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THE STRUCTURE OF THE TENSOR PRODUCT OF Faj
WITH A FINITE FUNCTOR BETWEEN

Fa-VECTOR SPACES

by Geoffrey M.L. POWELL

1. Introduction.

The category F of functors from the category of finite-dimensional
F2-vector spaces to the category of all Pa-spaces has a rich structure; for
example it 'contains' the Pa-representations of all the symmetric groups
as well as the representations of the finite general linear groups over Fa.
(Here, Fa denotes the prime field of characteristic two.) The locally finite
objects in F are termed analytic functors, since they are colimits of
their 'polynomial' sub-objects, where polynomial refers to the notion of
a polynomial functor introduced by Eilenberg and MacLane. The full
sub-category of analytic functors is written as F^.

Part of the interest of the category F^ is that it contains non-finite
objects with finite socle. For example, the injective envelope in F of the first
exterior power functor A1 is an analytic, uniserial, non-finite functor, 7,
with composition factors which are the exterior power functors A71, each
occurring once. The tensor products 705 are also injective in F and Lionel
Schwartz has proposed, in conjunction with Nick Kuhn [Kl], the conjecture
that these functors are artinian, that is that every descending sequence of
sub-objects stabilizes. This turns out to be a difficult question to address;
the author has established the conjecture for 5 = 2 (see [PI]) but the
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arguments relied on knowledge of the structure of the functors 7 (g) A^,
localized away from the finite functors. A survey of the artinian conjecture
is given in [P5].

The main result of this paper is the following theorem:

THEOREM 1. — Suppose that F is a finite functor, then the functor
I (g) F is artinian.

In fact, a stronger result concerning the structure of such functors
is proved. A functor is said to be simple modulo finites if every proper
sub-functor is finite. It is clear that examples of such functors are provided
by finite functors and uniserial functors; however, the lattice structure of
most such functors is more exotic. The following result is easily established
and gives a characterization of such functors.

PROPOSITION I.O.I. — A functor F which takes finite dimensional
values is simple modulo finites if and only ifF = colimF^ is the colimit of
a system of finite sub-objects Fi C F and, for all n there exists an integer
N = N(n) such that, whenever G C F such that G n FN ^ G, then G
contains Fn.

Theorem 1 is shown to imply the stronger result:

THEOREM 2. — Suppose that F is a finite functor', the functor I (g) F
admits a finite filtration, the filtration quotients of which are non-finite
functors which are simple modulo finites.

Remark 1.0.2. — In the terminology introduced in [PI], 'simple
modulo finites5 is equivalent to simple artinian of type one. A functor
admitting a finite filtration of the form given in Theorem 2 is an artinian
functor of type one. This terminology is related to the Krull codimension
of objects in the category of locally finite functors.

The proof of Theorem 1 involves the construction of a non-finite
simple modulo finites sub-functor:

THEOREM 3. — Suppose that S is a simple functor, then T^>S contains
a unique non-finite sub-functor which is simple modulo finites.

The key ingredient to the proof of Theorem 1 is a detection result
for non-finite sub-functors of (T/TT^) 0 F, where 71-5 C I denotes the sub-
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THE STRUCTURE OF F2[-] <8) F 783

functor ps 7 of I of length s. This result uses the functors Vn which were
introduced in [P2], and is of independent interest.

THEOREM 4. — Suppose that F is a finite functor such that VnG i=- 0,
for every non-trivial sub-functor 0 7^ G C F. Suppose that s ^ 0 and that
H c-^ ( T / T T s ) 0 F. If^/n+iH = 0, then H is a finite functor.

This has the following corollary, which is the statement which is used
in the proof of Theorem 3.

COROLLARY 1.0.3. — Suppose that F satisfies the hypotheses of
Theorem 4, and that H ^ 7 (g) F is a sub-functor. If \/n+iH is a finite
functor, then H is a finite functor.

The hypotheses on the functor F appear rather technical; the reader
should bear in mind the example of interest, where F is a simple functor.
In this case, there is a maximal n for which \/nS is non-trivial, and this is
the value which should be used in applying Corollary 1.0.3.

The proof of Theorem 4, although the key to the whole paper, is
postponed to Section 7. The essential input to this result is the knowledge
derived from the paper [P3] on the structure of the functors I 0 A71.

1.1. Outline of the paper.

The paper is organized as follows: Section 2 provides a brief review of
the functor category F and a discussion of 'simple modulo finites' functors.

Section 3 introduces the strategy of proof; namely Proposition 3.0.3
gives a criterion for showing that a functor is artinian. The proof of
Theorem 1 reduces to the study of J 0 6', where S is a simple functor. It
suffices to construct an artinian sub-functor X C I (S) S so that X satisfies
the hypotheses of Proposition 3.0.3.

A sub-functor Xs of 7(g) S is defined in Section 4; the pair of functors
Xs, -T(g) S plays the role of X, Y in Proposition 3.0.3. The main result of the
section is Theorem 4.4.3, which shows that Xs is artinian. This argument
depends upon Theorem 4.

In Section 5, the proof of Theorem 1 is completed by establishing
the second of the hypotheses of Proposition 3.0.3. This involves the only
calculational input concerning the simple functors, which is provided by
Lemma 5.0.3. The proof of Theorem 2 is given in Section 6, using detection
properties associated to the functor V2.
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784 GEOFFREY M.L. POWELL

Section 7 provides a proof of the detection result, Theorem 4, which
was used in Section 4 to show that the functor Xs is artinian.

2. Review of T and ^simple modulo finites9 functors.

For the convenience of the reader, some details concerning the
category F are recalled; standard references for the basic theory are
the articles of Kuhn [Kl], [K2], [K3]. The shift functor A:JF -, T is
defined by the equation AF(V): = F(V C Fa); there is a natural inclusion
F ^—> AF, the cokernel of which is written AF; this defines the difference
functor A. A functor is said to be finite if it has a finite composition series;
it is polynomial of degree < d (in the sense of Eilenberg and MacLane)
if A^F = 0; a functor F is finite if and only if it takes finite dimensional
values and is polynomial.

