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EXPLICIT KAZHDAN CONSTANTS
FOR REPRESENTATIONS OF SEMISIMPLE

AND ARITHMETIC GROUPS

by Yehuda SHALOM

1. Introduction and discussion of the main results.

We begin by establishing some notation, while recalling the notion of
property (T), originally introduced by Kazhdan in [Kaz] (see [HV] for an
account):

DEFINITION 1.1.

1. Let G be a topological group, and F a family of continuous unitary
G-representations. The family F is said to be isolated from the trivial
representation, if there is a compact subset Q C G and e > 0, satisfying
the following: For every (^^H) € F there is no vector v G H which is
(Q^e)-invariant, namely, satisfies: \\7r(g)v — v\\ < c\\v\\, V^ € Q. Such Q is
referred to as a Kazhdan set, and e as a Kazhdan constant (for Q), for the
family F'.

2. If there are compact set Q and e > 0, which constitute Kazhdan
set and constant for the family of all continuous unitary G-representations
which do not contain a non-zero G-invariant vector, then G is said to have
(Kazhdan^s) property (T).

3. If there is no e' > e satisfying the condition in (2), then e is said to
be the best Kazhdan constant for the set Q.

Keywords : Semisimple groups - Arithmetic groups - Lattices - Property (T) - Kazhdan
constants.
Math classification: 22D10 - 22D30 - 22E35 - 22E46 - 43A15.



834 YEHUDA SHALOM

As is well known by now, the group of ^-rational points of every
semisimple, almost ^-simple algebraic group, denned over a locally compact
non-discrete field k, has property (T), if its A;-rank is at least 2. When k = R
(and only in that case), there exist also simple A;-groups of A;-rank one
with this property, namely, Sp(n, 1) (n > 2) and F4(_2o). Furthermore, any
lattice (i.e., a discrete subgroup of finite co-volume) in a group possessing
property (T), has this property as well.

A natural problem raised by Serre and by de la Harpe and Valette
(cf. [Bur] and [HV, p. 133]), is to compute explicit Kazhdan (sets and)
constants for the algebraic groups with property (r), and their lattices.
This question has been addressed for some lattices in PGL^(k) (for certain
totally disconnected k) in [CMS], where an interesting family of groups
with property (T) was constructed, and the best Kazhdan constant for a
natural choice of generators was computed. More recently, new remarkable
examples of Kazhdan groups were discovered by A. Zuk [Zul], which include
the constructions in [CMS] (see also [BaSw]). Explicit Kazhdan constants
for them are computed in [Zu2]. We note that many of the groups discussed
in [CMS], [Zul], [Zu2] and [BaSw] seem to be non linear, to which the results
of the present paper do not apply. For the group SL^ (Z), explicit Kazhdan
constants for the family of all the finite dimensional representations and
those of the form £2 (S Ls(^) / A) ̂  have been computed by M. Burger in
[Bur]. We note also that R. Howe and E.G. Tan [HT, Ch.V 4.1.1] obtained
Kazhdan sets and constants for certain semisimple Lie groups. These were
defined in terms of the level sets of a function analogous to the Harish-
Chandra 5-function. Other recent related papers are [BCJ] and [BM].

The problem of computing Kazhdan constants for groups of linear
type over (commutative) rings, was studied in detail in [Sh2], where a
new approach to property (T) is presented using the notion of bounded
generation. Nevertheless, [Sh2] is in many aspects complementary to the
present paper, both in the methods employed, as well as in the results
obtained. The approach in [Sh2] is more algebraic, and in the cases it may
be applied, gives a rather sharp information that does not seem available
using the methods of the present paper (such as the behaviour of the
Kazhdan constant for the set of unit elementary matrices in 5'L^(Z), when
n is varied). However, in studying Kazhdan constants for general algebraic
groups, and particularly for uniform lattices in such groups, the methods
of [Sh2] seem inadequate, and the more analytic approach (s) of the current
paper will turn out to be fruitful. We shall describe explicit Kazhdan
constants for every group of rational points of a semisimple, almost /^-simple
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EXPLICIT KAZHDAN CONSTANTS 835

algebraic group with property (T), over any locally compact non-discrete
field k, and consequently, for all lattices in such groups as well. Moreover
for the algebraic groups, we will show that the Kazhdan constants obtained
are best possible.

THEOREM A. — Let k be any locally compact non-discrete field, and
let G denote the k-points of a simply-connected, semisimple, almost k-
simple linear algebraic group defined over k, which is k-isotropic (i.e., G
is not compact). Assume that G has property (T) of Kazhdan. Then for
every 2 ^ m <E N one can find (explicitly) in G Kazhdan sets ofm elements,
whose best Kazhdan constant is:

6 = ̂ 2 - 2(V2m - 1/m) (% 0.51 for m = 2).

Example.— For G = SLn(R), n ^ 3, we show that the matrices
( o 0 5 ( 2 ?) ^^dded in the upper 2 x 2 left corner of SLn(R), form
a Kazhdan set as in Theorem A (with m = 2).

A natural question suggested by Theorem A is whether the same
conclusion holds in the anisotropic case, namely, when G is a compact
(simple) algebraic group. Every such group obviously has property (r),
but it seems even unknown in general if it has a finite Kazhdan set (when
k is connected this is known to be the case, and there are also some results
for totally disconnected k -see [Bel] and also [Shi, §5] where this stronger
property (T) is studied). Actually, it is the norm estimate from which the
above Kazhdan constant is derived (see Theorem 3.1 below), which seems
more natural and interesting, rather than the constant itself. The work of
Lubotzky, Phillips and Sarnak [EPS], although not formulated exactly in
this language, may be viewed as supplying an affirmative answer to this
question when G = S0(3, R). Such a result, for additional compact groups,
would lead to extensions of the results of [LPS] on uniform distribution
of points when k is connected (see also [Lubl, Problem 10.9.3]), and to
new constructions of "Ramanujan graphs" in the totally disconnected case
(cf. [Lubl, Ch. 4] for details).

Although Theorem A deals uniformly with the higher rank groups on
one hand, and the rank one (Kazhdan-) groups on the other, its proof for the
two families is based on rather different ideas. In both cases the question of
Kazhdan constants for all representations is subsequently reduced to that
of the regular representation of a suitable copy of SL^, which is dealt with
using Kesten's theorem for free groups. However, for higher rank groups
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836 YEHUDA SHALOM

the reduction relies on Kazhdan^s original argument [Kaz], while for the
rank one groups it is based essentially on the classification of the class-one
unitary dual of these groups, together with estimates of the exponential
rate of decay of their matrix coefficients. For the explicit construction of
the sets guaranteed in Theorem A see the proof of the theorem in Section
3 (the higher rank case) and Section 5 (rank one case). The proof that the
above mentioned constant is indeed optimal is presented at the second part
of Section 3.

Theorem A yields explicit Kazhdan sets with best constants, but
these sets are of a rather special form. In Section 4 we shall use a method
different from the ones in the proof of Theorem A, which enables one to
derive explicit Kazhdan constants for many other sets of elements. These
estimates, however, are not tight in general. We will show in Section 5 how
this method, which is based on L^-integrability of matrix coefficients, can
be used to obtain Kazhdan constants also for simple Lie groups without
property (T), for any family of representations which admits a spectral gap
(in a sense explained there).

