
ANNALES DE L’INSTITUT FOURIER

MARK KISIN
Prime to p fundamental groups and tame
Galois actions
Annales de l’institut Fourier, tome 50, no 4 (2000), p. 1099-1126
<http://www.numdam.org/item?id=AIF_2000__50_4_1099_0>

© Annales de l’institut Fourier, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_2000__50_4_1099_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
50, 4 (2000), 1099-1126

PRIME TO p FUNDAMENTAL GROUPS,
AND TAME GALOIS ACTIONS

by Mark KISIN

Introduction.

If U is a variety over a field F, then the geometric etale fundamental
group Tri^geom(^) gives rise to a map

p : Gal̂ P/F) —— Out(7ri,geom(^))

from the absolute Galois group of F to the outer automorphism group of
7Ti,geom(^0, defined by pulling back etale coverings ofU^p ^sep by Galois
automorphisms.

Grothendieck conjectured that when F is a number field, p should be
a strong invariant of Li, and should determine U, if the group 7i-i,geom(^)
was sufficiently far from being abelian.

The point of this paper is to study the analogous map

p : G^F^/F) -. Out(<Ln(^)),

where 7i-i,geom(^) is replaced by its maximal prime to p quotient ^[^eomW^
and the field F is assumed to be complete with respect to a discrete
valuation, and have residue characteristic p.

Keywords: Etale fundamental group - Log scheme.
Math. classification: 14G20.
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Our main results (Corollary 1.16) show for example, that when U is
smooth, and has a smooth compactification X^ with complement 2, = X—U
a normal crossings divisor in X^ and the pair (^, Z) has a sufficiently nice
integral model then p factors through a tame quotient, and in fact can be
completely characterized by the reduction of X and Z modulo TT, together
with a certain auxiliary structure (log. structure) on this reduction. For
example, if (X^Z) extends to a semi-stable pair (X, Z) in the sense of
[de Jl, 6.3] then this auxiliary structure depends only on the reduction
of (X,Z) modulo 7T2, so that p can be characterized by the reduction of
(X,Z) modulo 7T2.

The lameness result can be thought of as a non-abelian version of the
lameness of vanishing cycles for a semi-stable scheme [RZ, 2.23]. Our proof
is quite different however, since we do not have the machinery of abelian
cohomology available. In fact the author was unable to make the proof of
[RZ] go through, even though we are dealing only with the non-abelian
analogue of H1.

As applications of our results, we show that for any variety U over
F^ the wild inertia has finite image under p. Note that unlike the situation
of Galois representations on abelian cohomology, this does not seem to be
forced by purely group theoretic considerations.

Our results also cast new light on our previous work [Ki]. There we
proved that if / : X —> S is a smooth proper map of -F-schemes, with
geometrically connected fibres, Z C X a normal crossings divisor relative
to 5, and U == X — Z^ then the maps

p, : Gal̂ P/F) -^ Out(7r^(^)),

defined for each F rational point s of <S, are equal for F rational points
which are sufficiently close Tr-adically. The methods of [Kil] were entirely
rigid analytic. Here we obtain a weaker version of this result (Corollary
2.9), however the proof is entirely different, and is deduced, after some
technicalities, from the fact, mentioned above, that under suitable circum-
stances, the map p only depends on the reduction of U modulo a suitable
power of TT. Unfortunately the proof depends on the existence of a very nice
integral model for /, so that it gives the result unconditionally only in the
case of curves.

We use heavily the notion of scheme equipped with logarithmic
structure for which [Kal] is a general reference. In particular, if (X, Z)
is a semi-stable pair of Op schemes, and U is the generic fibre of X — Z,
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then a key point is to characterise the group Tr^g^(^) in terms of the log.
structure on X. Here Op is the valuation ring of F. We show that TT^Lm^)
is equal to a certain logarithmic elate fundamental group of X. Observing
that the log. structure on X can be recovered from the geometry of the
the pair (X, Z) modulo a power of TT, we obtain that Tr^gLm^) together
with the Galois action on it can be recovered from the reduction of (X, Z)
modulo the same power of TT.

In the course of relating ^geom^O to logarithmic structures, we need
an unpublished result of Fujiwara and Kato [FK], which is the logarithmic
analogue of the Zariski-Nagata purity theorem. Since we understand that
[FK] is still in preparation, and seems unlikely to appear for some time, we
include a proof here (which basically follows [FK]), for the convenience of
the reader.

Part of the proof of these results (Proposition 1.7) involves giving
an etale local characterisation of log. etale coverings for certain nice log.
schemes over Op- If X is a semi-stable Op scheme, this characterisation
can be used to relate the vanishing cycles functor to the total direct image
functor of the projection from the log. etale site to the etale site of the
closed fibre of X. The details will appear in a paper in preparation [Ki3].
Compare also [Na].

As a consequence one can show, that if / : X —> S is a proper smooth
map of F-schemes, which extends to a flat map of proper flat Op schemes
X —> S, and if the fibre over some Op valued point 5 of 5' is semi-stable,
then the Galois representations on the Z-adic {I 7^ p) cohomology of the
fibres Xf of / are isomorphic for all F-valued points t sufficiently close to
the generic point of s. This gives a different approach to the results of [Ki2]
although, as in the non-abelian case, the results are much weaker since they
require the existence of the nice integral models X and S.

Other, possibly more interesting, applications are the subject of [Ki3].
There we use the realization of the vanishing cycles functor as a direct image
functor to prove results about endomorphisms of log. smooth curves, and
in particular to prove a Lefschetz type Trace Formula, for certain types of
endomorphisms. This formula seems to suggest the existence of a theory of
cycles for log. schemes.

Acknowledgement: It is a pleasure to thank Johan de Jong for useful
conversations and encouragement during the early stages of this work,
and Luc Illusie and Arthur Ogus for discussing, and suggesting several
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1102 MARK KISIN

improvements to an earlier version of this manuscript, and making available
to me the preprint of Kato and Fujiwara. Finally, I am very grateful to the
referee who provided very detailed comments, and pointed out numerous
inaccuracies, especially in the proof of 2.4.

Revisions of this paper were completed while the author was a visitor
at IHES and later at the University of Minister.

1. Specialisation and tame fundamental group.

1.1. Let F be a field which is complete with respect to a discrete
valuation, which has residue field k of characteristic p, ring of integers
OF, and a uniformiser for TT. We give Spec(O^) the structure of a fine
log. scheme, induced by the map of monoids N —> Op-i 1 i—^ TT. In the
following we make the convention that all monoids are commutative. We
will sometimes use additive and sometimes multiplicative notation for the
monoid law.

1.2. We are going to consider log. schemes (X, M), where M is a fine,
saturated log. structure in the sense of [Kal]. We refer to such a log. scheme
as an fs log. scheme. Unless otherwise stated, we always assume that the
schemes underlying our log. schemes are locally noetherian.

An important example is given by the class of log. schemes which are
log. smooth over Op with its canonical log. structure, explained above.
By [Kal, 3.5], this means that etale locally on X, there is an etale
map 0 : X —> Spec{OF[P]/(x — TI-)), where P is a finitely generated,
integral saturated monoid, x e P, the log. structure on X is induced by
(^"^(P) —> Ox-i ^d the torsion subgroup of P^ / ( x ) has prime to p order.
Such an (X, M) is log regular by [Ka2, 8.2], and the underlying scheme X
is normal [Ka2, 4.1].