There is an inclusion functor pol^,F ̂  T', where pol^ is the full
sub-category of functors of polynomial degree <, d. This functor admits a
right adjoint pd and a left adjoint g^, which may be regarded as functors
to T', by composition with the inclusion.

The category F has enough injectives; the injective functor ly is
defined by the equation Homjr(F,Jv) = DF(V), where D is the duality
functor on T given by DF(V): = F(V*)*, '*' denoting vector space
duality. In particular, the functor 1^ decomposes as 1^ ^ 7e Fa, where I
is the injective envelope of A1. The functor 7 is uniserial and its polynomial
filtration coincides with the socle filtration; the functor p g l C I denotes the
largest sub-functor of degree s and has length 5. For notational simplicity,
the functor pgl is written as 71-5 throughout this paper, with the convention
that TT-I =0.

The shift functor A is left adjoint to the functor -07, whereas the
difference functor A is left adjoint to the functor — 0 I .

The polynomial filtration of the difference functor was introduced
in [P2], to which the reader is referred for details. There is a filtration of A
by left exact functors [pnA] C A, which may be defined as the right adjoints
to the functor - (g) D^n)' The quotients Vn+i: = A/[p^A] are not exact
but preserve injections and surjections. These functors are of importance
because they are calculable in many instances and preserve a reasonable
amount of information on the action of A on the category F.
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2.1. On 'simple modulo finites9 functors.

It is important to know that non-finite analytic functors with finite
socles usually do contain non-finite artinian sub-functors. The following
general result confirms this; the proof given is chosen so as to be
'constructive':

PROPOSITION 2.1.1. — Suppose that G is an analytic functor which
has finite socle and which is non-finite. Then G contains a sub-functor F
which is non-finite and simple modulo finites.

Proof. — Construct a descending sequence of functors

• • • FnCFn-i C—cF- i =G

such that, whenever F ' C Fn such that pnF1 7^ pnFn, then F ' is finite.
Start the chain by taking F-i: = G; the functor p_i should be taken to be
trivial, so that the condition is vacuous.

Suppose now that Fn is specified and consider the set S\ = {H \
H C Fn, H non-finite}. This induces a set {pn-^-iH \ H € S} of sub-functors
of pn-^-iFn. The functor pn+i^n is necessarily finite, so this set contains a
(non-zero) minimal element under inclusion, corresponding to some H € S.
Set Fn-}-i: = H', then, if F ' C Fn+i is non-finite, then F ' G «S, so that
the minimality ofpn+i^n+i implies that pn+iF' = pn+iFn+i. Thus, Fn^i
satisfies the required property.

This completes the recursive construction of such a descending chain;
define F : = ^\Fn. Suppose that F' C F is a proper sub-functor, then
there exists some n such that p n F ' C pnF is a proper inclusion. The above
construction implies that pnF == pnFm hence it follows that F ' is a finite
functor, by the construction of the functors Fn. Namely, the constructed
sub-functor F is simple modulo finites.

Finally, one must justify that the functor F is not finite. This follows
from general considerations: namely, if G is a finite functor, there exists an
integer d = d(G) such that Ext^-(5', G) = 0 whenever S is a simple functor
of polynomial degree ^ d. In particular, for any non-negative integer n
there exists an integer d(n) > n such that, if H is an analytic functor with
finite socle and pdH = pnH for some d > d{n), then H is finite. Hence,
suppose that F is finite, say F = pnF. Choose d = d(n); by construction
Fd is not finite, hence pdFd 7^ Pn{Fd) = PnF, by the choice of d. This is a
contradiction, since pdFd, = PdF = PnF' D
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786 GEOFFREY M.L. POWELL

3. The reduction strategy.

The strategy of the paper is to replace the following elementary result,
by a more subtle version (Proposition 3.0.3 below).

LEMMA 3.0.1. — Suppose that F is an analytic functor such that
F(F|) is finite dimensional, where t ^ 0. The functor F is artinian if the
functor A^F is artinian.

It is tempting to assert that the converse should be true; however, at
the time of writing, the author believes it unlikely that the converse will
be proven in full generality without first obtaining a proof of the Artinian
Conjecture [PI], [P4].

It is equally unfortunate that Lemma 3.0.1 is seldom of direct use.
For example, A(7 0 F) = (7 (g) F) C F C (I C I) 0 AF, so that 7 0 F is
itself a direct summand of A (7 0 F); this means that any direct inductive
argument is circular.

However, the functor V2(7(g)F) is a sum Ge (l<S>H), where G, H are
finite functors and deg H < deg F. Hence, if all functors of the form 7 (g) H
are known to be artinian, for deg H < degF, then V2(7(g) F) is artinian.
The problem is that it is not immediately clear that this implies that 7 0 F
is artinian, since the functors V2 do not a priori detect exterior powers.

This paper exploits the strong property of the functors 7 0 F given
by the following statement.

LEMMA 3.0.2. — Suppose that t > 0, then there is a direct sum
decomposition

^ t ( T ^ F ) ^ ( I ( S ) F ) @ G t e ( T ( S ) H t ) ,
where Gf, Hf are finite functors and deg Hf < deg F.

Suppose that Y is an analytic functor taking finite-dimensional values
and that there exists a surjection AY —^ V, then for any ^ ^ 0, there is a
surjection A^V —^ V, obtained by iteration and the exactness of A. This
motivates the hypotheses of the following result:

PROPOSITION 3.0.3. — Suppose that Y is a functor taking finite-
dimensional values and that there exists a surjection AY —» Y. Suppose
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that the kernel of the induced map A*Y —» Y is artinian for all t >_ 0.
If there exists a sub-object X ̂  V, such that

1) X is artinian,

2) the composite ^T X ̂  ^Y —^ Y is surjective, for some T >_ 0,

then the functor Y is artinian.