Let us address the question of Kazhdan constants for lattices. There
is no known general method to construct generating sets for (nonuniform)
lattices, and in a sharp contrast to the situation with simple algebraic
groups (as in the example proceeding Theorem A), a Kazhdan set for a
discrete group must generate the whole group (see the proof of Corollary
6.2 in Section 6). The Kazhdan sets we shall determine are of the form:
(*) {7 G r : I H I ^ M}, where || • || is the distance function on G
given by \\g\\ = d{g • e,e), and d is a G-invariant metric on the associated
symmetric space (or Bruhat-Tits building, when k is totally disconnected).
Assume that the G-invariant measure m on F \ G is normalized to have
total mass one. Making quantitative the standard argument that a lattice
in a Kazhdan group is Kazhdan as well, we show in Section 6:

THEOREM B.— Let G be as in Theorem A, and let F < G be
a lattice. Assume that (Q,e) form Kazhdan constants for G. Fix some
0 ^ 6 < ^-, and choose M < oo satisfying m(Y ' BM) ^ - 1 — 6 , where
BM = {9 '• I b l l ^ M}. Denote R = 2M 4- max{|| g \\ \g <E Q}, and let
TR be the finite set F^ = F D BR. Then FR is a Kazhdan set for F, with

Kazhdan constant ( \Z^ )

Ever since its appearance, property (T) of Kazhdan has proven
useful and influential in various areas of research. The computation of
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explicit Kazhdan constants yields quantitative versions for many of the
consequences derived from property (T), and we refer to [HV] for numerous
applications of this property, which will not be considered here. We
only note that Kazhdan's original result [Kaz] about finite generation of
lattices with property (T), can now be made quantitative. Indeed, a set
of generators of the form (*) above for the lattices in Theorem B can
be determined, where the dependence of M on F is explicit. In fact, a
consequence of the uniformity in Theorem A over the various groups, is that
this geometric description of generating sets for the lattices with property
(T) hardly depends on the ambient group (see Corollary 6.2).

Having settled the general question of explicit Kazhdan constants, we
return in Section 7 to consider a different application of the method applied
in Section 4. The aim of this section is the following result:

THEOREM C. — Let G = lid be a semisimple Lie group with finite
center, (TT,^) a unitary G-representation, and ^ a probability measure
on G. Denote by Tr(^) the ^-convolution (or averaging) operator on H,
defined by (7r(u)u, v) = f(7r(g)u, v)dp,(g). Suppose that for every i one has
1 -^^Gi (hereafter I stands for the trivial representation, and -<; for weak
containment of unitary representations - see 2.1 below).

(1) I f H < G i s a closed non-amenable subgroup, then I -^ TT\H-

(2) If ^ is not supported on a closed amenable subgroup, then the
spectral radius of7r(^) satisfies rsp7r(^) < 1.

Furthermore, if we assume regarding TT the weaker assumption that
only IG -^ TT, then the conclusion of (1) holds true under the assumption
that the projection of H to every simple factor does not have amenable
closure, and the conclusion of (2) holds true under the assumption that the
projection offi to every simple factor is not supported on a closed amenable
subgroup.

Notice that if G is Kazhdan, Theorem C yields a uniform gap from
1 for rsp7r(^), over all the unitary representations TT without an invariant
vector. It is easy to verify that (2) in the Theorem implies (1) (see the
argument at the end of this paragraph). The latter may be regarded as
a "weak containment" analogue of Howe-Moore's theorem ([Mol], [HM]),
which replaces "amenable subgroup" by "compact subgroup", and "weak
containment" by "proper containment" (of the trivial representation).
Notice also that (2) implies that as a Kazhdan set for a simple Kazhdan
Lie group, one can take any set of elements which is not contained in a
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838 YEHUDA SHALOM

closed amenable subgroup. Indeed, then there exists a finite subset with
this property, and on it spread, say uniformly, a probability measure ^.

In Section 8 we present another application of our methods in
considering the question of existence of a Kazhdan constant valid for all
the generating sets of a finitely generated group. Very little seems to be
known about the problem in general. We discuss its relation with uniform
growth rate of groups, and establish a result in this direction for certain
hyperbolic groups.

Acknowledgments. — Since the Fall of 95 this paper has been circu-
lated in different forms, and was revised several times. The first version was
written in October 95, while visiting the Max Planck Institute at Bonn.
We would like to thank the MPI for its hospitality and support during that
visit. A second version was completed on July 96, jointly with Amos Nevo,
to whom we thank for his contribution and for illuminating discussions on
various subjects related to the paper. In writing Sections 4 and 7 we have
benefited from [Ne], both in the methods employed, as well as in learning
about some relevant literature. The next version was distributed during the
Fall of 97, in which, among other improvements, Theorem A was brought to
its present unified form, and Theorem C was put. After [Sh2] was written,
a fourth version of the paper included the results there (under the current
title). The present form of the paper was finalized at the beginning of 99.

2. Preliminaries.

We briefly review some of the definitions and results relevant to
our discussion. All the representations considered hereafter are assumed
to be unitary and continuous (in the strong operator topology). For any
representation TT, oo • TT denotes a countable direct sum of copies of TT.
Throughout this section, G denotes a locally compact, second countable
group.

Let us first clarify an ambiguity in the notion of weak containment.

DEFINITION 2.1. — Let p, TT be two unitary G-representations. We say
that TT is weakly contained in p , denoted TT -< p , if either one of the following
equivalent conditions holds:

1. Every diagonal matrix coefficient of TT can be approximated, uni-
formly on compact sets, by convex combinations of matrix coefficients of p.
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EXPLICIT KAZHDAN CONSTANTS 839

2. When extended to a representation of the group algebra L^G), TT
and p satisfy for all f e L\G), || 7r(/) ||^|| p(f) ||.

We say that p and TT are weakly equivalent, denoted p ~ TT, if p -< TT
and TT -^ p. The representation TT is said to be wea-kly contained in a set
of representations J-', if it is weakly contained in the direct sum of the
representations in F.

The equivalence between the two conditions above was proved by
Eymard [Ey]. Condition 1 is the original definition due to Fell [Fe], There
are many other characterizations of weak containment (see e.g. [Dix], [Kir],
and also [CHH]). On the other hand, some authors, for example [Zi], [Mar],
[HV], use the following definition:

(*) TT is weakly contained in p if every n x n submatrix of TT can be
approximated, uniformly on compact sets, by n x n submatrices of p.

We note that (*) is a stronger requirement. Indeed, by Definition
2.1 every unitary representation TT satisfies TT ~ oo • TT, but this is not the
case according to definition (*); for instance when TT is finite dimensional.
Nevertheless, the connection between the two definitions is simple, as the
following shows:

PROPOSITION. — For any unitary G-representations r and TT, one has
r -< TT in the sense of 2.1 iffr -< oo • TT in the sense of (*).

Indeed, if every submatrix of r can be approximated by a submatrix
of oo • TT, then of course this holds also for 1 x 1 matrices. For the converse,
we recall that if r is irreducible, the two definitions can be shown to
be equivalent (see [Fe, 2.2] and the remark thereafter). For a general
representation one then uses a direct integral argument to deduce the
proposition.

For some probability measures ̂  on G, our purpose will be to compute
the operator norm ||7r(^)|| for a general unitary G-representation TT, in
terms of the operator norm ||A(/^)|| for the regular G-representation A.
Recall that the operator 7r(/^) is defined by {^(^v.u) = f(7r(g)v,u}d^{g).
The following theorem, due to M. Cowling, U. Haagerup and R. Howe
[CHH], will enable us to do that.

THEOREM 2.2 (Weak containment in the regular representation).
Let (TT, 1~C) be a unitary G-representation. Assume that there exists a dense
subspace W C H, such that for any n, v € W, (7r(g)u, v) 6 L^^G), for all
e > 0. Then for every f 6 ^(G), || 7r(/) ||^|| \(f) ||, where A is the regular
representation ofG. Consequently, TT -< X.

TOME 50 (2000), FASCICULE 3



840 YEHUDA SHALOM

We remark that it will often suffice to invoke the following classical
variant of Theorem 2.2, due to Dixmier [Dix]: Under the stronger assump-
tion e = 0 , the representation TT may be embedded in a multiple of the
regular G-representation (cf. [HT, Ch.V 1.2.4]).

It will be convenient to establish the following notation:

DEFINITION 2.3. — Let S C G be a finite set of elements. We say that
S is a 2m-discrete free symmetric set if\S\ = 2m, S = S~1 and S generates
freely a discrete free subgroup of G.

There are rather few examples of unitary representations of discrete
groups, for which explicit Kazhdan constants are known, even for regular
representations (see [HRV1], [HRV2], [GH] and the references therein).
Fortunately, we will be able to reduce our problem to one regarding the
regular representation of the free group. There, using the following well
known result of Kesten, one can obtain a (tight) estimate of the Kazhdan
constant for a set of free generators.

