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DIAMAGNETIC BEHAVIOR
OF SUMS DIRICHLET EIGENVALUES

by L. ERDOS(*\ M. LOSS^**) & V. VOUGALTER ̂

1. Introduction.

When studying Schrodinger operators with magnetic fields, the dia-
magnetic inequality is the only general tool available for apriori estimates
and comparisons with the free Laplacian. In its simplest form it says that

(1.1) | (-zV + A(x)) Wf ̂  |V|^)||2,

but it also appears in the form of the following estimates on the heat kernel
and the Green's function:

(1.2) le-^^)2^)) < e^(x^y) t > 0,

and

(L3) (-i^^^E^^^^ E^'

(see [K72], [S77,79], [HSU77], also [AHS78] and [CFKS87]). Here A(x) is a
one-form on R71 and the magnetic field is a two-form B{x) given by

(1.4) B(x) = dA(a-).

The magnetic field determines the vector potential only up to an exact
one-form d0. In particular, in one dimension the vector potential can be
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892 L. ERDOS, M. LOSS & V. VOUGALTER

gauged away, i.e., it can be removed by a suitable choice of (f). Thus we
restrict our attention to the case n > 2.

One of the numerous applications of these estimates is the magnetic
Lieb-Thirring bound, i.e., a bound on the moments of negative eigenvalues
for the Schrodinger operator of the form

(1-5) (-zV + A(x))2 + V(x)

acting on L2^) , where V is an external potential (see [LT75], [LT76],
[L80], [AHS78]). These estimates do not depend on B, in particular they
do no improve as the magnetic field is increased, despite that negative
eigenvalues typically disappear in strong fields. Moreover, for most cases,
the constants in these bounds are not sharp. The notable exceptions are the
recent bounds of Laptev and Weidi for higher Riesz means of the eigenvalues
of (1.5) ([LW99]). Denote by A, = \j(B,V), j = 1,2,.. . the negative
eigenvalues of the operator (1.5), which depend only on the magnetic field
B by gauge invariance. Laptev and Weidi showed that for 7 ̂  3/2

(1-6) ]D-A,)7 < Lei I max^V^.O)71/2^^
j J^

where

(1.7) ^ •= r^1)
2n7^n/2^(7 + j + 1)

is the classical constant that appears in WeyPs asymptotic formula.

Related to the Lieb-Thirring bounds, the following inequalities of Li
and Yau ([LY83]) are known for the sum of eigenvalues of the Dirichlet
Laplacian on a domain U C W1 with volume \U\:

(1.8) ^x^c———N^\U\-^
3=1 '

where Cn := (27^)2|^|-2/n, Bn is the unit ball in ET and \Bn\ is its volume.
Again, it follows from WeyPs asymptotic formula that the constant Cn is
the best possible. Note that the Li-Yau result does not follow from the
Laptev-WeidI result.

In this paper we prove a modest extension of the Li-Yau result to
the magnetic Dirichlet Laplacian with a constant magnetic field. More
specifically, for any domain U C R71 of finite volume we consider the
operator

H^ (-zV+AQr))2
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DIAMAGNETISM OF EIGENVALUE SUMS 893

on L^^U) given by the closure of the form

(1.9) (^^) '= I K-zV+A^))^))^
Ju

on C^(U). The one-form A(x) satisfies dA = B, where B is a constant
two-form. Our main result is the following:

THEOREM 1. — Let H be given by (1.9) where A generates a
constant magnetic field. Then for any N orthonormal functions {(^j}^
in the form domain of H we have the inequality

(1.10) E^-^) >———CnN^\U\-^^
J=l n l z

with Cn as before. Again the constant Cn is the best possible.

Remark 1. — That Cn is best possible follows again from the Weyl
asymptotic formula, noting that the magnetic field does not contribute to
the eigenvalue sum to leading order as N —^ oo.

