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SHEAVES ASSOCIATED TO
HOLOMORPHIC FIRST INTEGRALS

by Alexis GARCIA ZAMORA

0. Introduction.

Through this paper S will be a projective, smooth and irreducible
surface over C. A holomorphic foliation over S is an element F €
PH?(S,05 ® L7!), where £ is an invertible sheaf on S and ©g is the
tangent sheaf. Thus, to any foliation there is associated via the natural
isomorphism H°(S,05®L~!) = Hom(L, ©g), a morphism £ — O defined
up to multiplication by a non-zero complex number, in the sequel this
morphism will be denoted by F.

Thus, F is defined in a trivializing open set U, by a vector field

Xo =Aa 0 + Ba 9
Bza,l

3za,2 ’
defined up to multiplication by a scalar.

Associated to F there exists a dual map wr : L' — (Og)*, which is
given in local coordinates by the 1-holomorphic form dual to the previous
vector field.

The singular set of F is defined as the set of points where the
associated map of vector bundles F : L — TS is not injective. This is
equivalent of saying that Sing F is the set of points where A, = B, = 0.1t is
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910 ALEXIS GARCIA ZAMORA

more natural to speak about the singular subvariety of F which is defined as
the subvariety of S associated to the ideal sheaf 7 generated by {A,, Ba}-
In this paper we work with foliations having isolated singularities, i.e, we
assume that the subvariety Sing F is supported on a finite set of points.

Assume that F admits a holomorphic first integral, that is: there
exists a holomorphic map f : § — P! such that any irreducible component
of the fibers of f is a solution of F. We assume, in addition that the generic
fiber of f is irreducible.

Recall that an irreducible analytical curve C C S is a solution of
F if for each z € Cy = C — Sing(F), we have F(L;) = T.Co, where
Ly =(L®0Ogy)/ms s, is the vector fiber of £ at x. In others words, C' is
a solution of F if the restricted map F¢ : Lo — ©Og,c factorizes through
the natural inclusion ©¢ — Oglc.

In [7] Poincaré studied the following problem: assume that F is a
foliation on S = P? admitting a meromorphic first integral, that is, there
exists a rational map f : P? — P! (therefore defined away from a finite
number of points), such that the irreducible components of the fibers of f
are leaves of F, away from the indeterminancy locus of f. Then, find an
upper bound for the degree of the general fiber of f, depending of some
information given by F. (For a more precise statement of the problem see
[7] and [9].)

Poincaré ([7] or [9], remark following Example 2.3) noticed that for
foliations of degree m > 4 in P2, the previous problem can be solved finding
a bound for the geometric genus of the general fiber of f. Thus, in a more
general setting, its seems reasonable to study the following problem: given a
foliation F on an algebraic surface S, admitting a holomorphic first integral,
find a bound for the genus of the general fiber of f in terms of information
depending of F.

This is the problem that we study in the present paper. In particular
we prove the following result (Theorem 2.2):

Assume that for some integer n > 1, h°(S,0g(—nKs)) > 0. If F is a
foliation on S admitting a holomorphic first integral, then

(2n —1)(g — 1) <K (S, L' (=(n = 1)Ks)) + h°(S, L) + 1.

The class of surfaces satisfying the previous hypothesis includes all
the 0-dimensional Kodaira surfaces and the Del Pezzo surfaces. The bound
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obtained in this case depends on the dimension of the cohomology groups
of the sheaves defining F, so this gives a solution to a question analogous
to the Poincaré problem for above classes of surfaces.

In Section 3 we study the cohomology of £’ ~! in the case where S
is a rational surface. It is a case of interest because, given a foliation F
in P? admitting a meromorphic first integral f, it is possible, after a finite
number of blowings-up, to obtain a rational surface S, and a foliation F’
on S admitting a holomorphic first integral f’ whose fibers are birationally
equivalent to the fibers of f (see [8]). Moreover, the cohomology of the
sheaves defining F’ can be computed in terms of the cohomology of the
sheaves defining F and information on the blowings-up that gives rise to S.

Our results on Section 3 are based on the study of the direct image of
£~ under f- We prove that the two direct-image sheaves are locally free
and we give some partial information on the nature of the decomposition
of these sheaves as the direct sum of invertible sheaves.

Almost all the proofs in Sections 2 and 3 are based on some rela-
tionships between F, L’ ~! and the canonical map df obtained in Section 1
(Proposition 1.1, Corollary 1.2 and Theorem 1.3). Part a) of Proposition 1.1
is probably well known, we have taken the formulation and proof from ([3]).