THEOREM [Ke].— Let S = S~1 C Fyn be a set of free generators
(and their inverses) for the free group ¥m, ^d let p, = — ̂ ses s

be the associated convolution (or averaging) operator. Then || A(/^) ||=
^/2m — 1/m < 1, where A denotes the regular representation of¥m'

Finally, the following observation will be extremely useful to us in
the sequel. Recall that if H < G is a closed subgroup, then the restriction
of the regular G-representation to H is equivalent to a multiple of the
regular ^-representation. More precisely, L^G))^ = dim L2 ( G I H ) - L2 (H).
Combining this fact when if is a free group, Definition 2.1, and the above
theorem of Kesten together, yields:

PROPOSITION 2.4. — Let S C G be a 2m-discrete free symmetric
set and p, = — Y^s^s s ^e t^Le assoclate^ averaging operator. Let TT be a
representation ofG with TT -< A, where A is the regular representation ofG.
Then || Tr(^) ||̂  \/2m - 1/m.

3. Proof of Theorem A for higher-rank groups.

Let k be a locally compact non-discrete field, and let G denote the
group of fc-points of a simply connected, semisimple, almost ^-simple k-
group, with fc-rank greater than 1. As is well known, G contains (the group
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EXPLICIT KAZHDAN CONSTANTS 841

of ^-points of) a ^-subgroup, A;-isomorphic to either SL^ or Sp^ [Mar,
1.1.6.2]. It is easy to verify that SL^(k) ix k2 < SL^k), and SL'z(k) tx k3 <
Sp4:(k), where SL^(k) acts on k2 via the defining representation, and on A;3

via the adjoint representation. Therefore G contains a subgroup, which we
denote by H^ consisting of the ^-points of an algebraic A:-group, such that
H is isomorphic to either SL^{K) x k2 or SL^(k) K A;3. We can now state
the following:

THEOREM 3.1.— Let G and H ^ SL^k) x k" (n = 2,3) be as
above. Suppose S C SL^{k) < H is a 2m-discrete free symmetric set
(2.3), and let ji denote the associated averaging operator as in 2.4. Let
TT be any unitary representation of G with no G-invariant vectors. Then
|| Tr(fji) || < ^/2m — 1/m.

Proof. — We argue in the following steps (compare e.g. with [Zi, Ch.
7]):

(1) The standard and the adjoint representation of SL^(k) on ^n

(n == 2,3) are algebraic, and the adjoint action of SL^{k) on the dual
group of characters A;71 is algebraic as well. Thus every orbit is locally
closed in the locally compact topology of A^ (see [BZ, 6.15] for a proof
valid for any k). Therefore, by Mackey's theorem [Mac] any irreducible
unitary representation TT of H, is induced from a unitary representation a
of a subgroup which stabilizes some \ € k71. This \ is trivial if and only if
7r|^n is trivial.

(2) If TT is an irreducible unitary representation of H with I ^ 7r|^,
then the \ given in (1) is not trivial, therefore its stabilizer in SL^(k) is
solvable and its stabilizer in H is (solvable and hence) amenable.

(3) For every unitary representation a of an amenable locally compact
group F, one has a- -< L2(F). Therefore by continuity of induction, (2) and
(1) imply that for every irreducible ^-representation TT, satisfying I ^ 7r|fcn,
one has TT -< L2^!!).

(4) If TT is any unitary representation of H such that I ^ 7r|fcn then in a
direct integral decomposition TT = f 71-3; d^x) with 71-3; irreducible, for /^-a.e.
x one has I ^ TT^ l^n and thus by (3), TT^ -< L2^). Therefore integrating
gives for such TT : TT -< oo • L2^) ~ L^^H).

(5) By Howe-Moore's Theorem over local fields and the assumption on
TT, it follows that I ^ 7r|^ and therefore by (4) TT\H ~< ^{H).

(6) By (5) and Proposition 2.4, || 7r(/^) ||̂  ^/2m — 1/m. D
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842 YEHUDA SHALOM

Proof of Theorem A for higher rank groups.— Given any
unitary representation (TT, H) of G such that I ^ TT, and any v € U with
|| v ||= 1, we have, using Theorem 3.1:

_ ̂  Re(7r(s)^ v) ^
' ! sES'

l-o] ^(^^)V,V)
1 1 s€5'

^ 1 1 7r(^) ||^ v/2m - 1/m.

Consequently, for at least one s e S, Re(7r(s)v,v} ^ y^m - 1/m. But
since || 7r(s)v - z; [p^ 2 - 2Re (7r(5)v, ^), we conclude that 5' is a Kazhdan
set with a Kazhdan constant e as in the statement of Theorem A. In fact,
already a subset which consists of one of every two reciprocal elements in
S forms a Kazhdan set, with the same constant 6. D

It may be interesting to note that G. A. Margulis, in the course of
the proof of the superrigidity theorem, also used discrete embeddings of
free groups in semisimple groups to obtain some spectral information (see
[Mar, p. 189]).

Proof of the optimality of the Kazhdan constants in Theo-
rem A. — We start by noticing that for the measure ^ defined above, the
universal bound on the norm: || Tr(^) ||̂  A/2m - 1/m is best possible, as
it is obtained already when TT is the regular representation of G (use the
discussion preceding Proposition 2.4). In fact, we claim that for any locally
compact group, this is the lowest possible uniform bound on ||7r(^)||, for
an averaging operator 7r(/^) defined on any finite symmetric set S, not
necessarily a set which generates a free subgroup. To remove first the
freeness assumption on {S), recall that for any group F generated by a
symmetric set of 2m elements, 5', the norm of the corresponding averaging
operator ^ on ^(F) is greater than -s/2m - 1/m, unless F is free on S (see
[Ke], [HRV1], [HRV2]). Furthermore, the discreteness assumption on the
subgroup F generated by the set S is also redundant. Indeed, it is not true
then that the restriction of L'2(G) to F is a multiple of A = ^(F), but
instead take TT to be the restriction to F of the regular G-representation,
in the following general inequality proved in [Sh4] (see Lemma 2.3 and
the remark thereafter): For every finitely generated group F, a probability
measure ^ on F, and a unitary F-representation TT: || A(/^) ||^|| TT (g) Tt(^) ||.
Since in our case TT is the regular G-representation, TT (g) TT is a multiple
of TT as a (^-representation, hence also as F-representation, and the claim
follows.
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Proceeding to the main issue, we need to show that the above
Kazhdan constant, for a 2m-discrete free symmetric set S, is best possible.
Again, it suffices to see that it is the best Kazhdan constant for the ^-action
in the regular representation A of the free group ¥m (generated by S). To
this end, we shall exhibit a unitary representation TT of ¥m which has the
following two properties: (i) The best Kazhdan constant for the action of
S in the representation TT, is at least the same e = A/2 — 2(\/2m — 1/m).
(ii) TT is weakly contained in A. Then, denoting for any representation by
K(- , S) its best Kazhdan constant (for the set S'), we deduce from (i) that
e ^ ^(TT, 6'), and from (ii) that /^(TT, S) ^ Ac(A, 5), thereby proving our claim.

The representation TT of ¥m that we shall take is the one coming
from the action on its so called "Poisson /^-boundary" B (we refer to [Fu,
§4.1] for definitions, details and proofs of the facts presented below). The
space B consists of all infinite (one sided, say to the right) sequences of
letters in the generators S (adjacent inverses cancelled), equipped with
the product, hence compact, topology. The free group ¥m acts naturally
and continuously on B by "stringing" from the left, and B supports a
unique /^-stationary probability measure v (i.e., one which is invariant
under convolution by ^). Therefore, v is quasi-invariant under the action of
¥m, and this induces a quasi-regular representation TT of ¥m on L2^,^).
The measure v is in fact simple to describe explicitly, and it can easily
be verified that for the constant unit function w == 1 e L2(B,l>f), one
has (7r(.s)w, w) = \/2m — 1/m for every free generator s € S. A simple
calculation now shows that any Kazhdan constant for the set S in this
representation, must then be at least e = A/2 — 2(\/2m — 1/m).

