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ON THE REAL SECONDARY CLASSES
OF TRANSVERSELY HOLOMORPHIC FOLIATIONS

by Taro ASUKE

1. Introduction.

Characteristic classes of foliations are studied by many people. It
seems however that the relation between the real and the complex sec-
ondary classes has been rarely studied, and as far as the author knows,
there is only a Rasmussen^s paper [24]. In it, some relations between these
classes are slightly indicated but not discussed very much. We will first
write explicitly a map A from W02g to WUq that induces a map [A] from
Jf*(W02g) to ff*(WUq) which corresponds to forgetting the transverse
holomorphic structure. We will then define a class [$] in ^^(WUg) that
represents the imaginary part of the Bolt class (Proposition 3.4). As the
first fruits we show the following relation between the class [^] and the
Godbillon-Vey class.

THEOREM A. — The class [^] factors the Godbillon-Vey class as

GV2,=^K].Cherni(^,

where Cherni^) denotes the first Chern class of the complex normal
bundle Q{^) of^.

We remark that the Bolt class is well-defined only if the first Chern
class of Q^) is trivial. This theorem implies that if the first Chern class
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996 TARO ASUKE

is trivial, then the Godbillon-Vey class of the foliation is trivial. There are
some typical cases where this condition arises. One is where the foliation
is denned by a C-valued g-form satisfying certain integrability conditions.
Another is where the second cohomology group of the ambient manifold is
trivial. For example, the Godbillon-Vey class of a transversely holomorphic
foliation of 5'1 x 5'4 is always trivial. This contrasts with the case of real
foliations because there is a family of real foliations of S1 x 5'4 that are of
real codimension two and whose Godbillon-Vey class varies continuously
(see Example 4.5). On the other hand, there is a transversely holomorphic
foliation of complex codimension one whose Godbillon-Vey class is non-
trivial. We review such an example by following Rasmussen [24]. See
Example 4.6 for details. In Example 3.5 by examining Baum-Bott's example
[5], [8] we also see that the class [^] is non-trivial and varies continuously.

In general the maps A and [A] are neither injective nor surjective.
Hence, in particular, there appear some relations among the elements of
ff*(W02g) when mapped into H*(W\Jq). In the case where the complex
codimension is equal to one, we will show the following:

THEOREM B.— If q = 1, then we have the relation \(h\c^) =
2A(/iiC2) as elements ofWUi. Moreover,

(1) the kernel of the mapping [A] is spanned by the classes [02] and
[h^\ - 2[/iiC2],

(2) the image is spanned by the class [^i^i^T]

(3) the cokernel is spanned by the classes [v-^] and [^1(^1 + 7^l)}-

It is worth noting that the class [zAi^iT^"] is the image of the Godbillon-
Vey class up to multiplication by a constant. Thus, we can regard the
Godbillon-Vey class as the only real secondary class of a transversely
holomorphic foliation of complex codimension one.

We will also show a similar relation for higher codimensional cases in
Corollary 4.2; moreover, Theorem B can be partially generalized for higher
codimensional cases and the image of the mapping [A] can be determined
in the case where q = 2 or q = 3. It is done in the paper [3].

The existence of a linear relation between the classes [/^C^A and
[^2] A, where [h^]x = [A]([^icf]) and [h^x = [A]([faiC2]), is not
unexpected. The following explanation is due to S. Morita [21], who kindly
allowed the author to quote the details. The author would like to express
his gratitude to him.
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REAL SECONDARY CLASSES 997

_<C
The continuous cohomology of J5jT\ is identified with that of real

homotopy type of 53 x 5'3 via the Bolt class. The latter space is the complex
homotopy type of K(C, 3) = 53, and its real part corresponds to the Chern-
Simons class, which transgresses to v\ in the following fibration by the Bott
vanishing:

BT^ -^ BF^ -^ BGL(1, C) = J^(Z, 2).

Thus the first approximation of this fibration is the real homotopy type of

S3 x S3 -> S2 x S3 -^ K(Z, 2)

tensored by Q. Consequently the continuous cohomology of BF^ is the
same as that of S2 x 53. Here S2 corresponds to v\ and S3 corresponds
to the imaginary part of the Bott class. In particular H^{Brp'^C) = C,
where we denote by He the continuous cohomology. On the other hand,
it is known that H^(Br^C) = C (B C. Since we are considering the map
Br^ —> Br^^ we can expect that there is a linear dependence between
[^I^IA and [h\c'2\\, which is determined by Theorem B.

It is an important question whether the secondary classes of foliations
are C^-invariant or not. It is known that the Godbillon-Vey class is C1-
invariant [23], [1]. Though we know nothing about the remaining classes,
we have the following.

COROLLARY C.— Let (Mi^i), i = 1,2, be transversely holomor-
phic foliations of complex codimension one. Suppose that there is a C1-
diffeomorphism f from Mi to M^ which preserves the foliations. Then

/*(W^2))=W^l).

A similar question can be posed when we consider the complex sec-
ondary classes. It is easy to see that such classes are invariant under trans-
versely holomorphic concordance (resp. cobordism, foliation preserving dif-
feomorphism) of transversely holomorphic foliations. We can ask now if
the complex secondary classes defined by H*(W\Jq) are invariant under
C^-concordance (resp. cobordism, foliation preserving diffeomorphism) of
transversely holomorphic foliations. Example 3.5 is related to this question.
See also Question 4.10.

It is also important to determine whether the secondary classes under
consideration vary continuously or not. After Heitsch [II], we show the
following.

TOME 50 (2000), FASCICULE 3



998 TARO ASUKE

THEOREM D.— Let Ts^ s G [0,1] be a differentiable family of
transversely holomorphic foliations of complex codimension q. We denote
by [\o] and [^i] the characteristic mappings defined by ^FQ and ^,
respectively. Then [xo](M) == [XiKM) ^[a] ls one of the secondary classes
in H*(W\Jq) denned by a cocycle a = UIVJ'VK ofWUq with %i + \J\ > g+1
and i\ + \K\ > q + 1, where %i is the smallest entry of I .

