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Introduction.

Let K be an algebraically closed field of characteristic zero, let Q be
a reductive Lie X-algebra and let i) be a Cartan subalgebra. A g-module
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538 OLIVIER MATHIEU

M is called a weight module if and only if M = CAC^ M^ where each
weight space M\ is finite dimensional (in the literature, the last condition
is sometimes dropped). The main result of this paper is the classification
of all simple weight fl-modules.

The general strategy to get this classification is the following. Let
p be a parabolic subalgebra of Q and let u be its nilradical, i.e. the
smallest ideal such that p/u is reductive. It is always assumed that p
contains () and therefore 1) can be viewed as a Cartan subalgebra of
p/u. For any simple weight p/u-module S, the ^-module Ind8 S has a
unique simple quotient, denoted by L^(S). When p^g, the simple weight
module Ly{S) is called parabolically induced. Otherwise a simple weight
module which is not parabolically induced is called cuspidal. By Fernando's
Theorem [Fe], any simple weight module is cuspidal or is parabolically
induced from a cuspidal module. Hence the general classification reduces
to the classification of cuspidal modules (for a more precise statement,
see Theorem 1.2). Moreover, for simple Lie algebras 5, there are cuspidal
modules only if Q has type A or C. Thus the main result of the paper is the
explicit classification of cuspidal modules for Lie algebras of type A and C.

The main idea to investigate the cuspidal modules is the notion of
coherent families. In order to define this notion, it should be noted that
the weight spaces M\ of any g-module M are ^4-modules, where A is the
commutant of () in U(o). Then a coherent family of degree d is a weight
module M such that

• dimA^A == d for all A €()*, and

• the function A \—> Tru|^ is polynomial in A, for all u C A.

Let T* = y IQ be the dual torus, where Q is the root lattice. For any
t € T*, M[t] := ©Aet-^A ^ a fl-submodule of M. Then it is shown that
any cuspidal module is isomorphic to M[t} for a unique t € T* and a unique
irreducible and semi-simple coherent family M (these notions are defined
in Section 4).

It turns out that any semi-simple irreducible coherent family M con-
tains some infinite dimensional simple highest weight modules L (A) (Propo-
sition 6.2). Moreover M. is determined by these components (Proposition
4.8). Since any highest weight module L(A) occurring in M is admissible
(i.e. the multiplicity of its weights is uniformly bounded), the first step
is the classification of all admissible L(\). This can be done with the
Kazhdan-Lusztig character formula. Indeed a more elementary approach
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CLASSIFICATION OF IRREDUCIBLE WEIGHT MODULES 539

is used because it gives quick proofs. From this, the classification of semi-
simple irreducible coherent families follows (Theorems 8.6 for type A and
Theorem 9.3 for type G).

The last step of the classification is Theorem 10.2 which determines in
each irreducible coherent family M the full list of its cuspidal submodules.
Equivalently, this result describes explicitly the set SingM := {t €
T^IA^] is not cuspidal}. Indeed SmgM is an union of finitely many
codimension one cosets of T*. In Sections 11 and 12, the classification of
semi-simple coherent families is described more concretely. For Q=S l(n+l),
irreducible coherent families are classified by some finite dimensional simple
S[(n)-module and any such family is a space of tensors or a difference of
two spaces of tensors (Theorem 11.4). For ^=5p(2n), irreducible coherent
families are classified by the odd pairs of Spin(2n)-modules and they are
closely related to the Shale-Well representation (Theorem 12.2).

In the last section, the character of any simple weight module is com-
puted (Theorem 13.4). Besides Fernando's Theorem, there were two main
results toward the classification of all simple weight modules in the previ-
ous literature. For 5l(2), the classification is usually attributed to Gabriel
[Gab] and can be found in [Mi] and in [D] (7.8.16). More recently, Britten
and Lemire classified all simple multiplicity free weight modules [BL], see
also [BHL] [BFL] and Corollaries 11.5 and 12.3. Other interesting results
have been obtained by Benkart, Britten, Cylke, Dimitrov, Futorny, Hooper,
Gaillard, Joseph, Lemire, Ovsienko and Penkov (see the bibliography).

Acknowlegdements.— I thank heartily M. Brion, V.M. Futorny,
T. Joseph, V. Mazorchuk for their helpful conversations, and W. Soergel for
his comments concerning the appendix. A special thank is due to D. Britten
and F. Lemire and the referee who made many interesting comments about
the previous versions of the preprint.

0. General conventions and definitions.

The ground field K has characteristic zero and, for simplicity, it is
assumed that K is algebraically closed. Throughout the whole paper, Q will
be a given reductive Lie algebra and () will be a given Cartan subalgebra
of Q. Moreover, after Theorem 1.2, it will be assumed that Q is simple.
Unless assumed otherwise, set I = dim() n [g,g]. The set of roots relative
to 1) is denoted by A, the root lattice by Q and the Weyl group by W.
For a G A, let ha be the corresponding coroot, let e^ be a basis of Q^
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540 OLIVIER MATHIEU

and let fa C 0_o; be defined by the requirement [eco/cj = ha. Viewed
as a subgroup of GL (()*), TV is generated by the hyperplane reflections
Sa : A ^ A - A(/ia)o'. Also set P = {A e ()*|A(^a) € Z,va € A}. An
element of ()* is called a weight and an element of P is called an integral
weight.

Let M be an l)-module. When A runs over 1)*, the subspaces M\ :=
{m G M| h.m = \(h)m, V/i 6 ()} are called the weight spaces of M. For
any t C ()*, set M[^] = OAC^-^A- Let a be any Lie algebra containing
(). A weight a-module is an a-module M such that M = (B^h* A^\ and
dimM^ < oo for all A (when a is tacitly assumed or when it does not
matter, M is called a weight module). The support of the weight module
M is the set SuppM := {A| MX + 0}.

A basis of the root system A is a set B of I roots such any root a
belongs to the monoid Z^o-S or to its opposite. For a basis -B, the set of
positive roots relative to B is A^ := A D Z^o-S- Also set A^ = —A^ and
pa == 1/2 ̂ Q^+ 0'- The set of dominant integral weights relative to B is
the set PQ := {A C P|A(/^) ^ 0, Va <E B}. Similarly, La(A) denotes the
simple -B-highest weight ^-module with highest weight A € ^)*. This simple
module is characterized by the existence of a non-zero vector v of weight A
such that Co^.v = 0 for any a 6 B. When there will be no ambiguity on B,
the index B will be dropped from the previous notations.

In what follows, < | > denotes a TV-invariant bilinear form on ()*
such that < A|A >€ Z>o for any A 6 Q \ 0. For A € Q, ||A|| is the real
number < A|A >1/2. Any basis B of the root system A has a natural
structure of a graph, with edges the pairs of distinct roots a, (3 € B such
that < a\/3 >^=- 0. Of course, a basis B of the root system is also a basis of
the lattice Q. However, there are some subsets S of A which are bases of Q
but which are not bases of A. Since these subsets S will play an important
role in the paper, these two notions of bases should not be confused.

1. Reduction of the classification to cuspidal modules.

The reduction of the classification of all simple weight modules to the
classification of cuspidal modules of some Levi factors is the main topic of
the section. This idea is mainly due to Fernando [Fe]. Before this idea is
explained, some notations are introduced and a useful lemma is stated.
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CLASSIFICATION OF IRREDUCIBLE WEIGHT MODULES 541

Let Q be a reductive Lie algebra, let (} be a Cartan subalgebra. For
any Lie algebra a on which () acts by derivations, let A(a) be the set of non-
zero weights of the ^-module a and let Q(a) the subgroup of t)* generated
by A(a).

It is always assumed that any parabolic subalgebra of Q contains
(). Let p be a parabolic subalgebra and let u be its nilradical. We have
A = A(p) U -A(p), A(u) = {a e A|a € A(p) but - a ^ A(p)} and
u = ®Q'eA(u)0a- The opposed nilradical of p is the subalgebra u~ :=
(Bae-A(u) 0a ^d there is a triangular decomposition Q ^ u ® p/u 0 u~.
A basis B of the root system A is called p-adapted if B c A(p). By
convention, a cone is a finitely generated submonoid of Q containing 0. For
instance, the cone ofp, denoted by G(p), is the cone generated by -A(u).

Let u C ()* be a K <S> Q(p/u)-coset. In the following, Cy, denotes the
category of all weight p-modules with support lying in n, where u C i)* is
a given K (g) Q(p/u)-coset. For S C Cn, set Mp(5') = Ind^S. Since we have
K 0 Q(p/u) H C(p) = 0, the Lie algebra u acts trivially on 5. Moreover
Mp(5) decomposes into 5'C M"^, where M^ = ^\^uMp(S)\. Set L^{S) =
Mp(5)/Z, where Z is the biggest g-submodule of MpS included in M~^.

LEMMA 1.1. — Let u be a K (g) Q(p/u)-coset.

i) The support of any simple weight ̂ -module S lies in a single Q(p/u)-
coset.

ii) For any S G Cu, Lp(S) is a weight module.

iii) For any simple weight p-module S, the module Lp(S) is simple.
Moreover it is the unique simple quotient ofMp(5).

iv) For any submodule (respectively quotient, subquotient) S" of a p-
module S C Cu, the Q-module L p { S ' ) is a submodule (respectively quotient,
subquotient) ofLp(S').

Proof. — Proof of (i): Let t C ()* be a Q(p/u)-coset such that S[t\ ̂  0.
Set v = t - (7(p) and v^~ = v \ t. It is clear that S[v] and S^} are p-
submodules of S. Since S[t] ̂  0, we have S^} -^ S[v}. By simplicity of S,
we have S[v] = S and S[v^~} = 0. Therefore S = S[t], which proves the first
point.

Proof of (ii): By PBW Theorem, we have Mp(S') ^ U(u~~) 0 S.
Therefore, for A e ()* we have M^(S)x ^ C U(u~)^ 0 S^, where the
sum runs over the set consisting of pairs (Ai ,A2) with Ai C G(p), A2 € u
and Ai + A2 = A. Since K (g) Q(p/u) H (7(p) = 0, this set is finite. Hence
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dimMp(S)\ < oo and therefore Mp(S) and its quotient Lp{S) are weight
modules.

Proof of (hi): By definition, the g-module Mp(5') is generated by 5'
and for any submodule TV, we have N c Z o v N n S ^ O . Since S is simple,
any proper submodule is contained in Z. Therefore Lp{S) is simple and it
is the unique simple quotient of Mp(S).

Proof of (iv): The functor S € Cu ^ Ly{S) is not exact, but it
preserves injective and surjective maps. Therefore L p { S ' ) is a subquotient
of Ly(S), for any p-subquotient 5" of 5'. Q.E.D.

For instance, let b be a Borel subalgebra and let B be the unique
b-adapted basis. Any weight A can be identified with a one dimensional
b-module. The module M(,(A) is the Verma module with B-highest weight
A and L(,(A) is its unique simple quotient, also denoted by L^(A). When
p -^ Q is any proper parabolic subalgebra and S is a simple weight p-module,
the simple g-module Lp(S) is called parabolically induced. A simple Q-
module L which is not parabolically induced is called cuspidal Roughly
speaking, Fernando's Theorem states that any simple weight ^-module L is
isomorphic to Lp{S) for some parabolic subalgebra p and some cuspidal p-
module S. To clarify this statement, let us point out the following remarks:

• In this statement, p=g is allowed. This occurs when L is cuspidal.

• By the previous lemma, any simple weight p-module S is a indeed
a p/u-module, therefore the notion of a cuspidal p-module is well defined.

• Moreover for any simple p-module 5', Supp S lies in a single Q(p/u)-
coset which is the condition required to define Lp(5').

However the pair (p, 5') is not always uniquely determined by L. For
instance, there is a well-known isomorphism Z/a(A) c± Lg^B^a^) ^OT ^y
a C B with \{ha) e Z^o- I11 order to get an exact classification of simple
weight modules in term of cuspidal modules, one also needs to determine
when the modules Lp(S) and -Lp/(5") are isomorphic. This requires the
small Weyl group W(S), which is now defined.

Let S be a simple weight p-module, let B be a p-adapted basis of A
and let B± C B be the subset of all roots which are orthogonal to A(p/u).
Equivalently, B^- is the set of all a € B such that the image of ha in
p/u is central. For a C -B"*", hoc acts on the simple p/u-module 5' as some
scalar la' Set B^ = {a C Bl~\la G Z^o}- The root system generated by
B^ is denoted by A(5) and its Weyl group by W(S). Indeed the set B^
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is independent of the choice of the p-adapted basis B and therefore A (S)
and W(S) depend only on 5'.

Let p be a parabolic subalgebra. For w € TV, let ̂  be the parabolic
subalgebra such that A(p^ == w.A(p). There is an automorphism w of
the Lie algebra Q which stabilizes () and which restricts to t) as w. The
automorphism w conjugates p and pw. For any weight p-module S, the
isomorphism class of the p^module 5^ is independent of the choice of w,
and therefore it will be denoted by Sw.

THEOREM 1.2.— i) (Fernando) Any simple weight Q-module is iso-
morphic to L^{S) for some parabolic subalgebra p and some cuspidal p-
module S.

11) Let 5', 6" be cuspidal modules for two parabolic subalgebras p, p'.
Then L^{S) and Lp/(5") are isomorphic if and only if we have p'=pw and
S ' = 5^, for some w € W(S).

The main part of the previous theorem, namely Assertion (i), is due
to Fernando [Fe], see also [Jol], [Jo2], [Jo3] and for a quick proof [DMP]
(Theorem 3.6). Assertion (ii) is easy, see Section 5 of [DMP]. Q.E.D.

Set 9 = 3 ©0i (D 02 • • • where 3 is the center of Q and where each
Qi is a simple component of g. Any simple weight module L decomposes
into Z 0 L\ (g) Z/2 • • ' , where Z is a one dimensional representation of 3
and each Li is a simple weight g^-module. Thus the general classification
of all simple weight modules reduces to the problem of determining all
cuspidal representations for the simple Lie algebras, which is the aim of
the present paper. So from now on, it is assumed that Q is simple. Before
reducing further the classification (see Proposition 1.6), we start with a
useful proposition and its corollaries.

Let L be a simple weight ^-module and let a G A be a root. It is easy
to prove that the action of e^ on L is either inject ive or locally nilpotent.
Following [DMP], the set A decomposes into four disjoint parts A^, A^, A^
and A^ as follows:

A! = {a ̂  A? ^o\L and fa\L are injective}
Af == {a € A; ea\L and fa\L are locally nilpotent}
A^ == {a C A; fa\L 1s injective but C^IL is locally nilpotent}
AZ = -A^.
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By definition, the cone ofL is the monoid C(L) generated by A^UA^.
The following statement is proved in Section 5 of [DMP].

PROPOSITION 1.3.— Let p be a parabolic subalgebra, let S be a
cuspidal p-module and set L ̂  Lp(S).

i) There is a finite set f2 such that Supp L = ̂  + C(L).

ii) We have A^ = A(p/u), Af == A(5), and A^ and Af are orthogonal.

iii) There is a parabolic subalgebra q D p with nilradical t) such that
A(q/t)) = Ai U Af and A(t)) = A^. Moreover C(L) = Q(p/u) + C(q).

Let L be a simple weight ^-module. A basis B is called L-adapted if
B is p-adapted for some parabolic subalgebra p such that L ̂  Lp(S) with
S cuspidal. By the previous proposition, a basis B is adapted if and only
if B H A^ is a basis of A^ and A^ C A^. (moreover B n Af is always a
basis ofAf) .

It is obvious that the support of any simple weight g-module L lies in
a single Q-coset. The following proposition, which follows from Proposition
1.3, was first proved by Fernando, see [Fe].

COROLLARY 1.4 (Fernando). — For a simple weight Q-module L, the
following assertions are equivalent:

i) L is cuspidal,

ii) e^ acts injectively on L for all a € A,

iii) The support of L is exactly one Q-coset.