Thus it only remains to establish (ii). This is surely well known, but
we sketch a proof for completeness. The action of ¥m on B arises naturally
from its automorphism action on the 2m- regular tree, when identified with
the Cayley graph of ¥m with respect to S. The action on B can be extended
to a (transitive) action of the whole automorphism group of that tree, G,
and the stabilizer P of one (and hence every) point is amenable. It is also
easy to see that v is quasi-invariant under the whole G-action, hence we
may identify TT with L^G/P). However, inducing I -< -^(P) from P to G
yields L^G/P) -< ^(G), and restricting back to ¥m (which is a discrete
subgroup of G) completes the proof. D
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844 YEHUDA SHALOM

4. L^-integrability of matrix coefficients
and Kazhdan constants.

We begin by recalling the following:

DEFINITION 4.1.— Let G be locally compact, second countable
group, and (TT,?^) be a unitary G-representation. For 1 ^ p < oo, we
say that TT is strongly Lp, if there exists a dense subspace T^o C H, such
that for all u, v G "Ho the matrix coefficient g —>• (7r(^)n, v) lies in LP~^e{G),
for all e > 0.

When G' is a (semi-) simple Lie group, one considers the subspace
of K-fimie vectors, where K is a maximal compact subgroup. Given an
irreducible non-trivial unitary G-representation TT, the matrix coefficients
associated with K -finite vectors satisfy well known (from the work of
Harish-Chandra) exponential decay estimates. These estimates imply that
the {K- finite) matrix coefficients are in LP(G) for some p = p{7r) < oo,
and that the set of q for which (7r{g)u, v) € Lq is always an open interval
(p,oo).

A fundamental result in the representation theory of simple groups
with property (r), which is due to M. Cowling, asserts that the exponential
decay of matrix coefficients of (K -finite) vectors in all non-trivial irreducible
unitary representations, is faster than a fixed rate depending only on G. In
particular, the matrix coefficients lie in LP(G) for some fixed p = p(G} < oo
(see e.g. [Co], [Ho] and [HT, Ch.V 3.3.13]). This fact can be formulated
more generally, applying to any family of irreducible representations of a
simple Lie group, which is isolated from the trivial one.

THEOREM 4.2 (L^-integrability of matrix coefficients [Co], [KM1],
[Mo2]).— Let G be a simple Lie group with finite center. Then for
every neighborhood U of the trivial representation I € G, there exists
p = p(U) < oo such that every (irreducible) unitary representation of G
outside U is strongly Lp. In particular, ifG has property (T), then there
exists p < oo such that the above holds for every non trivial irreducible
representation of G.

For simple Kazhdan Lie groups, a value of such p, and even the best
p (denoted p(G)), have been computed explicitly. The first results in this
direction are due to Howe [Ho], and they were extended by Li [Li] and Zhu
[LZ]. In [Li] a table for p(G) was computed for all but five of the classical
Lie groups. See also [Oh] for a further comprehensive study of this issue.
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For all these groups, one can readily determine explicit Kazhdan constants
using the following general result (see also the discussion after Theorem 5.3
below for an application to rank-1 groups).

THEOREM 4.3. — Let G be a locally compact second countable group,
and F a family of unitary representations which are all strongly 77 for some
(uniform) p < oo. Denote by T^ the set of all G-representations which are
weakly contained in T. Let n = 2k be an even integer with n ^ p / 2 , and
S C G a 2m-discrete free symmetric set (2.3). Then for any (TT,H) e T^
and vectors || v ||̂  1, || w ||̂  1, one has

— ̂ |(7r(^^)| ̂  (V2m~l/m)l/n.
[ ' s^S

In particular, there is s e S such that \{7r(s)v,v}\ ^ (^2m - 1/m)1/71.

Consequently, e = ̂ 2 - 2(^/2m~rT/m)l/n is a Kazhdan constant for S,
for the family F^.

Remark. — Obviously, if T is the family of all non trivial irreducible
representations, then ̂  contains all the unitary representations without
invariant vectors.

Proof.— Assume first that TT is actually in ^ and let TT be its
contragredient representation. Notice that TT is strongly L9 for the same
p, and if v \-^ v is the anti-isomorphism between (TT.T^) and (7r,7^),
then by definition (TT (g) 7r{g)(v (g) v), w (g) w) = \{^(g)v,w}\2. Consider the
representation r = TT^ (g) TT^ ^ (TT (g) Tr)^ (k-fold tensor product). By
Holder inequality, all tensor products (and so their linear combinations)
of the assumed dense set of vectors give matrix coefficients in L£^, and
therefore in I^+^G). It follows from Theorem 2.2 and Proposition 2.4 that

r -< L2{G) || T{u) ||̂  ^/2m - 1/m.

If we denote for any u € H the vector Ur =u0...<^u(S>u^)...0um the
representation space of r, we get for any v,w € H, \\ v ||̂  1, || w ||̂  1:

Tg\ ̂ K^^^)!7' = (r{p.)vr,Wr} ^ V2m - 1/m
{ } ses

and therefore

— ^|(7r(^,w)| ̂  (— ^KTr^.^n1/71 ^ (v/2m^T/m)l/n
1 i SES '-I se5
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as required. Moving on to the general case, notice that we have used the L9

integrability only in showing that an appropriate tensor product embeds
weakly in the regular representation. As weak containment is a transitive
relation (and preserved under taking tensor products), the same conclusion
holds with the weaker assumption TT -< T. D

Remark. — The idea of using ^-integrability of matrix coefficients
for the purpose of spectral estimates is taken from [Ne]. The argument itself
has previously been used in [Co] and [Mo2]. For other applications of this
method, in a different flavour, see e.g. [CS] and [Be2].

Evidently, Theorem 4.3 does not yield in general the best Kazhdan
constants for the sets described there, as Theorem A shows. Nevertheless, it
gives explicit constants for a large family of sets, and yields readily explicit
Kazhdan constants also for the rank one Kazhdan groups Sp{n^ 1) and
^4(-20)' For instance, the classification of the unitary dual of Sp(n^ 1) [Bal]
shows that j?(5p(n, 1)) = 2n+l. (Using the embedding of S'p(2,1) in F4(_2o)
this gives also Kazhdan constants for the latter, see Section 5 below).
However, the whole classification of the unitary dual is an overkill, and
in the next section we will see how the classification of the class-one dual
alone (which is considerably easier), enables one to get, using a different
idea, some Kazhdan sets with optimal constants.

5. Kazhdan constants for rank one groups.

In this section we discuss rank one simple Lie groups. In its first part
we consider such a group, which does not necessarily have property (T),
and using the results of Section 4 show how to compute explicitly Kazhdan
constants for any family of representations which admits a spectral gap. In
the second part we introduce a different approach, which will enable us to
construct explicitly Kazhdan sets for the groups Sp(n, 1) and F4(_2o), with
optimal Kzhdan constants, thereby completing the proof of Theorem A.

For the time being, let G be any simple Lie group with finite
center, and K < G a maximal compact subgroup. Recall that a class-
one irreducible representation of G', is one that contains a non zero vector
invariant under K. We denote by ^(G) the set of irreducible class one
representations of G, and by Z°(G) the set of all the unitary representations
without a J^-invariant vector. Clearly, the set Z°(G) is isolated from
the trivial representation already as representations of K. In fact, this
observation leads directly to the following simple result (see [DV] for this
and more):
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LEMMA 5.1.— The compact subgroup K forms a Kazhdan set for
the family Z°(G), with the Kazhdan constant \/2-

Thus, the problem of finding explicit Kazhdan constants is reduced
to the family ^(G). To deal with those, we begin by establishing some
notation. Let TT G ^(G), and let v denote the J^-invariant unit vector in
H^ (unique up to scalar). Let ^p^(g) = {7r(g)v,v) denote the associated
spherical function. Let G = KA^K be a Cartan decomposition of the
simple Lie group G, a == Lie A and a*, a^ its dual and complexified
dual. Let A4' C A be the set of positive roots in a root system A, (j) =
half the sum of positive roots and W the Weyl group. Let KAN be the
Iwasawa decomposition and P == MAN a minimal parabolic subgroup (M
= centralizer of A in K). Then to every A € c^S (actually A G a^/W), one can
form the character of P : man i-̂  e^10^)^ and inducing this representation
to G yields a representation with a K -invariant vector v\ (which is unitary
if A € ia). The function i^\(g) == (7r\(g)v\,v\) is a spherical function.
By a classical result of Harish-Chandra, for every class one representation
TT € T^~(G), the (positive definite) spherical function ̂  is of the form i^\^
for some TT\ as above.