There is a similar result for ^*(W^) (see Theorem 3.6).

The meaning of the mapping [A] can be explained as follows. First,
the image of the mapping [A] consists of the complex secondary classes
which are in fact the real secondary classes. Secondly, the cokernel of the
mapping [A] : H*(WO^q) —> 7^*(WUg) plays the role of purely complex
secondary characteristic classes. Finally, the elements of the kernel of the
mapping [A] can be viewed as obstructions for foliations to be transversely
holomorphic. In this paper, by showing that certain real secondary classes
do not vanish, we will show that some examples can never be transversely
holomorphic (Corollary 3.8 and Example 4.3).

This paper is organized as follows. First we introduce the secondary
classes after Bott [8] and we then define a mapping [A] from H*(WO'2q)
to H*(W\Jq). In the third section we give the proofs of the main results.
We also show that the mapping A has always an extension to a certain
subalgebra WO^ of W^q (Corollary 3.11). In the final section we examine
some known examples. We will show that Heitsch's and Rasmussen's
examples [12], [25] cannot be transversely holomorphic. On the other hand,
we show after Rasmussen [24] that there is a complex codimension one
transversely holomorphic foliation of a closed manifold whose Godbillon-
Vey class is non-trivial.

This paper is based on a part of the author's thesis [2] and the author
would like to express his gratitude to Professors T. Tsuboi, S. Morita and
D. Lehmann for their comments and helpful suggestions. The author also
appreciates the referee's comments which helped him to improve the paper.

2. Definitions.

First we briefly recall the notion of the secondary classes and some
facts that can be found for example in Bott [8], Pittie [22] or Godbillon
[10] with more details. In the last part of this section we will define the
mapping A mentioned in the introduction.

ANNALES DE L'lNSTITUT FOURIER
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We denote by M a differential manifold and by ^ a transversely
holomorphic foliation of M whose codimension over C is equal to q. We
set Q = Q{^) = TMJTF. Then Q is naturally a complex vector bundle,
which we call the complex normal bundle of F. When we regard F as a
real foliation of codimension 2q, its normal bundle is denoted by Q^. Thus
QR <S> C = Q (^ Q. A complex Bolt connection V on Q is a connection
satisfying VxY = 7r[X,Y} for X € FTT and Y € FQ, where TT denotes
the natural projection from TM to Q and Y is a lift of Y to TM. We also
consider a real Bolt connection on QR, which satisfies the same condition
as a complex Bott connection, having Q replaced by Q-^. It is easy to see
that if Vo is a complex Bott connection on Q, then Vo (B Vo defines a
complexified real Bott connection on Q^ 0C. In this paper, we will always
choose Bott connections on Q and Q^ 0 C simultaneously in this way.

The most significant property of Bott connections is the following [8].

BOTT VANISHING THEOREM. — Consider a transversely holomorphic
foliation of complex codimension q and let VB be a complex Bott connec-
tion. We denote by ^(Va), i = l , ' - - ,^ , the Chern forms calculated by
using the connection VB. Then any monomial of z^(Va) whose degree as
a differential form is greater than 2q vanishes as a differential form. Sim-
ilarly, if we consider a real foliation of real codimension q and denote by
V& a Bott connection, then any monomial of the Pontryagin forms c^(Vfo),
i = l^.. . ^ q^ whose degree is greater than 2q vanishes as a differential form.

By virtue of this theorem, we can define the secondary characteristic
classes of the foliations. First of all, we define the degree of^ in C[^i, - • • , Vq]
as 2i and set Iq as the ideal of C[^i, • • • , Vq] generated by the monomials of
degree greater than 2q. We set

Cg[^l, • • • ,Vq] = C[^i, • • • , V q ] / I q

and define Cq[v^, • • • , Vq] as the quotient of C[^ • • • •> Vq] by I q , where Iq is
defined in the obvious manner. For real foliations we define the degree of
Ci as 2z, and define R2g[ci, " • , c^q] as the quotient of M[ci, • • • , c^q] by the
ideal generated by the monomials in ci whose degree is greater than 4g.

DEFINITION 2.1.— We define differential graded algebras WUq and
WC>2g by setting

W\Jq = Cq[v^ ' ' • , Vq] 0 Cq[^, • • • , Vq] 0 f\[u^, • • • , uj,

W02g = ̂ 2q[Ci, • • • , C2q] 0 /\[^1^3, • • • , h^q-l].

TOME 50 (2000), FASCICULE 3



1000 TARO ASUKE

We equip these algebras with an exterior differential determined by dui ==
Vi — Vi, dvi == dvi == 0, dhz = Cj, and dci ==• 0, respectively. We define the
degree of the elements ui and hi as 2i — 1, respectively.

The meanings of WUg and W02g are the following. The element Vi
of WUg corresponds to the i-th Chern form calculated by using a complex
Bolt connection. Since the Chern classes are real, we can find elements Uz
such that dui = Vi — 'v[ by using the foliation. On the other hand the Bott
vanishing theorem shows that any element of C[v\, • • • , Vq] of degree greater
than 2q vanishes as a differential form. By writing down these two facts we
obtain the algebra WUq.