Remark.— A module satisfying (ii) is called torsion-free and a
module with property (iii) is called dense. By the previous proposition,
cuspidal, torsion-free and dense are equivalent properties, and in the
literature the three terminologies are used simultaneously. For clarity, only
the terminology "cuspidal" will be used.

COROLLARY 1.5.— Let L be a cuspidal g-module.

i) For any a € A, fa acts bijectively on L.

ii) There exists an integer d such that dim L\ = d for any X € Supp L.

Proof.— By Proposition 1.3, we have A^ = A. Therefore, for any
A C Supp L, the maps ea : L\ —^ L\^ and fa : L\^ —^ L\ are injective.
Therefore fc, acts bijectively on L and the dimensions of the weight spaces
of L are all the same. Q.E.D.
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PROPOSITION 1.6 (Fernando).— If there is at least one cuspidal Q-
module, then Q is of type A or C.

Proof. — For the convenience of the reader, a quick proof follows.
Therefore, assume that there exists one cuspidal ^-module L.

Let K = Uo C U^ C £/2 C . . . C U = <7(s) be the canonical nitration
of U(Q). There exist some C > 0 such that ||/z|| ^ Cn for any n ^ 0 and
any weight fi of Un' Hence we have Card Supp Un = 0(n1). By Corollary
1.5, the dimension of its weight spaces of L is uniformly bounded, hence
we get dim Un ' L\ = 0(n1), for any A. Therefore the characteristic variety
V(L) of L has dimension ^ /.

Let G be the adjoint group of 5, and set 0 == G.CQ, where a is any
long root (i.e. any root if Q is simply laced). Since 0 is the G-orbit of an
extremal weight vector, any non-zero G-invariant closed cone of Q contains
0. Thus for any x € g\0, we have G.Kx D 0. Therefore dim 0' ^ dim 0 for
any G-orbit 0' 7^ O in 5. Since the G-modules Q and g* are isomorphic, the
dimension of any non-zero symplectic leaf of fl* is ^ dimO, and therefore
we have dim V ^ jdim 0, for any coisotropic subvariety V of g* \ 0.

Since V(L) is coisotropic, we get that dimO ^ 21. By direct calcula-
tions, it is easy to prove that dim 0 > 21 if g is not of type A or G.

Q.E.D.

2. Generalities about weight modules.

Recall that Q denotes a simple Lie algebra and I) is a fixed Cart an
subalgebra. Set U = U(o) , let A = UQ be the commutant of (} and
let B = Q)\^oU\ be its complement in U. For A G (}*, a A-module of
weight A is a finite dimensional A-module X such that X == X\ as an
t)-module. Set then I(X) = U (S)A X and J+(X) = B 0^ X. We have
I{X) = O^QlW^ where I(X)x = X and I(X)^x = B^ (S)A X for
ji 7^ 0. Let Z{X) be the biggest L^-submodule of I(X) which is contained
in I^-(X). Then set L(X) = I { X ) / Z ( X ) .

LEMMA 2.1. — Let X be a A-module of weight X.

i) I(X) is a weight module generated by X.

ii) Let Y be a U-module generated by Y\. Any morphism ofA-modules
TT : Y\ —> X extends to a unique morphism of U-modules Y —)• I\(X).
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Proof.— By Hubert's Theorem, the right A-module U^ is finitely
generated for any p. e Q, see e.g. [DMP]. Hence J(X)^+^ is finite dimen-
sional, which proves (i). Let Y be a (7-module generated by Y\ and let
Tr6 : I{Y^) -^ I(X) be the morphism extending TT. We have Y c± I{Y\)/Z
for some submodule Z of I{Y\) such that ZA = 0. Hence we have
TT^Z) C Z(X) and Tr6 induces a morphism Y -> I\(X). Q.E.D.

LEMMA 2.2. — Let L be a simple weight Q-module and let X € Supp L
be a weight.

i) The A-module L\ is simple.

ii) We have L ^ I\(L\).

Proof. — This is an immediate corollary of Lemma 2.1. Q.E.D.

Let M be a weight module. Its trace TrM is the function (A,n) C
y x A^—> Tr^n) = Trn|MA • A weight module is called semi-simple if it is
a finite or infinite direct sum of simple modules.

LEMMA 2.3.— Let M, N be two semi-simple weight modules. If
^M ̂  ̂  ̂ ^ M ^ N .

Proof.— Let L be a simple weight module. By Proposition 1.3, we
have L c^ I\{L\), for any A C SuppL. Hence the multiplicity of L in M
as a [/-module is the multiplicity of L\ in M\ as a A-module. The last
multiplicity is determined by the function Tr^ and the lemma follows.
Q.E.D.

3. Support of admissible modules.

A weight module M with support lying in a single Q-coset is called
admissible if dim M\ is uniformly bounded. The degree of an admissible
module is the maximal dimension of its weight spaces. For an admissible
module M of degree d, its essential support is the set Suppggg M := {A e
Supp M| dim M\ = d}. By Corollary 1.5, any cuspidal g-module L is
admissible and Supp L = Suppggg L.

LEMMA 3.1.— Let L be an infinite dimensional simple weight Q-
module. Then the group generated by the monoid C(L) is Q.

Proof.— First consider the case where A^ = 0. By Proposition 1.3,
A is the disjoint union of the orthogonal subsets A^ and Af. Therefore
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we have A = A^ and C{L) = Q. So it can be assumed that A^ ^ 0. By
Proposition 1.3, A^ is the set of roots of the nilradicals ̂  of two opposed
parabolic subalgebras. We have g=t)++t)~ +[t)+,t)-], hence A^ generates
Q. As C(L) contains A^, it generates the group Q.

For any real number x ^ 0, set p{x) = CardB(^), where B(x) =
{^ C Q\ 11/^H ^ rr}. Let M be a weight module with support ly-
ing in a single Q-coset, say A + Q. The density of M is ^(M) :=
mnlnf ?W~1 E^eB(^) dimM^ (the symbol "liminF stands for the in-
fimum limit). Of course, 6(M) is independent of A.

LEMMA 3.2. — There exists e > 0 such that 6{L) > e, for any infinite
dimensional simple weight module L.

Proof. — For any cone C, the number 6(C) = lim inf p(x)~1 Card Gn
X—>-00

B{x) is positive if C generates Q. For any infinite dimensional simple weight
module L, we have SuppL D A + G(L), for any A e SuppL. Thus we get
6(L) ̂  6(C(L)) and 6(C(L)) > 0 by Lemma 3.1. By Proposition 1.3, there
are only finitely many different cones attached to all simple weight modules.
Hence there exists e > 0 such that 6{C(L)) > e for any infinite dimensional
simple weight module L. Hence 6{L) > e for any L. Q.E.D.

LEMMA 3.3. — Any admissible weight module M has finite length.

Proof.— As M is admissible, we have 6(M) < oo. For any exact
sequence 0 -> Mi -^ M^ -^ Ms -^ 0, we have 6(M^) ^ 6(M^) + 6(M^}.
Let X be the set of all p, G P such that |/^a)| ^ 1 for any a e A.
For any simple module L of finite dimension, we have L^ ^ 0 for some
^ € X, see [Bl]. It follows easily that the length of M is finite, and
bounded by A + <^(M)/e, where the constant e is defined by Lemma 3.2
and A = EACX dimM;,. Q.E.D.

LEMMA 3.4. — Let C be a cone generating Q and let 5'i C 62 be non-
empty subsets oft)* lying in a single Q-coset. Let us assume that S'2 = C-}-^t
for some finite set ^ and that C + 5'i C 6'i. Then we have

• S-2 \ St is contained in a finite union of affine hyperplanes.

• S'i is Zariski dense in ()*.

Proof.— It is clear that S^ is Zariski dense. Since ^2 is finite and
C generates Q, we have ^ C A + C for some A € I)*. After a convenient
translation, it can be assumed that 62 C C. Moreover we have 6'i D ^ + C
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for some p,. Without loss of generality, it can be assumed that S^ = C and
5'i = /2 + C for some p, € G.

Let F be a finite set of generators of C. Let b (respectively c) the set
of all subsets of F which are a basis of ()* (respectively all subsets of rank
< 1). For any T € c, let -?fr be a linear hyperplane containing T. For any
T € b, there is an identity mr^ = S/yer ^^ where mr € Z>o and all
m^ are integers. Set N = Sup^^cr m^ an(^ ^et ^/ tne set °^ an integral
combinations S-y^r m^ wlt^ ^ ^ ̂  < ^ ^or a^ ^'

Any r e C can be written as S/yer771^ ^ere m/y e Z^o fo1' all
7 € r. For such a decomposition of r, set T = {7] m^ ^ A^}. If T contains
a basis T ' , then T — mr'^ € C and therefore r belongs to S'i. Otherwise T
belongs to :T + HT. Hence S'2 \ S'i is contained in Urec F' + ̂ r. Q.E.D.

PROPOSITION 3.5. — Let L be an infinite dimensional admissible
simple module.

i) For any X € Supp^gg L, we have X + C(L) C Suppggg L,

ii) Suppggg L is Zariski dense in I)*, but Supp L \ Suppggg L is contained
in a finite union of affine hyperplanes.

Proof.— Let A € Suppggg L and let a e A^ U A^. As fa acts
injectively on L, we have dim L\-a ^ dim L^. Hence A — a € Suppggg L, and
Assertion (i) is proved. Set C == <7(L), 5'2 = SuppL and 5'i = Suppggg L.
By Proposition 1.3 (i), Lemma 3.1, and Assertion (i), the triple (<7, 6'i, 52)
satisfies the hypotheses of Lemma 3.4. Hence Assertion (ii) follows from
this lemma. Q.E.D.

4. Coherent families.

After the preparatory Sections 2 and 3, the present section is devoted
to the introduction of the notion of coherent families. This notion, which
is the main tool of the classification, will be also investigated in Sections 5
and 6.

A coherent family of degree d is a weight ^-module M. such that

• dim M\ = d for any A €()*, and

• for any u € A, the function A 6 1)* i-» Trn|^ is polynomial in A.

The dual torus of Q is r* := ()* / Q . As a ^-module, any coherent family M.
decomposes into (D^er-A^], and its g-submodules M[t\ are all admissible.
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Example of a coherent s((2)- family: Let e, /, h be the usual basis of s((2).
For a C K, let A1(a) be the s[(2)-module with basis (x^seK and where
the action is given by the following formulas:

/ ̂  -d/da; + a / x , h ̂  2xd/dx, e »-> x2d/dx + ax,

where ^±1 denotes the operator Xs ̂  x8^ and d/da; denotes the operator
Xs ^ sx8-1. Clearly, M{a) is an example of a coherent family. Except
for one or two t € T*, the 5l(2)-module M(a)[t] is simple and cuspidal.
Otherwise, M(a)[t] has length < 3, i.e. it is a non-split extension of two
or three simple modules. Therefore there exists a coherent family M{a)ss

such that M^a)88^} is a finite sum of simple modules and has the same
composition series as M(a)[t\ for any t e T*. In what follows, we will
define the notion of semi-simplicity and irreducibility of a coherent family.
Indeed any semi-simple irreducible coherent 5[(2)-family is isomorphic to
M(a)88 for some a C K, see the remark at the end of Section 11.

A commuting set of roots is a subset E C A such that [e^.e^] = 0
(or equivalently [/^, /^] = 0) for any a, f3 € E. For any subset I of a basis
B of A, Qi denotes the subgroup of Q generated by J, Aj the root system
generated by J, and Aj!" the set of positive roots of A/ relative to its basis I .

LEMMA 4.1. — Let B be a basis of A.

i) Let I C B and let a e I . There exists a set of commuting roots
E' C A^ with a € E' such that E' is a basis ofQi.

ii) Let J, F be subsets ofB with F ^ B. Let E' C AJ" \ A^ be a set
of commuting roots which is a basis ofQj. There exists a set of commuting
roots E which is a basis ofQ such that E' C E C A^ \ A^.

Proof. — First let us prove Assertion (ii). If J is empty, let us choose
any a e B \ F and replace J and E' by {a}. Therefore, it can be assumed
that J is not empty. Set J ' == J \ F, p = Card J', q = Card J . Let Ji,... Jj,
be the connected components of J and set J[ = J ' D J^, F, == F D J,, and
E^ = E' H Aj, for any 1 ̂  i ^ k. Since E' C Aj is a basis of Qj, each E^ is
a basis of Qj,. Since E^ lies in A^ \ A^, the set J[ = J, \ F, is not empty.
Hence J' meets every connected component of J. Therefore we can write
J = {o i , . . . , aq} in such a way that J ' = { a i , . . . . a?} and, for any s with
p + 1 ̂  s ^ g, o;s is connected to o^ for some i < s. Since B is connected,
we can write B \ J = {a^+i , . . . . aj in such a way that, for any s ^ q + 1,
Qs is connected to a, for some i with 1 < % < s. Therefore the connected
component Cs of o.s in { a i , . . . , as} contains at least one element in J', for
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any s > 0. For s > q, set 7^ = Ej-ec, a^ ̂  [B2^ ^s is a root, and since
Cs (Zt F we have 75 ^ A^?.

Set E' = { / ^ i , . . . , /3J. Then the roots A,+i , . . . , /% are defined by in-
duction. For s ^ q, assume that the set of commuting roots {/?i,..., /3g} is al-
ready given. Set m^ = €1^5 JC e^. Since nis is a commutative ad-nilpotent
Lie subalgebra ofg, there is a root 7 such that e^ e Ad(?7(nis))(e^J and
[m^.e^] = 0. Since 75+1 ^ A^, the root /?s+i := 7 does no belongs to A^.
This inductive process defines a set S := { /3 i , . . . , /?J of commuting roots
such that S' C S C A^ \ A^. Moreover for s > q, we have (3s = Os 4-
Efc<s ̂ A^A; for some integers m^. Hence {o- i , . . . ,aJ U {A^-i, . . . ,A}
is a basis of Q. Since S' and { a i , . . . , o;q} generate the same lattice Qj, S
is a basis of Q.

To prove Assertion (i), it can be assumed that I = B. Thus Assertion
(i) follows from Assertion (ii) with J = {a} and F == 0. Q.E.D.

Let R be an associative algebra and let 6' be a multiplicative subset
(by convention: 0 ^ 5'). An element s e S satisfies Ore's localizability
conditions if for any r E R, there are 5', 5" € 5, r', r" C ^? such
that sr' = r5' and r " s = r s " . The multiplicative set S satisfies Ore's
localizability conditions if any s C S satisfies these conditions.

LEMMA 4.2.— Let R be an associative algebra and let S be a
multiplicative subset generated by locally ad-nilpotent elements. Then S
satisfies Ore's localizability conditions.

Proof. — To check Ore's condition for 5', it is enough to check them
on any set of generators of S. Therefore, it is enough to check them for
any ad-nilpotent element s C S. For any r € R, we have a.dN(s)(r) = 0 for
some N > 0. Then the identity ^ (-l)^)^^-' = 0 can be written

0<^AT

as sr' = rs^ and r " s = sNr for some r ' , r " e R. Hence Ore's conditions
are satisfied. Q.E.D.

For S and R as previously, Rs denotes the localization of R relative
to 6'. For any ^-module M, set Ms = RS ^)R M. When S contains no
zero divisors, the algebra morphism R —> Rs is injective. Similarly the
map M —> Ms is injective whenever s acts injectively on M, for all s G S.
When S is generated by a single element s, it will be convenient to set
Rs = Rs and Ms = Ms.