Remark 2. — Let \j(B) be the eigenvalues of (1.9). Diamagnetism
for eigenvalue sums in the strongest sense would mean that

(i.n) Ew^Ew-0)-
j=l j=l

The diamagnetic inequality (1.1) shows that (1.11) is valid for N = 1, i.e.
the lowest eigenvalue of the magnetic operator ((1.5) or (1.9)) increases as
the magnetic field is turned on. But (1.11) fails in general even for N = 2.
To see this, one can consider a planar domain where the second Dirichlet
eigenvalue of -A is twofold degenerate. If we turn on a small constant
magnetic field B > 0, the first eigenvalue increases quadratically with B,
while the second one splits into two eigenvalues; one is raised and the other
one is lowered proportionally to B. Thus the sum of the first two eigenvalues
actually decreases for small B. A similar phenomenon can occur for the
sum of the first N eigenvalues. Hence the eigenvalue sum ^A^ A^(B) may
decrease by turning on a nonzero magnetic field B', however our result says
that it does not decrease so much as to violate the semiclassical bound
(1.10). In this sense, Theorem 1 establishes a weak diamagnetic behavior
for the eigenvalue sum.

This remark also applies to the result of Laptev and Weidl. The
moment of negative eigenvalues in (1.6) may increase as B is turned on,
but it never exceeds the classical value.

TOME 50 (2000), FASCICULE 3



894 L. ERDOS, M. LOSS & V. VOUGALTER

Let us say a few words about proofs. The strategy of [LY83] does
not work as smoothly in our problem as in the case without a magnetic
field. The reason is that while the eigenfunctions of the problem on the
whole space are explicitly known, the computation becomes fairly difficult
in dimensions larger than two. Instead, we first reduce the problem to
estimates on the integrated density of states (IDS) for the magnetic
Hamiltonian defined on the whole space. Then we estimate the magnetic
IDS (with a constant field) in terms of the IDS of the Laplacian without
magnetic field. This estimate generalizes the known diamagnetic inequality
in the following way.

PROPOSITION 1 (Generalized diamagnetic inequality). — Let B be
a constant magnetic field in arbitrary dimension n >_ 2 and let P = \u
be the characteristic function of an open set U C R71 with finite volume.
Then,
(1.12) Tr [P/((-zV + A)2)?] ^ Tr [P/(-A)P],
or, in its pointwise form
(1.13) /((-zV + A)2) Or, x) $ /(-A)Cr, x).
Here f is an arbitrary nonnegative convex function defined on R^ with
limA-.oc fW = 0.

It is natural to ask whether our result in Theorem 1 holds for a general
magnetic field. We do not know the answer to this question. However, we
show that our new diamagnetic inequality does not hold generally for an
inhomogeneous magnetic field.

In the following section we prove the two dimensional version of our
theorem in two ways. We give then the proof for arbitrary dimension in
the subsequent sections along with the proof of Proposition 1. We end the
paper with a discussion of the results and the techniques.

2. A simple proof for the two dimensional case.

THEOREM 2. — Let U C R2 be open, with finite volume. Assume
that A is such that curl A = B with B constant, e.g. A{x) == ^(—x^^xi).
Let {(f)j}^^ be an orthonormal set of functions in H^(U). Then for any
N ^ 1

N

(2-1) ElK-^^-ll2^2^
J=l \u\
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DIAMAGNETISM OF EIGENVALUE SUMS 895

We give two proofs of this theorem. The first one is a transcription
of the proof given by Li-Yau for the free Laplace operator. The second
one uses IDS of the infinite volume problem and we explain it in the next
section.

First proof. — Without loss of generality we can assume that B > 0.
Let 11̂  be the projection onto the A;-th Landau level of (—zV+A) 2 defined
on all of ^(R2),

(2.2) (-^V + A)2nf = (2k + 1)B nf.

The projection 11̂  has an explicit integral kernel whose value on the
diagonal is given by

(2.3) nf(^)=H.