1. Foliations and first integrals.

PROPOSITION 1.1. — a) Let F : L — ©g be a foliation on S. Then
there exists an exact sequence:

0-L T505 Y507 — Ogingr — 0.
b) If f : S — P! is a first integral of F, then we have the following
exact sequence:
0—£ hes L os020) —1—0,

or, in other words, L is the kernel of the natural map df : ©s — f*Op:.
Here C denotes a generic fiber of f.

Proof. — a) Let {(Uq, 20,1, 2a,2)} be a covering of S by coordinates
charts, with transition functions ¢, g. Assume that £’ is trivial on U,.
Assume that in this choice of coordinates the map wx is described locally
by means of

Wa = Aa(za,la za,2)dza,1 + Ba(za,l» za,Z)dza,Z-
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The local vector field
0 0

BzaJ * 62(,,2

Xa = B, s
is a local generator of the kernel of wr and has isolated singularities. Thus,
if Y is any vector field such that w,(Y) = 0, then on U, — Sing F we may
find a holomorphic function A such that Y = hX,, this function h extends
to an element of Oy, , by Hartog’s Theorem ([4]), since Sing F has discrete
support. So, the kernel of wr : Og5 — L' ~! is an invertible sheaf generated
by X. On the other hand the image of wx is the ideal generated by A, and
B, this proves the assertion, since Sing F is the 0-dimensional subvariety
defined by A, and B,.

b) Consider the canonical map
df : ©5 — f*Ox,
call its kernel ©g . The map df is locally defined by means of

? o\ . of of
df (on,l—azm1 + Xa,z—azaz) = Xa’laza,l + Xa2 Doez’

Thus, we see that the kernel of df is the subsheaf of ©g generated at
each local ring O, by the local vector field
1 of 8 of 0
hp \0za2 0za,1 02210202/,
where h,, is the greatest common divisor of (%)p and (29%.%),;' This

proves that ©g/s is an invertible sheaf. Moreover, the local generator of
Og, ¢ has isolated zeros.

Now, using the fact that f is a first integral of F it is easy to see that
there exists a map of sheaves £ — ©g ¢ such that the diagram
0— ©Ogy — ©Og,
]’.‘
[
L

commutes. Indeed, we first claim that if f: S — X is a first integral of F
the composite map

Lo Loy,

is the zero map. For this it is sufficient to check that the assertion is valid
in the vector stalk at each point z € S. Let z be a nonsingular point of F,
then there exists a unique solution C' that passes through z, and we have
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F(Ly) = T,C. But df (T,;C) = 0, since C is an irreducible component of a
fiber of f. On the other hand, if z is a singular point of F then F(£;) =0
and the claim is trivial. As Og s is the kernel of df, we obtain the desired
morphism.

Now, we need to prove that this map is surjective. This map is
surjective on S — Sing F, because it is surjective on the vector stalks at
these points. So if X denotes the local expression of a generator of L C Og
and X, is a local generator ©g ; then we must have a relation hXr = X,
on U, — Sing F, where h is a holomorphic function, now, both X and X,
has only a finite number of zeros, and thus h must be a nowhere vanishing
function on U, (Hartog’s Theorem). This means that h is an unity in O(U,)
and so £ ~ Og 5. O

An easy corollary of part a) of the proposition is the following well
known fact:

COROLLARY 1.2. — L' ®@ L7 ! =Ks.

Proof. — Outside the support of Oging # We have Ks™ ! ~detOg ~
L ® L'~*. The lemma follows as an application of Hartog’s Theorem. O

For a slightly different proof of this fact and other general properties of
the sheaves £ and £’ ™" see [2]. The reader problably will find the notation
used in that reference more appropiate, here I have followed the notation
in [3], the primary source where I learned the subject.

Assuming that F admits a first integral, call Y ¥ Zj‘ ni; Fi; the
divisor given by the preimage by f of the critical values of f, (here i runs
on the set of critical values and k; is the number of irreducible components
in the fiber corresponding to i).

THEOREM 1.3. — Let F be a foliation admitting a holomorphic first
integral f with generic fiber C, using the previous notation we have

£~ 0 (20 -3y - 1)Fi]-).
ij

Proof. — Let us denote that J = ©g/L. Then we have an isomor-
phism J ~ £'~" away from Sing F.

Thus, the inclusion

0 — J — 05(20),
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allows us to define a morphism £/~ — 0s(2C), outside Sing F, which is
obviously injective. Now, we take a closer look at the structure of Z.

7 is the cokernel of the map df. Note that the image of df is locally
generated, away from Sing F, by the divisor },;(n;; — 1)F;;. We conclude
that, away from Sing F we have an exact sequence:

0— £ — 0s(2C) — Os,;(n,;-1)F;; — 0.
£'~" and Og(2C) being invertible and Sing F discrete this exact sequence
extends to one on S. Now, we use the fact that
03(26)0\:.1-3-(71“—1)1?“ ~ Oz(ni;-1)Fy»
(1], page 90, Lemma 8.1) to conclude that
L7H(=20) = 0s(= Y (nyj — 1)Fy). o
i

Note that this isomorphism generalizes relationships a, page 39 and

6, page 41 in [7].