1.3. For a scheme Y we denote by Et" (V) the category of etale
coverings Y ' —> Y whose connected components are Galois of prime to p
order, and quotient coverings of these.

If Y is an F-scheme, then we set Et^(V) = lim Et^V (S)F P'),
where F/ runs through finite separable extensions of F. Note that the group
Gal^P/F) acts on Et^(V) in a natural way.

If (V, M) is a fs log. scheme denote by U C Y the open subscheme
where the log. structure on Y is trivial. We call a finite log. etale map
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(V'.M') —> (Y,M) prime to p if its restriction to U is in Et^^/). We
denote by Et^V, M) the category of fs log. schemes (V, M') —> (V, M)
over (V, M) which are finite (on the underlying schemes) log. etale, and
prime to p.

Now suppose that (V, M) has the structure of an fs log. scheme over
OF. We set Et^^(r,M) = Inn^Et^^^M) Xspec(o.) Spec(O^)),
where F ' runs over finite, separable, tame extensions of F. Here Op' has its
canonical log. structure, generated by a uniformiser, and (Y,M) XspecfOp)
Spec(0p/) denotes the fibre product in the category of fs log. schemes. As
above, there is a natural Galois action on this category.

For (V, M) as above, we denote by (Vg, Ms) the special fibre of (V, M).
The main point of this section is to prove the following theorem.

THEOREM 1.4. — Suppose that (X, M) is log. smooth and proper over
OF, with geometrically connected generic fibre, and denote by U the open
set of X where the log. structure M is trivial. There are equivalences of
categories,

^geon^^) —— Et^^^M) —— Et^([7).

These equivalences are compatible with the Galois action on both sides. In
particular the Galois action on the right hand side factors through a tame
quotient.

1.5. The proof consists of three parts. The first, contained in Propo-
sitions 1.7 and 1.10, shows that there is an equivalence Et" (X,M) —^»
Et^ \U). The second is Proposition 1.15, which shows that every object
of Et^o^(£/) is in fact defined over a tame extension of F. This proves the
second equivalence in the theorem. Finally, we show the first equivalence
by a lifting, and algebraisation argument.

Theorem 1.4 allows one to show that, for example, if M is trivial away
from the special fibre, and X is semi-stable then the category Et"^(?7)
depends only on the first nilpotent neighbourhood of the special fibre Xs of
X. That is, Et^o^((7) depends only on the reduction of X modulo 7r2. The
reason for this is that the reduction of X modulo 7r2 completely determines
the log. structure on Xs, (see 2.4), and hence the left most term of 1.4.1.

For applications the semi-stable case is the most important, and some
of the proofs simplify in this case, however it still seems necessary to use
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1104 MARK KISIN

the machinery of log. structures to obtain our results, even in this simple
case.

1.6. If P is a finitely generated, torsion free, saturated monoid, and
q is a positive integer, then we denote by ]- P the monoid

l P = { x e P g p ( S ) z Q : x q e P } .
q

We consider finitely generated, saturated monoids Q, with P C Q C ^P.
Such a Q is automatically integral.

Note that as Q is torsion free, Z[Q] ls normal (for example, because
it is log. smooth over Z with its trivial log. structure, hence log. regular)
By [Kal, 3.5], the map Z[P] —> Z[Q] is log. etale over points of Spec(Z)
where q is invertible.

A map / : (V, N) —> (X, M) of fs log. schemes is called Kummer
etale if etale locally on X it has a chart

(P^__M,Qy—.7V,P-^Q),

with P,Q finitely generated, integral, saturated, and torsion free, P C
Q C ^-P for some integer q, which is invertible on X, and the map
Y —> X Xspec(Z[p]) Spec(Z[Q]) is etale (in the classical sense). Note that
this implies that / is log. etale, and quasi-finite on the underlying schemes.

If the map / above is finite, we say that Y is a Kummer covering of
X. If Px = {1}, and V = X Xgpec(Z[p]) Spec(Z[Q]), then Y -^ X is called
a standard Kummer covering. If / is finite on the underlying schemes, and
is Kummer, then etale locally on X, (V, N) —> (X, M) is a disjoint union
of standard Kummer coverings. Indeed, the proof of 1.7 below shows that
we can always choose P such that Px = {1}, and then the result follows
by replacing X by its strict henselisation at a point.

PROPOSITION 1.7. — Let f : (V, N) —> (X, M) be a quasi-finite, log.
etale map of fs log. schemes. Then f is Kummer etale.

Proof. — If TV is a scheme, and S a monoid, we denote by Sw the
etale sheaf of monoids with constant value W. Fix a chart (defined etale
locally) X —> Spec(Z[P]), with P finitely generated and saturated. Denote
by Px the group of invertible elements of P. As P§P/PX is a free abelian
group, the projection P^ —> p s p / p x admits a section, which induces a
section to P —> P / P ^ . Thus we may regard P/PX as a submonoid of P,
and this induces an isomorphism P —^ P/PX Q) Px. One sees from the
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definition of associated log. structure, that P / P X —^ P —> MX is a chart.
Thus we may assume that Px = {1}.

We apply [Kal, 3.5] which tells us that we can find a chart

(P^ — M,Qy — 7V,P — Q),

with Q a finitely generated, saturated monoid, such that P^ —> Q^ is
injective with finite cokernel whose order is invertible on X, and the map
Y —> X XspecZ[p] SpecZ[Q] is etale. Now the proof in [Ka, 3.12] shows
that actually, we may take Q to be a submonoid of (Z7' © P^) 0^ Q (note
however that the roles of P and Q are exchanged in loc. cit.). In particular
we may assume that Q is torsion free.

Now for some integer g, which is invertible on X, the map P^ —>
^-P^ lifts to Q^. Indeed, since P^ —> Q 0z pgp ^ts to a map
QSP —^ Q (g)^ P^. Since Q is torsion free, the map QSP —> ^-P^ is
injective. As the cokernel of P^ —> Q^ has order invertible on X, we may
assume that q is invertible on X.

For a ring R and a subring S we denote by n(5', R) the integral closure
of S in R. Let

Q^=Q^lP=QSP^lp^ IpgP^

q q Q

where the second equality holds as Q is saturated. Since, n(Z[P], Z[1 P^]) =
ZpP], we have

^(ztPi.zOT) = z f^pl HZOT = z[Qi].

In particular this shows that Z[Qi] is a finite Z[P] module, so that Qi is
finitely generated. We remark that if g C Q^, then there is an h € P such
that {ghY € P, so that gh € Qi. This shows that Q^ = QfP.

Put TV = X Xspec(Z[p]) Spec(Z[Qi]), W = X Xspec(Z[p]) Spec(Z[Q]).
We have a commutative diagram with cartesian squares:

Y —> W —> W —> X

I I I
Spec(Z[Q]) —> Spec(Z[Qi]) —> Spec(Z[P]).

Since Y —> X is quasi-finite, and Y —^ W is etale, the map
Spec(Z[Q]) —> Spec(Z[Qi]) is quasi-finite, over points in the image of
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1106 MARK KISIN

V —> Spec(Z[P]). Thus, by ZariskPs Main Theorem, [EGAIV, 8.12.6], this
map is an open immersion over such a point, since both Z[Q] and Z[Qi] are
normal with the same field of fractions. This shows that Y —> W is etale.

I claim that the restriction to Spec(Z[Q]) of the canonical log.
structure on Spec(Z[Qi]) is equal to the one induced by Q, over points
in the image of Y —> Spec(Z[P]).