A simple calculation for functions (j)j C C^°(U) shows that
N oo N

(2.4) E || (-zV + A)^.||2 = ̂ (2k + 1)B^(<^ Ilf^),
j=l k=0 .7=1

which extends to (f)j € H^(U) by standard approximation. Set

(2.5) ^-—-E^11^-)'
' 1 j=i

Assume that 0i, • • • , (/)N is an orthonormal set, we extend it to an orthonor-
mal basis of ^(L^) and using (2.3) we see that

(2.6) 0 < a, < ̂ ^,,nf^) = ̂ Tr(^nf) = 1,

where \u is the characteristic function of the set U. Since
00

E11^1
fc=i

we get

, , ^ 27TN

(") ^WV'-
Thus we have that

(2.8) E ||(-zV + A)^[[2 = ® E B^ + 1)^
j=i fc=o

TOME 50 (2000), FASCICULE 3



896 L. ERDOS, M. LOSS & V. VOUGALTER

and we minimize the right side of (2.8) over all a;, satisfying (2.6) and (2.7)
with a given a.

Applying the bathtub principle (see, e.g., [LL97] p. 28) we learn that
the minimizer of this problem is given by

( 1 , 0 ^ k ^ [a] - 1
(2-9) Ok == a - [a] , k = [a]

0 , k > [a].
Here [ ] brackets denote the integer part. An easy computation shows that
the minimum of (2.8) is

97T/V2

^ ^(a-H^a-^+a2),

which is greater or equal than 2^2-. D

3. Bathtub principle for the integrated density of states.

First we give an abstract version of the bathtub principle used in
Section 2 in terms of the IDS. Let ft be a nonnegative selfadjoint operator
on a Hilbert space H and let its spectral decomposition be H = f°° Ad£\,
where E\ is the spectral family associated with H. Recall the following
properties of E\\

(3.1) A —> E\ is continuous from the right
and

(3.2) Ex / I as X -^ oo.

Further, let h be a closed subspace of 7Y, and denote by P the projection
from H onto h. Let ^, j = 1,... N be an orthonormal set of functions in
the intersection of h and the form domain of H.

LEMMA 1. — Let /(A) := Tr(PJ^), then
N .00

(3.3) ]^(^,^)^/ {N - /(A))+dA,
j=i Jo

where {N - /(A))+ := max{7V - /(A), 0} is the positive part of (N - /(A)).

Remark. — In applications P will be the projection of H = L2^)
onto h = I^dJ) with some U C IT. In this case [[/[-^(A) is the integrated
density of states, i.e. the number of states up to energy A per unit volume.

ANNALES DE L'lNSTITUT FOURIER
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Proof. — Let

(3-4) FN(X):=^^E^).
j=i

By (3.2) FAT (A) is increasing towards N as A —> oo and for all A

(3.5) 0 ̂  F^(A) < Tr(P^) = /(A).

By these properties, the function F/v(A) defines a measure dF^(A). Since
N

^{^,H(t>,)= I AdF^v(A)=/ 1 (F^v(oo)-F^(a))da
(3.6) J=i t/o 70

/*00

= / (N-FN(a))da^
Jo

the result follows from (3.5) and the fact that F^v(A) ^ TV for all A ;> 0. D

The following elementary lemma is useful for computing explicit lower
bounds.

LEMMA 2. — Let f and g be two nondecreasing functions on the
positive line satisfying limA-^oo /(A) = limA-^oop(A) = +00. Assume
further that

fE .E
(3.7) / /(A)dA^ / g(\)d\

Jo Jo
for all E ^ 0 . Then

roo /»cx)

(3.8) / (TV-/(A))+dA^ / (7V-^(A))+dA,
Jo Jo

for all N > 0.

Proof. — With the definitions Ao := inf{A : /(A) ^ N} and
fiQ := inf{^ : g(p,) ^ N} the problem is reduced to showing

/•^o /•Ao
(3.9) / g - / / ^ (^o - Ao)7V.