Proof. — It suffices to show that Y / X is artinian and hence,
by Lemma 3.0.1, that ^ Y / ^ X is artinian. This is clear, since the
commutative diagram

^X <—— ^Y
i i
y == Y

in which the vertical arrows are surjections, exhibits A^Y/A7^ as a
quotient of ke^A^Y —^ V}, which is artinian, by hypothesis. D

4. The sub-functor Xs ofl^S^ when S is simple.

The proof of Theorem 1 reduces to the proof that the functors I 0 S
are artinian, where 5' is a simple functor. The purpose of this section is
to establish Theorem 3. The proof of the theorem requires some basic
facts about the simple functors in f', which are reviewed below. However,
the technical input is limited to the results of Proposition 4.1.3 and
Lemma 5.0.3.

4.1. A review of simple functors and Weyl functors.

The simple functors in F are indexed by the strictly decreasing
partitions A = (Ai > \^ > • • • \n > 0). The integer n is the length of the
partition A; write |A|: = ̂  \i. The Weyl functor associated to the partition
A is a sub-functor W\ ^-> A^, where Ax denotes the functor 0^i A^. The
Weyl functor has a unique top composition factor, S\ ̂  W\/Ta,dW\, which
is the simple functor indexed by the partition A, and has polynomial
degree |A|.

For the convenience of the reader, the definition of the Weyl functor
is recalled below; the information on the bases of Weyl modules is only
required in the proof of Lemma 5.0.3. Standard references for this and
related material are the books [J], [JK]; the paper [J2] is closer to the spirit
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of the current article. The reader may also consult the paper by Piriou and
Schwartz [PS], which treats the category F, but should be forewarned that
they have indexed the simple modules by the conjugate partitions.

There is a Young diagram associated to the partition A; namely, this is
the array pf boxes arranged in n columns, the %-th column having length A^.
This is pictured as follows:

1

2

Ai

A i + l

A i + 2

A2

|A| - An + 1

An

The boxes are numbered from 1 to |A|, consecutively down the
columns, taking the columns from left to right.

The Weyl functor W\, when A is a strictly decreasing partition, is
defined as the functor C\R\(A1)^X^ where the symmetric group Sm on
| A | letters operates on (A1)0^! by place permutations and R\^C\ are the
following elements of the symmetric group algebra Espm^ R\ is the sum
of the elements of the row stabilizer of the Young diagram associated to A
and C\ is the signed sum (over Fs the sign is irrelevant) of the elements of
the column stabilizer of the Young diagram.

A A-tableau on d letters is a map r: { 1 , . . . , |A|} — > { ! , . . . , d}, which
may be represented on the Young diagram in an obvious way. A A-tableau
r gives rise to an associated element on (^LiA^F^), with respect to a
choice of basis {yj} ofF^. Namely:

n

[̂  =00/r , ( l )A. . .A^(A,))

where Ti(k) is the k-th. entry of the %-th column of T.

A A-tableau is semi-standard if entries increase strictly down the
columns and are non-decreasing across the rows. The proof of Lemma 5.0.3
requires the following result.

ANNALES DE L'lNSTITUT FOURIER
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PROPOSITION 4.1.1 (see [JK]). — Suppose that X is a strictly
decreasing partition. A basis for W\(¥^) is indexed by the semi-standard X-
tableaux on d letters. If a is a semi-standard X-tableau on d letters, then the
associated basis element, with respect to a basis {%} ofF^, is ̂ re0(a}[7'}^
where 0(a) denotes the set of X-tableaux which are row equivalent to a.

Notation 4.1.2. — In the course of the paper, the following notation
will be used. Suppose that A = (Ai > X^ > • • • Xn > 0), then write

1) A : = (Ai + 1 > A2 + 1 > • • • > Xn + 1 > 0);

2) A : = (Ai - 1 > A2 - 1 > • - > An - 1 > 0).

Observe that the partition A has length n, whilst A has length n — 1
or n.

The following basic result on the action of the functor A on the simple
functors is required:

PROPOSITION 4.1.3 (see [P2], [PS]). — Suppose that X is a partition
of length n.

1) Vn6\ = 5^ and VA = 0 for t > n.

2) A5\ = 5^ (B G, where G is a self-dual functor which embeds in a
direct sum of tensor power functors, T0^ : V ̂  V^, where |A|—n < a < |A|.

4.2. Certain sub-functors of I 0 W\ and I <S> S\.

Theorem 3 involves an explicit sub-functor X\ of I 0 S\, which
is constructed in this section. Theorem 1 is proved by applying Propo-
sition 3.0.3; in order to establish the hypotheses of the proposition, the
functor X\ is constructed as the image of a sub-functor X\ ^-> I 0 W\, so
that there is a commutative diagram:

XA —— T(^Wx

I I
Xx c——> I ( S ) S x

in which the vertical arrows are surjections. Recall in the following that
TTm is written for the functor pml-

A key point in the construction of X\ and X\ is the following
observation:

TOME 50 (2000), FASCICULE 3
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LEMMA 4.2.1. — Suppose that m > Ai, then the functors I 0 W\
and I 0 S\ each contain a unique composition factor isomorphic to Sfrn^\\,
which appears respectively in the sub-quotients A771 0 W\ and A771 0 S\.

Proof. — It is well-known that the functors A771 (g) W\ and A771 (g) S\
contain a unique composition factor S^^\y For reasons of polynomial
degree, S'(^) is not a composition factor of TTm-i 0 F for F € {WA, ^A}'

The functors (J/TT^) 0 jF, for these -F, are zero on F771, since
(J/7Tyyi)(F771) = 0. Hence the functors (J/TT^) 0 .F do not contain a
composition factor S^rn,\^ since the latter is non-zero on F771. D

Notation 4.2.2. — Let P^ denote the projective cover in F of the
functor 5^. Suppose that [L > Ai, then there are unique non-trivial maps
-P(m,A) -^l0Wx and P(m,A) -^ 7 0 5\, by Lemma 4.2.1. Write

1) ^(m,A): = image{P(^) -^ 7(g) H^},

2) P(m,A) ^ = image{P(^) - ^ T ^ S x } .