Assume this result for a moment. Then P —^ Qi is chart for /. We
have seen that Q\ is finitely generated, and it is integral and saturated by
construction. Thus we may replace Q by Qi, and assume that Q C ^-P.
The proposition follows.

It remains to show the claim above. I am grateful to the referee for
providing the following short argument, which is more transparent than
my original one.

Let (? € Spec(Z[Q]) be a point over which Z[Qi] —^ Z[Q] is an open
immersion. Let (p) = Z D y, and p the image of ̂  in Spec(Fp[Q]). Denote
^ 9 : ^p[Qi] -^ ^p[Q] the induced map (if p = 0, replace Fp by Q here
and above). Set Sp = Fp[Q] — p. It is enough to show that the induced map
h: Qi/(Qi n5p) —^ OAQnSp) is an isomorphism, h is clearly injective, so
it remains to show surjectivity. Let r C Q. Since Fp[0i](^-ip) -^ Fp[0](p),
there exists a G Fp[Qi], and s € ^(-Sp) such that Cr • s = a e ¥p[Q}. Write
a = EpeQi ^p6^ s = SpcQi ̂ P- since ^(s) c ^P^ we have ^po ^ ° for

some PQ C Qi D 5p. As

^ UpCp = e^ ̂  n^p ) = ̂  ^e?+^
peQi ^peQi / peQi

we see that nr+po T^ O? an^ m particular r +po ^ Oi- As /i(r -1-po) = ^5 the
claim follows. D

1.8. We define an fs formal log. scheme (Y,N) to be an inductive
limit of fs log. schemes \im(Yn,Nn), with strict transition maps, such that
limYn is a formal scheme. If Z is a sheaf of ideals of definition of V, we
denote by ( Y , N ) / I the scheme Y/I with fs log. structure induced by N
(i.e by Nn for n sufficiently large).

Let (Y,N) be as above and (X,M) = lim(Xy.,My) another fs formal
log scheme. A map of fs formal log. schemes (f>: (X, M) —> (V, N) is called
Kummer etale, if
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TAME GALOIS ACTIONS HQ7

(1) If Z is a sheaf of ideals of definition on (V, N), then ̂ (I) is a
sheaf of ideals of definition on (X, M).

(2) For some I as in (1), the map {X, M) / (f)-1 (X) -^ ( Y , N ) / I is
Kummer etale.

An easy argument using the lifting property of log. etale maps, shows that
if the condition in (2) is satisfied for one choice of I then it is satisfied for
all such choices.

We remark that we will occasionally need to use a variant of 1.7,
where Y and X are formal schemes with log. structure rather than schemes!
The proof of this variant is easily reduced to the case of log. schemes, by
reducing modulo an ideal of definition, and applying 1.7.

Similarly the following result 1.9 is stated for schemes, but also holds
for formal schemes, with the same proof.

PROPOSITION 1.9.— Let (X,M) be a log. regular and X —>
Spec(Z[P]), a chart. Let q be a positive integer, which is invertible on
X. Take a monoid Q with P c Q C ^P which is finitely generated, and
saturated. Write XQ = X Xspec(Z[p]) Spec(Z[Q]), where the product is take
in the category offs log. schemes. Then

(1) Komx(XQ,XQ) = Autx(Xo), (morphisms as classical schemes)
and every element of Autx(Xo) is induced by multiplying homogeneous
components ofZ[Q] by q^ roots of unity. In particular Autx(Xo) is an
abelian group.

(2) If W is a normal scheme, which is finite over X, and there is a
factorisation XQ -^ W -^ X, with h surjective, then there is a unique
finitely generated, saturated monoid Q' with P c Q' C Q, such that

W-^X Xspec(Z[p]) Spec(Z[0/]),

and the map Xq —.W is induced by the inclusion Q' c Q.

(3) etale locally we have Q/ = Q11, with H = AUI^(XQ) (automor-
phisms as classical schemes).

Proof. — (1) The claim that endomorphisms of XQ over X, are in-
duced by multiplying homogeneous components of Z[Q] by roots of unity
implies that Romx(XQ^XQ) = Autx(Xo). To see that all the endomor-
phisms have the required form take x C Q, and a e ROTHX^XQ.XQ). By
[Ka2, 11.6], P c Ox and Q c Ox^ so we may view a(x)x-1 as a section
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of OXQ\U^ where U denotes the dense open set where the log. structure on
X is trivial. As a is a map over X, and a;9 e P, (crf^)^"1)9 == 1, whence
a(x)x~1 is a section of OXQ, as XQ is normal, and it is evidently a root of
unity.

(2) The uniqueness of Q' makes its existence etale local, thus we may
assume that X == Spec(A) is a domain, and contains /^, the group of ^th

roots of unity. Write XQ = Spec(Ao). As A contains /^, the extension
of rings of fractions Fr(A) C Fr(Ao) is Galois, and abelian, with group
of automorphisms G. In fact (1) gives an embedding G C {^iqY for some
integer d. As W = Spec(B) is normal, we have B = (A^)^, for some
subgroup H C G.

By (1), there is a pairing QSP/PSP x Q —> /^. In fact this is a perfect
pairing, since

|Qgp/pgP| ^ \G\ ̂  deg(Fr(AQ)/Fr(A)),

and if g € G with (g,p) = 1, for every q e Q^, then g is the identity by
(1). Set

Q' = {q C Q : {q,h) = l,/i € H} = ^Pn {q € Q^ : (q,h) = l,/i € ^}.

One sees immediately that Q' is integral and saturated. As Z[P] C ^[Q'} C
Z[Q], Z[Q'] is a finite Z[P] module, so Q' is finitely generated.

Clearly, the normalisation AQ/ of A(g)^p] Z[Q'] is contained in B, and
we have to show that AQ/ = B. Using the above perfect pairing, we see
that AutAQ,(Ao) = H, so by Galois theory AQ/ = {Aq)11 = B.

Finally, for the uniqueness of Q ' , note that any other monoid Q" with
AQ// = B, must satisfy Q" C Q ' , since B is fixed by H. If Q" is saturated,
then since Q" C Q' C ^P, to show Q" = Q', it is enough to show that
(Q'^gP = (Q')SP. Replacing G by JJ, and P by Q" we may assume that
P = Q". In this case (Q'}^ is fixed by G, and the perfect pairing discussed
above shows that P^ = (Q')^-

The last claim has already been shown above. D

PROPOSITION 1.10.— Let (X,M) be a log. regular log. scheme, and
denote by U the open subset ofX where the log. structure becomes trivial.
Let p be a prime, and suppose that every integer which is coprime to p is
invertible on X. There is an equivalence of categories ^>p : Et^ ^ (X, M) -^
Et^ \U)^ given by restriction of coverings to U.
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Proof. — By descent, the full faithfulness is local in the etale topology
of X, so we may assume that, in our previous notation, there exists
a chart X —^ Spec(Z[P]), with P finitely generated, saturated, and
torsion free. Let q be a positive integer, which is invertible on X. Set
Xq = X Xgpec(Z[p]) Spec(Z[^P]) with the obvious log. structure.

First we claim

^o^(x,M)(Xq,Xq) -^ Komx{Xq,Xq) -^ Homu(Xq\U,Xq\U).