^0 JO

In the case /^o ^ Ao we write the left side as
rP'o pp-o

(3.10) / (g-f)+ f.
Jo J\o

Since the first term in this sum is nonnegative and / ^ N on (Ao,/^o) we
obtain (3.9). In the case /^o < Ao we write the left side of (3.9) as

f^o /•Ao

(3.11) / { g - f ) ~ / /.
^0 Jun^O

TOME 50 (2000), FASCICULE 3



898 L. ERDOS, M. LOSS & V. VOUGALTER

Again the first term is nonnegative and on (^ ^o) we have f <: N^ which
yields the result. D

Remark. — Armed with Lemma 2, one can use Berezin's trace
inequality [B72] to give an alternative proof of Lemma 1 without bathtub
principle (we are grateful to Timo Weidi for pointing this out to us). Let
E\ be the spectral resolution of PHP. By the variational principle and the
spectral theorem

N /.oo _
]̂ ( ,̂̂ .) ^ / (JV-TrE^dA.
j=i 70

Hence (3.3) would follow from Lemma 2 once we prove that for any E > 0
pE pE

/ TrExd\< \ Tr(P£\P)dA,
Jo Jo

but this is just Berezin's inequality Try(PHP) < TrPy{H)P for the
convex function (p(u) := {E — it)+. Here we used that

( E
(3.12) / E^d\={E-H)^

Jo
and a similar relation for E\.

With the help of these lemmas we give now a second proof of
Theorem 2 that can be easily generalized to higher dimensions.

4. Second proof of Theorem 2.

Let H = (-zV + A)2 be the constant field operator, U = L^R2),
h = 1^(1}). Let P be the orthogonal projection from H to h, in other
words, the multiplication by the characteristic function \u' Then

(4.1) — Tv(PE^) =— f E^(x^x)dx = E^

is the integrated density of states, where

(4.2) E^x) := ^ Hf(^) =B[—+1] =: E^
(2fc+l)B<A

using (2.3). By translation invariance E^{x^x) is clearly independent of a:.

Thus, by Lemma 1(4-3) r^nM)^
ANNALES DE L'lNSTITUT FOURIER
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is a lower bound to the left side of (2.1). Finally, the bound^(-^^D^r^-^)^2^.
is a consequence of Lemma 2 and the elementary but important observation
that

pE pE D i- \ 1 -\ P^ \ F^(4•5) i^i^^^i^-f.^
for all E > 0. Here E°, := A/(47r) is the IDS of the free Laplacian. It is
useful to view (4.5) as a comparison of the IDS of two Laplace operators
in the whole space: one with and the other without magnetic field.

A nice way to see inequality (4.5) is to notice that the left side is
the integral (up to E) of the Landau staircase function A —>• E^ which is
a function that has jumps of height B/(27r) at the points {2k + 1)B, k =
0,1,.... By comparing this function with the IDS of the free Laplacian,
which is a straight line of slope l/(47r) going through the middle point of
each of the stairs, (4.5) follows easily. Note that this inequality is saturated
exactly at values E == 2kB, k = 0,1,.... D

Remark. — Formula (3.12) implies that (4.5) is equivalent to

(4.6) Tr [P(E - (-zV + A)2)^] ^ Tr [P(E + A)+], P=Xu.

5. Higher dimensions.

The following lemma is the main device for passing to higher dimen-
sions.

LEMMA 3. — Let 7~ii and 7^2 be Hilbert spaces and let Aj^Bj be
nonnegative self adjoint operators on Hj, j = 1,2. By a slight abuse of
notation we denote by Ai + As the operator that acts on H = H^ 0 H^
and B\ + B^ acts in a similar way. Let P = Pi 0 ?2 , where Pi and P^
are nonnegative self adjoint operators acting on T^i and H^, respectively.
Assume further that

(5.1) Tr [P,(E - Ai)+] ^ Tr [P,(E - B,)+]

and

(5.2) Tr [P^E - A2)+] < Tr [P^E - ̂ )+]

TOME 50 (2000), FASCICULE 3



900 L. ERDOS, M. LOSS & V. VOUGALTER

hold for all E ^ 0. Then

(5.3) Tr [P(E - Ai - A2)+] < Tr [P(E - B, - B^+]

for all E > 0. (The traces are taken on the respective Hilbert spaces where
the operators are denned.)