By construction, there are canonical inclusions G^;Q "—> T^m 0 ^A
and P(m,A) '——^ TTm ̂  S\.

LEMMA 4.2.3. — Suppose that m > Ai.

1) The surjection I 0 W\ —^ I 0 S\ induces a surjection G(^) —^
^(m,A).

2) The composite G^rn,\} c—^ ^m ^ W\ —^ A771 0 W\ surjects onto
W^^C^^W^.

4.3. V and the functors F^ , A ) «

The arguments of this paper rely on exploiting the functors V on the
functors -F(^^. It is straightforward to establish:

LEMMA 4.3.1. — Suppose that \ is a partition of length n, then

i) v^i (7 0 Sx) = s^ e (7 0 ̂ );
2) Vn+l(7Tfc (g) 5'A) = S^ C (TTfc-l 0 S'^).

Suppose that m > Ai, then there is a unique non-trivial map
F, -^\\c~>' Vn-(-i(^ ^ S\)\ this factors through the canonical inclusion

70^^^+1(70^).
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The main result of this section is:

PROPOSITION 4.3.2. — Suppose that m > Ai and that H c—^ J 0 S\
is a sub-functor. If Vn-\-iH C <S^ (D (I 0 5^) contains F , _ ^ ^, then ft
contains F(m,\)'

The proof appeals to the following lemma, which is a special case of a
general argument:

LEMMA 4.3.3. — Suppose that G is a sub-functor of I 0 S\ and
that Sp, is a composition factor ofVn+iG with /^i = m — 1. Then S^ is a
composition factor ofVn+iG', where G' := G H (TT^ 0 5\).

Proof. — The functor (I /TTm) ̂  S\ is zero when evaluated on F^,
hence A((7/7r^) 0 6'^) is zero on F^~1. The cokernel of Vn+iG'c-^ Vn+iG
is a sub-quotient of A((7/7r^) 05\), hence vanishes on F^1"1. In particular,
since 5^(F^~1) 7^ 0, by the hypothesis on /^, this shows that S^ is not a
composition factor of the cokernel of Vn+iG' ^—> Vn+iG. D

Proof of Proposition 4.3.2. — It suffices to show that if H does
not contain ^(m,A) then Vn+i^ does not contain a composition factor of
^fm-i \Y ^e m9Ly ^PP086 tnat H C TVm^ S\, by Lemma 4.3.3. There is a
short exact sequence H ^-> TTm 0 S\ —> G, which defines the functor G.

Suppose that H does not contain F(m,A); tnus C contains a
composition factor S^,.\)- Applying Vn+i to the short exact sequence
yields a sequence (i.e. the maps have zero composite but the sequence is
not necessarily exact):

Vn+l^ ̂  S^ C (TT^-i (g) S^) -^ Vn+lG.

Since Vn+i preserves injections and surjections, Vn+iG contains a
composition factor S . _ ^ ^^ by Proposition 4.1.3; hence Vn+i^ does not
contain a composition factor S . _ ^ ^, by Lemma 4.2.1. This is the required
result. D

A straightforward argument using Vn+i establishes:

LEMMA 4.3.4. — Suppose that m > Ai, then there is a natural
inclusion F^_^^ ̂  Vn+iF^A).

TOME 50 (2000), FASCICULE 3
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4.4. The construction and properties of X\ C I (g) S\,

The equality Vn+i(T(g) S\) = S-^ C (I <S> S-^) is the basis for induction
arguments, based on the polynomial degree of the functor S\. It is impor-
tant to note that the second part of Proposition 4.4.1 below depends on
Corollary 1.0.3 and hence upon Theorem 4.

PROPOSITION 4.4.1. — Suppose that X is a strictly decreasing partition
of length n and that m > Ai.

1) For any M ^ m, there is an inclusion ^(m,A) C F(M,A)-

2) IfG ^—> I 0 S\ is a non-finite functor^ then G contains F(m,A)'

Proof. — The proof of both statements is an induction upon the
polynomial degree of S\; the induction is started by the case S\ = ¥^, the
constant functor, in which case both statements are straightforward, since
the functor I is uniserial.

To prove the first statement, suppose that M > m. By induction,
^(M-I A) contams ^(m-1 \y Lemma 4.3.4 implies that F^_^ ^ is a sub-
functor Vn+iF(M,A)5 thus Proposition 4.3.2 shows that F(M,A) contains
^(m,A), as required.

The second statement is proved by a similar argument: if G '—»
I (g) S\ is a non-finite functor then Vn+iG is a non-finite functor, by
Corollary 1.0.3. Hence, by induction, Vn+iG contains the functor F^_^ ^.
Proposition 4.3.2 implies that G contains F^^, as required. D

Notation 4.4.2. — The functors F^A)? m > ^i form a directed
system; write the colimit as X\: = lim F(m \\. By construction,

———^ 771 ^>AI \ » /

there is a unique inclusion X\ c-^ I 0 S\.

Similarly, one may define X\'. = lim G(^^). By construction,
there is a unique inclusion X\ ̂  T (g) W\.

The following result is Theorem 3 of the introduction.

THEOREM 4.4.3. — The sub-functor X\ c—^ I 0 S\ is the unique
non-finite simple modulo finites sub-functor of I 0 5\.

Proof. — The proof is a matter of collecting together results. The
construction of X\ ensures that it is not a finite functor, since the degrees
of the ^(m,A) are unbounded. Proposition 4.4.1, part 2 shows that X\ is
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contained in any non-finite sub-functor of I 0 S\. Finally, Proposition 2.1.1
shows that X\ contains a non-finite functor which is simple modulo finites;
this must therefore identify with X\. D

4.5. An alternative conjectural description of X\.

The author's original attempt at constructing a suitable X\ was to
generalize the approach of [P3]. Recall that, in the latter situation, there is a
unique non-trivial map I 0 A8"1"1 —>• I 0 A8 and the image, Kg is a non-finite
simple modulo finites functor. (This theory is reviewed in Theorem 7.0.1.)