Here the first term means maps as log. schemes. The second equality
follows immediately because Xq is normal, and the first from the explicit
description of the automorphisms (as a classical scheme) ofXq over X, given
m 1.9: As these are all induced by multiplying homogeneous components of
^[ q p] by suitable roots of unity, they automatically respect log. structures.
On the other hand a morphism of log. schemes Xq -^ Xq over X, is
determined by its map of underlying schemes, because MX C Ox , as
noted above.

Now let (yi,M),(y2,^2) be objects of Et^X.M), and suppose
we have a map hu :Y^\U —> Y^U over U. By the remark preceding 1.7,
we may assume that Vi = XQ,, Y^ = XQ, with Q^Q^ C |P finitely
generated, integral, and saturated, the notation being that of 1.9. h is
covered by a map Xq\U —> Xq\U, which extends to map of log. schemes
x^ —^ xq' on ^e other hand, since Vi and Y^ are normal, hu extends to
a map of schemes h : Vi —> Y^. Thus, we have a commutative diagram of
schemes:

Xq ——> Xq

I I

Y, -^ V2.

The vertical maps are induced by the inclusions Qi,Q2 C ^-P
hence they come from maps of log. schemes, by construction, and the Lp
horizontal map does also, by the discussion above. It follows, by 1.9(3), that
h comes from a map of log. schemes, which proves the full faithfulness.

For the essential surjectivity we need the following result of Fujiwara
- Kato.

PROPOSITION 1.11 (Fujiwara-Kato).— Let (X,M) be log. regular,
and V C X open, such that X - V has codimension at least 2 at every
point ofX. Denote by My the restriction ofM to V. If (W, N) —> (V, My)
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1110 MARK KISIN

is a Kummer covering, then (TV, N) extends uniquely to a Kummer covering
of(X,M).

Given this proposition we may prove the essential surjectivity of 4>j?
as follows. Suppose that U ' —> U is etale, Galois of order prime to p. Since
X is normal, it is regular at all its codimension 1 points, and U ' extends to
a Kummer covering over these points. Hence, by the proposition it extends
to a Kummer covering of (X, M). D

It remains to prove 1.11. We remark that although the proof in the
general case is a little delicate, the case of interest in the applications will
be that of semi-stable schemes, and their base changes by extensions of
valuation rings. In this case the proof is much easier, since locally such
schemes are quotients of regular ones by a finite group action, and 1.11
can be proved by pulling coverings back to these regular coverings, and
applying the usual Zariski-Nagata purity theorem [SGA2, X Thm 3.4].

Proof of 1.11. — We may assume that X is the spectrum of a strictly
henselian local ring A, with closed point x. We may assume that W is
connected. Fix a chart X —> Spec(Z[P]) with P -^ (M/0^ (compare
with the proof of (1.7)). We proceed in several steps.

Step 1.— If Q is a finitely generated, integral, saturated monoid
with P C Q C ^-P, for some positive integer q (which we do not assume
invertible on X) then we may replace X by XQ = X Xgpec(Z[p]) Spec(Z[Q])
and W by the normalisation WQ of W Xspec(Z[p]) Spec(Z[Q]). In particular,
we may suppose that the map W —> V is finite etale.

Indeed, suppose that WQ extends to a Kummer covering YQ of XQ.
Then after replacing Q by a larger monoid having all the same properties,
we may assume that YQ is etale over XQ. In fact the components of YQ are
of the form XQ^ for various monoids Qi C P^ 0^ Q^ ^d it is enough to
replace Q by the saturation of Q in ̂  Qf C P^ 0z Q.

As X is strictly henselian this implies that YQ is totally split over
XQ. Let W be the normalisation of X in W. Since W is connected, so is
W', whence it must be a quotient of XQ. Let p be a prime factor of 9, which
is not invertible on X, and write

Q' = {x € Q : X71 € P, (n,p) = 1}.

Consider the factorisation XQ —> XQ' —> X. Write XQ = Spec(Ao),
XQ' = Spec(AQ/), and W = Spec(B). Consider a height 1 prime p of X
over p. The extension (AQ/)?/? —> (Ao)p/p is purely inseparable, so that
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(AQ/)? contains the maximal etale Ap subalgebra of (A^)?. As Ap —> Bp is
etale this implies that Bp C (AQ/)?. Taking the normalisation of A in both
sides, we get B C AQ', so that W is a quotient of XQ>. Replacing Q by Q',
we may assume that Q C ^-P^ with ^ invertible on X. Hence by (1.9(2)),
W is a Kummer covering.

Step 2. — dimX = 2. Consider any finitely generated integral monoid
P such that P" = {1} and such that P^ has rank 2. If ei,62, es e P are
part of a set of g generators for P and generate P^ as a group, then we
have e§ = e^e^ for suitable integers a,&,c. After relabelling 61,62,63 we
may assume that a,6,c are non-negative. Since P x = { l } c > 0 . Thus if
we denote by P ' by the monoid generated in P^ 0^ Q by P, e^0 and e^,
then P7 is generated by g — 1 elements. If P ' is generated by two elements,
then P' —^ N2. Thus repeating the above construction, we arrive at a map
of monoids P —> P ' —> PSP (g^ Q, with P' -^ N2, and (P')71 C P for
some integer n.

We apply this to the case dimX = 2, and the chart X —> Spec(Z[P]).
By Step 1 we may assume that W —> V is etale.

By [Ka2, 3.2] the completion Ox,x is isomorphic to J?[P]/(0), where
R is a regular local ring, and 0 € -R[P| has constant term in mp\m2^ (mn
is the radical of R). It follows that if P is a free monoid, then X is regular.

If the rank of P^ is less than 2, then P —^ N and X is regular at x.
If the rank of P^ is 2 we apply the preceding discussion. By step 1, we may
replace X by Xxspec(Z[p])Spec(Z[P']), and W by Wxspec(Z[p])Spec(Z[P']).
Thus we may assume that P —^ N2. Hence, we may assume that X is
regular. However in this case the result follows by the Zariski-Nagata purity
theorem.

Step 3.— dimX ^ 3. By step 1, we may assume that W is etale
over V.

Let p be a prime ideal of M\ of codimension 1, and consider
X = Spec((9jc,a;/p) with its canonical log. regular structure M^ induced
by pulling back Mx\p ([Ka2, 7.2]). Set V = V Xx X, and similarly for
W. By the induction hypothesis, W extends to a Kummer covering of X.
Thus, if we replace P by ^-P, X by A^ip, W by W].p and p by a prime

Q q q

ideal of MX ̂  lying over p (notation as in step 1), for a suitable q which
~q _

is invertible on X, we may assume that W extends to a finite etale cover
YofX.
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Since X is the spectrum of a strictly henselian ring, V is a disjoint
union of trivial coverings. If X, V and W denote the completions of X,
V and W respectively along p, then this shows that TV is a disjoint union
of trivial coverings of V. Thus TV is a disjoint union of trivial coverings
of V by [SGA2, X 2.2,2.3], and thus trivially extends to an etale covering
ofX. D

1.12. We will need the following formal version of 1.10. Let (X, M)
be log. smooth over Op^ and denote by X the Tr-adic completion of X, and
by U^ the Tr-adic analytic space associated to U. We equip X with a log.
structure Mjc, by pulling back the one on X via the map of locally ringed
spaces X -> X. We define the categories Et^X.Mje) and Et^^),
as for schemes. Namely Et^ ̂ (U^) consists of analytic spaces V, equipped
with a finite etale map to [/an, such that each connected component of V is
a quotient of a Galois covering of U^ of prime to p order, and Et^ } (X, Mje)
consists of formal schemes (^Q,N) equipped with a fs log. structure and a
finite, log. etale map to (X,M^), whose restriction to U^ is an object of
Et^^).