2. Bounding ¢ in some particular cases.

In this section we study the cohomology of the sheaf £’ ~! and other
related sheaves. As will be clear after the following discussion a good
understanding of these cohomology groups can be helpful for the study
of the Poincaré Problem.

We start with the following observation:
PROPOSITION 2.1. — Let f : S — P! be a holomorphic first integral
of the foliation F : L — ©g. If g denotes the genus of the general fiber C

of f, then
g < NS, LY + h3(S, L7 (=0)).

Proof. — Consider the standard exact sequence
(2.1) 0— Os(-C) — Og — Oc — 0.
Its follows almost immediatly from the definition of the solutions of F

that £L® O¢ ~ O¢. Thus, from Corollary 1.2 we obtain: £l Oc ~ O¢.
If we apply the functor L’ ~! to the exact sequence 2.1, we obtain

0— /.:’_1(—0) — L — 0 — 0,

ANNALES DE L’INSTITUT FOURIER
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the result follows at once after considering the long exact sequence in
cohomology associated to the previous one. ]

A similar argument allows us to solve the analogous to the Poincaré
problem on some kinds of surfaces:

THEOREM 2.2. — Under the same hypothesis of Proposition 2.1,
assume, moreover, that h°(S, Os(—nKsg)) > 0, for some positive integer n.
Then

(2n —1)(g—1) < hY(S, L' (—=(n - 1)K3)) + h°(S, L) + 1.

Proof. — First of all, we observe that , C being a fiber of f, we
have Os(C) ® O¢ ~ O¢ ([1], Lemma 8.1). Thus, applying the adjunction
formula we obtain Og(Ks) ® Oc ~ Oc(K¢). Furthemore we obtain an
exact sequence:

(2.2)
0— L N =(n=1)Ks—C) — L (=(n-1)Kg) — 02D — 0.

Now, it follows from the Riemann-Roch formula ([5], page 108) that

h(S,002 D) = (2n — 1)(g - 1).
Then we obtain, from 2.2, the following inequality:
(2n—1)(g—1) < RYS, L7 (=(n=1)Kg)) + h2(S, £ (—(n—1)Ks — C)).

But h2(S, L' " (—(n — 1)Ks — C)) = h°(S, L' (nKs + C)), by Serre’s
duality. On the other hand the global section of Os(—nKg) defines an
inclusion:

0 — Os(nKg) — Og,
from this we obtain
ho(S, L' (nKs + C)) < (S, L'(C)).

Finally we observe that the exact sequence 2.1, followed by tensor

multiplication by Og(C) leads to the exact sequence
0— L — L'(C) — Oc — 0.
Thus, we have the inequality h°(S, £'(C)) < h°(S, L') + 1. a

We note that the class of surfaces satisfying the hypothesis of the
theorem includes the surfaces of Kodaira dimension 0 (K3 and abelian

surface, among others) and Del Pezzo’s surfaces. Unfortunately general
rational surfaces and surfaces of general type do not satisfy the hypothesis.
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3. Direct images of £/~ when S is rational.

In this section we start with the study of the cohomology of £’ ~1in
the case where S is a rational surface. The results that we present here are
just a first step in this study, for the moment we have been not able to
obtain a more satisfactory description.

Thus, in this section we always assume that S is a rational surface.
We start by observing that h%(S,0g) = 0 and this implies, by Proposi-
tion 1.1 a), that h2(S, L’ 1) = 0. Indeed, the sequence a) in Proposition 1.1
splits into two short exact sequences:

0—L—05— J—0,

and

0—J—r ' — Osingz — 0,

from this it is easy to conclude, taking long exact sequences in cohomology,
that h2(S, £'~") = 0. We denote by g; = h'( 3, (nij—=1)Fyj, Os,(ny—1)F; ) -
Our main result is:

THEOREM 3.1. — The direct-images ROf.(L'™") and Rf.(L'™")
are locally free sheaves of rank 1 and g, respectively. Moreover

a) RO (L") ~ Om(2 — k), where k = ¥, WO (3 (nij — 1)Fy,
Ozj(nij—l)l’u)'

b) R (LY ~ @ Opi(—1) @° Opr @ Op:i(1), where r,s,t are
integers satisfyingr +s+t=gand —r+t=9g—3 . g;.

Proof. — We use the results in [6], Section 5, following the notation
in the reference we call Cy, t € P! to the fiber of f over ¢, if M is a coherent
sheaf Mg, will denote the restriction of M to C.