PROPOSITION 4.5.1. — Suppose that X is a strictly decreasing
partition. There is a unique non-trivial map (f)\ : I 0 S^ —> I ^ S\.

Notation 4.5.2. — Set K\: = image (f)\.

Theorem 4.4.3 shows that there is an inclusion X\ C K\\ it is natural
to ask whether this is an isomorphism.

CONJECTURE 4.5.3. — Suppose that X is a strictly decreasing partition
of length n. If I 0 S^ —» Q is a non-trivial map, then Vn+iQ ¥- 0-

The usage of A in the above conjecture is important, since A has
length n and An > 1. These conditions are necessary; for example, there is
a surjection 7 0 A1 —^ I which is not detected by V2. This sort of example
generalizes readily.

PROPOSITION 4.5.4. — If Conjecture 4.5.3 holds, then there is equality
X^ = Kx.

Remark 4.5.5. — The idea of the proof is precisely the same
as the strategy employed in [P3]; the reader is invited to supply
details for themselves. Unfortunately, the author's attempt to establish
Conjecture 4.5.3 seemed to lead to feasible but detailed calculations. Given
that this may be viewed as only a small step towards the Artinian
Conjecture, such explicit calculations seem to be undesirable.

5. The proof of Theorem 1.

Theorem 1 is proved by applying Proposition 3.0.3. Lemma 3.0.2 has
established that there is a natural surjection A*(J 0 S\) —^ I 0 5\, for

TOME 50 (2000), FASCICULE 3



794 GEOFFREY M.L. POWELL

any t >_ 0; an evident induction on the degree of S\ means that we may
suppose that the kernel of this map is artinian. The proof of Theorem 1
will therefore be completed by establishing:

PROPOSITION 5.0.1. — There exists t > 0 so that the composite
A^XA -> A^J (g) 5\) -^ T 0 S\ is surjective.

Implicit in the work of this section is the naturality of the map
A(7 (g) S\) —^ T (g) S\. The required facts are summarized as follows:

LEMMA 5.0.2. — For non-negative integers m > t^ there is a natural
commutative diagram in which the vertical maps are surjections:

^ ( I ^ H )

[
I ^ H

- ^(TTm^H) -

I
(F2 C TTm-t) ̂  H

^{A^^H)

[
A^-1 (g) H.

Some calculational input is required; this is best achieved by lifting
the arguments to T (g) W\, where explicit calculations may be performed.

LEMMA 5.0.3. — Suppose that X is a strictly decreasing partition and
that m > Ai. The inclusion W(yn,A) c-> A771 0 W\ induces a composite

(m,A)/^Wi ^(A^^Wx) A^ 0 W;\->

which is surjective when t > Ai.

Proof. — A basis for TV\(F^) is indexed by semi-standard A-
tableaux on d letters, by Proposition 4.1.1. One may add t ordered letters
y\ < ' ' • < yt and totally order the resulting d-^-t letters by ̂  < 1. Suppose
that t >_ Ai; given a semi-standard A-tableau T on the d letters and an
increasing sub-sequence ai < • • • < dm-t of the same letters, consider the
following (m, A)-tableau:

Vi

Vt

ai

0'm-t
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By construction, this tableau is semi-standard when t^ Ai. Regarding
the letters ̂  as a basis ofF^ and A^V) as a direct summand ofF(yeF^),
this shows that the given map is surjective. The details of the argument are
left to the reader. D

There is a commutative diagram:

G(m,A) c——^ TI-m ̂  W\

I I
^(m,A) -—— ^(^W^.

For m > t, this yields a commutative diagram, in which the vertical arrows
are surjective:

A'G^) -^ A^TTm^Wx) -^ TTm-t^Wx

I I I

A^(^,A) c—^ A^A^l^) -^ A^^Wx.
One deduces:

LEMMA 5.0.4. — Ifm > Ai and t > Ai, then the composite

A'G^A) ̂  A*(7T^ 0 IV^) -^ 7T^_, 0 ̂

is surjective.

Proof. — One must justify surjectivity in small polynomial degree;
this is the reason for the hypothesis m > Ai. The argument is straight-
forward. m

These results may be applied to the study of I (g) S\ by appealing to
the diagram:

A^(^) <—— A^TTm^Wx) ——— TTm-t^Wx

I I I
AT(^A) c-^ A^TT^^) ——^ 7Tm-t(S)S^

in which the vertical arrows are surjective. By Lemma 5.0.4, if m > 0 and
t > Ai, the composite A^^) -^ TTm-t ^ 5'A is surjective. The kernel of
the map A^^) -^ ^F^^ maps to zero in n^n-i ^ 5'A, hence the map
A ^(m,A) —^ TTm-t ^ 5'̂  is surjective.

Finally, taking the direct limit as m -> oo, one obtains:
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PROPOSITION 5.0.5. — The composite A*XA —^ A^T^^) —» T(g)6\
is surjective, when t > Ai.

Remarks 5.0.6.

1) It seems likely that the bound required on t is rather larger than
necessary. The author originally hoped to establish that t > n would be
sufficient, where n is the length of the partition A. (Observe that Ai > n for
a strictly decreasing partition A.) For example, the sub-functor Kk C TC^A^
induces a surjection AJ^ —» T ̂  A^, corresponding to t = n = 1.

2) An induction using the dominance order of partitions allows the
direct application of Proposition 3.0.3 to prove that 7(g) W\ is artinian; the
fact that X\ is artinian is still required.

6. The proof of Theorem 2.

The following theorem due to Vincent Franjou (unpublished) is
required; a proof due to Lionel Schwartz is included as Theorem A.I in the
Appendix of [PI].

THEOREM 6.0.1. — IfF is a finite functor then Ext^J, F) = 0.