Then the functor

Et^^X.M^-Et^^)

is fully faithful. The proof is identical to that of the full faithfulness in
1.10, using Remark 1.8. We ignore the question of whether this functor is
an equivalence, as it will not be needed.

We now turn to the second part of the proof of Theorem 1.4, as
outlined above. Namely, showing that for smooth .F-schemes, with log.
smooth OF compactifications, etale prime to p covers are all defined over
tame extensions. The following easy lemma will be useful

LEMMA 1.13.— Let U be a scheme of essentially finite type over
F. Let F ' / F be a Galois, totally ramified extension ofp power order. If
Uf = U <^>F F^ is connected then the functor

Et^^^^Et^7)

is fully faithful.

Proof. — We may assume that F ' J F has degree p. For an object V
of Et^t/) denote V ^p F ' by V. If V, W are in Et^^), then we have

Hoim/(y, TV) = Homy(V, V Xu TV),
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and if V is connected, then the latter set is simply the number of connected
components of V Xjj W which have degree 1 over V. Thus the lemma
will follow if we can show that any connected object in Et" (U) remains
connected after the base change ^ p F ' .

Suppose V is a connected object. Gal^'/F) acts transitively on the
connected components of V, so if V is not connected, it must split into
p components each isomorphic to V. This gives us a map V —> Spec(F'),
whence a map of U schemes

V —> U (S)F F ' = U ' .

As the latter is connected, this map must be a surjection, as it is etale.
However that is impossible, as the degree of V over U is prime to p. D

LEMMA 1.14. — Let (V, My) be a log. smooth Op scheme, and denote
by (X, Mx) the spectrum of the strict henselisation ofY at an etale point x
over a closed point of the special fibre ofY, with the induced log. structure
MX' Let F ' be a finite, Galois, totally ramified extension of F, ofp power
order. We give Op' its canonical log. structure. For a Kummer covering
(Z,Mz) —— (X.Mx) write (Z'.M^) = (Z.Mz) Xspec(^) Spec(O^),
where the product is taken in the category of fs log. schemes.

The functor which assigns (Z',M^/) to (Z,Mz) induces an equiva-
lence of categories between Kummer coverings of (X,M^) and Kummer
coverings of {X', MX')-

Proof. — First we show that the functor is fully faithful. Denote by U
and V the dense open subschemes of X and X' respectively over which the
log. structures are trivial. Consider the functor which takes a finite etale,
prime to p covering W —> U to the covering W = W 0^ F ' —> U ' . By
the full faithfulness in 1.10, it is enough to show that this functor is fully
faithful. Hence by Lemma 1.13, it is enough to show that V is connected.

We may assume that F/ has degree p over F. Then, as in 1.13, if V
is not connected, it splits into a disjoint union of p copies of [7, and we
obtain a map U —> Spec^'). As the generic fibre Xrj of X is normal, this
induces a map Xr, —> Spec^'), whence a map X —> Spec(0^/), as X is
normal. It will suffice to show that no such map exists.

Let S = Spec(C^), S ' = Spec((^p/) endowed with the canonical log.
structure, and S^^ = Spec(O^) endowed with its trivial log. structure.
Finally, denote by TT' a uniformiser of O p ' - Let f(X) e Op[X] be a minimal
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polynomial for TT'. We have

(^/'(TT'))^'/^ = /'(TT')^ = df^) = 0 G ̂ 5.

Since / is the minimal polynomial for TT', and Ox is a domain, we have
7IJ'/(7r/) 7^ 0 ^ ^x, so dTT'/Tr' = 0 € ^/5, because i^x/s is a free ̂
module. It follows that there exists a € Ox 5 such that dTT'/TT' = ad7r/7r 6
O^/5'triv .

On the other hand we must have TT = Tr'^n for some u € 0^,. Writing
u = S^o^71''^ ^ere a^ € C^, we see that du = bd^' e a;^,^^. Thus
we have

dTT/TT = pdTT'/TT' + d^/H = (? 4- U^bTT^dTT'' /IT'

= (ap + au~lb7^/)d7^/7^ G ̂ /^triv.

Now ^j^/^triv is a finitely generated Ox module, hence is Tr-adically
separated. As (ap + au~lb7^f)p is divisible by TT, we conclude that dpr/Tr =
0 C a;^/^^^- But X is log. smooth and faithfully flat over 6', so ^g/gtr-iv C
^igtriv by [Kal, 3.12]. It follows that d7r/7r = 0 € d^^riv, a contradiction.

Next we prove the essential surjectivity. We keep the above notation.
Consider a Kummer covering

(Z'.MzQ—(X',MxQ.

We have to show that Z ' is defined over (X,M). By 1.9, and the full
faithfulness above, it is enough to show that { Z ' . M z ' ) is dominated by a
Kummer covering defined over (X,M). By 1.10 it is enough to show that
the etale covering Z'\u1 —> U ' is dominated by an etale covering defined
over U.

Now let P C Ox be a chart for X, with TT € P. The submonoid
P ' C Ox' generated (as a fs. monoid) by P and TT' is a chart for X ' . By
1.7 Oz' ^>o^, Ou' is contained in an Ou' algebra obtained by adjoining 9th

roots of elements of P', for some integer q which is invertible on X. Thus
it is enough to show that 7T'1/9 is contained in the Ou' algebra generated
by adjoining Tr1/9.

Choose positive integers a, b such that ap — bq = 1. We have

^l/q ̂  ^ap/q-b ̂  ̂ /9^-a/g^-^

Since Ox' is strictly henselian, we have n1/9 € O x ' ^ and the result
follows. D
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PROPOSITION 1.15.— Let {X,Mx) be a proper log. smooth Op
scheme, with geometrically connected generic fibre, and denote by U C X
the dense open subset, where the log. structure is trivial. If F ' is a
finite Galois, totally ramified extension of F ofp power order, then the
base change functor Et^LQ —> Et^l/) 0^ F/ is an equivalence of
categories.

Proof. — The full faithfulness follows from 1.13, as U is geometrically
connected.

Write {X'.Mx') = (X,M) Xgpec(0j.) Spec(0j<v), where as usual the
product is taken in the category of fine saturated log. schemes. By 1.10
any object of Et^ \U 0p F ' ) extends uniquely to a log. etale covering of
(X', MX')' Let (Z7, Mz') be such a covering. By Lemma 1.14 for each etale
point x € X, over the special fibre, { Z ' . M z ' ) descends to a log. covering
of (X, Mx) in an etale neighbourhood of x. By the full faithfulness of 1.14
and properness of X, these descended objects glue into a finite log. etale
covering of (X, Mx), and it clearly has prime to p order if the original log.
covering does. D

Finally we come to

Proof of Theorem 1.4. — Write Et^(^) = 1™ Et^^) (g)^ Ff',
<— F '

where F/ runs through tame Galois extensions of F. We have equivalences
of categories

^.^X,M) —— tt^l(t7) -^ Et^L(^).

Indeed the first equivalence follows from 1.10, and the second from 1.15.

It remains to show that the functor

^eon ,̂ M) - Et^^(^, M,)

induced by restriction to the special fibre is an equivalence. Let X be the TT
-adic completion of X. We give X a log. structure Mje by pulling back the
log. structure on X via the map of locally ringed spaces X —> X.