Definition of the characteristic mapping

The characteristic mapping

[xd:^*(wu,)-.jr(M),
is given as follows. First of all, let V be a connection on the complex normal
bundle Q of F and denote by -R(V) its curvature. We define differential
forms ^(V) by the formula

det (tl - ^(v) ) = ̂  + ̂ -^i(V) + ̂ -^2(V) + . • • + ̂ (V).
\ 2V-17T/

Let Vo be a complex Bott connection associated with 7', and let Vi
be a Hermitian connection. Then by setting xc^i) = ^(^o) and
^(vi) = z^(Vo), we obtain a map \<^ naturally defined on C[z?i, • • • ^Vq] 0
CI^JT? • • • iVq\' Now the Bott vanishing theorem for transversely holomor-
phic foliations asserts that the mapping ̂  annihilates the ideals Iq and
Iq. Thus the mapping ^c defines in fact a mapping from Cg[z?i, • • • , Vq] 0
Cg[TT? " ' ^}i which we denote again by ^c.

Now we set V^ = Vo+^(Vi —Vo) and write z^(Vt) = a-\-f3/\dt, where
a does not involve the term dt. We define a differential form Vz(Vo, Vi) by
the formula

^(Vo,Vi)= ( (3dt,
Jo

then it is easy to see that d^(Vo,Vi) = ^(Vo) - ^(Vi). Noticing
that z^(Vi) == ^(Vi) (because Vi is Hermitian), we define XC^i) =

^(Vo,Vi) - ̂ (Vo,Vi). Then d(xc(^)) = Xc(^) - Xc(W) and hence
we can extend the mapping ^(Q to the whole WUg. Finally, we denote by
[^c] the mapping induced between the cohomology algebras by ^c. For

ANNALES DE L'lNSTITUT FOURIER



REAL SECONDARY CLASSES 1001

simplicity we denote the image [xcKM) also ^Y ^^G^)) where we denote by
[a] the class of Jf*(WUg) determined by a cocycle a of WUg.

The real characteristic mapping [^] : H*(W02q) -^ ^(M'.R) is
defined in a similar way, namely, for a connection u; of the real normal
bundle of F we denote by R(uS) its connection and set

del (tl - R^} = ̂  + t^c^) + t^c^) + • • • + c^).
\ 27r /

Then we choose a real Bolt connection UJQ on the real normal bundle Q^ and
a Riemannian connection ci;i. We define a mapping ^^ by setting \^(ci) ==
c,(o;o) and XR^) = c,(o;o^i), respectively. Then ^(^(^)) = xp(^)
when i is an odd integer. Thus by the Bolt vanishing theorem we have a
mapping ̂  from W02g to the space of differential forms on M. We denote
by [^] the mapping induced on cohomology and we denote [xp]([/^]) also

as /?(.?'), where [/3] is the class of H*(WO'2q) defined by a cocycle (3 of
W02,.

In the following, we consider only the complexification Q]R0C == Q(BQ
of QiR and we denote again by ̂  and [^} the complexified mapping.

Now we give a homomorphism A from WO^q to WUg which will
induce a homomorphism [A] from H*(WO^q) to Jf*(WUg) such that
[xp] = [xc] ° W' First we choose a complex Bott connection Vo and
a Hermitian connection Vi, and then define a (complexified) real Bott
connection UJQ by UJQ = Vo 0 Vo and a Riemannian connection 0:1 by
c^ = Vi©Vi, respectively. Then by comparing the above formulae defining
Ci(}jJo) and z^(Vo), we see that

Cfc(o;o) = (^^(-l^fc-^Vo)^^
J=0

as differential forms. Here we set vo^f) = Vo(^') = 1 and used the fact that
^•(Vo) = (-l^i^Vo).

In view of this we introduce the following definition.

TOME 50 (2000), FASCICULE 3



1002 TARO ASUKE

DEFINITION 2.2. — Define a mapping X from WO^q to W\Jq by the
formulae

A(c,) = (^^T)^(-l)^_,^
j=o

/ ^ f c 2fc+l

A(/^+l) = -^——^l ̂  (-l)^2fc-,+l(^ +^).
J=0

The mapping X induces a mapping [A] between cohomoJogy algebras. For an
element a ofWO^q, we denote by [a] the class in H*(W02q) defined by [a],
and by [a}x the class in H^(W\Jq) defined by A(a), namely, [a}x = [A(a)].

By abuse of notation, we will also denote by [{3} the class in H*(W\Jq)
defined by a cocycle j3 ofWUg.

We will show in the next section that the induced map [A] satisfies
[Xp] = [xc] ° [A] and therefore corresponds to forgetting the transverse
holomorphic structure.

In the suitable categories we can define some of the elements such
as h^i, Uj and uj, so that we can extend A to certain subalgebras of W-^q.
Here the elements Uj and nj are considered as transgressions of Vi and Vi.
They then satisfy the relation u^; — 'Uj = Uj. The most typical case is when
the complex normal bundle of the foliation is trivial. In this case, all the
elements such as h^^ uj and uj are well-defined, and we set

W^ =Cq[v^ • ' ' , Vq] 0 Cq[^, ' • • , ̂ ] (g) /\[u^,U^ • ' ' , Uq} A /\[Ul,U2, • • ' , Hg]

W2q= IR2g[ci, • • • ,C2g] 0 f\[h^h2,h^ • • • ,/l2g].

Notice that there are natural mappings from W\Jq to W^ and from W02g
to W2q, respectively. We can define the characteristic mappings [^] from
H^(W^q) to H^M) and Re] from ^*(W^) to H^M\ respectively, in a
similar way as [^] and [xc}'

We extend the map A to a map A from W2g to W^' by setting

1 2k

^2k) = {-^-^(-lY(u2k-jVj+UjV2k-j),AM = (-1);C|^(-1)J(^2.-^+^7^-,),
/i—n

where VQ, VQ are regarded aŝ 2 and UQ, UQ are regarded as 0, respectively.
The map A induces a map [A] from ^*(W2g) to ^*(W^) which satisfies
the equation Re] ° [A] = R^]. It is clear that [A] is an extension of [A].