COROLLARY 6.0.2. — If a, b > 0, then Ext^J/Ti-a, T/TTb) = 0.

Proof. — There is an isomorphism

Ext^(7/7ra,7/7T5) ^ Ext^(7/7Ta, TTfo),

from the long exact sequence associated to 71-5 —> J —>• 7/7T5. The short exact
sequence 71-0 —> I —> T/TTa gives rise to a long exact sequence which, together
with Theorem 6.0.1, yields an isomorphism Ext^-(7/7Ta, 71-5) ^ Ext^TTa, 71-5).
This is zero; to see this, use the long exact sequence associated to
71-5 —^ I —> 7/71-5 and the injectivity of J. D

PROPOSITION 6.0.3 (see [PI], Prop. 7.4). — Suppose that G is a non-
finite analytic functor with finite socle such that VsG = 0. There exists a
non-trivial map I —> G.

This has the immediate consequence:
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COROLLARY 6.0.4. — Suppose that G is a non-finite functor which is
simple modulo finites. IfV^G = 0, then G is a quotient of I .

This is used in conjunction with the following result, which is of
interest in its own right:

PROPOSITION 6.0.5. — Suppose that G is a non-finite analytic functor
which is simple modulo finites. Either \/^G = 0 or\7^G is non-finite.

Proof. — First one excludes the case G{¥'z) =^ 0; in this case, there
is a non-trivial map G —> I ^ since G is clearly constant-free. Since G is
simple modulo finites it follows that this is a surjection with finite kernel.
In particular, Theorem 6.0.1 implies that the surjection splits; hence, as G
is simple modulo finites, the kernel is zero, so that G ^ I . In this case,
V2G = 0.

Suppose that G is such a functor and that VsG is finite and non-trivial;
there exists a surjection V^G —^ S\, where S\ -^ Fs, since \/'zG(0) = 0
via the exclusion of the case G(F2) = 0. The adjoint to the composite
AC? —> ^/^G —» S\ is a non-trivial map /: G —>• I 0 S\. Since G is simple
modulo finites and non-finite, the image of / is non-finite. Hence, the
image of / contains the functor X\ C I ^ S\. The construction of X\
shows immediately that X\ contains an infinite number of composition
factors which are not exterior powers, hence that ^^X\ is non-finite.
This implies that Va (image/) is non-finite, since V2 preserves injections.
Finally, since Va preserves surjections, it follows that VaG is non-finite,
a contradiction. D

It is worth noting the following related result, which is not required
in the proof of Theorem 2:

COROLLARY 6.0.6. — Suppose that F is a finite functor. If G is a
functor represented by a class in Ext^-(J/7Ta, jF), then

1) there is a non-trivial map 7 —^ G,

2) there is a unique non-finite simple modulo finites sub-functor ofG,
which is isomorphic to I l^ci fo1' some c.

Proof. — The second statement clearly follows from the first. Prove
the first statement by an induction upon the length of F. The induction is
started by the case F == 0, which is trivial.
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The short exact sequence 71-0 —> 7 —> 7/TTa and Theorem 6.0.1 induce
an isomorphism ExtJ^J/TTa, F) ^ Horn^Ti-a, F). Hence, if G is represented
by a non-zero class, there exists a non-trivial map 71-0 —>• F; write TT' for
the image of this map and form the short exact sequence TT' —> F —>• F7.
By construction, F' has length less than F.

Consider G ' : = G/TT'; by the inductive hypothesis, there is a non-
trivial map 7 —>• G', this induces a non-trivial map I —> G, from the short
exact sequence TT' —> G —> G', together with Theorem 6.0.1. D

Notation 6.0.7. — For the purposes of this section, say that an
artinian functor has a type one filtration if it has a finite filtration of which
the filtration quotients are non-finite simple modulo finites.

Proof of Theorem 2. — The proof is an induction, with the hypothesis
that every functor 7 0 F with the degree of F less than |A| has a type one
filtration. (Observe that it is sufficient to suppose that F is simple in this
statement.) The induction starts by taking S\ = A1, for which the result is
proved in [P3].

For the inductive step, suppose that deg5\ > 1. Theorem 1 has esta-
blished that I (g) S\ is artinian; Proposition 2.1.1 then implies that I (g) S\
admits an increasing filtration

o = Fo c Fi c • • • c Fk c • • • c 7 (g) 5\

in which each quotient Fk/Fk-i is non-finite and simple modulo finites and
such that the filtration is finite if and only if Fk = I 0 S\ for some k.
(Implicit in this statement is the observation that I 0 S\ does not admit
any finite quotients; hence, if the filtration is maximal and finite, then the
top filtration quotient is non-finite and hence simple modulo finites.)

The functor V2(7 0 S\) is of the form G C (7 0 H), where G, H are
finite and degH < |A|. In particular, the inductive hypothesis implies that
I 0 H has a type one filtration. Moreover, this implies that any filtration
of J 0 H which has quotients which are non-finite simple modulo finites is
a type one filtration (that is of finite length).

Proposition 6.0.5 and Corollary 6.0.4 imply that, for each t >, 1, either
V2(Fi4.i/F() is non-finite or F^+i/Ff is a non-trivial quotient of 7. The
inductive hypothesis implies that only finitely many of the V2(F(-i-i/Ft)
may be non-trivial, hence that all but finitely many of the filtration
quotients F^-i-i/F^ are non-trivial quotients of J.
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Suppose that the filtration is not finite, then there exists k such that,
for all t >_ k, the quotients Ff+i/Ff are quotients of 7. Lemma 6.0.2
shows that, for any t > k, Ff/Fk ^ (B^^+i/^- However, the
functor 7 0 S\ is artinian, hence (T (g) S\)/Fk has finite socle. Taking
^ > length{soc((l0SA)/Fk)}, this derives a contradiction to the hypothesis
that the filtration is not finite. D

7. The proof of Theorem 4.

The proof of Theorem 4 relies on the study of the structure of the
functors I 0 A71 carried out in [P3]. For the convenience of the reader, the
main results are recalled briefly. The functor Kn, tor n >_ 0, is defined as the
image of the unique non-trivial map (f^n-^-i '• I ^^n~{~l —> J0A71 (the notation
is taken from [P3]).