Let us focus our attention hereafter on the rank one case, i.e.,
dim a = 1. Then it was shown by Kostant [Ko] that the set of A's for
which the above construction yields a unitary representation TT € ^(G)
is of the form %a* U [-0o,0o] c ^5 where 0o ^ <^. The values of the two
parameters for the various groups are:

LEMMA 5.2 [Ko].

(1) For^0(n , l ) ,< />o=0= n^.

(2) For 577(n,l), 0o = 0 = n.

(3) For Sp{n, 1), n ̂  2, ^>o = 2n - 1 < (f) = 2n + 1.

(4) For F4(_2o), 0o = 5 < <^ = 11.

Restrict A to the region given by ia\. U [0,^o]- By [Ko], one gets a
bijection A —^ TT\ between the region and ^(G) in the first two cases, and
a bijection between the region and ^(G) \ {1}, in the last two cases.

As is well known, the spherical function i^\{g) = (7r\(g)v\, v\) can be
estimated along A"^ by (see e.g. [Kn, 8.47] or [GV, 5.1]):

(1) ^(^-e^-^10^.
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In fact, this decay holds for all K -finite vectors, not only v\. Recall that
the Haar measure of G in terms of the polar decomposition is given by
dg = J(a)dkdadk^ where the volume density is the bi-jFC-invariant function
given along A^ by (see e.g. [GV, p. 73]):

(2) J(a) = ^[ (e^10^) - e-^10^)) - e2000^.
o'€A+

From (1) and (2) one then sees readily that i fp satisfies

(3) p ( ( / ) - Re \) ̂  2(f)

then the spherical function ̂ \ (as well as all K -finite matrix coefficients in
TT\) lie in L^^G), for every e > 0.

As is well known (and is easy to verify), the sets U\ = {71-;̂  |A < Ai ^
0} form a base for the neighborhoods of the trivial representation in the Fell
topology. The following result presents explicit Kazhdan constants for any
family of representations, in terms of a bound on the spectral parameter A.

THEOREM 5.3. — Let G, K and 0 be as above, and fix some 0 ^
A < 0. Denote by T\ the set of all the G-representations which do not
contain weakly any representation TT C U\. Let n be any even integer
with n ^ 0/0 — A, and S be a 2m-discrete free symmetric set. Then
S U K forms a Kazhdan set for J:\, with the Kazhdan constant e =
-^ min{\/2, ^/2 - 2(^2m - 1/m) ̂  } = ̂ /l - (\/2m - 1/m) ̂  .

Proof. — Denote ̂  = ̂ HZ^G). Then by (3) (and the remark pro-

ceeding it), together with Theorem 4.3, we see that v2 — 2(\/2m — 1/m) n
is a Kazhdan constant for the set 5, for the family of all the representa-
tions which are weakly contained in ^. Now, given any representation
TT € ^A? we have a (unique) decomposition TT = 71-1 ©7T2, where 71-1 is weakly
contained in ̂ , and TT^ 6 Z°(G). Given any unit vector v, write the cor-
responding (orthogonal) decomposition v = v\ + ^2- Then, for %=1 or 2 we
have 1 1 z^| | ̂  1/\/2. We can now use the computation above in case i == 1,
or Lemma 5.1 in case i = 2, to obtain easily the required estimate. D

We note that one often has a good deal of information about the
set of representations TT\ which can occur (weakly) in a given family
of representations. For example, a well known result of Harish-Chandra
implies that the TT\ which occur (weakly) in the regular representation
of G on L^G/r), where F is any discrete subgroup, correspond through
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the action of the Casimir operator, to the Z^-spectrum of the Laplacian
on the locally symmetric space K\G/T. From [Sh4, Proposition 2.4] it
follows that a value p for which Z/^G/r) is strongly L9 is determined
already by its value in the class one spectrum, which in turn, depends
(using (3) above) only on the bottom of the Laplacian spectrum, Ao, by
the formula p = 20/(0 — -\/02 — Ao) (see 5.2 above for the values of (f) in
the different groups). Substituting this p in Theorem 4.3 yields explicit
Kazhdan constants for the representation L^G/r), in terms of a bound
from 0 on Ao (which exists iff L^G/r) does not contain weakly the trivial
representation). If F is a lattice, a lower bound on the positive spectrum
yields Kazhdan constants for the G-representation on the subspace of zero
mean functions in L^G/r), but here [Sh4, Proposition 2.4] does not apply,
and Theorem 5.3 should be used. Finally, we should remark that adding
K to the Kazhdan set in Theorem 5.3 will not affect the calculation of
Kazhdan constants for lattices, as will be seen in the next section. Also
notice that Theorem 5.3, together with Lemma 5.2, yields explicit Kazhdan
constants for the groups Sp(n^ 1) and F4(-2o)- However, these are not
optimal. Our next purpose is to describe a different approach which gives
the constants guaranteed in Theorem A (thereby completing the proof of
that theorem).

Proof of Theorem A for the rank one Lie groups with
property (T).— Although our method works equally well for all the
groups Sp{n^ 1), F4(-20)? ^ wm De more convenient to make the following
reduction: We claim that to complete the proof of Theorem A for any of
the above remaining rank one groups, say G, it suffices to prove it for
S'p(2,1). Indeed, every Sp(n, 1) (n > 1) clearly contains a copy of 5p(2,1),
and it is also known that the same holds for F4(_2o) (cf. [BB, p. 41]).
By restricting any G-representation to this copy of 5p(2,1), together with
Howe-Moore's theorem, it is easy to see that the same Kazhdan constants
of 5'p(2,1) apply to G. (Incidentally, notice that this argument shows that
to establish property (r) for all the rank one groups, it suffices to consider
only5p(2,l).)

Thus, we shall deal henceforth only with G = 5'p(2,1). Notice that G
contains a natural copy of 5'0(2,1), by viewing R as a subfield of the
quaternionic ring El. Therefore, the above discussion and the following
result complete the proof of Theorem A.

THEOREM 5.4. — Let 50(2,1) < G = Sp(2,1) be the inclusion
of groups as above. Suppose that TT is a non trivial irreducible unitary
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representation of G. Then 7r\so(2, i) is strongly L1. Hence, by the remark
proceeding Theorem 2.2, for every unitary G-representation TT with no
invariant vectors one has 7r\so{2,i) C: oo • L2(50(2,1)). Consequently, as in
the proof of Theorem A for the higher rank groups (see Section 3), if S C
50(2,1) is a 2m-discrete free symmetric set, then e = \/2 — 2(\/2m — 1/m)
is a (best) Kazhdan constant for the set S (and actually, for any subset
consisting of one of every two reciprocal elements in S ) .

Proof.— Notice first that for our embedding of 50(2,1) in G, we
have also inclusions of maximal compact subgroups, and the two groups
share a mutual Cartan subgroup. Let 7 denote the positive root of 50(2,1).
Then, as is well known, the positive roots of G are 7 (with multiplicity 4)
and 27 (with multiplicity 3). Thus, with the notations at the beginning of
this section, we have (f) == 7/2 for 50(2,1), and (j) = 67 for G.