ANNALES DE L'lNSTITUT FOURIER
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Though the map A might not be extended to the whole W^q in general,
we can always extend the mapping A to the subalgebra WO^ of W'zq
defined by

WO^ = M2g[ci, • • • , C2g] 0 /\[^1, hs, • • • , hq^hq^, • • • , /l2g],

where 9' denotes the greatest odd integer which is not greater than q
(Corollary 3.11). It is worth mentioning that WO^ = W2.

Now we give the definition of the secondary classes.

DEFINITION 2.3. — The classes in the image of [^c] or [^c] (resp.
[xp] or [xp}) which involve Ui, Uz or Ui (resp. hi) are called the complex
secondary classes (resp. real secondary classes). In particular the class
GV2g(^') == [xpK^i^9]) ls called the Godbillon-Vey class and similarly
the class Bottg(.F) = [xcK^i^?]) ls called the Bott class when it is denned.
We call the classes GV^q == [^i<^9] and Bottg = [u^] themselves again
the Godbillon-Vey class and the Bott class, respectively. Here [h^c]] means
the cohomology class in H*(WO'zq) defined by the cocycle h\c[ and [u^]
means the cohomology class defined by the cocycle u^.

Remark 2.4.— A basis for JT(W02q) is given by Vey [10]. First
I = { ? i , . . . ,it} denotes an index set consisting of odd integers such that
1 ^ i\ < • • • < it ^ 2q, and J = O'i, • • • ,j'2g) an index set consisting of
nonnegative integers. We set |J| == ji + 2j2 + • • • + (29)j'2g. Then the Vey
basis of Jf*(W02g) is given by

{[cj]; 1 ̂  |J| ^ 2g, jk = 0 for all odd integers k}
U {[yicj]; |J| ^ 2g, zi + \J\ > 2q, 21 ^ k if k is odd and jk > 0},

where yicj = c{1' • • c^ (g) h^ • ' ' h^.

It seems that an explicit description of a basis for H*(W\Jq) is
unknown. We show a procedure to compute a basis for H^(W\Jq) in [3]
and compute it in the case where q ^ 3.

3. Proofs of the main results.

First we show that the mapping [A] induced by A defined in the
previous section corresponds to forgetting the transverse holomorphic
structure.

TOME 50 (2000), FASCICULE 3



1004 TARO ASUKE

LEMMA 3.1.— Let Q be the normal bundle of the foliation F. Let
VB o-nd ^/H be a Bott and a Hermitian connection on Q, respectively. We
define a Bott connection V^ and a Riemannian connection Vy. on Q Q Q
by setting V& = VB 0 VB and Vy. = \/H ® V^", respectively. If we denote
^7 [XR] ^e characteristic mapping from H*(WO-2q) to H*(M) defined by
using V& and V^, and by [^c] the characteristic mapping from JP(WUg)
to jFf*(M) defined by using V^ and Vj^, then we have

[XM] = [XC] o [AL

where [A] denotes the mapping from Jf* (W02g) to H * (WUg) induced by \.

Proof. — We retain the notations of the previous section. Then for
P C Cq[v-^,'-,Vq} or P € ^[ci,--,^], the equation dP(Vo,Vi) =
P(Vo) - P(Vi) holds. Since the relation

i

c,(vev) = (vc:T)^^(-l)J^-,•(v)2;^v)

holds for any connection V on Q{^), we see that c^(Vb,V^) = A(C^)(VB,
Vjf). In order to show the lemma, we show that the differential form

(*) ((Vi - ̂ ) (v, + ̂ )) (VB, V^) - (vi - Vi) (VB, Vj^) (vj + ̂ ) (Va)

is exact. Once this is established, we can show the lemma as follows.
We see easily from the exactness of the above differential form that
A((^)(VB, Vj^) == Xc(^(^)) modulo exact forms. Suppose then that [hjcj}
is a member of the Vey basis and set I ' = I \ {zi}. Since the differential
form XR^hpCj) is closed, we have the equation

[XR^hpCj)} = [^(Vb.V^R^c/)]
=[>{ci,)(\/B^H)XR{hrcj)}
-[xdA^XR^j)]

in H*(M). Thus we can inductively show that [^] = [^c] o [A].

We show now that the differential form (*) is exact. We set Vo = VB
and Vi = Vj^, respectively. Then we write ^(V() {vj + vj) (Vi) = ai+/3iA
dt and ^(V^) (^- + 2:7) (Vo) = 0-2 + ̂  A dt. We set T^ = (^- + ̂ ) (V^, Vo)
and write ^(V't)r< = < + $ A d^. Note that To = 0 and Tf = Tf. Since the
differential form ^(Vf) is closed,

dWt)Tt) = ̂ (V,) (^ + vj) (V,) - ̂ (V,) (^ + ̂  (Vo).

ANNALES DE L'lNSTITUT FOURIER



REAL SECONDARY CLASSES 1005

It follows that H- A dt + (c^O A d< = (/?i - /^) A dt. We set P = /Q1 ̂ t,
then

dMP= I dM^dt
Jo

/•i
i-^dt- I ^dt= / (fti-^dt- /

JO Jo
I V-J. l-^./ ———— I Q, ̂

7o Jo c^
= {vz (vj + ̂ -)) (Vo, Vi) - ̂ (Vo, Vi) (^ + ̂ ) (Vo) - C(l) + C(0).

Finally since C(l) = C(l), C(0) = ^(Vo)To = 0 and ^(V^) = ^(V^),

^M(P-P)
= ((^ -W) (vj +^))(VB,V^) - (^ -^) (VB,V^) ( v j - ^ -v j ) (Va).

