be an analytic subset o f S x Z ^ where S and Z
are analytic spaces^ S being weakiy normal. Assume that there exist a
nowhere dense analytic subset S of <î, containing N(S)^ and an integer n
such that
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1) thé restriction of7r to every irreducible component H^ of thé open
set H := G\ 7^-1(S) = TT"^*? \ S) is of constant corank n and maps H^

onto S \ S.

Thanks to Proposition 1, we hâve thus an analytic family (Xs)sçs\^
ofn-cycles ofZ parametrized by S \ S, and this enables us to construct F
and X, using thé 'basic construction'.

If thé following condition is moreover satisfied:

2) for every SQ G 5', there exist a compact set LQ ofZ and a relatively
compact neighbourhood SQ of SQ in S such that, for every s € SQ and every
cycle X\ ç X included in p(^T~l(s)), there exists a neighbourhood Vi ofX\
in (^^(Z), such that every irreducible component of every cycle in V\ D X
intersects LQ ;

then TT de fines a meromorphic family of n-cycles without escape to
infinity.

Remarks. — Set G H = H = Tr"1^ \ S): it is an analytic subset of G,
exactiy thé union of irreducible components of G not included in ^"^(S).
Actually, thé irreducible components of H are exactiy thé intersections
with H of irreducible components oî G H ' Note that Tr'"1)^^) is nowhere
dense in G m whereas this is not necessarily true for 7^~1{'E) in G. We will
prove below that ^\GH '• ^H —)> S satisfies 1) and 2), and defines thé same
set X of cycles as TT.

Condition 2) implies thé non-escape to infinity of X, but asks for
more: this non-escape should be defined 'uniformiy with respect to S\

Before going further, we give a spécial case when 1) hoids:

1 bis) G is of pure dimension N , and TT is quasi-proper and maps every
irreducible component of G onto S.

Since TT is quasi-proper, thé image A := TrÇDegn) of thé degenerate
locus is an analytic subset of S, thanks to Lemma 2, ii). Moreover, it
is nowhere dense. Thé non-normal locus N(S) of S is a nowhere dense
analytic subset of S too, and so is S := A U N(S). Finally, it is easy to
check that thé projection TT : Ti-"1^ \ S) —> S \ S is of constant corank n,
and maps every irreducible component of Tr"1^ \ E) onto S \ S.

-Remaries.

• Some points in this paragraph hâve been inspired by 'Lemma (n)5
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and 'Proposition (n)' of [Gr86], or by thé proofs and clarifications given
in [Si93].

• Thé proof of Theorem 5 is partiy similar to thé one of Proposition 7:
we want to explain that F is an analytic space of finite dimension (and
thus ps : F —» S a proper modification of S), and that thé family of cycles
(X)/ ^\çp is analytic and without escape to infinity — but hère, we hâve
no more thé assumption that M.N£(^) is non-empty, and thé point is
precisely to build (at least locally) a couple (5, a) ofthis set. There are two
main steps in this proof, which we separetely prove below: first, we explain
that conditions 1) and 2) move (with thé same associated set X of cycles)
from a map TT to its strict transform TT induced by a proper modification;
then, we show how to build, when one has a quasi-proper map TT : G —)• <$,
a local blow-up of an open set of S such that thé maximal corank of thé
local strict transform TT is strictiy less than thé one of TT. So, by induction,
we can get a map of constant corank, satisfying 1) and 2); first of ail, we
study such a map.

3.3.1. Spécial case: TT of constant corank. — We prove hère thé

PROPOSITION 8. — Suppose that S is normal. Let TT : G —-> S be a
map of constant corank and satisfying conditions 1) and 2). Then TT de fines
an analytic family of cycles without escape to infinity'^ furthermore we hâve
X = ̂ (5), if\ : S —>• C^ÇZ) is thé map associated with this family.

Proof. — We shall precisely show that ^\GH ls geometrically fiât.
Since S is normal, and TT of constant corank, it suffices to prove that every
irreducible component G1 of G H is mapped onto S (Proposition 1). We
aiready know that TrÇG1) contains 6' \ S.

For SQ G S, let LQ be thé compact set of Z and So be thé
neighbourhood of SQ given by condition 2). Let (s^)^ç^ be a séquence
of points of SQ \ S converging to So. For every v^ by assumption, G^ contains
at least one point, so, as well, one irreducible component, of Ti""1^).
This irreducible component can be written {s^} x X] , where X] is an
irreducible component of |Xgj and then intersects Lo; hence, there exists
a point z^ of LQ D X] such that { s y ^ Z y } lies in G^. Since Zy € Lo,
there exists a sub-sequence (z^)kçN converging to a point z of LQ, and
(^o, z) = lhm;_oo(s^, Zy^) is a point of G\ q.e.d.