LEMMA 4.3.— Let R be an associative K-algebra and let S be a
multiplicative subset generated by q commuting and locally ad-nilpotent
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elements 5 i , . . . ,5g . Then there exists a unique q-parameters family of
automorphisms 0(xi...,xq) '• RS —^ RS such that

• ©(a;!...,^^7') = ̂ ?1 • • • ̂ q r Sq xq ... s^ if all xi are integers, and

• the map ( a - i . . . , Xq) C ̂ g ̂  ©(a;i..,^)M is polynomial in (a; i . . . , Xq),

for any r C RS-

Proof. — By Lemma 4.2, the localized ring Rs is well defined. As S
is commutative, the elements Si are locally ad-nilpotent on Rs. For any
r e Rs, we have ad^)^^) = 0, for all i and some N ^ 0. The general
identity: s^ = Eo^m(r) ad^u)^-1 implies that

^...^r^...^1

= E (^) • • • ( :̂) ̂ i)11 • • • ̂ (V^) s^ .. . s-^
0<^ii,...,iq^N

for any x\^...,Xq e Z^o- Since the binomial coefficient (f) = x(x —
1)... (x — i 4- l)/z! can be extended to a polynomial function in a; € K,
there is a polynomial O^i.-.^q)^) m tne variables (0*1.. . ,Xq) € K'9 such
that 6(^...^)(r) = 5^ . . .s^r^^ ...^^ for any x^,...,Xq € Z^o. By
unicity of the polynomial extensions, 0(xi...,xq) is a g-parameters family of
automorphisms of Rs. Q.E.D.

For a set of commuting roots S, let F^ be the multiplicative subset
of U generated by (/a)aes.

LEMMA 4.4. — Let L be an infinite dimensional admissible simple
module of degree d.

i) There is a set E of commuting roots which is a basis ofQ such that
ScAiuA^.

ii) For such a S, set L' == Lp^. Then L' is a weight module containing
L, Supp L' = Q + Supp L and dim L^ = d for all ^ € Supp L ' .

Proof. — Let B be an L-adapted basis of A and set F = Af D B. By
Lemma 4.1, there exists a set S C Ajg \ AJS. of commuting roots which is a
basis of Q. Thus E C A^ U A^ and Assertion (i) is proved.

By Lemma 4.2, Fs satisfies Ore's conditions and the localized module
L' is well defined. Since the elements (/cOaes ^ct injectively on L, we have
L C L ' . It is clear that L' == OAGA Jry^ where ^ == Q 4- SuppL.

We claim that dimL^ == d for any \ e t. Let X C L^ be any finite
dimensional subspace. There exists s 6 F^ such that 5.X C L. Since
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s.X C L\^-f3, where (3 is the weight of 5, we have dimX ^ d. Since X
is arbitrary, we get dirnL^ ^ d. Since S is a basis of Q, the dimension of
the weight spaces L' , for p, € ^ are all equal. It follows that dimL^ = d
for all ^ € ^. Q.E.D.

Let S' be a set of commuting roots which are linearly independent.
Let Qs' be the subgroup of Q generated by S'. Set ̂  = K (g) QE' and
T^, = bE'/Qs'. When Q/QE' is torsion free, T^, is a subtorus of T*. For
any element v = - ̂ Caes' xa a m ^s^ tne formal expression FLes' /^Qis

denoted by /^/. By Lemma 4.3, there is an automorphism of the algebra
UF^, which is formally defined by u ̂  f^ uf^,. For any £7^,-module M,
let /^/.M be the module M twisted by this automorphism. For m C M, it
is convenient to denote by /^, .m the corresponding element of /^, .M. With
this convention, we have u.f^.m = f^'(f^ u /^/).m for any u € 17 ,̂. For
instance, if m is a weight vector of weight /z, then f^.m is a weight vector
of weight ti + y. If v\ - v^ € QE^ the £/F^,-modules f^.M and f^.M are
isomorphic. Therefore for 17 e T^/ the module /^/.M is defined up to an
isomorphism.

LEMMA 4.5.— Let L be an infinite dimensional admissible simple
module of degree d.

i) Let S C A^ U A^ be a set of commuting roots which is a basis of
Q, let S' C S and set L' = Lp^. Then M :== C^er* f^'L' is a coherent
family of degree d which contains L and f^.Lp^ for any v ' G \}^,.

ii) In particular, let B be an L-adapted basis and let a G B with
a ^ Af. Then L is contained in a coherent family M. of degree d such that
fa acts bijectively on M and M contains f^.Lf^, for all x € K.

Proof.— Proof of Assertion (i): Let A C SuppI/ be a weight. By
Lemma 4.4 (ii), we have dim L'^ = d and M. contains L. Since S is a basis of
Q, we have M\+p, = f^'L^ for any ^ 6 ()*• Therefore we have dimM\-^-p, =
d. Moreover, for any u € A we have Tru\Mx+^ = Tr /E^^I^' B^
Lemma 4.3, the function p, ̂  Tru\Mx+^ is polynomial and therefore M is
a coherent family.

Proof of Assertion (ii): By Lemma 4.1, there exists a set E satisfying
the previous conditions with a € S. Therefore the second assertion follows
from the previous one. Q.E.D.

Remark. — Let T be the adjoint torus of 5. The ring K[T] can be
identified with the Laurent polynomial algebra ̂ [(/c^aes]' Let L and A €
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SuppI/ be as in Lemma 4.5. We have L' ^ K[T] (g) L^ ̂  K^}6-. It is clear
that Q acts over J^T^ by differential operators. Therefore the ^-module
structure on L' comes from an algebra morphism a : Up^ —^ Q^(d^ Diff(T)),
such that L' is the restriction of the natural representation K^T}6' of
0l(c?,Diff(r)) (here Diff(T) denotes the ring of differential operators on
T). Any closed one-form uj on T induces an automorphism Q^ of Diff(T),
namely 9^(/) = / if / € K[T] and 9^(0 == $ + i^ if $ is a vector field
on T. Denote again by ©^ its extension to ^[(d,Diff(r)). Any /I € (}* can
be identified with a closed one-form on T, and it is easy to prove that the
automorphism 0^ offl((d, Diff(T)) extends the automorphism u ^—> f^^uf^
of Up^ (however the morphism a is not injective). Hence M. is a direct sum
of twists of the natural representation of ^((d,Diff(T)). Unfortunately, it
seems not easy to explicitly describe the corresponding morphisms a, and
we will follow another approach in Sections 11 and 12.

Let L be an infinite dimensional admissible simple module. By
Proposition 3.5 (ii), SuppgggL is Zariski dense.

LEMMA 4.6. — For any u e A, the map X € Suppggg L i—^ TIU\L^ is
polynomial.

Proof. — By Lemma 4.5, there is a coherent family M D L of same
degree. Since Tru\^^ = Tru\j^i^ for any A € Suppggg L, the restriction of
the trace to Suppggg L is polynomial. Q.E.D.

A coherent family M. is called irreducible if the ^-module M\ is
simple for some A.

LEMMA 4.7. — Let M. be an irreducible coherent family. Then the
set fl, of all weights p, € ()* such that the A-module M.^ is simple is a
non-empty Zariski open subset of(}*.

Proof. — Indeed the A-module M.^ is simple if and only if the bilinear
map Bp, : (u^v) € A x A •—> Tr(m;[^^) has maximal rank d2, where d is
the degree of M. For any finite dimensional subspace E C A, the set f^
of all [i such that B^\E has rank d2 is open. Therefore f^ = UE ^E is open.

Q.E.D.

Let M. be a coherent family. By Lemma 3.3, the g-module M\t\ has
finite length for any t € T*. Denote by M88 the semi-simple coherent
family such that .M55^] has the same composition series as M[t\, for any
t 6 r*. Roughly speaking, M.88 is the "semi-simplification" of M.. Let
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L be an infinite dimensional admissible simple module of degree d. A
coherent extension of L is a coherent family M. of degree d containing
L as a subquotient.

PROPOSITION 4.8. — Let L be an infinite dimensional admissible
simple module of degree d.

i) There exists a unique semi-simple coherent extension SXT{L) of L.

ii) The coherent family £XT{L) is irreducible. Any infinite dimensional
submodule Lf ofSXT{L) is admissible of degree d, and we have EXT(V} =
SXT^L').

iii) The central characters of the simple submodules of£XT(L) are all
the same.

iv) If M. is any coherent extension of L, then M.88 is isomorphic to
SXT{L).

Proof.— Proof of Assertions (i) and (iv): By Lemma 4.4, L is
contained in a coherent family M of degree d. Hence L is contained in
the coherent extension M.88. As Suppggg L is Zariski dense (Proposition
3.5), the trace of any coherent extension is determined by the trace of L.
The uniqueness of semi-simple coherent extensions follows from Lemma
2.3. Assertion (iv) follows as well.

Proof of Assertion (ii): For any A e SuppgggL, £XT(L)\ c± L\
is a simple A-module (Lemma 2.2). Hence the coherent family £XT(L)
is irreducible. Let L' be any infinite dimensional simple submodule of
£XT(L). By Lemma 4.7, EXT(V)^ is a simple A- module for all ^ in some
non-empty Zariski open subset f^. By Lemma 3.4, Suppggg L' is Zariski
dense. Hence Suppggg L' D fl, is not empty, and L' has same degree d.
Moreover, we have E^VT(L) = EXT^L') by unicity of the semi-simple
coherent extension.

Proof of Assertion (iii): Let u € U be a central element. It acts over
L as some scalar c and we have and Tr'u77']^ = dc71 for any n > 0 and
any A G Suppggg M. Since u belongs to A, the map A i-̂  Tru71}^^^^^ is
polynomial. Since SuppgggL is Zariski dense, we have Tr^l^^^ = dc^
for any n ^ 0 and any A c (}*. Therefore (u — c)d acts trivially on
£XT{L). Since it is semi-simple, u acts as the scalar c. Therefore the central
characters of the simple submodules of £XT(L) are all the same.

Q.E.D.
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5. Components of coherent families.

In this section, it is proved that any semi-simple coherent family
contains an infinite dimensional highest weight module (relative to some
basis of A).

LEMMA 5.1.— Assume Q = 5l(2). Let M be a coherent family of
degree d. Then the function X ̂  dete/|^ is a non-zero polynomial of
degree 2d.

Proof. — Let Q = ef + h2/^ - h/2 be the Casimir operator. It
is easy to see that the map e : Mna -^ M^i)a is bijective for any
n ^ No for some No e Z. So the eigenvalues of f^^ are all the
same for n > No. Let a i , . . . ,0d be these eigenvalues. Then we have
dete/|^^ = rii^^^z + \{h)/2 - A(/i)2/4), for all A of the form no,
n ̂  No. The two sides of the equality being polynomials in A, it holds for
a11 A- Q.E.D.

From now on in the section, Q denotes an arbitrary simple Lie algebra.
For any Zariski open subset ^ of ()*, set T(^) = D^o^ + ̂ ). For any two
open subsets f2,^' we have T(^) n r(^') = T(^ n ^'). The collection of
sets T(^)/Q is a basis of a certain (exotic) topology of the dual torus T*.

LEMMA 5.2.— i) For any non-empty Zariski open subset fl of ()*,
r(f2) is not empty.

ii) Relative to this topology, any non-empty open subset ofT* is dense.

Proof. — It can be assumed that fl. is the open set {/ -^ 0} for some
polynomial function / on ()*. Relative to some basis of Q, this lattice
is identified with Z^ and / is identified with a polynomial f(x^,... ,xi)
with coefficients in some finitely generated subfield k of K. Let ^i , . . .^
be generators of / disjoint extensions of k of degree > deg/ and let
^ € ()* be the element of coordinates (^i,...,^). The monomials (^i +
Vi )7711 • . • (^n 4- yi)^1, for 0 ^ m, ^ deg/, are linearly independent over k,
for any ^ / i , . . . ,^ e Z. Therefore we have /($ + A) ^ 0 for any A c Q,
i.e. ^ belongs to T(^). Hence Assertion (i) is proved. The second assertion
follows from the fact that T(^) nT(n') = r(^n^') is not empty whenever
n, 0' are not empty. Q.E.D.

For a coherent family M, let Sing.M be the set of all t e T* such
that fa\M[t] is not injective for some a € A. In Section 10, it will be
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proved that SmgM is a finite union of codimension one cosets of T*, i.e.
SmgM = Uj Tj + Uj where each Tj is a codimension one subtorus of T*,
Uj € T* and j runs over a finite set of indices. In particular, it follows that
SmgM is a closed subsed of T*, relative to its ordinary Zariski topology.
At this stage of the paper, we can only prove a weaker statement about
SmgM:

LEMMA 5.3.— i) For any coherent family M, Sing.M is a closed
proper subset ofT*.

ii) If there is at least one non-zero coherent family, Q is of type A or C.

Proof.— By Lemmas 5.1 and 5.2, the set f^ ''= {t € T"\e^fa\j^^
is bijective} is dense and open, for any a e A. Hence by Lemma 5.2,
^M ''= H^eA^o- is open and dense in T*. Since eafa\M[t] is bijective if
and only if fa\M[t\ and f-a\M[t} are injective, Sing .A/I is the complement
of f^, and the first assertion is proved. By Lemma 3.3, for any non-zero
coherent family M and any t C f^ M[t} contains a simple submodule L.
Since A^ = A, L is cuspidal by Corollary 1.4. By Proposition 1.6, the type
of 0 is A or C. Q.E.D.

PROPOSITION 5.4. — Let M be a irreducible coherent family, and let
t € T*. The following assertions are equivalent:

i) M[t\ is simple,

ii) t^SmgM,

iii) M [t] is cuspidal.

Proof.— The facts that (i) and (iii) are equivalent, and that (iii)
implies (ii) follow from Corollary 1.4. Assume that t ^ Sing.M. By Lemma
3.3, M[t] contains a simple submodule L. Since A^ = A, L is cuspidal by
Corollary 1.4. By Proposition 4.8, the degree of L equals the degree of M.
Hence L = M[t] and M[t\ is simple. Q.E.D.

LEMMA 5.5. — Let M be a semi-simple coherent family. Then M is
a direct sum of irreducible coherent families, and such a decomposition is
unique up to isomorphism.

Proof. — By Lemma 5.3, there exists an element t € T* ̂ ingA^l. By
Lemma 3.3, the module M[t] is a finite sum of simple ones, say LiC- • -®L^
and by Corollary 1.4 each L, is cuspidal. Since t is Zariski dense in i)*, it
follows that M and f^T(Li) C • • • © £XT(Lk) have the same trace. By
Lemma 2.3, these two modules are isomorphic. Q.E.D.
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LEMMA 5.6. — Let L be a simple weight module, and let f3 € A. The
following assertions are equivalent:

i) For any X C SuppL, we have A + Z/? C SuppL,

ii) For some \ € SuppL, we have A + Z/? C SuppL.

iii) / ^ eAf - .

Proof.— See e.g. Corollary 3.4 of [DMP].

PROPOSITION 5.7. — Any semi-simple irreducible coherent family M
contains an infinite dimensional simple highest weight module relative to
some basis BofA.

Proof.— By Proposition 1.3, it is equivalent to show the existence
of an infinite dimensional simple submodule L of M with A^ = 0. Thus
it is enough to prove that for any infinite dimensional simple submodule
L of M. with Aj[ 7^ 0, there is another one L' such that A^/ is properly
included in A^.

Let B be a basis adapted to L, let d be its degree and let a G Aj^ F\B.
Set e = CQ, / = /a and let a c^ sl(2) be the Lie algebra generated by
e and /. By Lemma 4.5, there exists a coherent family Af of degree d on
which / acts injectively and which contains the module fx.L for any x € K
(note that L = Lf). Let A € Suppggg L and set P •==- (Brcex fx'L\. For any
x (z K^ P^xa h^ dimension d, so PA+^Q = -N'\+xct' I11 particular, P is
a coherent a-family. By Lemma 5.1, the function x \—> det/e|p^_^ is a
non-zero polynomial of degree 2d. So there exist y 6 K and f G 'P\-ya
with v ̂  0 and /e.v = 0. As / acts injectively on A/", we have e.v == 0.