This completes the proof. Q

Since [^], [^c] and [A] are independent of the choise of connections,
we have a commutative diagram

^*(W02<,) -[x^ ^*(WU,)
kS] ^ ^kg]

H^Br^) -^ H-{Br^)
7. ^ p;

7:f*(M;]R) —> H^M'.C)

where [^y and [\^} denote the universal characteristic mappings, 70 is
the classifying map of the given transversely holomorphic foliation, and 7^
is the classifying map of the foliation viewed as a real foliation. Of course,
the mapping H^(Br^) -^ H*{Br^) is the one induced by the natural
mapping BFq —^ BF-zq obtained by forgetting the transverse holomor-
phic structure. Thus the homomorphism [A] corresponds to forgetting the
transverse holomorphic structure.

There exists a version of Lemma 3.1 when we consider real foliations.

LEMMA 3.2. — Let V& be a Bott connection and V/i be a Riemannian
connection, then

^•(Vfc.V,) = c,(Vb,V^)c,(Vfc)

modulo exact forms if i is an odd integer.

TOME 50 (2000), FASCICULE 3



1006 TARO ASUKE

Proof. — The proof is almost the same as that of the exactness of (*)
in the proof of the previous lemma. The only difference is that we would
have C(l) = 0, which still gives the result. D

Now we define an important cocycle in WUg.

DEFINITION 3.3. — We define a cocycle ^ in WUg by the formula

^ = vC^(^ + ̂ -i^- + .. . 4- ^-9).

We denote by [^] the induced class in H*(W\Jq).

It seems that this class [^] of AT^WUq) is more fundamental than the
Godbillon-Vey class when we consider transversely holomorphic foliations.
First of all, we have the following easy but important property of [^].

PROPOSITION 3.4. — If the Bott class is well-defined, namely, the first
Chern class of the complex normal bundle is trivial, the class [^] coincides
with the imaginary part of the Bott class multiplied by -2.

Proof. — It follows from the simple fact that the equation

^ = v^i(u^ - (u^)) - v^id (nmr^r1 + ̂ r2^ + • • • + ̂ 9-1))
holds if u\ and u^ are well-defined. Q

As we will see, it is known that the Bott class is non-trivial and varies
continuously. In fact it takes all values in the complex numbers. Hence the
class [^] varies continuously and takes all values in the real numbers. Note
that the class [^] can be non-trivial even if the first Chern class is trivial,
while in this case the Godbillon-Vey class is trivial by Theorem A.

We give now the proof of Theorem A as an immediate conclusion of
the definitions we have given.

Proof of Theorem A. — Direct calculations show that

^-^^'-^•W-
Since z»i and W[ are cohomologous and they correspond to the first Chern
class of the complex normal bundle Q(J') of F, Theorem A is proved. D

It is worth noticing that the equation holds in fact at the level of
differential forms. We will study more properties of the class [^] in [4].
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Example 3.5 (Baum-Bott [5], Bott [8]).— Let M == C94'1 \ {0} and
consider a holomorphic vector field

r\ r\ r\

X(AO, • • • ,\q) = XQZQ—— + AI.ZI—— + • • • + ^qzq~^—?
OZQ OZQ OZq

where (^ ' • ' , Zq) is the natural coordinate of C94'1, and suppose that all
\i^s are non-zero and none of the numbers ^i are negative real numbers.
We denote by F the holomorphic flow given by X, then F restricts
to a transversely holomorphic (real) flow of the unit sphere S2^ of
C9'^1. It turns out that in this case the first Chern class is trivial and
hence we can define the Bott class Bott(^') and other classes of the form
^i^(^) = [XC^I^L where ^ € Cq[vi, • - • ,z^] of degree 2q. According to
a formula which appeared in [5],

( / ̂ \ Ao -h AI + • - • 4- A^ . .
/ U^T) = —————————.———-^(Ao, AI, . • • , Xq).

J5-2g+i AO^I ' ' ' ^q

In particular

I Bott^) = ̂ ±AI+_+V^
J g2q+l AoAl • • • Xq

Since £,{^F) is the imaginary part of the Bott class multiplied by —2, we
can easily find that the class fi(F) is non-trivial and in fact, it admits a
continuous deformation.

We do not know whether there is a pair of the foliations of S3 obtained
as in the above example such that they have different values of $(^) but
they are cobordant as real foliations of codimension two. This question is
a special case of the question we posed in the introduction (see Question
4.10).

We show in Example 4.6 that there are transversely holomorphic
foliations of complex codimension one whose Godbillon-Vey class is non-
trivial. Of course in these examples the class $(^) is also non-trivial. On
the other hand, it appears to be unknown whether the Godbillon-Vey class
can be non-trivial if the complex codimension of the foliation is greater
than one.

Note that Theorem A shows that if the Godbillon-Vey class is non-
trivial, then the cohomology of the ambient manifold must be similar to
that of S'294'1 x CP9. In particular, its second cohomology group must be
non-trivial. This is in contrast to the case of real foliations. See Example
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4.5 for details. We remark also that if the complex normal bundle Q^) is
trivial, then GV(^) is trivial.

It is well-known that the Godbillon-Vey class varies continuously
in the category of real foliations [12], [25], [26]. If we can find a family
of transversely holomorphic foliations whose Godbillon-Vey class varies
continuously, the variation comes exactly from the variation of the class
[$] because the Chern class is rigid under deformations. Unfortunately, at
the present we do not know whether there is such a family, neither. On the
other hand, it is known that certain elements of H*(WOq) and H*(Wq)
are rigid under differentiable deformations of the foliations. Here we mean
by a differentiable deformation a family of foliations whose associate family
of normal bundles is differentiable.

Now we show Theorem D after Heitsch [11].