THEOREM 7.0.1 (see [P3]).

1) There are short exact sequences Kn —> T(g) A71 -^ Kn-i^ for n >_ 1.

2) The functor Kn is simple modulo unites and is non-finite.

3) Homjr(7, (7/Tn,) (g) A71) = 0 for any s ^ 0 and n ̂  1.

4)JfFC ->7(g)A n , then F is finite unless Kn C F.

The following is a straightforward consequence, which is useful for
calculations:

COROLLARY 7.0.2. — A map f : ( T / T T s ) 0 ̂  —>• G has finite kernel
if and only if the composite f o (proj^ 0 A71) o (f)n-^\ is non-trivial, where
proj^ : I —> I /TTg is the projection and (j>n-\-i '• I ^ A71"1'1 —^ I 0 A71 is the
unique non-trivial map.

The argument of Corollary 7.4.2 is independent of the intervening
results, hence implies:

COROLLARY 7.0.3. — Suppose that K C ( I / ^ s ) ̂  A71, for n > 1, such
that \/'zK is finite^ then K is finite.

This corollary implies the result which is required below:
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PROPOSITION 7.0.4. — Suppose that K C (7/^)0^ is a sub-functor
such that V2^ is finite, then K is finite.

Proof. — The proof is by induction upon n, starting with n == 1,
where the result is given by 7.0.3. The inductive step is given by using
the short exact sequence TV^-I — ^ T i - ^ — ^ A ' 1 . This induces a short exact
sequence

K n ((J/TT,) ̂  7^_i) -— K —— K '

where K ' embeds in (T/Ti-s) (g) A71. The functor V2 preserves injections and
surjections, hence ̂ ^{K D ((7/71-5) 0 Ti^-i)) and ^^K1 are both finite. By
the inductive hypothesis and Corollary 7.0.3, one concludes that K is finite,
as required. Q

7.1. Technical results for the functors V.

The natural surjection A —^ Vn has an adjoint F —^ VnF (g) I,
which was studied in [P2]. Suppose that F,G are functors such that
Va+i-F = 0 = Vb+iG; Inhere is an isomorphism Va+bGF0G) ^ Va^0VfcG
and the quotient map A(F (g) G) = AF (g) AG —> Va+&(F 0 G) identifies as
the tensor product of the individual maps AF —^ ^aF and AG —^ V^G.

LEMMA 7.1.1. — Suppose that f : AF —^ X, g : AG -^ V are maps
with adjoints f : F ^ X ^ ) I , g : G — > Y ^ I respectively, suppose that the
functors take finite dimensional values. Then the adjoint off0g identifies
with the composite

F (g) G -^ X ^ I ^ Y ^ I — > X ^ ) Y ( S ) I

where the second map is induced by the natural product I (g) I —> I .

Proof. — It is notationally simpler^ to describe the argument for the
dual adjunction, (V ^ ¥^[V}, A). The adjoint to a map a: H -^ AK is the
map a: ¥^[V} (g) H(V) —> K(V) given by the composite

F2[y] 0 H(V) ̂  F2[y] 0 K(V e F2) ̂  K{V ® v) -dla^ K(V),
in which the evaluation map is given by the identification V ^
Hom^(F2,V).

^ This is the reason for the assumption of finite-dimensional values. This assumption
should have been included in some of the arguments used in [P2].
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If f3: A —f A5 is a second map, the adjoint of a 0 (3 identifies with
the composite

¥2[V}^A(V)(S)H{V) -^ F2[y]0A(y)0F2[V](g)^(V) -°^ B(y)®K{V\

where the first arrow is the diagonal map ¥^[V} —> ¥^[V] 0 ̂ ^[V] together
with a permutation of tensor factors. This identification follows from the
commutative diagram:

F2[V] (g) B{W) (g) K(W) —> F2[V] 0 B(W) (g) ¥^[V] 0 K(W)
evalj^ J^eval0eval

B(V e v) 0 K(V e v) === B(Y^V)(S)K{V(SV),
where W == V ® Fa, which is equivalent to the observation that the
evaluation map acts diagonally on the tensor product. D

This lemma has an evident counter-part for the (A, —0 7)-adjunction.
This applies to yield:

PROPOSITION 7.1.2. — Suppose that F^G are analytic functors and
thatVa-^iF = 0 = Vfr+iC?. The adjunction map F <S> G —^ Va+&(-^06?)^)^
identifies with the composite

F (g) G —> (Vo^ 0 J) 0 (V^ 0 7) —> VaF (g) VfrG (g) 7,

of the tensor product of the adjunction maps F —> Va.F 0J, G —> V^G^J
followed by the product I 0 I —> I.

The importance of these adjunction maps is shown by:

PROPOSITION 7.1.3 (see [P2], Section 5). — Suppose that F is an
analytic functor. The map F '—> Vn-F 0 I is injective if and only if
\/nK 1=- 0 whenever 0 7^ K C F.

Example 7.1 A. — Suppose that A is a strictly decreasing partition of
length n > 0 and S\ is the associated simple functor. The adjunction map
related to A —^ Vn is the injection S\ ̂  S-^ 0 7.

Example 7.1.5. — Suppose that s > 1. The adjoint to the identity
A(7/7Ts) —> A(7/7Ts) (corresponding to n == 1) is a map ^ s ' - ^ / ^ s —^
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I / T T s - i 0 I . There is a unique such non-trivial map when s > 0. The map
is described by the commutative diagram:

I ————> J07

I I
J/7T,_i ̂  J/7T,0J,

where the vertical arrows are induced by the canonical surjections and
the map I —> I 0 I is the 'half-reduced5 diagonal, namely the composite
I ^ I — ^ I ^ I — ^ I ^ T ^ m which I —> I 0 I is the usual diagonal map
and J(g)J—^J(g)7is induced by the projection I —^ I on the second factor.