Set V = [m G fy.L\eN.m == 0 for some TV > 0}. Since v € V and
ad(e) is nilpotent, V is a non-zero ^-submodule of fy.L. By Lemma 3.3,
V has finite length. Thus it contains a simple submodule L ' ' . As / acts
injectively on A/', its submodule L' is infinite dimensional.

We claim that A^/ is a proper subset of A^. We have SuppL' C
S\lppfy.L == —ya + SuppL. For any f3 € A^,, SuppI/ is an union of Z(3-
cosets, so SuppL contains at least one Z/3-coset. By Lemma 5.6, (3 belongs
to A^, which proves that A^, C A^. However 6a acts locally nilpotently
on L' and therefore ±a ^ A^,. Hence A^, is properly included in A^. Since
^ss = M, L' is also a submodule of M..

Q.E.D.
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6. Admissible highest weight modules.

It is already shown that each semi-simple coherent family contains an
infinite dimensional simple highest weight module relative to some basis
(Proposition 5.8). In this section, the same result is proved relative to any
basis of A. It also contains some lemmas in view to determine when two
such highest weight modules occur in the same irreducible family.

LEMMA 6.1. — Let B a basis of A, let a € B and let \ e (}* \ Pg be
a weight such that the Q-module La(A) is admissible.

i) The module L^B^X) belongs to <f<W(La(A)).

ii) Moreover if \(ha) ^ Z^o? the modules ^(^(A + ps) — Pa) and
L^B(A-+-a) belong to £XJ'(J^(A)).

Proof. — It is clear that Ls^B(sa\) ̂  La(A) whenever \(ha) € Z^o?
see e.g. Theorem 1.2 (ii). Thus Assertion (i) is obvious in this case, and it
can be assumed from now on that A(/ia) ^ Z^o- Set e = e^, f == /a, h = h^,
let a ̂  sl(2) be the Lie algebra generated by e and /. Let p be the parabolic
subalgebra I) © Kf © [^g^^+ 9p] ? let u be its nilradical and let u~ be the
opposed nilradical. By definition, B is -L^(A)-adapted, and a ^ A^ /^ .
By Lemma 4.5, there is a coherent extension M of -La(A) such that / acts
injectively on M and M. contains the submodule X == (D^j^/z /^.L^A)^.
Set 5' == (Bn^o LaWx-na and ^ = ^M? where u = A + Ka.

We claim that X = 2.p(5). We have S == ^eK/^f^'Sf' Since u and p
are ad(/)-invariant, we have f~xufx == u and f~xpfx = p for any x ^. K.
Therefore S is a p/u-submodule of ^ and its support is the K (S) Q(p/u)-
coset A + Ka. Hence the ^-module Lp(S) is well defined. It is clear that
H°(u, LpW) = S. For any x € K / Z , any y e f^.LaWf can be written as
y^.?/ where x ex and ^// G ^a(A). Since f~xvifx = u, we get u.^/ = fx.u.yt.
It follows that 2/ is u-invariant if and only if y ' is u-invariant, and therefore
-H°(u^ X) = <S. Similarly, the natural map U(u~) 0 5' —> Z/a(A) is onto and
it follows that U(u~) 0<S —» X is onto. Hence the g-module ̂  is generated
by S and any non-zero submodule intersects <?, which proves the claim
^=Lp(5).

Let z; be a highest weight vector ofLa(A). Using the identity e/771'^1 =
ym+ig 4- (^ _p l)/^ - yn(^ + l)/771 for any m 6 Z^o, we get e.f^.y =
/^.[/e.^+^+l)^-^).^], for any ^/ C L^(A) and rr C ̂ . Set v ' = /A^+l./y
and let V be the p-module generated by v ' . Since e.'y = 0 and /i.v = \(h)v^
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the previous identity implies e.v' = 0 and v ' is a weight vector of weight
Sa(X -+- pa) - P B ' Since / acts injectively, the a-module V is the Verma
s[(2)-module with highest weight s^(X + pa) - P B ' Therefore the simple
highest weight p-module with highest weight Sa{X + pa) - PB is a quotient
of V and ^(^(A+p^) -pa) is a quotient of I/p(V). Therefore by Lemma
1.1 (iv), La(sa(X + pa) — pa) is a subquotient of X.

Set v" = f^W.v and let V" be the p-module generated by v " .
Since f.v" = z/, V" contains V. Similarly, it is proved that V" JV is
the simple s^-S-highest weight p-module with highest weight s^X and
W/V1) = L^a(saX). Therefore by Lemma 1.1 (iv), L^a(^X) is a
subquotient of X.

Set v " ' = f-^v and let V" be the p-module generated by v " 1 .
Since f.v1" = v, V" contains 6'. Similarly, it is proved that V" / S is
the simple 5aB-highest weight p-module with highest weight A + a and
L^V^/S) = L^a{X + a). Therefore by Lemma 1.1 (iv), L^a(X + a) is a
subquotient of X.

By Lemma 4.8 (iv), we have M88 = £XT(LBW) and by definition
we have X c M. Hence the three modules LB^S^X-^-RB^-PB), Ls^a(sa X)
and Ls^B^X + a) are all contained in EXT(LB(X). Q.E.D.

PROPOSITION 6.2. — i) Let M. be a semi-simple coherent family. Then
M^ ^ M for any w € W.

ii) Assume that M. is irreducible. Then for any basis B of A, there
exists X i PQ such that M ̂  E^T(LB{X)).

Proof. — By Lemma 5.5, it can be assumed that M is irreducible. By
Proposition 5.7, there exists a basis Bo of A such that M ̂  £^T(LBo(X))
for some weight A ^ P^. By Lemma 6.1, 8^r(LB^X)) c± S^T^LB^X)^)
for any a e Bo. Hence the isomorphism class of M is TV-invariant and
the first assertion is proved. The second one follows from the fact that any
basis B is W-conjugated to BQ. Q.E.D.

LEMMA 6.3. — Let M. be an irreducible coherent family and let M,
N be two distinct simple submodules of M[t\, for some t € T*. Then
C{M) D C(N) is contained in a hyperplane.

Proof. — Assume that C(M)nC(N) is not contained in a hyperplane
and therefore that M and N are infinite dimensional. Thus C(M) H C(N)
generates a subgroup Q' of finite index in Q. By Lemma 3.1, the cone C(M)
generates the group Q. Since the image of C(M) in Q / Q ' is a subgroup,
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we have C(M) + Q' = Q. It follows that C(M) - C(N) = Q. Since any
weights A G Supp^, M and ^ e Supp^N are in the same Q-coset, we
have A 4- C(M) n /, + C(N) ^ 0. It follows from Proposition 3.5 (i)
that Slippy M and Supp^ A/- intersect. By Proposition 4.8, M and N
are admissible of same degree as M. Hence we have My = .A^ = A^, for
any ;/ e Supp^g M D Supp^g TV. Therefore M = TV. Q'E.D.

Let B be a basis of A. For a weight A € 1)*, set Aa(A) = {a e
B|A(/iJ ^ Z^o}. For a root 7 e B, let ^(7) be the set of all positive
roots (3 = ^ m^ a such that m/y > 0.

a^B

LEMMA 6.4.— Assume that L^(A) is admissible.

i) If\(ha) C Z<o, -for some a e B, then Aa(A) == {a} and A is integral.

ii) In general, Aa(A) is connected and CardA^A) ^ 2.

Proof. — The sets DB^) satisfy the following elementary properties:

• DB(^) generates Q, for any 7 e 5,

• S^DB^) = DB(^) for any /3^ e B with /? ̂  -7,

• - y e s p B and ^(7) = ̂ 5(7) for any /?, 7 e B with < /3|7 >= 0,

• ^laW = ̂ ABW DB^), for any ^ e i)*.

First assume that A(^) e Z<o. By Lemma 6.1, L^(A) and L^a(^A)
belong to the same irreducible coherent family. Moreover their supports
are in the same Q-coset. By Lemma 6.3, C(LB(\)) H s^C(LaW) lies in a
hyperplane. The cone of La(A) is generated by A^., therefore A^ .^
does not contains DB^) for any 7 e 5 with 7 ^"a. Hence 7 ^ A^(A)
which proves the first assertion.

To prove the second assertion, it can be assumed that Card AB (A) >
2. We claim that any two elements /3,7 € Aa(A) are connected. Assume
otherwise. Then 7 belongs to s^B and ^(7) = ^^5(7). It follows from
the first assertion that A(^) is not an integer, so is (A+/3)(/^). Therefore
both A^^ and A^^^ contain ̂ (7). Since A+/3 is not a weight of
La(A), the two modules La(\) and 2^a(A + /?) are distinct. However by
Lemma 6.1 these two modules belong to the same irreducible coherent
family, their supports are in the same Q-coset and the intersection of
their cones contains Dp^), which contradicts Lemma 6.3. Hence (3 and
7 are connected. Since B is simply connected, Aa(A) contains at most two
elements. 0 F D
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LEMMA 6.5. — Let M. be an irreducible coherent family, let B be
a basis, let a € B. Then M contains at most one module Lp{\) with
\(ha) € Z<o.

Proof. — Let -La(^), ^a(A) be two such submodules in M.. It follows
from Lemma 6.4 that A and fi are integral and their cones are the same,
both generated by DB^OL). By Proposition 4.8, their central character is
the same. It follows that A and fi are in the same Q-coset. By Lemma 6.3,
we have A == [t. Q.E.D.

7. Rank two computations.

In order to classify all admissible simple highest weight modules,
the first step is the classification for rank two Lie algebras. For rank two
Lie algebras, the character formulas have been computed by Jantzen [Ja]
(before the general Kazhdan-Lusztig formula has been conjectured and
proved), and the following lemmas are based on his work. In this section,
g will be a rank two Lie algebra of type A^ or (72, namely Q = sl(3)
or Q = sp(4). In the section, let us fix a basis B of the root system. The
character of a weight module M is denoted by ch M and the Verma module
with highest weight A by M(A).

LEMMA 7.1.— Assume Q = -$((3). Let A ^ P^~ be a weight. The
module L(\) is admissible if and only if(A4-p)(/i^) 6 Z>o? for at least one
root a € A"1".

Proof. — It is easy to show that the Verma module M(A) is not
admissible. So (A 4- p)(ha) € Z>o for some a € A"*" whenever L(A) is
admissible. Conversely, assume that n = (A + p)(ha) € Z>o for some a €
A+. Then M(X-na) is a submodule ofM(A) and set L = M(\)/M(\-na).
Let /3,7 be the other two roots in A'1". We have

ch L = ch M(A) - ch M(A - na)
= ex(l + e-^ + ... + e^-^)/^ - e-^l - e-7).

Hence L is admissible. As L(A) is a quotient of L, it is also admissible.

Q.E.D.

Now, the case g = 5p(4) is investigated. Denote by A^" (respectively
A^") the set of long (respectively short) positive roots. Recall that a is a
long root if and only if ho, is a short coroot.
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LEMMA 7.2.— Assume Q = 5p(4). Let X ^ P^ be a weight. The
module L(A) is admissible if and only if we have (A + p) (h^) e Z>o for any
7 <E AJ- and A(/^) <E 1/2 + Z for any /? C A^.

Proof.— Assume that L(A) is admissible. Let Z(A) be the unique
maximal submodule of M(A). It follows from [Ja] that Z(A) = 0, or
Z(\) is a Verma submodule, or Z(\) is the sum of two distinct maximal
Verma submodules. However, the Verma module M(A), and any quotient
M(A)/M(/^) are not admissible. Therefore Z(A) is the sum of two distinct
maximal Verma submodules. Following [Ja], this implies that A+p is regular
and there exist at least two positive roots 71 ̂  72 with (A + p)(^yj e Z>o
for i = 1, 2.

We claim that A is not integral. Assume otherwise. Since A + p
is regular, we have A = x{p, + p) — p for some ^ € P^~ and some
x € TV, x -^ 1. Let re = s^ ... 5^ be a reduced decomposition of a:.
Using inductively Lemma 6.1, we get that L(s^ (^ + p) - p)) is admissible.
Therefore L{s{^ + p) — p)) is admissible for some simple reflection s. Let
s' be the other simple reflection. Following [Ja], we have

chL(5(/^+p) -p) = -^e(v)chM(v(^+p) -p).
•u^s

Since any element v G TV\{ l , s ' } is ^ s, we get

ch L(s(ijt + p) - p) = ch M(/^) - ch M(s\^i + p) - p)

- ̂  ̂ ) ch M(Z;QLA + p) - p)
v<EW

= chM(^)/M(5'(p +?)-?)- chL(/x).

Hence L(s(p, + p) — p) is not admissible, which proves the claim A ^ P.

Since A is not integral, one coroot does not belong to Z/i^ © Z/L^.
This implies {71, 72} = A^- and (A + p)(^) € 1/2 + Z for any {3 € A^.

Conversely assume that A satisfies the conditions. Set A^ == {71, 72}
and A^~ = {/?i, f3^}. Following [Ja], we have

ch L(A) = ch M(A) - ch M(s^ (A + p) - p)
- ch M{s^ (A + p) - p) + ch M(s^ s^ (A + p) - p)

= 6^(1 + e-71 + ... + e<l-ml^l)(l + e-72 + . . . + e^-^^2)

/(l-6-^)(l-e-^2),

where mi = (A + p)(^). Hence L(A) is admissible. Q.E.D.
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8. Classification of coherent families for sl(n-^-1).

The section is devoted to the classification of all semi-simple irre-
ducible families for sl{n + 1). More precisely, each semi-simple irreducible
families M will be characterized by the list of all infinite dimensional high-
est weight modules occurring in M. By Proposition 6.2, any semi-simple
family is invariant by W, therefore we can fix a basis B of A. A more
concrete version of the classification will be given in Section 11.

In this section, Q=sl(n -h 1). The simple roots ai, . . . . On are indexed
in such a way that two consecutive roots are connected. Let / i i , . . . , hn be
the corresponding simple coroots. There exists a spanning set e i , . . . . Cn+i
of y such that ̂  e, = 0 and a, = e, - e,+i. For A c t ) * , set A(A) ==
{z\ W i z^o}.

LEMMA 8.1. — Here g=s((n+1). Assume that L(\) is infinite dimen-
sional and admissible. Then one of the following three assertions holds:

i) A ( A ) = { l } o r A ( A ) = { n } .

ii) A(A) = {%} for some 1 < i < n and (A + p)(^-i + hi) or
(A + p)(hi + ^+1) is a positive integer.

iii) A(A) = {z, i + 1} for some 1 ̂  i < n and (A + p)(hi + /^+i) € Z>o.

Proof.— First assume that CardA(A) ^ 2. By Lemma 6.4, we have
-^W = { ^ % + 1} for some 1 < z < n. Let 5 be the rank two Lie subalgebra
of Q corresponding to the simple roots a,,a,+i. Denote by L(\,s) be the
simple highest weight -s-module with highest weight A. As L(A,5) is a
subquotient of L(A) (indeed a submodule), it is admissible. By Lemma
7.1, {\+p)(hi +^+i) is a positive integer, hence the third assertion holds.

Next assume that CardA(A) ^ 1. Since L(A) is infinite dimensional,
the set A(A) is not empty. Then it can be assumed that A(A) = {i} for
some 1 < i < n (otherwise Assertion (i) holds). Set A' = s,(A 4- p) - p. By
Lemma 6.1, the module L(A') is admissible. It is already proved that A(A')
cannot contain both i - 1 and i + 1. So we have (A' + p)(^-i) C Z>o or
(A'+pK/^+i) € Z>o, i.e. (A+p)(^_i+^) € Z>o or (A+p)(^+/^-i) € Z>o.
Hence the second assertion holds. Q.E.D.