Thus, we hâve an analytic family of n-cycles parametrized by 5,
whose graph is G H ' We can now see that thé graph F of thé associated
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map \ : S —> C^ÇZ) is closed in S x C^OC(Z) and homeomorphic to 5', and
that X coïncides with x{S). Finally, condition 2) implies that thé family is
without escape to infinity. D

3.3.2. Stability of conditions 1) and 2) and of X by strict trans-
formation. — Let TT : G —>• S be a map satisfying conditions 1) and 2), and
a : S —» 6' be a proper modification of S with centre A.

By B), we hâve, if s := o'(s):

p{7^-l(S))=p(7^-\s))ïfê^A•,

then, in particular, for every point s outside A U a~l(ïl):

p{7^~l(s))=\Xs\ if s ^ M :=AUa~\E)',

and it is easy to verify that thé family of cycles (^aÇs))§çç\j^ ls analytic.

Although M is a nowhere dense analytic subset of 5', this could be no
more true for Tr'^M) in G. To hâve this property, we shall work with an
analytic subset of G, namely

G•=7^-1(S\M) =G\7^-1{M),

which is exactiy thé union of thé irreducible components of G non included
m TV-1 (M).

Let TT and p dénote thé restrictions to G of TT and p. We hâve still

P^OO) =p(7r-\s)) = \Xs\ if si M, s = a(5),

and property B) hoids with TT and p instead of TT and p.

We prove now:

PROPOSITION 9. — TAe map TT : G —> S (with M) satîsfies conditions
1) and 2), and defines thé same set X of cycles as TT. Moreover, TT is
quasi-proper.

Proof. — Remark that M contains thé non-normal locus NÇS) of S^
and that p is of corank n.

• First, we shall prove that TT is quasi-proper. With this aim, we begin
with a lemma:
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LEMMA 8. — For every point po ''= (^o, ZQ) € G, there existe a cyde Vo
orX, such that

(i) ^o liesin |Yo|;

(ii) (cr(so), Vo) belongs to F.

Sketch of thé proof. — It is enough to prove thé lemma for po lying in
TT'^M) since we can set YQ := p^r^Çso)) = 1X^)1 for SQ ^ M.

Since TT'^M) is nowhere dense (by construction of G), one can build
an analytic map ( J ) \ D —^ G, where D := [z e C, ^| < 1}, such that
0(D) is analytic in a neighbourhood of po and intersects 7^-1(M) oniy
in 0(0) = po. Set E := {(t,g) e D x G, such that 7r(0(t)) = 7r(p)}. Then
we can check that thé projection 6 : E —> D defines an analytic family of
cycles parametrized by D\{0}, with ô-1^) = {t} x {7r(0(^))} x \X^^^\
if i+ 0.

E (——> D x G

Thus, arguing as in thé proof of Proposition 8, we prove that 6 : E —^ D
générâtes an analytic family of cycles parametrized by ail D. Thé cycle
thereby defined over 0 satisfies (i) and (ii). D

Thé quasi-properness of TT follows easily from this lemma: every
irreducible component B of every (projection on Z of a) fiber of TT contains
an irreducible component of a cycle lying in F. Thanks to 2), this latter
irreducible component intersects a compact set LQ if it lies over a neigh-
bourhood 60; so B intersects I/o if it lies over So ̂  ^~l{So) (hère one sees
why it is important, to hâve a non-escape 'uniformiy with respect to 6").

• We go on with thé proof of Proposition 9. We hâve an isomorphis1^
outside M (not oniy between S and S but aiso between G and G), so
condition 1) is satisfied by TT outside M.

We hâve an analytic family of n-cycles (Xs). ^.. parametrized by

S \ M, associated with a map %\ S \ M —^ (^(Z), let F dénote thé graph
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of x in {S \ M) x C^(Z\ pc and pg thé projections of F to C^ÇZ) and S,
ïà.c thé identity in C^ÇZ) and lastly JC := pc(r) thé set of cycles defined
by7r.

Thé map a x ïdc:T —> F, (s^X) i—^ (cr(s),X) is well-defined,
continuous, proper and surjective. Thus, thé sets of cycles defined by G
and G coincide.