Let now r be any unitary representation of G with no invariant
vectors, and assume that v is a J^-invariant vector (where K < G denotes
a maximal compact subgroup). Then v lies in a subrepresentation a C T
whose spectral decomposition a = f a^ consists of class-one representations
only, and v = fvxi where v^ ^ ^-ax ls a ^-invariant vector for (almost)
every x. Since the estimate (1) of the decay of the spherical functions
holds uniformly over all the class-one representations, it follows from the
computation in (3) (and a simple direct-integral calculation), that the
matrix coefficient (r(g)v,v) lies in L^/^-^+^G) = L^G) for all e > 0.
From [Co, 2.2.6] it then follows that for every non trivial irreducible G-
representation, all matrix coefficients associated with the K-fimte vectors
are in ^'^(G) = L104''^). Therefore, every such matrix coefficient
decays exponentially along the (positive Weyl chamber of the) Cartan
subalgebra a € a+ as exp(57(a))~2/lo+e= exp(7(a)/2)-2/l+e, which implies
that the restriction of this matrix coefficient to 50(2,1) is in L^, as
required. (We have used here twice [Co, 2.2.4], once in each direction,
together with the preliminaries at the beginning of the proof.) D

6. Kazhdan constants for lattices: Proof of Theorem B.

Let G denote the group of k-pomts of a connected semi-simple k-
group. If k is connected, let d be the G-invariant Riemannian metric on
the symmetric space G / K induced by the Killing form {K a maximal
compact group). Otherwise, the metric on the associated Bruhat-Tits
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building induces a G-invariant metric on G / K , which is again denoted
by d. We denote by e the identity coset in G / K and define \\g\\ = d(ge, e).
|| || is an additive semi-norm on G, i.e., l^-1!] = \\g\\ and \\gh\\ ^ ||p||+|H|.
Furthermore, \\g\\ = 0 4^ g € ^ and for h € ^, one has ||̂ || = ||/^|| =
I I ^ H . For every M < oo the ball BM = [g € G|||^|| ^ M} is compact. Given
a lattice r < G, we normalize the G-invariant measure m on r \ G to be a
probability measure. With these preliminaries we can present:

Proof of Theorem B. — The proof may be viewed as a quantitative
version of the standard argument showing that a lattice in a group with
property (T), has this property as well (see also [HV, Lemma 3.3]).

Using the equality ||^-v||2 = 2-2Re{gv,v) (for |H| = 1), it suffices
to prove the following: Let TT be a representation of F with a unit vector v
such that

m v c:r T? / ^ \ -i l / ^ -S^V' 2 l-le<2+26(1) V7Cr^ Re {7r^)v,v) > 1 - ^ -——— =——2—^——.
^ \ 1 — 26 / 1 — 20

Then for the G-representation a on Ind^TT there exists a unit vector / such
that

(2) V ^ e Q Re(a(s)f^)>l-le2.

Indeed, since (Q, e) form Kazhdan constants for G, the existence of / as in
(2) implies that I C Ind^Tr, and therefore / C TT, as required.

Let then 6, M, R and TR be as in the theorem, and let F C G be
a fundamental domain for r in G (i.e. G = F • F) chosen such that
m(BM H F) ^ 1 - 6. Let v C H be a unit vector satisfying (1) above,
and define the measurable function / : G —^ U by

/(7^) = 7r(7)^ 7 e r, /i e F.

Writing every ^ € G uniquely as g = ̂ ghg, where ^g e F and /ip e F, we
have, recalling that G operates by right translations,

f^9) = /(77A) = f^g) = ̂ M^g)v = 7r(-f)f(g) 7 e F, ^ C G.

It follows that / is a unit vector in the representation space of Ind^TT.
Since m(.0M D F) ^ 1 - <5, for every 5 C G the set of p C ^M H F for
which ^s € F(^M H F) has measure at least 1 - 26. Moreover, if s e Q and
g e BM^F satisfy ^5 = 7^1 for 7 € F, ^i e BM H F, then

^ii-ii^r^i^ii^ii+ii^i+ii^-1^^
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so 7 e F^. It follows that for every s e Q there exists a set of g e F with
measure at least 1-26 for which

Re(/(^),/(^)) =Re<7r(7)^) > ^^^^
1 — 2c)

(using 7 € F^ and (1)). Thus, for all s e S,

Re {a(s)f^ f)= [ Re </(^), /(^)} > (1 ~ 2 € 2 + C 2 6 ) ' (1 - 26) + (-1). 2<^
J F H — ^<-/>/

».4-2

and therefore (2) is satisfied, as required. D

We note that the proof of Theorem B yields the following sharper
result, which will be used in the sequel.

COROLLARY 6.1. — Let T be any family of representations ofG which
has (Q, e) as Kazhdan constants. Then (F^, f^r^) ) as in Theorem B,
form Kazhdan constants for all the F-representations TT for which Ind^Tr is
weakly contained in F.

As mentioned in the introduction, the explicit Kazhdan constants for
the lattices may be used to point out specific sets of generators.

COROLLARY 6.2. — Let G be a Kazhdan group as in Theorem A.
Suppose that S = {a,b} C G is a Kazhdan set with the best Kazhdan
constant e = \/2 - \/3, as in Theorem A. Specifically, suppose that a and
b generate a discrete free subgroup of G, which in the higher rank case, is
contained in a copy ofSL^k) for which SL^(k) tx A^ is embedded in G, or,
in the rank one case, contained in a copy ofSO(2,1) embedded naturally in
Sp(2,1), itself contained in Sp(n, 1) or F4(_2o) (see Section 5). Normalize
the G-invariant measure m on T\G to have total mass one. Let U C G be
any (bounded) subset with

m(r.(7)> 6+^ (^0.966).
0

Then the (finite) set {UaU~1 U UbU~1} H F generates F.

Proof. — First notice that if 5' is a Kazhdan set for a countable group
r, then 5' generates F. Indeed, if Fo < F is the subgroup generated by 5,
then in ^(F/Fo) there is an ^-invariant vector, hence a F-invariant vector
as well. It follows that Fo must be of finite index. Now, if there are at least
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two Fo-orbits in F/Fo, then in ^(F/Fo) there exists a Fo-invariant vector,
and hence a F-invariant vector, which is a impossible. Hence Fo has one
orbit, and so FQ = F.

To show that USU~1 D F is a Kazhdan set, we follow the proof of
Theorem B. Note that the argument there shows that the set of elements
BMQB~^ D F is a Kazhdan set for F (contained in a ball of radius R). We
can take Q to be the set S above. Then, by the same argument used in the
proof of Theorem B, USU-^^T is a Kazhdan set, provided m(T'U) > 1-6,
and 6 < ^-. To obtain the smallest set U we let 6 tend to €- and take
e = v2 — \/3. The required estimate follows. D

We close this section by presenting another result with a uniform
feature, this time for certain non Kazhdan, rank one lattices. Let us first
describe these arithmetic lattices of S0{n, 1), sometimes called "the lattices
of simplest type".

Let q a quadratic form defined over a totally real number field,
satisfying:

1. q has signature (n, 1) over R.

2. q^ is definite as a real quadratic form, for every Galois automorphism
a^id.

Let G be the special orthogonal group of g. Consider G as a Q group
via restriction of scalars, so that G(R) = S0(n, 1) x Y[SO(n + 1). The
projection of G(Z) to S0(n, 1) is an arithmetic lattice F, and we denote
by r(A^) = { 7 6 F|7 = ImodN} its (principal) congruence subgroups. We
remark that these lattices cover all the non-uniform arithmetic lattices,
and even all the arithmetic ones, when n is even (cf. [Lub2, §3] for details).
Actually, a result similar to the one we prove below holds, using the same
methods, for all the other arithmetic lattices in S0[n, 1) as well (with
slightly different, but still uniform, constants).

Finally, for G = S0(n, 1) (n ^ 2), we take a maximal compact sub-
group K == S0(n\ and G / K ^ W1 is the n-dimensional real hyperbolic
space, with an "origin" 0 € IHT1 fixed by K. (Actually, above and through-
out the proof below we should replace S0(n, 1) by its index 2 connected
component, but this technicality is insignificant for our purposes.)

THEOREM 6.3. — Let F < G = S0{n, 1) be an arithmetic lattice as
above, and let M < oo be such that the ball with radius M around the
origin 0 € W1 contains at least 0.995 of the measure of a fundamental
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domain for the action of F on IF1. Let Fp C F be the (finite) set of
elements^ C F for which d^O, 0) ^ 2M+L Then (TR, 1/6) form Kazhdan
constants for all the representations TT = ̂ (r/Fi), where Fi < T is any
congruence subgroup, and ^2 is the space of zero mean functions.

This theorem makes explicit and quantitative, well known geometric
constructions of expander graphs (as mentioned in [Lubl, §4]). Notice again
the uniformity of the result over different n's. Before turning to the proof,
notice that Theorem 6.3 implies that the projection of the set Fj? must
generate every congruence quotient, so this set generates a congruence
dense subgroup of T. As every congruence dense subgroup must be Zariski
dense, we deduce the following independent conclusion (stated only for the
more interesting family of non-uniform lattices).