Proof. — For all real numbers x and y the following identity holds:

(5.4) (E - x - y)^ = F 0 { E - ( 3 - y){l - 0(x - /3))d/3,
Jo

where

'5-5) ^U î S.
Via spectral calculus, this formula yields
(5.6)

Tr[P(E-Ai-A2)+] = /looTr[Pl^-/?-Al)]Tr[P2(l-^(A2-^))]d/?.
Jo

The function /(/?) = Tr [P2(1-(9(A2-/?))] is obviously monotonically
increasing. By the layer cake representation (see [LL97], p. 26) it can be
written as

/*oo
(5.7) f(f3) = / X{y:f{(3}>v}dv.

Jo
For any v fixed, /3 —> X{v:f(i3)>v} are characteristic functions of half-lines
starting at

(5.8) f3^):=mf{f3:f(f3)>^}.

In the case when {(3 : f{f3) > v} is an empty set we assume A)(^) = +00.

Hence we obtain
(5.9)

Tr [P(E - Ai - Az)+] = Fdv ( d/3Tr [P^(E - f3 - Ai)}x^:fW>^}
Jo Jo

/*00

= / d^Tr[Pi(£;-/3o(^-Ai)+]
^o

< /l00 d^Tr [Pi(£; - /?o(^ - ̂ i)+] = Tr [?(£; - B, - A^+].
Jo

Here we used (5.1). By the same reasoning we have

(5.10) Tr [P{E - Bi - A2)+] ^ Tr [P{E - Bi - ̂ 2)4-] •

D

ANNALES DE L'lNSTITUT FOURIER
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. — If the dimension n is even, then the operator
(—%V + A)2 acting on all W1 is unitarily equivalent to a sum of 1- two
dimensional magnetic Schrodinger operators that act on L^R2). This
follows from the fact that the magnetic field, being a two form with constant
coefficients, can be transformed into the form

¥
(5.11) ^ Bkdx-zk-i A dx-2k,

k=l

by an orthogonal change of coordinates. If the dimension n is odd the
magnetic field looks as above (except the summation is up to r!-jl) but the
operator is of the form

n-l

(5.12) ^H{Bk)+Ho.
k==l

Here H(Bk) is a two dimensional magnetic Schrodinger operator with
constant field Bk acting on the (^2^-1^2^) coordinate plane and HQ :==
-91 •Xn

By Lemma 1 we know that
N .00

(5.13) ^(^,^0,)^/ (N - /(A))+dA,
^ Jo

where
(5.14) /(A) = Tr(P^)
is determined by the integrated density of states of the operator (—zV+A)2

in the whole space and P = \u- We make an induction argument over
dimensions. From Theorem 2 we know that
(5.15) Tr [P(E - (-iV + A)2)^] < Tr [P(E + A)+],
is true in M2, where P == \u-

Suppose (5.15) holds in R71 , where n is even. Then it is valid in M7^1

by means of Lemma 3. We choose Ai to be the n-dimensional magnetic
Schrodinger operator, B\ is the n-dimensional minus Laplacian both acting
on the L2 space of the first n coordinates. Finally A2 and B^ are both equal
to -<9^ as in (5.12).

To prove (5.15) in R71"1"2 we choose Ai and B^ as above; and we let
A2 and B^ be two dimensional Laplacians on the (xn-\-1,^+2) coordinate
plane with and without magnetic field, respectively.

TOME 50 (2000), FASCICULE 3



902 L. ERDOS, M. LOSS & V. VOUGALTER

This induction argument works not only for domains of the form
l/i x 1/2 C BT x R and U^xU^CW1 x M2 suggested by Lemma 3 but also
for any finite volume domain. The reason is that all the operators considered
are actually on the full Euclidean space, hence they are translation invariant
up to a gauge and their kernels at the (re, x) diagonal are independent of
x. Therefore Tr(PE\) equals to the integrated density of states multiplied
by \U\. So actually we proved the pointwise form of (5.15)

(5.16) (^-(-zV+A)2)^,^)^ {E+^)(x,x).