Proof of Theorem D.— The proof is almost the same as in [11] for
H*(WOq). We may identify the normal bundles Q(^s} and fix a Hermitian
connection Vi == V^. Then we choose a differential family of complex Bolt
connections Vg = V^ of Q(J^) and set V^ = Vg + ^(Vi - Vg). We set
R^ = J?(Vn = dV? + V? A V^, ̂  = ̂ Vg, and define P(Vg, Vi) as in the
second section, where P is an element of Cg[i;i, • • • , Vq}. Finally we set

= [ ^P(^,Vg-Vi,^,...,^)^.
Jo

V =

Although our conventions and definitions are slightly different from the
original ones, we have still the following formulae:

r\

^P(Vg, Vi) = k(k - l)dV + kP{^, R^ • . . , fig),

dP(Vg, Vi) = P(% • • • , R^) - P(R^ • • • . fii),
r\

^ P(^,..., ̂ ) = kdP(^ Pg, . . . , Pg),

where k is the degree of P.

By using these formulae and the assumptions ip + |J"| > q + 1 and
ip + \K\ > q -j- 1 for all p, we can show as in [11] that the differential form
-^sXs^uiVj^UK) is exact. Thus Theorem D is proved. D

If we work in the category of transversely holomorphic foliations with
trivial normal bundles, we can consider ^(W^) and we have the following.
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THEOREM 3.6.— Let TS, s e [0,1] be a differentiable family of
foliations of complex codimension q. We denote by [\o] and [^i] the
characteristic mappings defined by TQ and T\, respectively. Then Ro](^) =
[Xi](a) if a is one of the secondary classes in Jf*(W^) defined by a cocycle
UIULVJ'VK ofW^ with i\ + |J'| > q + 1 and l\ -h \K\ > q + 1, where %i and
l\ are the smallest entries of I and L, respectively. D

For some classes we have formulae that are similar to the ones in
Theorem A, in particular we have the following. The proof is easy and left
to the readers.

PROPOSITION 3.7. — Suppose that |J| = q, then there is a polynomial
P{J) of Vi and Vi such that P{J) is of degree 2q as an element of WVq
and that the cocycle ^ factors the cocycles of the form \(h\c[cj') as
X(h^cj)=^P(J). D

Now we give the proof of Theorem B.

Proof of Theorem B.— First of all, it is easy to see that A(c^) =
2A(c2) in WUi. It follows that A(/ii<^) = 2A(/iiC2) as elements ofWUi.

As we explained in the previous section, as a vector space, H*(WO^)
is spanned by the classes [02], [^ic^] and [/iiC2] over M. On the other
hand, it is easy to see that 7:f*(WUi) is spanned by the classes [T^"],
[zti(vi + T^T)] and [ifci^i^T] over C (see also [3]). Finally, noticing that
[^IC?]A = —2^/—l[u-tV-tV^] we complete the proof. D

Note that the linear dependence of [^i<^];< and [h\c'z\ \ can be expected
by using an argument of continuous cohomology as in the introduction.

We can deduce from Theorem B that certain foliations cannot be
transversely holomorphic by seeing that the relation h\c^(^} = 2h^c^{J:)
fails to hold.

COROLLARY 3.8. — The examples given in the fifth part ofRasmussen
[25] do not admit any transverse holomorphic structure.

It is often convenient to regard the c^s as the Pontryagin characters
and the v^s as the Chern characters. From Lemmas 3.1 and 3.2 we see
that even under this convention, the image of H*(WO^q) and H*(WVq) in
H*(M) remains the same when we consider a foliated manifold (M, 7). To
avoid confusion we adopt the symbols Hi, Ui, Q, l^, and Vi instead of hi,
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Ui, Ci, Vi, and % respectively. Then the mapping A is rewritten as follows:

WQ) ^ I (v^)1 (^ + (-1)^) for ̂  9
1 10 for z > q

\(ff\ f^Y^ forz^A[ni) = ^ ^__ ^
I (^T)^ for z > q

where hi denotes a certain element obtained by using Newton Polynomials
[3, Definition 3.8].

This is just the formula mentioned in [24]. Note that the relation
A(c^) = 2A(c2) is nothing but the relation \(C'z) = 0 when q = 1. We will
make use of this kind of relations to study the higher codimensional cases
in [3].

As we mentioned in the introduction, we always have an extension of
A to a subalgebra WO^ of Wq even though the cocycles cj are not exact
in general if |J| is even. This follows from the following.

PROPOSITION 3.9. — Suppose that \J\ > q and \J\ is even, then there
is a well-defined element 77 j ofWUg such that dr]j = cj. The element 77 j
has naturality, and if the complex normal bundle is trivial, then A(/i2j)
coincides with r]^j.

To show Proposition 3.9 we prepare the following lemma.

PROPOSITION 3.10.— There is always a well-defined element uj of
WUq such that duj = vj — JTj.

Proof. — The statement is true if J is just a single number. Suppose
that the lemma holds if [J| < r*o. Let J be a given index with |J| =7*0 and
let s be the number such that js 7^ 0 and such that jt = 0 if t > s. We set
^-^O'Jand

~ (vs 4- ̂ ) , {vj' + W) ~
Uj = Uj. -——^——- + ————^————Us.

It is easy to see that duj = vj — v~j. D

In this paper we always choose the elements uj in the above way.

Proof of Proposition 3.9.— From the fact that cj is invariant under
complex conjugation and that |J| is even, we can write A(cj) as

A(c^)=: Z^ ^^(^i^+^^JT).
JlUJ2=J
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where aji,^ are Te8^ numbers such that Qj2,Ji = ̂ i,^'
We set

' n j = - ^ ^Ji^Ji {VJ2 - ̂ ).
JlUJ2=^

then it is easy to see that drjj == cj. The naturality is obvious.

Since \(c^) = (-1)9"7 (vqUk - Vq-iW^L + • • • + VkVq), where k =
2g-J,

1 q~j 1
'̂ = "2 ̂ (-1^ (^ ̂ -z - z7^ + U3-l ̂ +z "" ̂ ;:7)) - 2^' ̂ J ~ ̂  '

From this equation the last statement follows. D

COROLLARY 3.11. — The mapping [A] has always an extension to the
subalgebraWO-^ ofWq.