LEMMA 8.2. — Here fl=5((n+1). Let A be a weight such that A(A) =
{1} or A(A) = {n}. Then the module L(A) is admissible.
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Proof. — By symmetry of the Dynkin diagram, it can be assumed
that A(A) = {n} and therefore A(/i,) e Z^o for all % ^ n. Let p be
the parabolic subalgebra such that A(p) = A \ {/3,| 1 ^ i ^ n} where
/^ = 6yi+i — e^ (its Levi component is Ql(n)). Let 5 be the simple p-
module with highest weight A. By hypothesis, the p-module S is finite
dimensional. Since the roots /3, are linearly independent, the generalized
Verma module Mp(S') is admissible. Therefore its simple quotient L(A) is
admissible Q.E.D.

A k - tuple m = (mi , . . . , m^) G J^ is called ordered if all differences
mi - 77^4-1 are positive integers (in such a case, there will be no ambiguity
to write mi > m^+i to mean that mi — m^i is a positive integer). A
s[{n + l)-sequence is a n + 1-tuple m = (mi , . . . , m^+i) of scalars such that
Si^n+im^ == °- ̂ y weight A of5((n+l) is identified with the 5[(n+ 1)-
sequence m(A) defined by the requirements (A + p)(hi} = m^(A) - rn^i(A)
and Ei^n+i^W = 0. Thus P+ is identified with the set of ordered
si(n + l)-sequences. Let P the set of all si{n + l)-sequences which are
not ordered but which become ordered after removing one term. Indeed a
weight A satisfies one of the assertion (i) (ii) (iii) of Lemma 8.1 if and only
if m(A) € V.

The Weyl group W ^ Sn-^i acts on the set of sl{n + l)-sequences by
permuting the indices. Two highest weight s[(n+l)-modules L(A) and L(p,)
have the same central character if and only if m(A) and m{p) are in the
same 5'n+i-orbit. Therefore, the 6^+i-orbit of a s [ (n +1) -sequence is called
a central character. A central character m is called integral (respectively
regular, singular) if all differences m^ — mj are integers (respectively are
not zero, at least one is zero). A central character of P is a non-empty
intersection of a 5'n+i-orbit with P.

There is a structure of oriented graph on P, which is defined as follows.
By definition, there is an arrow m —> m1 between two distinct elements
m, m' € P if there is an index i such that mi — m^+i ^ Z>o and m' = s^.m,
where Si is the transposition exchanging i and i + 1. When m^ — m^+i ^ Z
there will be also an oriented edge from m1 to m and these two opposite
edges are denoted by m ̂  m'.

Let P^ (respectively P~) be the set of all sequences m e P such that
the subsequence m^m^... m^i is ordered (respectively mi, 7722, . . . rrin
is ordered). For n = 1, we have P^ = P~, but otherwise P^ D P~ = 0.
F o r l ^ z ^ A ; ^ n + l , denote by c,^ the unique element of 5^+i such
that Ci^(i) = k and such that its restriction to { ! , . . . , n + 1} \ {i} is
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increasing. More precisely, we have Ci k = Sk Sk+i.. .^-i if k < i and
Ci,k = Sk-iSk^.Si ifi<k.

Clearly, there are three types of central characters occurring in P:

i) the regular and integral central characters,

ii) the singular central characters: in this case the character is integral,
and there are exactly two distinct indices i,j such that mi == mj (z 7^ j),

iii) the non-integral characters: in this case the character is regular and,
if n 7^ 1, there exists a unique index i such that mj —m^ € Z for any j, k ^ i.

Let \ be a regular and integral central character. It can be represented
by a sequence m\ > m ' z . . . > mn-^-i (however this sequence is not in
V\ For any i,k with 1 ^ k,i ^ n, set 'x.(i,k) = c^+i^.m if i ^ k and
X(^) = Ci^i'm ifi<k.

Let \ be a singular character occuring in V. It can be represented by
a sequence m\ > m^ . . . > m^ == m^-i-i > m+2 ... > T^n+i- Then i is called
the singularity of \ and for any k with 1 < k ^ n, set \(k) = Ci^.m if
k < %, ^(z) = m and ^(A:) = c^-i-i^+i.m if k > i.

Let \ be a non-integral character occuring in V. If n -^ 1, it can be
represented by a sequence m with m^ > 1713 . . . > mn+i (here m\ — mi ^ Z
for % 7^ 1). Then set ^(1) = m and \(k) = c^.m for any 1 < k ^ n + 1. In
the special case n == 1 there is no canonical choice for m\ and 777.2: after an
arbitrary choice, set ^(1) = (mi.ma) and ^(2) = (w^^i)-

Each connected component of P belongs to the same central charac-
ter. The connected components of each central character are computed by
the following easy lemma:

LEMMA 8.3. — Let \ be a central character occurring in P.

i) If \ is regular and integral, it contains exactly n connected com-
ponents. More precisely \{i^ k) and \(i1\ k') are in the same connected
component if and only ifi = z'. The connected component of \(i,i) is as
follows:

\(z, 1) -^ ^(%, 2) -^ ... -^ \{i, i) <- \(i, i + 1) ^- ... <- x(i, n).

Moreover \(z, 1) is in P~^ and ^(%, n) is in P~.

ii) If \ is singular, it contains a unique connected component which is
as follows:

X(l) -^ X(2) ̂  ... -^ xW ^- X{z + 1) ^- ... - XW,

where i is the singularity ot\. Moreover ^(1) is in V^~ and \(n) is in V~.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



566 OLIVIER MATHIEU

iii) If\ is non-integral, it contains a unique connected component which
is as follows:

X(l) ̂  x(2) ̂  • . . ̂  x(i) ̂  x(i + 1) ̂  • . • ̂  x{n + 1).

Moreover ^(1) is in P^ and \(n 4-1) is in P~.

LEMMA 8.4. — Here Q = sl(n + 1). Let A ^ P+ be a weight such that
the Q-module L(A) is admissible.

i) We have m(A) C P.

ii) Let fi be another weight. Ifm{u) belongs to P and there is an ori-
ented arrow m(\) —^ m(p,) in P, then L(p,) is admissible and £XT{L{\)) =
S^T(LW).

Proof.— The first assertion is indeed equivalent to Lemma 8.1.
Assume that there is an arrow m(A) —» m(fi) in P. By Lemma 6.1,
L(u) belongs to £^T{L{\)). In particular it is admissible. Moreover, by
Proposition 4.8 we have 8XT(L(\)) = SXT{L{p)). Q.E.D.

The converse of Lemma 8.1 holds:

PROPOSITION 8.5.— Here Q = s\{n + 1). Let A ^ P^. The module
L(A) is admissible if and only ifm(A) C P.

Proof. — By the previous lemma, it is already proved that L(A) is
admissible only if m(A) belongs to P. Conversely, assume that m(A) € P.
By Lemma 8.3, there is always a weight /x such that m(/^) € P^ U P~ and
an oriented path from m(/^) to m(A) in P, say m{a) = m(p,o) —> m(/^i) —^
• • - -^ m(^k} = m(A). By Lemma 8.2, L(/^) = L(/^o) is admissible. Using
inductively Lemma 8.4, each L(/^) is admissible. Therefore L(p,k) = -^(A)
is admissible.

For any semi-simple irreducible coherent family M, let m(M) be the
set of all si(n + l)-sequences m := m(A), where X ^ P^ and L(A) occurs
in A4.

THEOREM 8.6. — JIere Q = s\(n + 1).

i) For any semi-simple irreducible coherent family M, m(M) is exactly
one connected component of P.

ii) The map m : M. \—> m(M) is a bijection from the set of all irre-
ducible semi-simple coherent families to the set of connected components
of P.
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Proof. — First we claim that m(M) is an union of connected com-
ponents, for any semi-simple irreducible coherent family M. Let A, A' be
two weights such that m(A) € m(M), m(A') € P and m(A) and m(A') are
connected, i.e. there is an edge m(A) —^ m(A') or an edge m(A) <- m(A').
By Lemma 8.4, we have M = £^T(L(\)) = SXT{L{\')). Hence m(A')
belongs to m(M) and the claim is proved.

Proof of Assertion (i): by Proposition 6.2, m(M) is not empty. By
Proposition 4.8, M admits a central character. Therefore all connected
components ofm(M) are in the same central character. By Lemma 8.3, any
central character of P is connected except if it is regular and integral. Thus
it can be assumed that the central character of M is integral. By Lemma
6.5, m{M) contains at most one module L(A) with A(/ii) < 0. Hence m(M)
contains at most one element in P^~. However, each connected component
of P meets P+ (see Lemma 8.3). Hence Assertion (i) is proved.

Proof of Assertion (ii): by Proposition 4.8 for non-isomorphic M
and M'\ the sets m{M) and m^M^ are disjoint, therefore the map m
is injective. The surjectivity results also from Propositions 4.8 and 8.5.

Q.E.D.

9. Classification of coherent families for 5p(2n).

In this section, g=s>p(2n). In this notation, it is always assumed that
n ^ 2. This section is devoted to the classification of all semi-simple
irreducible coherent fl-families, which are characterized by the list of all
highest weight modules occurring in such a family. It turns out that the
result is easier than in the s\(n 4- l)-case, because there are always exactly
two highest weight modules in each irreducible semi-simple coherent family.
A concrete version of the classification theorem will be given in Section 12.

Let B be a basis of the root system. We write B = {ai, • • • , a^} in
a such way that two consecutive roots are connected, ai, • • • , On-i are the
short roots and On is the long root of the basis. There is an orthonormal
basis e i , . . . . en of ()* suet that a, = a - e,+i for i < n and On = 2e^,
see e.g. [B2]. The corresponding coroots are hi = e,* - e^ for i < n and
hn = €;.
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LEMMA 9.1.— Here Q = sp(2n). Let X i P4-. If L(A) is admissible,
we have:

i) A(^) € Z^o fo^ any i ̂  n,

ii) A(^) <E 1/2 + Z,

iii) A(^_i+2/4,) CZ^-2.

Proof. — Let i < n. Let s be the rank two subalgebra to which the
simple roots are 0.1 and ft = 2cz+i and let p ' be the half sum of positive
roots of 5. The Lie algebra s is of type C^. Let L(A,$) be the simple highest
weight 5-module with highest weight A. Since L(X,s) is a subquotient of
L(A), it is admissible. Hence by Lemma 7.2, we have (A + p')(hi} € Z>o.
As Oi is a simple root in s, we have p'(hi} = p{hi) = 1. Hence A(/i,) e Z^o.
Assume now z = n - 1. In such a case, ft is the simple root o^, i.e. the
restrictions of p and p ' to the coroots of s are the same. Set /3 = €n-i + e^.
By Lemma 7.2, (A + p)(hn) is a half integer, so is A(/in). Moreover we have
(A + p){hft) € Z>o, i.e. A(/i^-i + 2^) + 3 € Z>o which proves Assertion
(in)- Q.E.D.

The Shale- Well representation V is an explicit action of sp(2n) on
V = K[x^,...,Xn}. To describe this action, note that V has a natural
grading. The Lie algebra g=-sp(2n) can be realized as a graded subalgebra
of differential operators as follows: we have Q = Q_^ ® flo ® 02? where g_2 ==
Cz,j K.SP-IQxiQx^ Qo = Oi,j K.(2xi9/9xj-\-6ij) (where 6ij is the Kronecker
symbol) and ̂  = Czj K.XiXj. In this setting 1) = Cz ^.(^<9/<9^+1/2) and
the simple coroots are hi = -XiQ/Qxi + x^O/Ox^ for 1 ̂  i ^ n - 1 and
^n = -XnQ/Qxn -1/2. As an ()-module, V is multiplicity-free. As a sp(2n)-
module, we have V = v^eV0^, where V^611, Vodd are the subspaces of
even degree, odd degree polynomials. Indeed these two subspaces are simple
highest weight modules, with highest weight vectors 1 and Xn respectively.
More precisely, we have V^611 = L(o;+), V0^ = L{uj~), where the weights
^± are defined by ^(hn) = -1/2, ^-(/i^_i) = 1, u}~{hn) = -3/2 and
^±^) = 0 otherwise. Therefore L(uj~^~) and L(uj~) are admissible.

LEMMA 9.2.— Here s=sp(2n). Let A i P+. The module L(A) is
admissible if and only if A satisfies the conditions (i),(ii) and (iii) of
Lemma 9.1.

Proof. — In view of the previous lemma, it is enough to prove that for
any weight A satisfying the three conditions, the module L(A) is admissible.
First assume that the half integer \{hn) is ^ -1/2. We have A = A + o^,
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where A € P^. Since the module ^(o^) is admissible, so is L(A) (g) L^).
Since L(A) is a subquotient (indeed a direct factor) of L(A) (g) L^), L(A)
is admissible.

Assume now that \{hn) < -1/2. Set A' = Sn(A + p) - p. We have
Sn hn-i =2hn+ hn-i, hence A' satisfies (i), (ii), (iii), and A'(^) ^ -1/2.
Hence L(A7) is admissible. By Lemma 6.1, L(A) belongs to £Xr{L{\')),
hence L(A) is admissible. Q.E.D.

A sp(2n)-sequence is an arbitrary n-tuple (mi, . . . ,myi). Any weight
A of -sp(2n) is identified with the sequence m(A) defined by m^(A) =<
A + p\€i >. The Weyl group W = Sn x (Z/2Z)71 acts on the set of sp(2n)-
sequence by permuting the indices and multiplying by ±1 the m^. Two
highest weight modules L(A) and L(/^) have the same central character if
and only ifm(A) and m{fi) are IV-conjugated. Therefore a5p(2n)-sequence
modulo the action of W will be called a central character.

Let Q be the set of 5p(2n)-sequences (mi, . . . ,myj such that m^ €
1/2 + Z for any i and mi > 7712 > . . . > m^-i > ±mn. Then A satisfies
the conditions (i), (ii) and (iii) of Lemma 9.1 if and only if m(A) C Q. Any
central character \ occurring in Q can be represented by a sequence m
with mi > m2 > ... > nin-i > rrin ^ 1/2. For such a ^, let ^± be the
two sp(2n)-sequences defined by ^+ = m and \~ = (mi , . . . , m^-i, -m^).
There is a structure of oriented graph on Q such that the only arrows are
^+ ^X~'

For an irreducible semi-simple coherent family M., denote by m{M)
the set of all 5p(2n)-sequences m with m = m(A) for some A such that L(A)
occurs in M..

THEOREM 9.3.— (for Q=sp{2n))

i) For any irreducible semi-simple coherent family M, m{M) is a
unique connected component of Q.

ii) The map M —^ r^A^) is a bijection from the set of all irreducible
semi-simple coherent families to the set of connected components of Q.

Proof. — The result follows easily from Proposition 4.8, Lemmas 6.1,
6.2 and 9.2.
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10. Classification of cuspidal representations.

In the previous sections, it has been proved that any cuspidal module
L is isomorphic to M[t] for a unique semi-simple irreducible coherent
family M. and a unique t e T*. By Lemma 5.3, there are coherent
families only for Lie algebras of type A or C and the coherent families
have been classified for these two types in Sections 8 and 9. To finish the
classification of cuspidal modules, it is only necessary to determine when
M[t] is cuspidal, or equivalently when M[t] is simple (Proposition 5.4).
This is the aim of Theorem 10.2, which determines the set SmgM := {t e
T*| M[t] is not cuspidal}. For the simplicity of the statements, it is always
assumed that 5^ s((2). The 5[(2)-case will be treated as a remark at the
end.

Let B be a basis of A and let \ be a central character. Let HWB^x)
be the set of all A e ()* such that \ is the central character of La(A). Let
~HW(x) be its image in T*. We have HWa^x) = MA+pa) -pa|w € W}
for some A € 1)*. Since wpa - PB G Q, HW{\) consists of a single W-orbit
and it is independent of B (as suggested by the notation). For an irreducible
coherent family M., let HWa^M) be the set of all weights A ^ Pp such
that -La(A) occurs as subquotient ofA^. Let HW B^M.) be its image in T*.