We claim that the pullback functor Et^X.M) —> Et^^X.Mjc)
is an equivalence of categories. Using the full faithfulness of 1.10, and its
formal analogue 1.12, we see that to check that our functor is fully faithful,
it is enough to check that the functor Et^^) -^ Et^^E/^) which takes
a covering of U to its associated rigid analytic space is fully faithful. This
is well known [Lut].
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We check essential surjectivity. A log. covering of (X, Mje) induces a
finite etale, Galois, prime to p map of rigid analytic spaces W^ —> U^,
where [/an denotes the rigid analytic space associated to U. By [Lut] W^
comes from an algebraic covering W, which extends to a log. etale covering
of (X,M) by 1.10. We have to check that the Tr-adic completion of this
log. covering is isomorphic to the original log. covering of X. However this
follows from the full faithfulness discussed in 1.12, since the two coverings
give the same etale covering of ^/arl, by construction.

By [Kal, 3.14] the functor

Et^^X.M^-Et^^.M,)

induced by reduction modulo TT, is an equivalence of categories.

Now the theorem follows by making the same argument for
(X, M) Xspec(o^) Spec(C^v), for each finite separable extension F ' of F. D

COROLLARY 1.16. — If(X, Mx) and U is as above, denote by TT^ (£/)
the maximal, prime top quotient of the geometric etale fundamental group
ofU. Then the canonical map Gal(F/F) —> Out (TT^ (£/)), kills the wild
inertia subgroup. This map is determined by the reduction of the log.
scheme {X,Mx) modulo TT.

Proof.— Immediate from 1.4. D

2. Applications.

THEOREM 2.1. — Let U be a variety over F. Under the map

G^F^/F) -. Out(7r^Ln(^)),

the image of the wild inertia is finite.

Proof. — By Nagata's compactification theorem, we may embed U
as an dense open subvariety of a proper variety X. Put Z = X — U.

By [deJl, 6.5], after replacing F, by a finite extension, we may assume
that there exists a smooth, proper variety X' ^ and a proper dominant map
/ •• ^ ' —> X such that / is generically finite, Z' = / ^ ( Z ) is a normal
crossings divisor in X ' , and the pair {X\ Z ' ) extends to a semi-stable pair
of (Dp schemes {X1', Z ' ) . That is, X' is regular, and if X^ denotes the special
fibre of X ' , then X'g U Z is a normal crossings divisor in X ' .
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Let W be a geometrically connected object of ^t^om^)5 ^^^h ls

also Galois. By (1.4) /*(W) is defined over a tame extension of F. After
replacing F by a finite separable extension, we may assume that the
connected components oiU" = X1 x^ X'\u, are geometrically connected.
Having made this extension, we claim that W is actually defined over a
tame extension of F^ which will prove the theorem. (Note that X' may no
longer have semi-stable reduction after replacing F by the above extension,
however in the following we only use the fact that /*(W) is defined over a
tame extension, which remains true.)

Since /*(W) is defined over a tame extension of F, after replacing
F by a tame extension, we may assume that there is an etale, prime to p
Galois covering V of U' = X' — Z ' which becomes isomorphic to /* (W)
after a finite extension of F.

Denote by pi and p2 the two projections oiU" to U ' . P^(V) and p^(V)
become isomorphic after a finite extension of scalars, and this isomorphism
satisfies the usual cocycle condition. As the connected components of U"
are geometrically connected, this isomorphism is actually defined after a
tame extension by 1.13. Thus, replacing F by a tame extension, we may
assume that p^(V) —^ P^(V\ satisfying the usual cocycle condition.

Using [SGA1, IX 4.12] we may descend V to a finite etale covering
W4' of U. By construction there is a finite separable extension E / F such
that W is defined over E, and W+ 0p E -^ W.

Thus W"^ is a finite, connected etale covering of U^ of prime to p
order. By descent, the Galois automorphisms of V descend to W4" if and
only if their pullbacks via p\ and p^ are equal. However this condition
must be satisfied, as it is after a finite extension of scalars, so W4' is Galois
over U. D

2.2. As a second application of the results of §1, we recover some of
the results of [Kil]. Let / : X —> S be a smooth proper map of finite type
F schemes, with geometrically connected fibres. Let Z C X be a normal
crossings divisor relative to S. Put U = X — Z.

In [Ki] we showed that under quite general hypotheses the maps

p, : Gal̂ P/F) —. Out(7r^Ln(^))

were equal for sufficiently nearby F rational points s of S. Here we give a
different proof of this sort of result in certain cases.
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The idea of the argument is as follows. Suppose that / : X —> S
extended to a proper map / : X —> S of Op schemes, and put Z equal
to the closure of Z in X. We assume that Z is a normal crossings divisor
in X relative to S. This means that for each point z € Z, there is an etale
neighbourhood of X, h : W —> X, and an etale map g : W —^ A^ such that
h~l(Z) is the preimage under g of a normal crossing divisor in A^ cut out
by a product of co-ordinate functions.

Suppose that for each Op valued point s of S, the pair (Xg.Zs) is
semi-stable. By 1.16 the map Gal(F/F) —> Out(7r^g^(Z^)) depends only
on the special fibre of Xs equipped with its log. structure. It turns out that
this log. structure depends only on the reduction of Xs modulo 7r2. Thus
OF valued points which are sufficiently close TT- adically will give rise to
the same maps.

We will prove the result under the weaker hypothesis that we have
the situation described above only after a finite extension of scalars.
Unfortunately even this is only known if the fibres of / are one dimensional.

In a positive direction we show that if / is flat, and the pair (Xs, Zs)
is semi-stable for some Op valued point s, then (Xt.Zf) is semi-stable for
all OF valued points t sufficiently close to s.

2.3. For technical reasons we deal with a slightly more general class
of schemes than semi-stable ones. Fix a positive integer n, and denote by
P the monoid

P = (ei , . . . e^+s, u; e^+i . . . e^s = ̂ n).

Then Op[P}/{u — 7r) is log. smooth over Op. We call an Op log. scheme
(X,Mx) n-semi-stable if etale locally, it admits a smooth map X —>
Spec{Op[P}/{u — 7r)), which is induced by a strict map of log. schemes.

A technical advantage of n-semi-stable log. schemes, is that if F '
is a finite extension of F, then the underlying scheme of the product
(X, Mx) Xspec(o^) Spec(0pf) coincides with the ordinary scheme theoretic
product X Xgpec(o^) Spec(0pf) This is certainly false for general log.
schemes which are log. smooth over Op, since in general one has to take
the normalisation of the scheme theoretic product.

We can express the definition of n-semi-stable log. schemes more
scheme theoretically as follows. Let X be an Op scheme, and Z c X a
closed subscheme. We call the pair (X, Z) an n-semi-stable pair if etale
locally, there exists a smooth map (f) : X —> Spec(0^[P]/(n — 7r)) such
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that Z = ^"^(^(ei... e^)). Pulling back the log. structure induced by P,
we obtain etale locally on X an n-semi-stable log. structure. By [Ka 2, 11.6]
any log. regular structure on X is determined by the underlying scheme X,
together with the open subset U C X, where the log. structure is trivial.
In our situation, U is given by the complement of Z and the special fibre
of X. Hence the log. structures we have obtained, are independent of the
chosen map ^>, and therefore glue into a log. structure on X, determined
by the pair (X, Z). Conversely, given an n-semi-stable log. scheme, we get
an n-semi-stable pair, by taking Z to be the closed subscheme of X locally
cut out by the product e\... 67.. Alternatively, we can define Z globally, as
the complement of the open subset of X, where the structural morphism
(X,M) -^ (Spec(0F),N) is vertical [Na2, 7.3].