It remains to show that thé continuous family of cycles (X} ^J _ v (5,x)er
defined thereby satisfies condition 2): for a point SQ G S, consider thé
neighbourhood 5'o of SQ := a(so) and thé compact set LQ of Z given by
condition 2) applied to G\ then, one can check easily that condition 2)
moves from TT (with So and I/o) to TT (with SQ := c^~l(5o) and I/o). D

Remarie. — Proposition 9 implies some properties for thé initial
map TT:

PROPOSITION 10. — Let TT : G —» S be a map satisfying (with
a nowhere dense analytic subset S of S) conditions 1) and 2) ; set
GH := TT^S^S); then ^\GH satisfies 1) and 2), defines thé same
set of cycles as TT, is quasi-proper and surjective onto S. Moreover,
7^|G'H(Deg7^[(,;^) is a nowhere dense analytic subset of S. Finally, thé
map ps : F —» S is surjective.

Proof. — Thé above construction can be applied to G, strict transform
of G by Id^; so we hâve A = 0, M = E and G = TT-^S^E) = G H ' Thé
first assertions follow. Thé assertion (ii) ofLemma 2 implies that TT\G^(GH)
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is an analytic subset of S, containing thé dense open subset S \ E by l):
so ^{GH^H) = S. Thé same assertion implies that aiso 7T|G^(Deg TT)^) is
an analytic subset of 5; since it is included in S, it is nowhere dense.

Finally, for every s e S, there exist (s,z) e G H , and a cycle X of X,
such that 2; lies in \X\ and (5,X) in F: thé surjectivity of ps:T -^ S
follows. Q

3.3.3. Local lowering of thé maximal corank. — Hère we prove thé
following resuit:

PROPOSITION 11. — Let TT : G —> S be a quasi-proper map between
analytic spaces G and S. Let SQ be a point of 7r(Deg7r) and q be
thé dimension of thé fiber Tr'^^o). Then there exists a (local) blow-up
o' '' Y —^_V of a neighbourhood V of SQ, such that thé strict transform
TT : G —> V is of maximal corank strict ly less than q.

Proof. — We develop hère thé proof of Corollary 1.2 of [Pa94] (for
other results about local geometrical flattening, see [HLT73], Theorem 2,
and [Si93],I, Lemma3.3).

We locally describe (see [Fi76], 3.3) thé map TV: G —^ S as thé
projection p of a proper analytic subset Z of thé product V x W to V,
where V is an open set of 5, and W an open set of C9. There exists an
analytic function F : V x W —> C such that Z C F'^O). We develop

V(^ )eVxW, F^t) = ̂  0^y)t^
/3ÇN1

with QO e Os (V). Let 1 be thé (proper) idéal of Os(V) generated by
thé 9/3.

Let now a : V —^ V be thé local blow-up with center J, and
p ' : Z ' —^ V be thé strict transform of p : Z —> V by a. For every SQ e V,
thé idéal (cr*J)^ of Ov^ is invertible, then principal, let's say generated
by g := Q(3o o a. For y ' near enough 59, for ail /3, we factorize

e^W))=^-W).
where 6^ is holomorphic in a neighbourhood of SQ. Thus

FW)^) = g { y ' ) • f(y\ ̂  with f(y\ t) := ̂  6^y')t^
/3GN9
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We can now check that Z1 is included in /^(O) and that / does not
vanish identically on any fiber ofj/: so

gcork^p7 < dim({î/} x W) H /"^(O) < q.

This yieids that thé maximal corank of p' over V is strictiy less
than q.

Then we globalize 'in G': thanks to thé quasi-properness of TT, ail
irreducible components of Tr-fibers over an open set VQ of SQ in S intersect
a compact set LQ of G. We cover this compact set with a finite number of
Vj x Wj\ for every j, we hâve as above an idéal Ij in Os(Vj). We blow up
V := Vbn(rij Y?) by a a : V —» V along thé idéal ([T Jj)|v; every idéal a^Ij
is still invertible (see [Hi73], Lemme 1.12.3), so thé previous resuit remains
valid, and thé strict transform TT : G —-> V of 7T|^-i(y\ : G\^-^-(y\ —> V is of
maximal corank strictiy less than g. D

3.3.4. ProofofTheorem 5. — We will prove Theorem 5 by an induction
on thé maximal corank of7r. Condition 1) implies that thé (minimal) corank
of TT is n.