By applying (5.13)-(5.15) and Lemma 2 (via the identity (3.12) the
inequality (5.15) plays the role of (3.7) in Lemma 2), we obtain the lower
bound

N »OQ , 21

(5.17) ^(<^^)^/ (N-———\Bn\\U\) dA,
. [ Jo v \^) / +

where A? \Bn\ is the integrated density of states o f — A acting on L^R71).
An easy computation shows that the right side of (5.17) is equal to

(5.18) ———^A^M-^,
n + 2.

with
C, = (27^)2|BJ-^

where Bn is the unit ball in R"'. This completes the proof of our main
Theorem. D

Proof of Proposition 1. — Using the spectral calculus and the iden-
tity /(A) = f^°{E - A)+///(^)d^ the result follows from (5.15) and
(5.16). D

Remark. — Due to the close connection between the magnetic op-
erator with a constant field and the harmonic oscillator it is natural to
ask whether the analogue of (1.13) is true for the n-dimensional harmonic
oscillator H^ = —A + u^x2. While it is true for the two dimensional har-
monic oscillator and hence for even dimensional ones, it definitely fails in
one dimension. This can be seen by straightforward calculations.

ANNALES DE L'lNSTITUT FOURIER
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6. The generalized diamagnetic inequality
for inhomogeneous large fields.

Now we wish to consider whether our technique of comparing IDS
works for general magnetic fields. We can show that our generalized dia-
magnetic inequality (5.16) [hence (1.13)] remains valid for inhomogeneous
magnetic fields in the large field limit. However, by constructing a coun-
terexample in the next section, we also show that it fails in general.

To consider the large field limit case, we work in n = 2 dimensions
for simplicity.

PROPOSITION 2. — Let the function ̂  : R2 —> R^~ be nonnegative,
smooth and compactly supported. Let A be smooth, generating a magnetic
field satisfying B{x) ^ c > 0 for all x C R2. Assume that \^B(x)\ > c > 0
on an open set U, where c is any fixed positive constant. Then for any fixed
E>0

(6.1) lim — T r [ V ; ( A ^ - ( - z V + A A ) 2 ) ] < lim — Tr [^(XE + A)+],
A—^00 /\ A—^00 /\

where ip acts as a multiplication operator. The right side of (6.1) is
independent of A even before the limit and equals to |̂ - f ip. The inequality
is sharp ifsupp '0 D U ̂  0.

The heart of the proof is the following semiclassical statement.

PROPOSITION 3. — Under the stated conditions,

lim l T r [ ^ ( A E - ( - 2 V + A A ) 2 ) 1
A—>-oo A L ' J

(6.2) . n( \ °°
= j ^ w-^1 E (E - (2k + Wx))^dx.

From this result Proposition 2 follows easily since
•D(^\ °° p2

(6-3) ^)E(^;-(2fc+l)B(^<^
k=0

for each individual re, by the staircase argument. Integrating (6.3) against
^(x) we obtain (6.1). Since B(x) is continuous but not constant on the
support of ^, we see that the staircase inequality (6.3) is strict on an open
set of x inside the support of '0.

TOME 50 (2000), FASCICULE 3



904 L. ERDOS, M. LOSS & V. VOUGALTER

The proof of Proposition 3 is a microlocal result (see Theorem 6.4.13,
statement (6.4.57) in [Iv98]). We rescale the problem so that the strong
field limit becomes the standard semiclassical strong field limit. Clearly
(6.4)

lim ^Tr[^(AE-(-zV+AA)2) ] = lim ^Tr [^(E-(-z/iV+M)2)+)]
A—>00 /\ it—^U

with p. := h~1 and h := A-1/2. Moreover, Tr [^{E - (-zW + M)2)^] i
exactly the expression

IS

(6.5) dx {E- r)^(x)dre(x, x, -oo, r')

in (6.4.50) [Iv98] (changing r ' to r). Here

(6.6) e(^,-oo,r) :=H^^(H)(x,x)

is the kernel of the spectral projection on the diagonal with

(6.7) H = H(h, p) = (-zW + ijiA)2.