LEMMA 10.1.— Let \ be the central character of an irreducible
coherent family M and let B be a basis of A. We have H\VB{M) =
HW{-\). In particular, HW^(.M) is independent of B.

___ Proof.— We have ~HW'B(M) C HW^) and by Proposition 6.2,
HW^(.M) is not empty. Since HW(\) consists of a single W-orbit, it
is enough to prove that HWB(^) is invariant by any simple reflexion
s^. Let A € H\VB(M). If A(^) G Z, the image of A in T* is So,-
invariant. Otherwise by Lemma 6.1, ^(^(A+pa) —Pa) also occurs in M..
Since (^a(A + pa) — pB){ha) ^ Z, this module is infinite dimensional and
5a(A + pa) - PB belongs to HWa^M). However, Sa(\ + pa) - pa = s^X
modulo Q, hence HWa(.M) is ^-invariant. Q.E.D.

Since H}VB{M) is independent of B, it will be denoted by HW{M).
From now on, it is assumed that Q == s\{n + 1) or sp(2n) (and Q ̂  s[[2) =
5p(2)). Let B be a basis of A. The notations of Section 4 will be used,
namely for any subset I of B, Qi denotes the subgroup of Q generated by
J, Aj denotes the root system generated by J, and A^ denotes the set of
positive roots of Aj relative to its basis I .
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Let J C B be a connected subset of cardinality n — 1, with the
additional requirement that J contains a long root if fl=$p(2n), see the
following pictures:

Picture for Q = sl(n -h 1).'

B

Ji

Oil Ot2 Qn

0:1 02 O'n-1

T- Q'2
J2 ^ 0— • • •

Picture for Q == sp(2n) (where • denotes the long root):

B

J : 0:2 0:n

Denote by T the set of all sublattices of the form w.Qj^ where w runs over
W. If 0==Sip(2n), the subset J is uniquely determined by -B. If Q=s[(n 4-1),
there are two connected subsets of cardinality n — 1, say J\ and J^, and
we have WQJ\ = —J^ and therefore WoQj^ = Qj^ where WQ is the longest
element of W. Hence, the set T is independent of the choice of a basis B
and its subset J . Indeed T contains exactly n+1 elements if0=s((n+l) and
n elements if Q=sp(2n). Roughly speaking, T is the set of all sublattices of
type Xn-i if 0 is of type Xn' For any sublattice Q' C Q such that Q / Q ' is
torsion-free, set TQ, = {K (g) Q'^jQ' the corresponding subtorus in T*.

Let r G T* and let Q' G T. Let us say that r is Q/-non-integral if there
exists a € A Ft Q' such that A(/ia) is not integral for some (or equivalently
for all) A C T . Let \ be a central character. If \ is integral, let r be the
unique element of HW{\) and set Sing(^) == Uq^r T + TQ,. Otherwise
set Sing(^) = U^Q/) T + 7^,, where the union runs over the set of pairs
(T,Q') with T € ^fW(^), Q' eT and r is Q'-non-integral.

THEOREM 10.2.— Here g^sl(2). Let M. be an irreducible coherent
family and let \ be its central character. We have S'mgM = Sing(^).

Proof. — By Proposition 5.4, it can be assumed that M. is semi-
simple. Let d be its degree.

First, we prove that Sing^M C Sing(^). Let t be any element of
SingA^f. By Proposition 5.4, M[t} is not simple and by Lemma 3.3 it
contains an infinite dimensional simple submodule M. By Proposition 4.8,
M is admissible of degree d. Since M -^ M[t\, we have Suppggg M -^ t and
therefore M is not cuspidal. By Theorem 1.2, there is a proper parabolic
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subalgebra p with nilradical u and a cuspidal p/u-module S such that
M ̂  Lp(S'). Let B be a p-adapted basis of A and let I be the corresponding
basis of the root system of p/u.

Let Ji,...,J^ be the connected components of J. We have p/u =
5 (B di © ... 0 dfc, where 5 is the center of p/u and each a^ is the simple
Lie algebra with root system Aj^. We have S = Z 0 S\ (S). • . . . . 0 Sk, where
each 6^ is a cuspidal c^-module and Z is a one dimensional 5-module. Set
F = B D Aj^-. For any z, by Lemma 4.1 (i), there is a set of commuting
roots S^ C A^ which is a basis of Qi,. Set S' = U^ S^. We have J D F = 0,
therefore by Lemma 4.1 (ii) there is a set S of commuting roots which is a
basis of Q such that £/ C S C A+ \ A^.

By Lemmas 4.1 and 4.5, the module M' := (B^eT- f^'^F^ is a
coherent extension of M and we have M'88 == A^l. This coherent extension
contains the submodule X = (Bi/cr* /sy-^ (note that M = Mp^,). Set
<S = (B^er* f ^ 'S . Similarly <S = Z 0 S\ 0 ... 0 <S/c, where each <5^ is the
coherent ^-family (D^eT* f^'Si- The support of <? is the JC (g) Q(p/u)-
coset containing Supp5'. As in the proof of Lemma 6.1, it is easy to show
that X = L^(S) (see also Lemma 13.2 (i)).

By Proposition 6.2, each coherent c^-family S88 contains an infinite
dimensional ^-highest weight module Li. Set L' = Z 0 Li . . . (g) Lk.
Therefore V is a p/u-subquotient of f^.S for some v € TQ^ We have
Lp(L') = LaW for some A and by Lemma 1.1 (iv), it is a subquotient of
X. Since Xs8 C M188 = M, the s-module LB(A) is a submodule of M.
Since A € ^ + Supp 5, we have A G ^ + K (g) QJ- Hence we have ^ C r + T^
where r is the image of A in T*.

As LBW is admissible, it follows from Lemma 6.4 that the set
A^(A) = {a € B|A(/ia) ^ 2^o} ^s connected and contains at most two
roots. Since each Li is an infinite dimensional highest weight module,
A^(A) intersects each Ii. Therefore either I is empty or I is connected
and I D Aa(A) ^ 0. Since p is a proper parabolic subalgebra, we have
I ^ B. We have ^ € T 4- TQ^ and by definition T G SW(^). The argument
splits into three cases:

• Assume g = 5p(2n) and let J be the unique connected subset of
B of cardinality n — 1 which contains the unique long root a of B. Then
A^(A) = {a} and therefore I C J . Thus r is Qj-non-mtegral, Qj e T and
^ € r + T ^ , which proves that t € Sing(^).
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• Assume fl = si(n + 1) and \ is not integral. If I is empty, let J be
a maximal proper connected subset of B with J H Aa(A) 7^ 0. If 7 is not
empty, it is contained in a maximal proper connected subset J of B. In this
case J intersects Aa(A), because ZnA^A) -^ 0. It follows from Lemma 6.4
that for any a € Aa(A), we have \(ha) i Z. Therefore in both cases r is
Oj-non-integral, Qj e T and t G r + %, which proves that ^ C Sing(^).

• Assume g = 5((n+l) and ^ is integral. Since I is empty or connected,
it is contained in a connected subset J C B of cardinality n — 1. We have
Qj e T and t e r + T^, which proves that ^ C Sing(^).

Therefore it is proved that SmgM C Sing(^).

Conversely we prove that Sing(^) C SmgM. Let t be any element of
Sing(^). By Lemma 10.1, we have t = r-\-y for some some r € ^W(A^), for
some v € TQ, with Q' e T, and r is Q'-non-integral if \ is not integral. By
definition of T, there is a basis B of A such that B' = B D Q' is connected
and Q' = QB/ .

We claim that it is always possible to choose A C T such that LB(\) is
an infinite dimensional submodule of M, with the additional requirement
that \(ha) ^ Z^o for some a € B' (or equivalently A^(A) D 5' ^ 0).
If ^ is not integral, the existence of such a follows from the fact that
T is Q'-non-integral. Otherwise, the central character is integral. In such
a case Q = s{{n + 1), HW(M) = {r} and it follows from Lemma 8.3 and
Proposition 8.4 that there are n distinct integral weights A i , . . . \n € r\P^
such that LB(A^) C M.. For each z, Aa(A^) contains a single element, and
Aa(A^) 7^ Ap(\j) for i ̂  j. Therefore Aa(A^) ^ B' for a unique z. Since
n ^ 2, the claim is proved.

Set L = La(A). Set F = Af H 5 and F' = F n J5'. Since 5' is
connected and F ' -^ B' there is a set S' a commuting roots which is a basis
of Q' such that E' C A^, \ A^, (apply Lemma 4.1 (ii) to the basis B' with
the subsets and J ' = 0 and F'). There is a set of commuting roots E which
is a basis of Q such that S' C E C A^ \ A^ (apply now Lemma 4.1 (ii) to
the basis B, the subsets J = B' and F and the basis S' of QB/).

By assumption, we have S C A^ U A^. By Lemma 4.5, C :=
^er* f^'-Lfs is a coherent family of degree d which contains the module
M := f^'Lf^,. We have SuppM = v + ZB' + SuppL. Since SuppL C
A + ̂ oB, the support of M is strictly included in the Q-coset t. Since
C88 = M, M88 is a submodule of M[t}. Hence the ^-module M[t] is not
cuspidal, i.e. t e SingA^. Q.E.D.
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It follows from the classification of coherent families, that HW(M)
contains two elements if Q=sf)(2n). If Q^=si(n + 1), HW(M) contains a
unique element if the central character is integral, and n 4- 1 elements
otherwise.

COROLLARY 10.3. — Here Q^sl(2). Let M. be an irreducible coherent
family. The subset Sing.M ofT* is an union ofr distinct codimension one
cosets, where r = n -j- 1 ifQ== si(n 4-1) and r = n if Q = 5p(2n).

Proof. — If g == sl(n 4- 1), the set T consists of n -j- 1 lattices, say
Qij " • ? On+i- If the central character of M is integral, then HW(M) =
{r} and SingA^ is the union of the n+l codimension one cosets T-\-TQ^ If
the central character is not integral, then HW{M) consists ofn+1 elements
and each of them is Q^-non-integral for all % except one. Therefore there is
a unique way to write HW{M) = {ri, - • • , Tyi+i} in such a way that r^ is
Qj;-non-integral for all i ̂  j. For i ^=- j, the coset r^ 4- Qj contains all other
Tk, except TJ . Hence Sing M is the union of exactly n 4-1 codimension one
cosets.

If Q = 5p(2n) the set T consists of n lattices, say O i , - ' * , Q n and
HW{M) consists of two elements, say Ti,T2. For any long root a, r\ and
T2 differs by a/ 2 and therefore r\ +TQ. = T2 +TQ. for any z. Hence SingA^l
is the union of n codimension one cosets.

Remark.— Since the previous theorem does not hold for the Lie
algebra -$1(2), this case is explained now. Let M. be an irreducible coherent
5((2)-family and let t G T*. Then M[t} is irreducible if and only if
t ^ Sing.M. In particular Sing.M consists of two elements if its central
character is not integral, and one element otherwise.

11. Explicit realization of coherent families for sl(n+ 1).

In this section, the irreducible coherent s{{n 4- l)-families will be
explicitly described, and their degrees will be computed. Indeed, the Lie
algebra si(n + 1) contains a parabolic subalgebra p with nilradical u such
that p/u ^ flK^)- Let <S be the set of finite dimensional simple 0l(n)-
modules. For any finite dimensional simple s((n4- l)-module L, -ff°(u, L) is
a simple g[(n)-module. Let 7^° be the set of all S C S which are isomorphic
to H°{u^L) for some finite dimensional simple s\(n 4- l)-module L. The
irreducible coherent sl(n4-l)-families are parametrized by S\'H°. Therefore,
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this reformulation of the classification theorem 8.6 is based on a more
concrete set of parameters than the set of connected components of the
graph P.

Let X be a smooth affine algebraic variety of dimension n over K,
let ̂  be the space of algebraic differential forms and let Wx be the
Lie algebra of vector fields on X. In order to quickly describe the tensor
representations of Wx, it is simpler to assume that the tangent bundle
TX is trivial, i.e. f^ is a free K[X]-mod\i\e. The definition of these Wx-
modules requires some preparatory explanations.

Set V = K71, let ^i,.. . ,-^ be its natural basis and let (^j)i^^
be the natural basis of Ql(n). With these definitions, V is the natural
representation of fl((n), and we have E^j.Vk = S^k'Vz and E = ̂  En
is the identity matrix. Set 0 = ^{(n,K[X\), 0' == K[X]. Any element g
of 0 can be written os g = ̂  f^ 0 E^, where /,j e K[X}. Since
the Lie algebra Wx acts by derivations on K[X], it acts by derivations
on 0. The extended current algebra is the semi-direct product Cur(X) =
Wx K (0 C ̂ /). For any sl(n)-module S, K[X] ̂  S is obviously a Cur(X)-
module: indeed the general element $+^+/ of Cur(X) acts over K[X] 05
by ^ 0 1 + Ezj Aj ̂  ̂ -(^j) + / 0 1 (here a : ̂ ((n) -^ End(S') denotes the
0l(n)-action on 5', ^ e Wx, ^ = Ezj fij^Eij € 0 and / e 6'). It should
be noted that the elements / 0 E € 0 and / € 0' do not act in the same
way on K[X} (g) 6': the first one acts as / 0 a{E) and the second one by
/ (g) 1. The restriction of this module to Wx is a direct sum of dim S copies
of K[X\. In order to get more interesting Wx-modules, one needs to twist
the natural embedding Wx —> Cur(X) by a non-abelian cocyle.

The notion of a non-abelian cocycle is defined as follows. Let £ be a
Lie algebra and let 23J be a Lie algebra of derivations of £. The elements
of the semi-direct product 23J K £ will be denoted by ^ + g , ^ e 2H, g € £.
In this setting, a non-abelian SU-cocycle with value in £ is a linear map
c : 2U -^ £ such that the map .7:2n->23Jix£,^i-^+ c(^) is a morphism
of Lie algebras. If £, £' are Lie algebras on which 23J acts by derivations
and if c : 23J -^ £ and c' : 23J —^ Sf are non-abelian 23J-cocycles, it is obvious
that their direct sum cCc' is a non-abelian 23J-cocycle with value in ^C-C'.

Two non-abelian Wx-cocycles c^ and c6 are now defined. Any vector
field $ acts over f^ by its Lie derivative /^, where /^ = [d,z^] (Cartan's
formula). In this formula, d is the de Rham operator, ^ denotes the
contraction by $ and the bracket [d, ̂ ] should be understood as do^+^od
since the two operators d and z^ are odd. For any uj e ̂ , set C^ = C^+uuj.
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We have [C^C^] = C^ 4- i^^ for any $, r] e Wx. From now on, it
is assumed that cj is closed and therefore ^ € Wx ^ C^ € End(Q^) is a
morphism of Lie algebras, i.e. the map c^ : ^ \—> i^uj is a non-abelian Wx-
cocycle with value in € 0' (since 0' is abelian, c^ is indeed an ordinary
cocycle). In order to describe the second non-abelian Wx-cocycle with value
in 0, a K[X}-basis b = (/3i , . . . , (3n) of f^ is chosen. Let ($1,..., $n) be
the dual basis of Wx. We have

^•/^==(^m+/^•^•
-(^m+y E (^-w.

l^z^n

=(W,+f E (̂ ..aW-
l^i^n

for any / e ^[X] and any j. Using its basis b, the space f^ is identified
with the Wx ix (S-module K[X] (g) V and r^ with the element $ + c6^) of
Wx ^ ^, where

^(O- E ^^A-^^j-
l^ij^n

Therefore c13 is a non-abelian IVy-cocycle with value in 0. Thus c^ :=
c^Cc^ is a non-abelian Wx-cocycle with value in 0C0' and let j^ : Wx —>
Cur(X), ^ \—> ^ 4- c^(0 tne corresponding morphism of Lie algebras.