Proof. — The extension is obtained by setting \(h^i) = rf^ if 2i > q.

D

Since WO^" = Wa, we can say from the cohomological point of
view that transversely holomorphic foliations of complex codimension one
behave as the foliations with trivial normal bundle when viewed as real
foliations.

4. Examples.

Before introducing the examples, we prepare a proposition. Let J =
O'l, • • • j2q)' We write J < j if ji = 0 for I ^ j.

PROPOSITION 4.1. — Suppose that i is an odd integer greater than q,
then the secondary class [hiCj]\ can be written as a linear combination of
the classes of the form [hi'cj'\\ where i' < j or J / < j .

Proof. — It suffices to show that [hiCj\\ is trivial in jy*(WUg), where
Cj is the Chern character of degree 2z. First we set I = q — ^, then
the element \{hi) is a linear combination of the elements of the form
Of = Ut (vs +^) — Us (vt +W)? where s = i — t and t ^ s. Note that
0 ̂ t <^q.
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Now we set A = -(^1)9^ (y, - (-lp"^), then d(3t = ̂ . This
followsjrom the fact that (vs - v^) (Vj - (-IpVj) = - (^ +z^) (^-4-
(-iyVj) because s + j = i - } - j - t ^ 2 q - } - l - q > q . D

We apply this proposition in the case where i = 2q - 1, and we obtain
a generalization of Theorem B.

COROLLARY 4.2. — We have the relation

2[h2q-lC^}\ = [/llCiC2g-l]A

as elements of H4^1 (WVq). D

Notice that the class [^29-1^2] \ is the only class coming from
H^^WO^q) which involves h^-i.

From this corollary we see that there are many foliations which cannot
be transversely holomorphic, we have in fact the following.

Example 4.3 [12].— Heitsch's example given in [12, Example 2]
cannot be transversely holomorphic. This can be seen in the following ways.
First we can see that the relation shown in Corollary 4.2 does not hold by
using the residue formula. On the other hand, we can also show that there
is a leaf holonomy which cannot be holomorphic.

The following are examples of transversely holomorphic foliations.

Example 4.4. — Consider the natural foliation of R^ x C9 by sub-
spaces W x {z}, z e C9, which is transversely holomorphic. Now restrict
the foliation to (M^ x ([^^{(0,0)}. Since the foliation is invariant under the
mapping p defined by p(x, z) = (2x, 2z), we have a foliation of S1 x 5'P+2<?-i^
which is still transversely holomorphic. It is easy to see that in this case
the Godbillon-Vey class is trivial either by direct calculation or by using
Theorem A.

Example 4.5. — We retain the notations of the previous example. If
we set p = 3 and q == 1, we obtain a complex codimension one transversely
holomorphic foliation of S'1 x S'4. We consider this foliation as a real
foliation of codimension two and we have a mapping 7 from S1 x S4 to
Br'2. Since there is a family of foliations of a 5-manifold which are of real
codimension two and whose Godbillon-Vey class varies continuously, we
can find a mapping 6t from S1 x S4 to BF^ which gives the continuous
deformation of the Godbillon-Vey class and whose image is contained in
a fiber of the fibration B~T^ —> BF^ —^ BGL-^. Such an example is, for
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instance, given by Heitsch [12]. By adding ^ projected to BF^ and 7 we
obtain a family of F-structures of S1 x 5'4 whose Godbillon-Vey class varies
in all the real numbers. We can perturb the family so that we have a family
of foliations and we obtain the desired family.

Example 4.6 [24].— We consider the complexified Anosov foliation
of the unit tangent bundle over a closed 3-dimensional real hyperbolic
manifold. For this purpose, we consider the foliation T of SL(2,C) by
the left cosets of a subgroup B given by B = [ ( a ^ V a e C * } ,

namely, F = {gB\ g e SL(2,C)}. This foliation clearly projects down to
the homogeneous space SL(2,C)/U(1), where U(l) = { ( a ^)l. Then
we choose a discrete cocompact group F of SL(2,C) such that E =
r\SL(2,C)/U(l) is a Hausdorff manifold. Note that E fibers over M =
r\SL(2,C)/SU(2) with fibers SU(2)/U(1) = CP1. Notice also that the
foliation F induces a foliation F of E = r\SL(2,C), which we will use
later.

Now, to compute the Godbillon-Vey class we will make use of the
relative cohomology of Lie algebras. We regard .$1(2, C) as left invariant
vector fields on SL(2, C) and sl(2, C)* as left invariant differential forms on
SL(2,C) and so on. Then 5l(2,C) = {X^X^X^c. where XQ = (^ _°V
xl = ( 0 0 )5 and x2 = ( ? ^ ) • Let ^°^ ̂  and ^2 be the dual ofXo, Xi and
X2, respectively. Then s((2,C)* = (0:1,0:2, ̂ 3)^. These forms satisfy the
following equations, namely, cL;o = -cc/iA^, d^i = -2o;oAo;i, and duj^ =
2o;o Ao;2. If we write o;, = \i + V^/^, i = 0,1,2, then the above equations
imply

d\o = -AI A A2 4- f^i A ^2, dp,o = -f^i A A2 - Ai A ^2,
dAi = -2Ao A AI + 2p,o A /zi, c^i = -2p,o A Ai - 2Ao A /^i,

d\'2 = 2Ao A A2 - 2/xo A ^2, d^ •= 2^o A A2 + 2Ao A ̂ .

We denote by (A*$((2,C)*)^ the u(l)-basic elements of A*s[(2,C),
in other words, we set

(A*sl(2,C)*)^ = {u; e s[(2,C)*;^^ = rxc^ = 0 for VX € u(l)}.