Suppose first that thé maximal corank of7r is aiso n. Then, it suffices to
take thé normalization v : S —^ S', it is a proper modification (along N(S)),
so, by Proposition 9, thé strict transform (after a possible restriction to
some irreducible components) is a map satisfying conditions 1) et 2), and
of constant corank; and by Proposition 8, it defines an analytic family of
cycles without escape to infinity (thèse cycles going ail over X), and TT
defines a meromorphic family of cycles without escape to infinity.

Suppose now that thé theorem is true when thé maximal corank of TT
is strictiy less than q.

Let TT:G —^- S be a map satisfying conditions 1) and 2), let q be
its maximal corank. We can aiready work with thé map TI-J^, which aiso
satisfies 1) and 2) and defines thé same set of cycles as TT (Proposition 10).

We want to explain that F is an analytic space of finite dimension.
This is a local problem. Let (so, Xo) be a point of F; we can suppose that SQ
lies in thé nowhere dense analytic subset S D 7r(Deg9 7r) (otherwise, thé
maximal corank of TT over a neighbourhood of SQ is strictiy less than q
and one can skip thé following two paragraphs). So, q := dim TT"1^)
and \XQ\ Çp^TT'1^)).

According to Proposition 11 (we recall that ^\GH ls quasi-proper, by
Proposition 10), there exist a neighbourhood V of SQ in S (we note F y
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and Xy thé corresponding subsets of F and X) and a proper modification
a : V —» V (precisely a blow-up), such that thé strict transform TT : G —^ V
is of maximal corank strict ly less than q.

Then, thanks to Proposition 9, there exists an analytic subset G of G
such that thé projection TT : G —» V vérifies conditions 1) and 2), and defines
a set of cycles X equal to Xy, and this map TT is of maximal corank strictiy
less than q.

Thus thé induction assumption implies that TT defines a meromorphic
family of cycles without escape to infinity, that is to say, there exists
a proper modification a ' . V ' —» V such that thé strict transform
TT' : G' —» V defines an analytic family of cycles {X'^s'^v without escape
to infinity. Let \' : V —^ C^ÇZ) thé map associated with this family.
We hâve \ ' ( y ' ) = X = Xy, and, in particular, XQ = X^ for a point
^e^oar^cy'.

G' G GH|7i--i(y) z

Now, we will use again thé arguments of thé proof of Proposition 7.
For every s ' G V1\ we can choose a finite family S of scales adapted to
thé cycle X^/, and well determining thé family of cycles around it. Let
f'e^s —> Tliçi ^{^'i ^ym^Bi) be thé associated analytic map, and VQ
be a relatively compact neighbourhood of so in V. Since thé composition
a o a : V —» V is proper, so is thé map

(a o a) x ̂  : (a o a)-1^) H ̂  -^ Vo x f^V'e).
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So we can use Theorem 3.

We obtain that ^V^/^o^x / ls a ^nlte dimensional, weakiy normal
analytic space, which can be identified to a neighbourhood of (so, Xo) m T.
So this last space is provided with a finite dimensional, weakiy normal
analytic structure such that thé map ps : F —» S is a proper modification
and (X)ç^ ̂ )çp an analytic family of n-cycles without escape to infinity,
defined by thé strict transform of TT by p s ' Ail that precisely means that TT
demies a meromorphic family of n-cycles without escape to infinity. D

3.4. Universal reparametrization ofa semi-proper regular
meromorphic family of cycles.

Hère, we want to generalize Theorem 4 to thé case of meromorphic
familles of cycles. So we need to introduce regularity and semi-properness.

DEFINITION 7. — Let MKSP(7r) dénote thé set of (S, a) in M(^)
such that thé analytic family (Xg) - is regular and semi-proper, that is to

S^ij

say: thé set ^{S) C C^(Z) is regular and thé map \ : S -^ x(S) = X(7r) is
semi-proper.

Thé meromorphic family ofn-cycles defined by a map TT : G —^ S is a
semi-proper regular meromorphic family ofn-cycles of Z ifMKSP(7r) -^ 0.

First, we extend Theorem 5:

PROPOSITION 12. — Let TT : G —> S be a map satisfying condition 1)
of Theorem 5. Suppose that thé following conditions hold:

For every SQ e 5', there exist a compact set LQ of Z and a relatively
compact neighbourhood SQ of SQ in S such that, for every s e 6'o, and for
every cycle X^ ofX included in p(7^~l(s)), there exists a neighbourhood Vi
ofXi m ̂ (Z), such that

2) every irreducible component of every cycle in V\ D X intersects I/o ;

3) there exists a relatively compact open set W\ in Z, such that, if for
some cycles (X^ç^ and X in Vi H X, {Xy H W^}y^ converges to X H W^
in ̂ (TVi, Z), then (X^)^ converges to X in C^ÇZ).