For any ^(n)-module 6', K[X] 0 6' is now a H^c-module, where each
^ e Wx acts as J'S(0. Viewed as a TVx-module, this space is denoted by
Tenses', a;). When S' is a simple finite dimensional 0((n)-modules and u is
a closed one-form, the module Tens^(S',d;) is called a tensor Wx-modules.
To clarify this definition, let us start with general remarks about the tensor
modules:

• Let / € K[XY be an invertible function on X. The multiplication
by / induces an isomorphism Tens^(5', uj) ̂  Tens^(5', uj+df/f). Hence the
isomorphism class of the Wx-module Tens^(5r,a;) depends only on uj mod-
ulo a logarithmic differential. Set Q(X) = [uj e ^xlU J = d///for some/ e
K[X^} and X* = K (g) Q(X)/Q(X). To explain these notations, it should
be noted that when X is a torus, Q{X) is isomorphic to the group of char-
acters of X, K (g) Q{X) is the dual of its Lie algebra and X* is the dual
torus. Therefore for any uj e X*, the module Tens^(5',o;) is well defined
up to an isomorphism.
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• Let us investigate in which way the TVx-module Tens^S^)
depends effectively on the trivialization of TX, i.e. in which way it depends
on the choice of a Jf[X]-basis b of ̂ . First consider the case where the
0[(n)-action on S derives from a GL^-action (such a module will be called
later a GL(n)-module). Since K[X}^S is a GL{n, ̂ [X])-module, it is clear
that Tens^S^) is independent of the trivialization of TX: in this case,
the index b will be dropped from the notation Tens^(S',o;). In general, any
5' € <? can be written as 5" (g) Kg, where 5" is a G'L(n)-module, s e K and
Ks is the one dimensional 0[(n)-module on which any g e Q[{n) acts by
sTrg. Let b' be another basis of ̂  and let / be the determinant of b'
relative to b. Then we have Tens^(6',cj) = Tens^(S^-\-sdf/f). Therefore
Tens^(5', uj) only depends on the volume form /3i A /^ • • • and the big Wx-
module 9o;6X* Tens^ (5', a;) is independent of a particular basis of Q^.
Hence it will be denoted by TEATSx(S).

• It follows from the previous remark that the tensor Wx -modules
can be defined in the more general setting of an arbitrary smooth affine
variety X (even when TX is not trivial). More precisely Tens^ (S, u) can
be defined whenever one of the following two conditions is satisfied:

i) S is a GL(n)-module,

ii) X admits a volume form.

In the cases considered below, TX will be always trivial and therefore it is
not necessary to define the tensor modules in this general setting.

• Let uj be a closed one-form. It is easy to show that Tens^A^o;)
is isomorphic to ̂  where any $ e Wx acts by C^, for any 1 ̂  1 ̂  n. Set
d^ = d + e(uj), where e(uj) is the exterior product by uj. We have d^ = 0,
C^ = [d^ i^} and therefore [d^, C^} = 0 for any ^ e Wx. Hence d^ is a Wx-
equivariant map from Tensx(A'V^) to Tens^A'4"1^^). Therefore there
is a IVx-equivariant map D : T8J\fSx(^V) -^ TSAfSx^V) such that
its restriction on each component Tensx(A*y,o;) is d^. We have D2 = 0.

After these general remarks, let us consider the case where the smooth
affine variety X is a n-dimensional torus denoted by T. Let () be its Lie
algebra. Its dual ()* is identified with the space of T-invariant one-forms.
Let b be a basis of ()* which is also viewed as a Jf[T]-basis of f^. Then we
have c^(h) = (jj(h) for any uj e^ and h e t). For any S € <S, the element
h Ci) acts on Tensr(5',^) ^ K[T] 0 S as (CH + uj{h)) (g) 1. Hence the WT-
module Tensr(5',o;) is a weight module (relative to I)) and the dimension
of any non-zero weight space is dim S. From now on, T will be the group
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of diagonal matrices in PSL(n + 1). It will be identified with its unique
open orbit on P71. Since PSL(n + 1) acts on P", its Lie algebra sl(n + 1)
can be identified with a Lie algebra of vector fields on T, therefore we have
() C sl(n+l) c WT. Viewed as as((n+l)-module, TfA/'<Sr(5') is a coherent
family of degree equal to dim S, for any S € S.

To get an explicit description of these coherent families, write K[T] =
K[x^ , . . . ,^1]. The Lie algebra s\{n + 1) decomposes into s-i©0o00i,
where Qo=Qi(n), 5-1 = V, fli = V*. As a Lie algebra of vector fields on
T, s_i has basis (9/9xi)^i^ flo ha^ basis {E^ = Xj9/9xi)^ij^n and fli
has basis (xi.E)^i^, where ^ = Ei^n^/^,. The subspace I) with
basis (xi9/9xi)^i^n is the Cartan subalgebra of s{{n + 1). To describe
the action of the Weyl group W = 5n+i on (), it is convenient to set
^n+i,n+i = —^. Then Sn+i acts on the generating set (£^)i^n+i by
permuting the coordinates. In order to specify a basis of the root system,
set hi = Ei^ - ̂ +1^4.1 for i < n and hn = En,n + E. There exists a unique
basis of A relative to which the hi are the simple coroots.

Example of a tensor family: Let a € K be a scalar. Recall that Ka
denotes the one-dimensional 0((n)-module on which any element g e Ql{n)
acts as aTrg. For ^ e WT, its divergence div^ is defined by the identity
C^v = (div^)v, where v = dx^/x^ A d x ^ / x ' 2 . . .dXn/Xn. Let .M(a) be
the Wr-module with basis {x^ ... x^n)^...a^eK, where any $ C WT
acts by $ + adiv$ (the conventions are the same as in the example of
Section 4, e.g. 9/9x^ x^x^2 . . . = ai^1-1;^2 ...). It is clear that M(a) is
isomorphic with TSMST^Ka), and this example generalizes the example
of the coherent 5[(2)-family occuring in Section 4.

Any S C S is determined by its highest weight A G ()* which satisfies
\(hi) e Z^o tor all 1 ^ i < n. Set p -==- flo ® 0r Then p is a parabolic
subalgebra with nilradical fli. As before, any S C S is viewed as a p-module
with a trivial action of Sp Set Mp(6') = Indg S and let Lp(5) be its unique
simple quotient. Indeed Ly(S) = L(A), where A is the highest weight of
S. It will be convenient to use these notations also for 6' == 0, in this case
Mp(5) and Lp(S) are zero.

Let A € P^. By a theorem of Kostant [K], ^(fli, L(A)) is the simple
gl(n)-module with highest weight Wfe(A 4- p) - p, where Wk is the unique
element of length k which is minimal in its 5'n-coset. More explicitly, we
have Wk(i) = i for i < n + 1 - k, Wk(n -\-l-k)=n+l and Wk(z) = i - 1
for ^ > n + 1 - A;. Let ^A; be the set of all 5' C S which are isomorphic to
^(^i.L) for some finite dimensional simple sl(n -h l)-module L, and set
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7T = Uo^n^. The sets T^0,^1,— are pairwise disjoint. For S G 7T,
there is a unique finite dimensional simple sl(n+ l)-module L and a unique
k such that 5 ^ ^(g^L). Hence for any S' € 7^*, the ^l(n)-module
S[i\ := ̂ ^(^i, L) is well denned, for all i € Z. For instance, let K be the
trivial representation of S^(^). Then X belongs to 7Y° and ^"[A:] == -H^^)
is the 0l(n)-module A^V. Note that for any 6' € <?, Lp(S) is admissible and
it is infinite dimensional unless S € 7Y°.

LEMMA 11.1.— j9 Here Q ^ 5((2). Let S ^ Sf € S, and let A, A' be
their highest weights. If A + p and \' + p are in the same W-orbit, then S
and S ' belong to 1~i* and S" = S[i] for a unique i -^ 0.

ii) Let S 6 S. The central character of Lp(S) is integral and regular if
and only if S belongs to 7-T.

Proof. — With the notation of Lemma 8.3, let C be the set of all
fJi C ()* such that

i) / ^ - h p e W ( A + p ) ,

ii) m(/^) € P~^ or p, € P"^

It follows from Lemma 8.3 that C is reduced to A whenever the central
character of L(\) is not integral and regular (unless Q = 5((2)). Otherwise,
it can be assumed that A € P^~. Then C contains n + 1 elements, which
are the highest weights of S[k] for 0 ^ k ^ n. Hence the two assertions are
proved. Q.E.D.

LEMMA 11.2. — Let S € S.

i) If S ^ 7^*, the s((n + l)-modu2e Mp(S') is simple, and its degree is
dim S.

ii) If 5 € ?<*, there is a exact sequence ofs[[n + l)-modules:

... Mp(5[2]) - Mp(5[l]) -. Mp(5[0]) - Lp(5) -> 0.

Moreover if 5 ̂  H°, the degree of L^S) is ]^o (-1)2 dim^].

Proof. — Both assertions follow from Kazhdan-Lusztig character for-
mulas. However, it is simpler to prove them directly. Since Mp(5) is locally
finite as a p-module, any simple submodule is isomorphic to Lp(S"), for
some 5" G S. Hence by Lemma 11.1, Mp(5') is simple whenever 5 ^ 7 ^ *
and 0 T^ 5((2). For the s[(2)-case, this follows by direct computations.
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To prove the second assertion, it is enough to consider the case where
S = K[k\ for some k ^ 0, where K is the trivial representation of Qt(n):
indeed the general case follows from the translation principle [Ja]. Set
X = SpecJ^i,... ,Xn\. We have T C X C P" and s\(n + 1) is indeed
a subalgebra of Wx- Let Z^ = {a € f^| da = 0}. Following [Gai], Z^ is a
simple 5l(n4- l)-module. Moreover, it is easy to identify Q^ and Z^ as the
0-duals of M^(K[k}) and Ly(K[k]) respectively. Hence the required exact
sequence

... MpGS[2]) - Mp(^[l]) - Mp(^[0]) - Lp(5) - 0

is the 0-dual of the truncated De Rham complex

0 -^ z^ -. ̂  -^ ̂ +1 -. ̂ +2 .. • .

Let S € 5. It follows from the identity chMp(S') == ch^chS'fl.i that

chLp(Sf) = ch5'ch5's_i if 6' i U\ and

chLp(5) = V^ (-1)' chS[i] ch5s_i otherwise.
1^0

Since the set of roots of g-i is a basis of Q, the degree of Lp(S) is as
asserted. Q.E.D.

LEMMA 11.3.— Let S € H° and let X € P^~ be its highest weight.
There is a natural complex

C(\) : 0 -> TSAfSrW) -^ T£AfST{S[l}) -^ TSAfSTW) • • • ,

and its homology is H^^(T) 0 I/(A).

Proof. — First consider the case L = K, i.e. A = 0. Then K[k] ^
A^y. In the last remark about tensor modules, a Wr-equivariant map D :
TENST^V) -^ TEAfST^V) has been already defined. By definition
(7(0) is the complex (TEJ\fST^V),D). As a complex, it is a direct sum
of the complexes (n^.do;) where uj G ()* runs over a set of representatives
of T*. Since [do/,^] = C^ and C% is diagonalizable, this complex is
exact unless 0 is an eigenvalue of C^. This occurs only when u? belongs
to Q. Therefore the homology of the full complex (7(0) is the De Rham
cohomology H^^(T) of T.

The general case follows from the translation principle. Q.E.D.
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Remark. — It should be noted that the differential of (7(0) is WT-
invariant, but for A -^ 0 the corresponding differential on C(\) is only
s\(n -j- l)-invariant.

By Theorem 8.6, any semi-simple irreducible coherent 5l(n+l)-family
M. contains a unique infinite dimensional submodule L(X) with X(hi) ^ 0
for all i < n and \(hn) i Z^o, i.e. A ^ P4" but m(A) G P4' (here it is
assumed that n ^ 2; indeed this result fails for s((2), because it is not
possible to distinguish P^~ from V~ for non-integral central characters).
Set S(M) = H°(Q^L{\)). Thus S(M) belongs to S \ H0.

It follows from Lemma 5.5 that the formal coherent families (i.e.
elements in a suitable Re-group) can be defined and they are characterized
by their trace. This is the meaning of the formal sum in the following
Assertion (ii). The following theorem fails for 5[(2) and this case is treated
in a remark.

THEOREM 11.4.— Here Q=s[{n + 1), with n ^ 2. The map M. i—>
S(M) is a bijection from the set of semi-simple irreducible coherent
sl(n + 1)-families to S \ U^.

Moreover, let M. be any semi-simple irreducible coherent s\{n -\- 1)-
family and set S = S{M). Then one of the following two assertions hold:

i) S ^ 7^*, M is isomorphic to TEAfST^S)88, and its degree is dim 5'.

ii) S € 7^*, M. is equivalent to the formal coherent family ^^("l)1

T£J\fST(S[i]), its degree is ^^Q(—l)MimS'[z] and there is an exact se-
quence

0 ̂  M[t] -^ TSAfST(S[0})[t] -. T£ArST(S[l])[t] -^ T£^5r(<5[2])M • . • ,

for any t € T* such that M. [t\ is cuspidal.

Proof.— The fact that the map M i-» S{M) is a bijection is a
reformulation of Theorem 8.6. Let M. be a semi-simple irreducible coherent
s\(n + l)-family, and set S = S(M). Set X = SpecK[xi," • ,Xn}. We
have T C X C P71 and sl(n + 1) C Wx C WT' The Wr-module
T£J\rST{S) contains Tensx(5',0) as a Wx -submodule. As an sl(n + 1)-
module, Tensx(5',0) is the 0-dual of Mp(5').

First let us assume that S ^ U* or S C H71 (in such a case 5'[1] = 0).
By Lemma 11.2, the 5((n+ l)-module Tensx(Sf50) is simple and its degree
equals the degree of the coherent family T^A^T^). Hence the coherent
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family is irreducible by Proposition 4.8, and the assertions of the theorem
follow.

Next let us assume that S € 7^, with k < n. Since Tensx('S', 0) is the
(9-dual of Mp(6'), it follows from Lemma 11.2 that the sl(n + l)-module
Tensx(L, 0) has two composition factors, namely Lp(S) and Lp(5'[l]). These
factors are admissible and their supports are in the same Q-coset. It follows
from Proposition 4.8 that rSMSr^SY8 = S^T(L^S)) @ 8 XT {L^S[1})).
Hence the formal coherent family ^(-^TSAfST^i]) is effective and
equals to <?^T(Lp(5')) = M. Moreover for any t € T* such that M[t] is
cuspidal, the ^-component of the sequence of Lemma 11.3 is exact, and the
last assertion follows. Q.E.D.

It remains to describe SmgM in terms of the geometry of P71. Under
the action of T, Pn has a unique open orbit (identified with T), n + 1
codimension one orbits, (say OQ, (^ i ,—, On) and some other orbits of
higher codimension. For each 0 ^ % ^ n, T, := T U Oi is an affine open
subset of P71 and we have s[{n 4-1) C WT, C WT. These codimension one
orbits can be indexed in such a way that

• for i ̂  0, K[Ti] is the subalgebra of K[T} generated by ̂ ±1 for j ̂  i
and Xi,

• K\TQ\ is the subalgebra of K[T] with a basis consisting of all
monomials x^ - ' - x^ such that ^i<^<^ rrik ^ 0.

It should be noted that each T^ is a codimension one torus ofT*. Therefore
for any S € «S, the image of Supp TEAtS^ (S) in T* is a codimension one
coset.

COROLLARY 11.5.— Let M. be a semi-simple irreducible coherent
si(n + 1)-family and set S = S(M). We have

SmgM = Uo<^n S}ippT£AfSTi(S) modulo Q.