For n-semi-stable schemes, we can show that the reduction of the log.
scheme (X, Mx) modulo TT depends only on the reduction modulo a finite,
explicitly computable, power of TT of the underlying schemes (X,Z). This
should be true more generally for log. smooth log. schemes. See [Ki3], Prop
2.3 for the case of vertical log. structure.

Let us denote by (X^.Z^), and (X^.MJ^) the reductions mod-
ulo Tr^1 of (X,Z) and (X.Mx) respectively.

PROPOSITION 2.4. — Let (X, Z) be an n-semi-stable pair, and (X, Mx)
the corresponding log. scheme. Then the reduction of (X, Mx) modulo TT
is completely determined by (X^, Z^).

More precisely, suppose that (Xi,Zi) (Xa.Zs) ^r^ n-semi-stable
pairs, and denote by (Xi, Mx^) and (Xs, Mx^) ^ne corresponding log.
schemes. If

^ . ryW yW^ ^ , (yW '7W\
9 ' 1^1 5^1 ;——> \^2 5^2 )

is an isomorphism of pairs of underlying schemes (i.e an isomorphism
of X}^ and X^ taking Z^ onto Z ^ ) then there exists a unique
isomorphism of log schemes

^•.(X^\M^^^\M^

such that (J)Q agrees with the reduction of (f) modulo TT on the underlying
schemes.

To prove the proposition, we will need the following lemma.

LEMMA 2.5. — With the above notation, set U = X — Z. Let x be
an etale point of X with image in the closed fibre of X, and denote by
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Mx and Mx the induced log. structure on Spec{0x,x) and Spec(0x x / ^ )
respectively.

(1) Jf0 e Auto^C^/Tr^1), leaves Spe^Ox^/^^u stable, then
there exists

( J ) € Aut(Spec(0^),N)((Spec(Ox,.r),^)),

such that (f) = (j) modulo TT, on the underlying scheme X.

(2) If

0o € Aut(spec(Op),N)((Spec(0x,^/7r),M^)),

induces the identity on the underlying scheme Spec(0x,x/^) then (J)Q is
equal to the identity as a map of log. schemes.

Proof.— We may assume that X = Spec(A), where A is a strict
henselisation of OF[P}KU - 71-)^] for a suitable d. Denote by e^+s+i, . . .
er-^-s-^-d a basis for Z^.

Choose lifts e[ , . . . e^^^ of 0(ei) ... (f){er-^s^d), where we again write
Ci for the image of e^ in A/TT77^1. As (j) leaves Spec^^/Tr714'1)]^ stable,
(f)(ei) is in the ideal corresponding to Spec(0x,x/^n^l)\z, for z = 1,... ,r
so we may assume that e[ is in the ideal corresponding to Z for i = 1, . . . , r.

Also, after modifying e^g by a unit congruent to 1 modulo TT, we
may assume that e^^ .. . e^ = TT^, and define a map of schemes

( J ) ' : Spec(A) -^ Spec(OF[P]/(u - 7r)[Z])

by sending ei to e[. As A is strictly henselian, and by construction (j)' maps
x to a;, there exists a unique extension 0 : Spec(A) —^ Spec(A) of (f)'', lifting
00 •

We claim that 0 extends uniquely to a map of log. schemes. To see
this, denote by V the open subset of Spec{0x,x) where the log. structure is
trivial, and write j : V ̂  Spec(0x,x) for the natural inclusion. By [Ka2,
11.6] we have My, = j^O^y D Ox,x, and the choice of the lifts e[ implies that
(j) leaves V stable. Hence 0 leaves M^ stable, and 0 extends to a map of
log. schemes. This proves (1).

(2) Denote by L : My, —> Ox,x/7r the map defining the log. structure.
The conditions imply that for 1 ^ i ^ r + s + d, 0(e^) = e^, where
Wi C M^ = {Ox.xl^Y is an invertible element, such that L(e,) = L(e,w,).

Let(? be a generic point of Spec(0x,x/^)' The induced log. structure
M<p on Spec(0x,x/^)^ is generated by the image of u. As 0 is a morphism
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over (SpecC^.N), whose reduction modulo TT is the identity on underlying
schemes, it follows that 0 induces the identity on (Spec((9^/7T(p), Mp).
Thus the image of wi in Mp is 1, as Mp is integral. As the natural map

Ox,x/7r ̂  e(0x,./7r)<p

is an injection, we see that the image of wi in {Ox,x/^Y is equal to 1. D

Proof of 2.4. — Because the morphism (J)Q will be unique we may
apply etale descent, and work etale locally on Xi, and X^. Then, by a
standard limit argument, we may choose an etale point at x in the special
fibre of Xi, and replace Xi and X^ by their strict localisations in x and
(/)(x) respectively. With the notation of 2.5, (Xi, Zi) and (X^, Z^) are both
abstractly isomorphic to (Spec(A), Spec(A/ei ...er)) for suitable integers
r,5,d, because these integers are even determined by the X^ -^ X^.

Fixing such isomorphisms we may identify Xi.Xs with Spec(A) in
such a way that Zi coincides with Z^. Under these identifications, (j) cor-
responds to an automorphism of Spec(A/7^n+l), of the sort considered in
2.5, and 2.5(1) shows that there exists an isomorphism ( j ) : (Xi,M^J —^
(X2,M^), whose reduction modulo TT coincides with that of </> on under-
lying schemes. We take (J)Q to be the reduction of 0 modulo TT, which shows
existence. The uniqueness follows from 2.5(2): two choices of (J)Q differ by
an automorphism of Spec(A/7r) equipped with its log. structure, which is
the identity on the underlying scheme. D

The following lemma shows that when X is proper, n semi-stability
can be detected on the reduction of (X, Z) modulo TT77^1.

LEMMA 2.6. — Let X be a proper flat Op scheme, and Z C X a
normal crossings divisor over Op- (So in particular, X is smooth at points
of Z.) (X, Z) is n-semi-stable if and only if there exists a n-semi-stable
pair (X', Z ' ) which is isomorphic to (X, Z) modulo Tr^1. That is n-semi-
stability depends only on the reduction of (X, Z) modulo Tr7^1.

Proof,— The "only if" direction is obvious, so we prove the "if"
direction. Let SpecA be an open affine in X. Replacing A by its strict
henselisation at a point in the special fibre, we may assume that A/TT72"^1

is isomorphic to a strict henselisation of (C^[P]/(n — Tr)^])/^7^1 for a
suitable integer d, with ^nSpecA/7^n+l cut out by e i . . . er. As in the proof
of Lemma 2.5, we denote by e^+s+i , . . . , Cy+s+d a basis for Z<

TOME 50 (2000), FASCICULE 4



1122 MARK KISIN

Lift the ei, to Ei e A. Since Z is a normal crossings divisor relative
to SpecOp, we may assume that for i = 1 to r, £^ has been chosen so that
the product E\... Er € A, cuts out Z.

We have i^r+i • « • Er-\-s = w^^ with w a unit in A congruent to 1 mod-
ulo TT. Replacing Er-\-i by .E^+i^"1? we may assume that Er-\-\... Er-\-s =
Tr71, though ^r+i now lifts e^+i only modulo TT.