Then thé meromorphic family ofn-cycles defined by TT is regular.

Moreoyer, ifpc : F —^ X is semi-proper^ then this meromorphic family
ofn-cycles is semi-proper (so MKSP(7r) ̂  0).
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Proof. — We can prove, as for condition 2) in Theorem 5, that
condition 3) moves to thé strict transforms of TT, and implies thé topological
non-escape — and so thé regularity — of thé analytic family of n-cycles we
finally obtained.

Assume that pc : F —» J£ is semi-proper. Since a x \ is proper and
surjective, thé semi-properness of ^ = pc o (o- x ;\f) cornes frorn Lernrna 1, (iii)

D

Now, we can state:

THEOREM 6. — Let TT : G -^ S be a map such that MUSP^) ̂  0,
i.e. defîning a semi-proper, reguJar meromorphic family ofn-cycles.

There exist a weakiy normal analytic space Q offinite dimension, and
an analytic family ofn-cycles (Xc)cçQ such that for every weakiy normal
space T, every map p : H —> T, where H is an analytic subset o f T x Z ^
such that M(p) ̂  0, satisfying

W C X(7T),

there exists a meromorphic map <Ï> : T---->Q, such that thé family (Yt)t is
thé pull-back of thé family (Xc)cçQ by thé analytic map (p : Gr(<Ï>) —> Q.

Proof. — By assumption, there exists a (5, a) such that thé induced
family (Xs)sls regular and semi-proper: so, by Theorem 3, Q : = S / R — can
be provided with a weakiy normal, finite dimensional analytic structure.

Let us consider now thé couple (A, a) given by Proposition 7 (TT is
such that MAf£{7r) ^ 0). Thé weakiy normal space A is homeomorphic
to F; we hâve an analytic family of cycles (^)(s,x)eA- Thé map
p c ' - A = F —^ X(7r) C (^(Z) is thé map associated with this family;
it is semi-proper (thanks to Lemma 1, (iii): indeed, \ = pc o (o- x \) is
semi-proper, with a x \ surjective); since .£(71-) is moreover regular, this
family (X)çs,x)çA ls regular and semi-proper; so we can apply Theorem 4
to it: there exist a weakiy normal analytic space Ç, and an analytic family
of n-cycles (Xc)cçç, such that for every weakiy normal analytic space B,
and every analytic family of n-cycles (Yb)b<^B (associated with a map
^-^(Z)), satisfying

$(B)Cpc(A)=X(7r),

there exists a unique analytic map (p : B —» Ç, such that thé family (Yb)bçB
is thé pull-back by ^ of thé family (Xc)ceç.
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Assume now that we hâve a weakiy normal space T, a map p : H —> T,
where H is an analytic subset of T x Z, such that M(p) ̂  0, satisfying

X(p) C X(7T) ;

that especially yieids that X(p) is regular, so without escape to infinity;
by Proposition 7, there exist a couple (B, f3) in MAfE(p') (where B is a
weakiy normal space homeomorphic to thé graph A C T x C^ÇZ)), and an
analytic family of cycles (Y)^^Y)(EB^ associated with a map ^ : B —^ C^ÇZ),
such that

m = j£(p).
Since X(p) C X(7r), we are in thé conditions, above recalled, of

Theorem 4; there exists a map (p : B —> Q, such that thé family (Y)çt,Y)^B
is thé pull-back by (^ of thé family.

G

Finally, since we hâve a proper modification f3 : B —^ T, we hâve
a meromorphic map ^:T--->Q (with Gr(<Ï>) = B), satisfying thé desired
properties. D

Remark. — We briefly explain in [Mt99] thé links between thèse
theorems and thé formerly known results about meromorphic équivalence
relations (see [Gr86], [Si93]). Hère, we oniy make thé following comments:

• thé condition of regularity that Grauert puis on thé fibration defined
by a meromorphic équivalence relation is close to thé condition 2) defined
on thé set X in our Theorem 5;

• thé condition of fibre cycle-separability defined by Siebert on thé
fiber cycle space generated by a generically open map is similar to our
condition of non-escape to infinity;
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• in our situation, we must add thé assumption 'pc : F —» X is semi-
proper\ which is more or less obvious in thé case S == Z = X (or in thé
case of familles defined by thé fibers of a map).
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