COROLLARY 6.4. — For any 2 ^ n e N assume that F < G •= S0(n, 1)
is some non-uniform arithmetic lattice. Let Fp C T be the finite subset
defined as in Theorem 6.3. Then Fj? generates a Zariski dense subgroup of
F (and G).

Proof of Theorem 6.3. — We first examine the case n = 2. Then
50(2,1) ^ SL^W (locally) and by Selberg's 3/16 theorem, together
with the Jacquet-Langlands correspondence, we deduce that all the non
trivial representations TT\ which occur (weakly) in some L2^^^, l)/r(7V))
satisfy ^ ^ \ / t — j ^ ^ i (we retain the notation of Section 5). In
the general case, fixing the first n — 2 variables in q induces a natural
inclusion of algebraic groups, and from [BS] it follows that the restriction of
L2(SO{n, l)/r(7V)) to 50(2,1) must obey the same spectral restriction on
the TT\S as above. Suppose now that S is any set of two elements in 50(2,1)
which generates a discrete free subgroup. From Theorem 5.3 it follows that
6 = Jl - (\/3/2) ^ ^ 0.26 is a Kazhdan constant for the set S U 50(2),
for all L§(5'0(n, l)/r(7V)) (orthogonal complement to the constants), as
representations of 50(2,1). By Howe-Moore's theorem we deduce that
these form actually Kazhdan constants for the whole group S0(n^ 1). Now,
as Ind^2(r/r(7V)) = L2 (S0{n, l))/r(AQ), we wish to invoke Corollary
6.1. Take S to be the set of matrices in the example proceeding Theorem
A (under the local isomorphism 6'0(2,1) ^ SL^R)). Since 50(2,1) is
embedded in 50(n, 1) as the stabilizer of a totally geodesic hyperplane, it
is enough to evaluate the norm of its elements (for the purpose of Corollary
6.1), in their action on the upper half plane. An easy calculation bounds
it from 1. Finally, taking 6 == 0.005 < e2^ ^ 0.008 in Corollary 6.1, the
required estimate follows. D
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7. Spectral radius of convolution operators:
Proof of Theorem C.

In this section we shall extend the ideas and results presented in
Sections 4, 5, to prove Theorem C (stated in the introduction). We shall
need the following claim which essentially appeared in the course of the
proof of Theorem 4.3. It will be convenient however, to state and prove it
here in the following form:

LEMMA 7.1.— (1) Suppose that the values m 6 N and 1 ^ p < oo
satisfy p ^ 2m. Let 71-1,..., TTm be representations of the semisimple group
G = nr=i ̂  decomposed as (outer) tensor products: TTJ = TT^ ^...^TT" .
Suppose further that for every l ^ j ^ m ^ l ^ i ^ n the representation TT'
of the group Gz, has all the matrix coefficients of its Ki-finite vectors lying
in LP(Gi). Then 71-1 (g)... (g) TTm C oo • L2(G).

(2) Assume the above LP condition only for i = 1, namely that we
are given only that TT" are strongly LP for all 1 ^ j ^ m. Then there
exists some unitary representation a o f G ' = G ^ x . . . x G m such that as
G-representations, we have 71-1 (g)... 0 TT^ C oo • L2 (Gi) 0 a, a tensor product
of two G-representations, where G acts in oo • Z/^Gi) and a through its
projections to G\ and Q', resp.

Proof. — As in the proof of Theorem 4.3, notice that using p / 2 ^ m
and Holder inequality, the product of any m functions in LP is in Lq for
some 9 ^ 2 , and therefore also in L2, if the functions are bounded. Denote
for 1 ̂  i ^ n the G^-representation: Oi = 7r[ 0 • • • 07r^ . Then for a fixed %,
linear combinations of tensor products of ^-finite vectors in each TT^ form
a dense set of vectors in ^, for which the corresponding matrix coefficient
is in L^G^). Taking this dense set of vectors, and applying Fubini, we get
a dense set of matrix coefficients of TTI (g) • • • 0 ̂ m = o ' i ^ ) ' ' •^o'm which are
in L2(Gi x • • • x Gn). The first assertion now follows from [HT, Ch.V 1.2.4]
(see Theorem 2.2 and the remark thereafter). The second one is proved
using a similar argument, applied only to the first factor (notice that we
do not claim here anything about the representation a). D

We preface the proof of Theorem C with some remarks comparing
the two (close, but independent) assertions stated there. As mentioned
following the statement of Theorem C, part 1 of the theorem (in each
one of the assertions) may be viewed as an analogue of Howe-Moore's
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theorem ([Mol], [HM]). However, in contrast to Howe-Moore's theorem,
the second assertion in Theorem C does not seem to follow from the first
one, and its proof will require further considerations. (Of course, only for
non simple groups the two assertions differ.) Before turning to the proof
of Theorem C, we would like to recall a natural and important family of
representations ofsemisimple groups, for which it seems at the present that
only the weaker assumption, namely that of the second assertion, is known
in general. These are the regular representations of G on the orthogonal
complement to the constant functions in L<2(G/^), where F < G is any
(irreducible) lattice. The fact that the weaker assumption is always satisfied
for these representations, has been established by Bekka [Bel]. Recently,
it was shown in [KM2] that when F is non uniform, actually the stronger
assumption (i.e., that of the first assertion) of Theorem C holds. It seems
very plausible that this is the case also for all the uniform lattices. Such
result (also combined with Theorem C), would be useful in applications
to ergodic theory (see e.g. [FS1], [KM1], [KM2], [Ne]). In fact, it is the
application to [FS1] which arose our interest in part 2 (in each one of the
assertions) of Theorem C, rather than just 1.

Proof of Theorem C. — Recall from the introduction that it suffices
to prove only part (2) in each one of the assertions. We start with the
first, and begin by showing that under the assumptions of the theorem,
there exists m € N such that the m-th tensor power ^rn of TT is a
subrepresentation of oo • L2(G). (We remark that the difference between
the situation here and that in Sections 4 and 5 is that we do not know at
this point that TT itself is strongly L^, as the 1̂  norms in its irreducible
components may not be bounded. However, the argument there can still
be used.) Write a direct integral decomposition TT = f7Txdi/{x) with
TTx =^x ^ ' " ^ TT^ , where every TT^ is an irreducible Gi -representation.
By the assumption, for each i there exists a neighborhood Ui of I in the
Fell topology on G^, so that for ^-a.e. x we have TT^ ^ Ui. By 4.2 it then
follows that for every i there exists pi < oo for which the matrix coefficients
of all Ki-finite vectors of TT^ are in L^G^). Let p = max pi and take any
p/2 ^ m C N. Then ̂ m = f TT^ (g) • . . (g) TT^ A/(^i). . . dv(x^), and from
Lemma 7.1 it follows that for a.e. a;i,...,a;^, we have TT^ 0 • • • 0 TT^^ C
oo . L^G). This indeed implies that ^rn C f oo . L^G) dv = oo . I/^G).

Suppose now that under the assumptions of the theorem we have
rsp7r({jL) = 1. Then obviously the same holds for any tensor power of TT,
and hence, by the above, for the regular G-representation. Let H < Gi
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be the closed subgroup generated by /^i (namely, the smallest closed
subgroup supporting /^i). We may view fi as a measure on H, and since
as ^-representation, the regular G-representation is a multiple of that
of jFf, denoted A, we deduce that Tsp\{^) = 1. However this and the
nonamenability of ff, contradict [DG]. (In the course of the proof of the
second assertion below, we shall reproduce the main argument of [DG].)

The second assertion requires a more careful analysis. Again, decom-
pose TT = f TTx du{x) with TT^ = TT^ 0... (g) ̂ ) . Here the assumption I -^ TT
implies only that for every 1 ̂  i < n there exists a neighborhood Ui of the
trivial representation in G^, such that for v a.e. a*, there is at least one i
for which in the decomposition 7Tx = 7r'c (g) • • • 0 TT^, we have Tri7 ^ U^
Using Theorem 4.2 this implies that there is some p = p(7r) < oo with the
following property: The spectral measure v is supported on a (not neces-
sarily disjoint) union of n subsets of G: ^i, ...,.?n, where Fz denotes the
set of all the G-representations TT = 71-1 0 ... (g) TT^, for which TT^ is a strongly
Lp Grrepresentation.