The other term in (6.4.50) [Iv98] is
00

h-2 [ d x />(^-T)+^)^)d,(^0(T-(2^+l)^)))
J J 7r k=o

= h^f^x) B^ f; (E - (2fc+ l)B{x))^

' - T)^[X)———— ̂ ^(/(T - {2k + l)t!(X)

k=0
(6.8)

nf \ 00

W-g)-^(E-{2k+l)E
fc=0

where 0(t) is given in (5.5). Hence (6.4.57) [Iv98] says that with some
constant (7, depending on the smoothness of B

h2 Tr [^(E - (-^V + M)2)^]

(6.9) r R(^ 00

_ / ̂ ) E^l ̂ (E- (2k + l)B(x))^dx < Ch2^
/c=:U

which clearly goes to zero as h —> 0.

It is easy to check that the required conditions in Theorem 6.4.13 of
[Iv98] are satisfied in our situation. D

7. Counterexample to the generalized
diamagnetic inequality.

The following counterexample shows that (5.16) is not true for
arbitrary magnetic field.
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Let us consider the magnetic field in R3 which is given by a vector-
potential AA(|:r|) that satisfies the following conditions:

1) A is smooth, compactly supported, suppA == fx € M3 : 7*1 < \x\ <
r.};

2) x ' A(|a;|) == 0 for all x € suppA;

3) d ivA=0,

and A is a small coupling constant. By the spectral resolution

(7.1) (^-(-zV+AA)2) ̂ x)= { (E-k2)^^)^
JR3

where (pk(x) satisfies the Lippmann-Schwinger equation ([RS79]):
pik-x 1 r pi\k\\x-y\

(") ^''(^-i;/,.^^1)^
with

(7.3) VA = -2zAA • V + A^2.

We solve (7.2) for ^pk(x) perturbatively and use them in (7.1) keeping only
the terms of the order up to A2. Integration by parts and the properties of
A imply that at x = 0 only the A2 A2 term contributes with respect to the
nonmagnetic problem, namely

(7.4) |^(0)|2 = -^ (l - ̂  F A\r) sin(2|fc|r)dr) + o(A2)

and, after some calculation
(E - (-W + AA)2)^, 0) - (E + A)+(0,0)

(7 5) A2 /lr2 A2(r\
=———— / ^-(-^sm$-3^cos^+3sinOdr+o(A2),

\f±^) Jj-^ T

where $ := 2r^/E.

Clearly r\, r^ and E can be chosen such that

(7.6) -$2 sin ̂  - 3$ cos $ + 3 sin ̂  < 0

for all relevant values of ^. Hence, for sufficiently small values of A the right
side of (7.5) can be made positive which contradicts to the comparison
(5.16).

Since \x\-1 € L3-6^3) + ̂ (R3) , |a;|-2 G Lt-^R3) + Lt^ffi3),
and |A|, A2 C ^(R3) for all 1 < p < oo, we have that

/ ̂ d,, / ̂ d, and / 14™d,
7p3 \x - y\ 7]R3 \x - y\ J^3 \x - y\2

TOME 50 (2000), FASCICULE 3



906 L. ERDOS, M. LOSS & V. VOUGALTER

are finite by Young's inequality. This provides the finiteness of the L°° —>
L00 norm of the integral operator

1 r i\k\\x-y\c '̂--,,/,,̂ ^, i i y'WWyJ^ F-2/I
in the Lippmann-Schwinger equation (7.2). Moreover, for A sufficiently
small Q\ clearly becomes a contraction which yields the convergence of the
Neumann series for (^. This justifies the applicability of the perturbation
argument. D

This counterexample shows that the approach used to prove Theo-
rem 1 cannot be directly generalized to the case of a general magnetic field.
However, the generalization of Theorem 1 to arbitrary magnetic fields re-
mains open. Another open question: Which is the most general class of
functions / for which the diamagnetic inequality (1.13) is true?
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