Put B = (^[PnZ^/^-Tr) and define a map (f): B —> A by e, ̂  Ei
for 1 ̂  z ^ r + 5 + d. We claim that if 6 e SpecB denotes the image of
the closed point of A, then (j) induces an isomorphism ^ : B^ —> A,
where B^ denotes the strict henselisation of B at b. Since A was the strict
henselisation of X at an arbitrary point of the special fibre, this claim
implies the lemma, by the properness of X.

(^h is an isomorphism modulo TT. Since A and B have no Tr-torsion
A is B^ flat by [Mat, Ex 22.3]. Similarly if we complete A and B^ at
their respective closed points, then the map (f) : B^ —> A makes A flat
over B^. By [Mat, 22.5] 0 is inject ive, as it is modulo TT. Since B^ is TT-
adically complete (f) is also surjective, as it is modulo TT. Thus (f) is an
isomorphism. As (j^ is quasi-finite, and B^ is henselian, ̂  is finite, whence
an isomorphism, as (f) is. D

Next we need the following technical result, on lifting log. structures to
a formal neighbourhood. The proof is rather similar to that of the previous
lemma.

LEMMA 2.7. — Suppose that X —> S is a flat map of flat Op
schemes, Z C X is a normal crossings divisor relative to S, and that the
pair (Xs, Zs) is n- semi-stable for some Op valued point s of S. Denote by
Y the special fibre of Xs, and by X the completion ofX along Y. Denote
by S the completion of S at the closed point of s.

The usual log. structure on Xs, lifts canonically to a log. structure
on X, such that for any OF valued point t of S, which is sufficiently close
to s the usual log. structure on the Tr-adic completion of(Xf, Zf) (which is
n-semi-stable by 2.6) coincides with the one induced by that on X.

If we write X = \imXm the Xn being nilpotent neighbourhoods of
Y in X, then the maps Y —> Xn are induced by exact immersions of log.
schemes.

Proof. — Working etale locally, we may assume that X = Spec (A) is
affine, and that there is an etale map 0 : X§ —> Spec(C^?[P]/(zA — Tr^Z^]),
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which is induced by a strict map of log. schemes, with Zg cut out by the
product e\... e^, the notation being as in the proof of the previous lemma.

Denote by p the prime ideal on S corresponding to 5, and by m, the
closed point of s on 5'. We may assume that S = Spec(E) is affine. Set
B = (^^/(n—Tr)^])^, where "^" denotes m-adic completion. We make
Spf(B) into a formal log. scheme, with log. structure induced by P.

Denote by A the m-adic completion of A, and lift e^ C A/p to Ei C A,
in such a way that £'r+i • • • Fr+s = ̂ n i assuming however that Er-\-s only
lifts er-\-s modulo TT. Writing Z for the completion of Z along V, we may
assume, as in the proof of (2.6), that the product E\... Er generates the
ideal corresponding to Z.

We obtain a map 0 : B —> A defined by ei i—^ E^ l ^ z ^ r + 5 + d .
As A is m-adically complete, and flat over £', and 0 is etale modulo m, 0
is formally etale.

Thus, we may define a log. smooth log. structure on Spec(A) by
pulling back the log. structure on Spec(B) via the map Spec(A) —>
Spec(B). As Z and the special fibre of X, are Cartier divisors in X, one
checks easily, that the lifts Ei^ are uniquely defined up to multiplication by
units which are congruent to 1 modulo the ideal of definition of X. Thus
the log. structure we have defined on X, is independent of choices.

Let t be an Op valued point of 5, which is sufficiently close to 5. As
there is at most one log. structure on the Tr-adic completion of Xt making it
log. smooth over Op [Ka2, 11.6], the log. structure induced on this Tr-adic
completion by X, must coincide with the one discussed in 2.3, as both are
log. smooth. D

Finally, we come to

PROPOSITION 2.8. — Let f : X —> S be a proper smooth map of
finite type F schemes, and Z C X a divisor with normal crossings relative
to S. Let s € S be an F- rational point, and suppose that for some finite
extension F ' of -F, X (S)p F ' —> <S 0p F ' extends to a proper flat map of
flat Op' schemes f : X —> S, such that s extends to an Op' valued point
s, Z ^)p F ' extends to a normal crossings divisor Z C X, relative to 5', and
the fibre (Xg, Z§) is n-semi-stable.

Put U = X — Z. For all rational points t C <S, which are sufficiently
close to s, there is a natural equivalence of categories E t ' m ( ^ ) —^
Et^o^^)? compatible with the Galois action on both sides.
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Proof. — Suppose first that F/ == F. If t is an ^"-rational point of
5, which is sufficiently Tr-adically close to s, then it lifts to an Op valued
point t of 5', and by 2.6 we may assume that the fibre (Xf, Zf) is also
n-semi-stable. Now the result follows from 2.4 and 1.4.

Now suppose F ' -^ F. By [SGA1, IX 4.10], we may replace F by
F ' D Fp . Increasing F ' leaves all our hypothesis intact, except that we
may have to increase n. Thus, we may assume that F ' is Galois over F. We
have to show that the equivalence

$ : Et^(^) = Et^L(^ (SF F ' ) -^ Et^(^ ̂  F ' ) = Et^(^)

is compatible with the action of Gal^^/.F) on both sides.

To see this we give an alternate description of ^. Denote by X the
completion of X along the closed fibre of Xg, and by S the completion of
S at the closed point of s. We equip X with the log. structure given by the
previous lemma.

We have equivalences of categories

Et^(^) — Et^^(X,,MxJ — Et^^(X,M^),

the first given by Theorem 1.4, and the second by restricting to the closed
fibre of Xs, and then using [Kal, 3.14] to lift coverings to X. Here the
M's denote the log. structures on the corresponding schemes and formal
schemes. Denote the composite by r.

The "generic fibre" of X is a rigid analytic space, and similarly for S,
(see [deJ2, 7.2.5]), so that the proper map of formal schemes X —> S gives
rise to a map of rigid analytic spaces X^ —> 6^. The fibres of this map
are the rigid analytic spaces associated to the fibres X^ (^p F ' of the map
/, for points t which are sufficiently close to s. Thus we may restrict a log.
etale covering of (X, M^) to a covering of such a fibre, which is etale over
Ut ^)F F ' . Strictly speaking, we have only obtained a covering of the the
rigid space associated to Ut <^>F F ' ^ however all such coverings are algebraic
[Lut].

Thus, for suitable t, we have constructed a functor

^ : ̂ ffgeom^x) -^ tt^(^),

and one checks easily that <I> = ̂  o F. (The key point is that liftings of log.
etale coverings over nilpotent, exact thickenings are unique.)
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If a € Ga^F^P/F), and a* denotes pulling back by a, then we have
to check that $ o a* -^ a* o <I>. Since ^ is simply restriction to a certain
rigid analytic fibre, we clearly have ^ o a* = cr* o ̂ . Similarly, since F has
a quasi-inverse, which is restriction to a suitable rigid analytic fibre, we
obtain F o a* -^ a* o F. Thus

$oa* = <!/ o r o a* -^ ^ o a* o r -^ a* o ̂  o F = a* o $. D

Using Proposition 2.8, we obtain immediately

COROLLARY 2.9. — Under the hypotheses of 2.8, suppose that f has
geometrically connected fibres, and for each rational F-rational point t of
S denote by pt the map

Gal^-P/F) -. Out(7r^m(^)).

Ifs is an F rational point ofS, ps —^ pt for all F rational points t which
are sufficiently close to s.
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