Now, let us assume that rsp7r(p) = 1. Then, since there are only
finitely many ^z's, we may, by passing to an appropriate subrepresentation
(and re-arranging the order of the simple factors), assume that TT is
supported on T\. Again, any tensor power of TT has spectral radius 1,
and using the second part of Lemma 7.1, together with the argument in
the above proof of the first assertion, we deduce that there exists some
representation a of G' such that the spectral radius of the /^-convolution
operator, acting in oo - L^Gi) 0 a ^ oo • (-^(Gi) (g) a), is 1 (the notations
here follow those in Lemma 7.1). Obviously, the same conclusion then holds
forZ^Gi)^.

We shall now make use of the well known general fact that a (as well as
any representation) can be embedded as a subrepresentation of I^V.^),
where (V, 0) is some probability measure G'-space, on which G' acts by
measure preserving transformations (see e.g. [Zi, 5.2.13]). We thus obtain a
measurable, measure preserving action of G on the cr-finite measure space
GI x V, where G acts on the first coordinate through Gi, and on the second
through G'. As ^(Gi) 0 a C ^(Gi) 0 L2(Y, 0) ̂  L2{G^ x V), we deduce
that the spectral radius of the /^-convolution operator acting in the latter
representation is 1 as well. From [FS2] (which extends [DG], see also [Sh3,
§2.1]), and our conclusion regarding the spectral radius, it follows that
there exists a mean (namely, a positive, normalized linear functional) on
L°°(Gi x V), which is invariant under /^-a.e. g € G. Projecting this mean
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to GI yields a mean (f) on L°°(G\)^ which is invariant under almost every
g C Gi, with respect to the projection of [i to Gi, denoted /^i.

Let JY < Gi be the closed subgroup generated by a^. By the
assumption of the theorem H is not amenable. Recall now (e.g., from the
standard proof that a closed subgroup of an amenable group is amenable,
cf. [Gre, 2.3.2]) that there exists an ^-equivariant embedding of L°°{H)
in L°°(Gi). This embedding induces a projection in the opposite direction
between the corresponding spaces of means. Thus, projecting the mean
(/) yields a mean ^ on L°°{H\ which is invariant under ^i-a.e. h € H.
Finally, restricting ̂  to the subspace UCB{H) of H- uniformly continuous
functions on H^ defines a mean on that space which is again invariant under
^i-a.e. h € H. However, the Jf-action on this space of means is continuous.
Since ̂  generates H, we conclude that the latter mean is invariant under
all H . We have therefore constructed an Tit-invariant mean on the space
UCB(H), in contradiction to the non-amenability of H. D

8. Uniform Kazhdan constants and hyperbolic groups.

The natural question of existence of a uniform Kazhdan constant,
valid for all generating sets, was raised in [LW] for groups with property
(T). We formulate it here in a more general context.

DEFINITION 8.1. — Let F be a family of unitary representations of a
finitely generated group F. We say that F is uniformly isolated from the
trivial representation, if there exists e > 0 which forms a Kazhdan constant
for all generating sets ofT, for all the representations in f'.

There is no infinite Kazhdan group for which it is known whether
the family of all representations with no invariant vectors is uniformly
isolated from the trivial representation. In fact, the following seemingly
easier question, looks quite intractable in general.

QUESTION 8.2. — Let r be a finitely generated non amenable group.
Is the regular representation ^(T) necessarily uniformly isolated from the
trivial representation ?

We will prove that the answer to 8.2 is affirmative when F is
hyperbolic and residually finite. We note that by a result of T. Delzant (see
[GH]), the assumption of residual finiteness can be dispensed with, but we
shall not consider this matter here. An affirmative answer to Question 8.2
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implies a positive answer to another natural problem considered in [SW],
and more fully in [GH], namely, the question of uniform growth rate of non
amenable groups. In fact, we have:

PROPOSITION 8.3. — If for a finitely generated group F, the regular
representation ^(T) is uniformly isolated from the trivial representation,
then r has uniform growth rate, namely, there exists a > 1 such that for
every generating set S CT, the number of different elements which can be
expressed as words of length at most n in the set S, exceeds a71 for all n
large enough.

Proof. — If S is any generating set for F, apply the uniform Kazhdan
constant € of the regular representation, to the normalized characteristic
functions Isn/^S^. An easy calculation shows that r has uniform growth
rate which is at least 1 + e. D

In [SW] Shalen and Wagreich proved that fundamental groups of
compact hyperbolic 3-manifolds have uniform growth rate. In fact, this
result holds for every torsion-free non-elementary hyperbolic group, a result
due to T. Delzant (see [GH]). In this direction we have the following:

THEOREM 8.4. — Let r be a finitely generated, residually finite, word
hyperbolic group, which is not elementary (i.e. not virtually cyclic). Then
for every m there exists a subgroup Fi < F of finite index, such that
the following holds: Every generating set ofT\ contains m elements which
generate freely a subgroup ofY\. Consequently, ^(T) is uniformly isolated
from the trivial representation.

Proof.— Fix m € N. By the assumption and [Gro, 5.3 A], one
can find Fi < F of finite index with the following property: every m
elements in Fi generate a free subgroup (although they may not be free
generators for this subgroup). As r is non-elementary, we may also assume,
taking a group of index large enough, that Fi is not generated by m
elements. Let {71 ...7A;} be any set of generators for Fi (k > m), and
consider the subgroup Fi = (71.. .7m)? which is free by the above. Then
FI ^ F^-the free group on n generators for some n ^ m. If n < m denote
F^ = (/3i... f3n) fof some (perhaps different) free generators /^ G Fi. Now,
join to /3i. . . ftn the next m — n elements 7m+i • • - 72m-n ^d look at the
subgroup F2 = ( 0 i ' . • 0n, 7m+i • . . 72m-n). Again, by the choice of Fi, F^
is free on some set with at most m generators, and if this set has less
than m elements, join to it the next 7's from {71.. .7^} to obtain a new
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set of m elements. Repeat the argument, and notice that this process must
terminate before the set {71... 7^} is exhausted, since {71.. . 7^} generates
Fi, which is not generated by m elements. Therefore, collecting all the 7's
involved in the process yields a subset {71. . . 7/} generating a free subgroup
¥m on m generators.

Next, consider Z771 ^ Fm/pPm,F^] and denote by 7 the image of 7
in Z771. Choose any m elements, say {71... 7m}, from {71.. . 7z}, which
generate a subgroup with the maximal rank m (i.e. m elements in Z771

which form a base for Q771 over Q). Clearly 71... 7^ are as required,
for otherwise, by Schreier's theorem, they generate a free group Fyy^ on
mi < m generators, and so their images in Z771 generate a subgroup
with rank m\ < m. The first assertion is therefore established. To prove
the second, notice first that ^(F) is uniformly isolated from the trivial
representation as Fi representation (where Fi is as in the first assertion,
say, for m = 2). This follows from Kesten's theorem (see §2) and the fact
that if F2 < F then ^(F)]^ ^ dim^OW) • ̂ (^2) as F^ representations.
To complete the proof it therefore clearly suffices to recall the following
result:

LEMMA 8.5 (see [SW, Lemma 3.4]). — Let G be a group with a finite
generating set S. Let H be a subgroup of index d in G. Then H has a
generating set consisting of elements which can be expressed as words of
length at most 2d - 1 in the generating set S. D

Using Theorem 8.4 we can deduce the following more general result:

THEOREM 8.6. — Let G be a simple Lie group with finite center, and
r < G a discrete, finitely generated, non-elementary hyperbolic group.
Let T be any family of unitary G-representations which is isolated from
the trivial representation. Then, restricted to T, F is uniformly isolated
from the trivial representation. Furthermore, for every e > 0 there exists a
subgroup Fi < r of finite index, such that for every generating set S C Fi,
every unitary G-representation (TT, H) e F , and every unit vector v e H,
there exists s € S such that \{7r(s)v^v}\ < e.

Proof. — Every finitely generated linear group is residually finite.
Now use Theorems 4.2 and 4..3 (with v = w), Theorem 8.4, and Lemma 8.5.

D
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