7.2. Reduction of Theorem 4.

In this short section, Theorem 4 is reduced to the study of the kernel
of certain explicit maps.

HYPOTHESIS 7.2.1. — Suppose that F is a finite functor such that
Vn+iF = 0 and the canonical map F —» VnF 0 7 is an injection.

LEMMA 7.2.2. — If F is a finite functor^ then the canonical map
F —^ VnF 0 I factors through V^F (g) TT^ c-^ V^F 0 I for some m.

The above material is of interest in studying functors of the form
1/71-5 (g) F.

LEMMA 7.2.3. — Suppose that F satisfies Hypothesis 7.2.1. The
adjoint to A(7/7Ts 0 F) —» Vn+i(7/7Ts (g) F) is a map

I/TVs 0 F ——^ (I/TTs-1 0 7 (g) VnF).

This map has finite kernel if the composite

7s,m '• I / ^ s ^ TTm ^s(s)l > ( I / ^ s - 1 ̂  7) 0 7T^ l(g)^ > I / T T s - l 0 7

has hnite kernel, where m is given by Lemma 7.2.2.

Proof. — The given map factors by Lemma 7.2.2 and Proposi-
tion 7.1.2 as

7/7T, (g) F ̂  7/7T, 0 7T^ ̂  V^F 75>m01-^ (J/7L,-i (g) 7 (g) V^F).

The first map is injective by Hypothesis 7.2.1, whereas the second is of
the form ^s,m 0 finite. If ^s,m has finite kernel, the second map has finite
kernel. Q
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7.3. The completion of the proof.

The proof of Theorem 4 has been reduced to the proof of the following
result:

PROPOSITION 7.3.1. — For any s > 0,m > 1, the map ^s,m ''
I / ^ s ̂  TTm —)> 1l^s-i ̂  I has finite kernel^ where 7s,m is the map defined in
Lemma 7.2.3.

This result is a consequence of Theorem 7.0.1. The proof of the proposition
given below appeals to the following general result:

LEMMA 7.3.2. — Suppose that a,f3 are maps I —> Y,X —> Y
respectively^ which have finite kernels. The kernel of the map a (D f3 :
I © X —> Y is either finite or splits as I © finite. In particular^ if
Hom^(J, X) = 0, then the kernel ofa(B/3 is finite.

Proof. — Write K for the kernel of a 9 /?, so that there is a map
K —'—> I © X. Consider the map f '. K —> J; ker/ injects to X and the
composite ker/ ^-> X —> Y is zero. Since /3 has finite kernel, it follows that
ker / is finite. Hence, there is an exact sequence

0 - ^ k e r / — > K — > T .

If the image of / is finite, then this exhibits K as a finite functor. Otherwise
the above sequence is short exact and represents a class of Ext^r(J,ker/).
This group is zero, by Theorem 6.0.1, hence the short exact sequence splits.

The last statement of the proposition is clear, by restricting the
inclusion K ̂  I ® X to the summand of I in K. D

Remark 7.3.3. — In order to show in the proof above that the kernel
is finite, it is sufficient to know that Hom^-(J,X/(7) = 0 for any finite
sub-functor G C X\ thus, if sufficient is known about the structure of X,
an appeal to Theorem 6.0.1 is not necessary.

Proof of Proposition 7.3.1. — The proof is by induction upon m. The
case m = 1 is a direct consequence of the known structure of T/Ti-s (g) A1;
the map 7(s,i) has kernel which is zero under V^. Proposition 6.0.5,
Corollary 6.0.4 and Theorem 7.0.1 imply that this kernel is finite.
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(A direct proof of the case m = 1 is given by applying Corollary 7.0.2;
the relevant composite 7 0 A2 —)> (7/Ti-s) 0 A1 —^ (7/Ti-s-i) 0 7 may be
calculated easily to be non-trivial.)

For the inductive step, consider the map 7/Ti-s 0 TT^ —> I / T T s - i 0 I .
Applying V2 yields a map

I / T T s - l 0 (TTm-l C F2) ——> I / T ^ s - 2 0 I '

By calculation, the restriction to the summand T/TTs-i 0 T^m-i is precisely
the map 7s-i,m-i, which has finite kernel, by induction. Equally, the
restriction to I / T T s - i 0 Fa is the map V27(s-i,i) which is non-trivial and
hence has finite kernel. To prove that the sum has finite kernel, one appeals
to Lemma 7.3.2. This applies, since Hom^-(7,J/7Ts-i 0 TTm-i) = 0, by the
results of Theorem 7.0.1.

This argument establishes that V27s,m has finite kernel; this
completes the proof by Proposition 7.0.4. D

7.4. Conclusion.

The special case of Theorem 4 which is of interest here may be
restated:

THEOREM 7.4.1. — Suppose that \ is a strictly decreasing partition
of length n. If s ^ 0 and K ^ 7/71-5 0 S\ is a sub-functor such that
Vn+iJf = 0, then K is finite.

COROLLARY 7.4.2. — Suppose that A is a strictly decreasing partition
of length n. Suppose that K ^ 7 0 S\ is a sub-functor such that Vn+iJ^
is finite^ then K is finite.

Proof'of'Corollary7.4.2. — Suppose that Vn+i^ is finite. There exists
an integer d such that Vn+iJf C Vn+i(J^ D (^ 0 S\)). The commutative
diagram:

^n(7Td0^) c——— K ——— K / K n ^ d ^ S ^ )

I I [
7rd0^A '———> I ^ S x ———» I / 7 T d ( S ) S x

shows that K / K n (^ 0 S\) is a sub-functor of 7/Ti-d 0 S\, such that
^n^(K/K n (Ti-d 0 6\)) = 0. Theorem 7.4.1 implies that the functor
K / K n (TTd 0 S\) is finite, so that K is finite. D
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