We can show that

^*(sl(2,C),u(l))

= (1, Ai A ^2 + ̂ i A A2, Ao A Ai A ^2 4- Ao A ̂  A A2, Ao A Ai A A2 A ̂  A ^2)^ •
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Note that 7^(5[(2,C),u(l)) = {0} for k ^ 6 and also that Jf*(5l(2,C),
u(l)) ^ H * ( S 3 xCP1).

It is well-known that the generator of ^(^.C),^!)) can be
identified with the volume form of the homogeneous space SL(2,C)/U(1).
Since the differential forms are assumed to be left invariant, the volume
form projects down to the space E = r\SL(2,C)/U(l). So it suffices to
show that the Godbillon-Vey class is a generator of ^(.s^C),^!)).

First notice that the foliation F is given by the 1-form 0:1 = Ai -+-
v^/^i at the point of E corresponding to the identity element of SL(2, C).

Then the equation

, ^ ^ / A o -^\^\
\^) \^o Ao ) \^)

shows that
2

XR(^l) = --AO,
7T

^

XR(ci) = -(Ai A A2 - A4 A ^2),
4

Xp(c2) = --^Ai A A2 A /^i A ^2.

Hence XR(^IC?) = ^ Ao A Ai A A2 A ̂  A ̂ 2, and the Godbillon-Vey class of
(E,^) is non-trivial in ^(s^^C)^!)). On the other hand, we see from
a direct calculation, or from Theorem B that XR^c^) = jxR^iC?).

Now we lift the foliation (£', JF) to (E, :F). Then T is globally defined
by a 1-form o;i. This shows that the first Chern class of the normal bundle
of f is trivial, therefore the Godbillon-Vey class is trivial by Theorem A.
We can also see the vanishing of the Godbillon-Vey class directly as follows.
We still have

2 2 2
Xp(^i) = --Ao, XR(ci) = ~-d\o = -(Ai A A2 - f^i A ^2),

Xc(^i) = -—-F=-(^O = -—^=-(d\o + V^ld^o).
T r y — I TTV—I

Thus the Godbillon-Vey class is represented by the differential form
--^AoA(dAo)2 . Nowd(AoAc^oA^o) = -AoA(dAo)2 because d\^ - d^ =
d\o A d^Q = 0. This shows that the Godbillon-Vey class of :F is trivial
though it is non-trivial as a differential form. Note that in this case ^0(^1)
is well-defined on E and in fact equal to - ——— 0:0, which is not well-defined
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on E. Note also that the equation d\^ — dp^ = d\o A djio == 0 is equivalent
to the fact XcW) = 0. This is just the Bolt vanishing theorem [8].

This phenomena reflects the fact that the space £', an S^-bundle over
E, can be viewed as the 'fibrewise Hopf fibration of E\ namely, E fibers
over M as well as E does, and if we denote the fibre, which is naturally
identified with S'3, by F, then F is a principal fi^-bundle over the fiber
of E —> M. We can say that the non-triviality of the Godbillon-Vey class
comes from the non-triviality of the Euler class of this S'1-bundle. See also
Morita [20].

Remark 4.7.

(1) The above argument is valid for any foliation defined by a 1-form.

(2) The class ^(^) defined at Definition 3.3 is now represented by

4
-—2 (AO A AI A tl-z + AO A ̂  A X^)

and corresponds to the generator of H^^sK^^C)^^!)).

The above construction can be partially generalized to higher codi-
mensional cases.

Example 4.8 [24].— Consider SL(g + 1,C), and define a subgroup
SL(g, C) of SL(q + 1, C) by setting

SL(q^C)=U^ ^y . lde tAl^ l .a^detA- 1 ^ .

We foliate SL(<7+1,C) by the cosets of ^= ^ ( a ^ ; C € GL(q,C)\. As

in the above example, we denote by F this foliation of SL(g + 1,C). The
foliation F projects down to a foliation F of the homogeneous space

M=SL(g+l,C)/SL(9,C).

The foliation F is transversely holomorphic and of complex codimension
q. We can show that Godbillon-Vey form is a natural volume form of M
which is invariant under the left action of SL(q + 1, C).

Though the proof is somewhat complicated, it is very similar to the
proof of Example 4.6 and we omit it (see [2]).

Remark 4.9. — If we can find a discrete subgroup r of SL(q + 1, C)
such that the double coset F\SL(g + 1,C)/SL(^,C) is a closed Hausdorff
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manifold, then as in Example 4.6 we can obtain an example of a transversely
holomorphic foliation of a closed manifold whose Godbillon-Vey class is
non-trivial. However, it is known that there is no such discrete subgroup
F of SL(q + 1,C) if q = 2 (T. Kobayashi [18, Example 7]) or q is even
(Y. Benoist [6, Exemple 1]). It seems that even in the case where q is an
even integer greater than 2, we do not have such a lattice.

We end up this paper by summing up some questions.

QUESTION 4.10.

(1) Is there a transversely holomorphic foliation of complex codimension
greater than one whose Godbillon-Vey class is non-trivial ?

(2) Is there a family of transversely holomorphic foliations whose
Godbillon-Vey class varies continuously ?

(3) Are the complex secondary classes invariant under ^-concordance
(resp. cobordism, foliation preserving diffeomorphism) ?

Added in Proof. Recently, we found answers to (1) and (2) of
Question 4.10. Namely, we found examples of transversely holomorphic
foliations whose Godbillon-Vey classes are non-trivial in any codimensional
case. One of the examples is obtained by changing SL(q, C) in Example 4.8
to an appropriate compact subgroup. On the other hand, by generalizing
Theorem D, we can show that the Godbillon-Vey class is rigid under smooth
deformations in any codimensional case. These results will appear in [27]
with some more examples.
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