Now, L'g} ~ O, for general t, this implies that h%(Cy, £'¢}) > 1 for
any t, for a similar reason we have that h%(Cy, £'¢,) > 1 for any ¢. Then, for
any fiber C; of f we have L’ Etl ~ Og,. This implies that h°(Cy, £'g") = 1
for any ¢ € P! and then we conclude that R®f,(£'™") is locally free of rank
1. From it follows at once that R f,(£'~") is locally free of rank g, since the
Euler characteristic of £’ 53 is locally constant on ¢ and h°(Cy, £’ 53) =g
for general t. This proves the first part of the theorem. In order to prove
parts a) and b) we need the following elementary lemma:

ANNALES DE L’INSTITUT FOURIER
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LEMMA 3.2. — Let S be a rational surface and f a proper holomor-
phic map from S onto P!. If the general fiber of f is an irreducible curve
of geometric genus g, then

a) Rof*(o,g) ~ O]pu,
b) Rlf,(0s) ~ &I0p: (—1).

Proof of 3.2. — We note that Og,, =~ Oc,. Moreover, S being a
rational surface, we have h%(S,Og) = 1 and h(S, Og) = h?(S, Os) = 0.

Now, it follows from the Leray spectral sequence associated to f that
rO(P',R%£.(0s)) = 1,
and

h'(P', R°f.(0s)) = B°(P', R' f.(Os)) = h'(P*, R' £.(0s)) = 0.

Finally, use Grothendieck’s Theorem on locally free sheaves on P!
(any locally free sheaf on P! splits in a direct sum of invertible sheaves([5],
page 129)) and the Riemann-Roch formula to get the result. |

Now we apply the direct image functor to the exact sequence deduced
in the proof of Theorem 1.3. The long exact sequence obtained in this way
splits into two short exact sequences:

(3.1)
0 — ROf. (L") — R°f£,(0s(2C)) — R°f. (o(

__)0,

E(nij—l)Fij))
(32) 0— R (L) — R'£.(0s(2C)) — RS (O(Z(nlj—l)Fij))’

since R!f,(L'™") is locally free and R°f,(3(n;; — 1)F;;) is supported on
a finite set of points.

From Lemma 3.2 and the projection formula we deduce that R° f,(Os
(2C)) = Op1(2). Thus,

deg R°f, (L'"') =2 -k,

where k = hO(Pl’Rof*(OZ(nij—l)Fij)) = hO(Z(nl] - 1)Ej’oz(nij—1)Fij)'
Thus, part a) of the theorem follows.

b) From Lemma 3.2 and projection formula it follows that
le*(OS(2C)) ~ ®IO0p (1)

TOME 50 (2000), FASCICULE 3
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This implies that in the decomposition R! f,(L’ _1) ~ &J_,0p1(a;),
we must have a; < 1. Moreover, h?(S,©0g) = 0 implies that h2(S,£'~!) =
RY(PY, RY(L'Y)) =0.

Now, as the cohomology of R!f,L£'~! decomposes in the the direct
sum of the cohomology of Op: (a;), it is easy to deduce, using the Riemann-
Roch formula that a; > —1. From this we conclude that

RYf.(L7") ~ @ Opi(~1) @° Opr &' Op: (1).

It is clear that r+s+t = g, since R'f,(£'~") has rank g. Lastly, note
that the exact sequence 3.2 implies that

g = deg le*(os(2c)) = deg le*(‘clnl) + hO(Pl’ le*(oz(n,-j—l)F‘,-,-))'
On the other hand,
hO(Plv le*(oz:(nij—l)Fij)) = Zg’is since h2(Cta O(E(nij—l)Fij)Ct) =0

for any t € P! ([6] page 53, Corollary 3). The proof of the theorem is
concluded. 0

We would like to note some immediate consequences of the theorem.
First of all note that

COROLLARY 3.3. — r = h3(8, L~ (-C)).

Proof.

r= hO(PI) [le*(‘cl_l)(l)]_l)’

by Serre duality we have
r = W (B, R £.(L'1)(~1)) = B3(S, L1 (~C)). o

COROLLARY 3.4. — Let F and S be like in Theorem 3.1, if
RO(S,L'™") > 0, then f has at most two non-reduced fibers.

Proof. — Its follows at once from part a) of the theorem.
COROLLARY 3.5. — Under the same hypothesis of Theorem 3.1
29 -2~ g =h'(F", R £ (L)),
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Proof. — Use Riemann-Roch formula and the fact that
WP, RLA (L) = 0

hO(P', RY(L'™1)) = deg(R £ (L'™")) + rank(R! £, (£'™)).

The corollary follows at once from this relationship and part b) of the
theorem. O
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