Proof.— It follows from Theorem 11.4 that t ^ SmgM if and
only if T£AfST(S)[t] is cuspidal (if S i 7-T or S C ^n) or is the
extension of two cuspidal modules (if S € W but S ^ ^n). Let i
be an integer with 0 ^ i ^ n. Since the support of TE^ST, (S) does
not contain any Q-coset, TENSES) contains no cuspidal subquotient.
Moreover for any t € Supp TEAtS^ {S) modulo Q, the s{{n + l)-modules
T£AfST(S)[t] and T£AfST,{S)[t} have the same degree, namely dim 5.
Since T£M'ST^S)[t\ is a si(n + l)-submodule of Tf.A/'^T^)^], we have
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Q + Supp TEAfSTi (S) C SingM. Hence SmgM contains the n 4- 1
codimension one cosets Supp TC^ST, (S) modulo Q. By Corollary 10.3,
SingA-l is the union of n 4- 1 codimension one cosets, therefore SmgM is
exactly the union of these cosets. Q.E.D.

Remark. — Let us consider the special case Q = 5((2), for which the
previous theorem fails. The set S of all simple ^[(l)-modules is identified
with ()*. For any two weights A and fi, write A = / ^ i f A + p = d=(/^ -h p ) .
The map S € S ̂  TS^TS^S)88 induces a bijection from S / = to the set
of semi-simple irreducible coherent 5((2)-families.

Remark. — As mentionned before, Britten and Lemire have classified
all multiplicity free simple sl(n+l)-modules [BL]. Of course it is possible to
use the previous formula for the degree of a coherent family to recover their
result. However there is a simpler way: indeed it is enough to determine for
which S € S \ H° the module L := Lp(S) is multiplicity free.

Set V =5-1 as before. Then L is a finitely generated torsion free
5'y-module of rank one. Therefore, the 5V-module L can be identified
with a ST-submodule of SV in such a way that the elements in L have
no common divisors. It follows that L = SV or L is an ideal defining a
subscheme of codimension ^ 2. Since Spec SV is smooth, any differential
operator 0 : L —» L is the restriction of a unique differential operator
from SV to itself (Cohen-Macaulay property). Since 5l(n+ 1) acts on L by
differential operators, this action extends to SV. Then it is easy to identify
SV with a generalized Verma module M^(Ka) for a certain a € K. It follows
that L is the unique simple submodule of M^(Ka). Therefore EXT(V) is
the coherent family M(a)88, where M(a) is the coherent family defined
in the example at the begining of the section. Hence any multiplicity free
semi-simple coherent family is isomorphic to M(a)88 for some a € K. This
proves the following result:

COROLLARY 11.6 (Britten and Lemire [BL1]). — Any infinite dimen-
sional multiplicity free weight simple s\(n + l)-module is a submodule of
M(a)88, for some a € K.

12. Realization of coherent families for -$p(2n).

The Dynkin diagram of Spin(2n) has a non-trivial involution (it is
unique unless n = 4) which induces an involution a of Spin(2n). Also
there is a unique central element z e Spin(2n) such that z2 == 1 and
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Sp'm(2n)/{l,z} = S0(2n) (for n = 4, z is uniquely determined by the
additional requirement a{z) = z). An odd pair of Spin(2n)-modules is a
pair {L, L'} of simple Spin(2n)-modules which are conjugated by a and
such that z acts as —1 on L and V ' . In this section, it is shown that the
irreducible semi-simple coherent 5p(2n)-families are exactly parametrized
by the odd pairs of Spin(2n)-modules and their degrees can be computed
in terms of the parameter. This statement is more concrete than Theorem
9.3, which involves the set of connected components of Q. Unfortunately, I
did not find a description of coherent families which is as explicit than the
s\(n -h l)-case.

Let X be a smooth affine variety of dimension n and let Diff(X) be
the ring of differential operators on X. The ring Diff(X) is generated by
the differential operators of order ^ 1, i.e. by the functions and the vector
fields. Any closed one-form u} induces an automorphism Q^ of Diff(X)
defined by 9^(/) = / if / G K[X] and 6^(0 =^+i^i^eWx. For any
invertible function /, Qdf/f ls tn^ conjugacy by /. Hence 6^ modulo the
inner automorphisms ofDiff(X) depends only on uj modulo the logarithmic
differentials.

Let R be the subalgebra of K[x^~1,... ,x^1} generated by the mono-
mials x^x^2 ' • • with ̂  mi = 0 modulo 2. Set t = Spec K[x^,.... x^}
and T = Spec-R. In Section 9, 5p(2n) has been realized as a Lie algebra of
differential operators on SpecK[xi,... ,Xn] and therefore on T. Indeed we
have -$p(2n) C Diff(r). For any T-invariant one-form uj on T, let K[T]^
be the natural Diff(r)-module twisted by Q^. Since this module depends
only on ^ up to a logarithmic differential, V := (Do^r* -^[T]^ is a well de-
fined Diff(r)-module. Its restriction to 5p(2n) will be called the Shale- Well
coherent family.

Let M. be a semi-simple irreducible coherent 5p(2n)-family, and let \
be its central character. By Theorem 9.3, M. contains exactly two highest
weight modules ^(A^. With the notations of Section 9, A^/in) are half
integers and the weights A^ are defined by the requirement \^{hn) ^ —1/2
and \~(hn) ^ —3/2. For the Shale-Well coherent family V, these weights
are denoted by ^±. We have uj^~{hn) = —1/2 and ^(hi) = 0 otherwise.
Therefore A := X^ — uj^ is integral and dominant. For any 5p(2n)-module
M, let M^ be its maximal submodule with generalized central character \.

PROPOSITION 12.1.— Here Q=sp(2n). With the previous notations,
we have

M ̂  (V88 0 ̂ (A))^.
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Proof. — Let \o be the central character of V. The translation functor
from the category of sp(2n) -modules with generalized central character
\Q to the category of 5p(2n)-modules with generalized central character
\ is M ^ (M <g) L(A))^). By Theorem 9.3, M is the unique semi-
simple irreducible coherent family with central character \. Therefore the
proposition follows from the fact that, in our setting, the translation functor
is an equivalence of categories (see [Ja]). Q.E.D.

The notations specific to 5p(2n) have been introduced in Section 9.
Let us recall that (}* has a basis (e^)i^<^, relative to which the simple
roots are ai == ei - e2, '" ,Q^_i = Cn-i - €n,0n = 2cn. The set As of
short roots is the root system of Spin(27i). A basis of this root system is
B' = {a\\ 1 ̂  i ^ n}, where o^ == a^ 4- On-i = Cn-i + On and a', = a,
otherwise. The involution of B' is the transposition which exchanges a^_i
and o^. Let a be the corresponding outer involution of Spin(2n).

Let M be an irreducible coherent 5p(2n)-family M. Let ^ be the
highest weights of the two highest weight modules occuring in M. The
weights A11' + e are integral and dominant with respect to B', where
e = Si^n ^n- Therefore let S±(M) be the simple Spin(2n)-modules with
highest weights A± + e. Then S±(M) is an odd pair of Spin(2n)-modules.
The common dimension of these modules is denoted by dimS'^.M).

THEOREM 12.2.— i) The map M^ S±(M} is a bijection from the
set of semi-simple irreducible coherent sp(2n) -families to the set of odd
pairs of Spm(2n)-modules.

11) The degree of an irreducible coherent sp(2n)-family M. is (l/^71"1)
dlmS±(M).

in) Let t = Z^,^ diCi C T*. The module M[t\ is cuspidal if and only
ifdi i 1/2 + Z for^all 1 ̂  i ^ n.

Proof. — Assertions (i) and (iii) are just reformulations of Theorems
9.3 and 10.2. Let us prove Assertion (ii). Let ^(A^ be the two highest
weight representations of M.

We claim that chl^) = E^' ̂ ^^^/rLeA+O-e-"),
where W is the Weyl group of B ' . Indeed this follows from [GJ]. More
precisely, the proof of these authors is based on some conjectural facts about
highest weight representations which have been proved later by Soergel
[S]. However there is an elementary and direct proof for the special case
considered here: indeed it is enough to check the character formula in the
case where X^- = ̂  and to use the translation functor.
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Let A~^ = Aj" U A^" be the decomposition of A4" into short and long
roots. Since p = p'+e, where p' = 1/2 EaeAj- a^ WeyPs character formula
implies

chL(\±)=dlS±(M)/ f] (1-e-^).
/3€A^

Since A^" = {2e,|l ^ i ^ n} is the basis of a lattice of index 2n-l in
Q, the admissible modules ^(A^ have degree (l/2n~l)dlmS±{M). Thus
Assertion (iii) follows from Proposition 4.8. Q.E.D.

Remark. — There is only one odd pair of Spin(2n)-modules of di-
mension 2n-l, namely the pair consisting of the two fundamental repre-
sentations Spin^. Hence Vs8 is the unique semi-simple coherent family of
degree one. Thus the following result is recovered:

COROLLARY 12.3 (Britten and Lemire [BL1]). — Any infinite dimen-
sional simple multiplicity free weight -sp(2n) -module is a submodule of Vs8.

13. Character formula for simple weight modules.

Since the simple weight modules are classified, it remains to determine
their characters, i.e. the dimension of their weight spaces. Indeed this
question is reduced to a similar question for the category 0, which is
fully understood. The reduction is based on a refinement of the notion of
coherent families, namely the notion of relative coherent families. Of course,
it would have been possible to treat at once the notion of coherent families
in the relative context. For clarity, this notion has not been introduced
before, which will cause some repetitions.

Let g be a simple Lie algebra. Let us fix a Levi subalgebra a containing
() and set ()^i = ()*/^0Q(a). For any weight ()-module M, set deg^M[t} =
Sup^dimM,,, for any t € ()^i. The function deg^ : t ^ deg^M[t] is
called the a-relative degree of M. Assume now that SuppM is included
in a single Q-coset. Then M is called a-admissible if deg^ M[t] < oo for
any t C ^gp Moreover if M is a-admissible, its a-relative essential support
is Supp^_^M := U^e^i {A € t\dimMx = deg^M[t}}. Then M is called
strictly a-admissible if Supp^_ggg M Ft t is Zariski dense in the vector space
K<S)t for any^ G l)^i-

From now on, p is a parabolic subalgebra with nilradical u such that
p = a (D u. Let u~ be the opposed nilradical and let B be a p-adapted basis
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of A. Set B' = BnA(a). For any A e ()*, let LB'{\) be the simple a-module
with B'-highest weight A. As usual L^(A) is viewed as a p-module with a
trivial action of u. Recall that A^(A) = [a € B\ \(ha) ^ Z^o}.

LEMMA 13.1.— i) For any A 6(}*, the a-module L^(A) is strictly
a-admissible if and only if it is a-admissible and A^(A) intersects each
connected component of B'.

ii) Let S be a simple weight p-module. Then S is strictly a-admissible
if and only if L^(S) is strictly a-admissible.

iii) Let S be a simple strictly a-admissible weight a-module. There exists
a set S C A (a) of commuting roots which is a basis ofQ(o) such that fa
acts injectively on S for all a € S.

Proof. — To prove the first assertion, it can be assumed that LB'(A)
is admissible. The Lie algebra a decomposes into 3 Q ai (B 02 " •, where 3
is the center of a, and each Oi is a simple ideal. Then LB'(A) decomposes
into Z 0 Li 0 Z/2 - • ' , where Z is a one dimensional ^-module, and each
Li is an admissible simple highest weight a^-module (here Li is a highest
weight module relative to the basis B'nA(az) of A(di)). By Proposition 3.5,
SupPess ̂ ils Zariski dense in K^Q{ai) whenever Li is infinite dimensional
and this condition is equivalent to A^(A) H A(a^) 7^ 0. The first assertion
follows.

To prove the second assertion, it can be assumed that S is strictly
a-admissible. Since Supp^ lies in a single Q(a)-coset by Lemma 1.1
and My(S) ^ U(u~) 0 S', the ^-module Mp(S) is a-admissible, hence
Lp{S) is also a-admissible. As before there is a decomposition S = Z (S)
Si 0 S'z • • ' , where Z is a one dimensional ^-module, and each Si is
an infinite dimensional simple weight a^-module. Hence by Lemma 3.1,
C(Si) generates Q(ai) for any i. Hence C(S) := G(5i) © C{S^) C • • •
generates Q{a). Since 07(5') C C(L^S)), we have (7(5') + Supp^_^ L^(S) C
Suppress ̂ (5')- Therefore Lp(S) is strictly a-admissible.

The last assertion follows from the previous decomposition S =
Z 0 5i (g) 62 • • • and Lemma 4.1. Q.E.D.

A a-coherent family is a weight ^-module A4 such that

i) the function A i—^ dimM.\ is constant on each K 0 (^(^-G0^^

ii) for any u € ^4, the function A i-̂  Trn[^ is polynomial on each
K (g) Q(a)-coset.

SetT; =K(S)Q(a)/Q(a).
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LEMMA 13.2.— Let S be a simple strictly a-admissible weight a-
module, and let E C A(a) be a set of commuting roots which is a basis of
Q(o) such that fa acts injectively on S for all a € S.

i) We have f^L^S)?^ = L^.SF^) for ally e K (g) Q(a).

ii) The Q-module M := C^T,* Lp(/^.S^) is a a-coherent family for
which

deg^M=deg^Ly(S).

Proof. — It is clear that e^r^.^p(5')^ is a a-coherent coherent
family and its a-relative degree equals deg^Lp(S'). Hence it is enough to
prove the first assertion. Since ad(/o,)u = u for any a C S, we have
f^f^ = u for any ^ C ̂  (g) Q(a). Any y e /^p(S')^ can be written as
/^V, for some v ' € v + Q(a) and ?/ € Ly{S). Therefore y is u-invariant if
and only if y ' is u-invariant. Hence H°(u, f^L^p^) = /^.5^. A similar
proof shows that /^.Lp(S')^ is generated by f^.Sp^ as a (7(u-)-module.
Therefore ̂ .Lp(^ = Lp(^.^). Q.E.D.

Let L be a simple weight ^-module. Since p is an arbitrary parabolic
subalgebra of @, it can be assumed by Theorem 1.2 that L = L^{S) for
some cuspidal p/u-module 5'. Let S C A(a) be a set of commuting roots
which is a basis of Q(a).

THEOREM 13.3. — With the previous notations:

i) There exists A e (}* such that

• the a-module LB' (A) is strictly a-admissible, and

• LB'{\) is a subquotient of f^.Sp^ for some v e K 0 Q(a).

ii) For any p, e ()*, set t(p,) = [t 4- v + Q(a). Then we have

dimLp(S% = Sup^^ dimLa(A)^.

Proof. — Set «S = ®^eT^ f^-Sp^' The Lie algebra a decomposes into
3 © di C 02 • • •, where 3 is the center of a, and each a, is a simple ideal.
The coherent a-family S decomposes into Z 0 <$i (g) <?2 • • •, where Z is a one
dimensional 3-module and each <S, is a coherent ^-family. By Proposition
6.2, each coherent arfamily Sf8 contains an infinite dimensional highest
weight module Li relative to the basis B' D A(0z) of A(a,). Therefore the
a-module LB'(\) := Z <g) Li <g) L ^ ' • . is strictly admissible by Lemma 13.1
and it is a subquotient of f^.Sp^ for some v € K (g) Q(o).

ANNALES DE L'lNSTITUT FOURIER



CLASSIFICATION OF IRREDUCIBLE WEIGHT MODULES 589

By Lemma 13.1, there exists a set E' C A (a) of commuting roots
which is a basis of Q{d) such that fa acts injectively on L^/(A) for all
a C S'. Set 5' = C^er; /^.LB'(A)^,, M = Lp(<S) and M' = ^p(<S').
By Lemma 13.2, M. and A^' are a-coherent families. By definition of
LB'W^ «5 and <?' are coherent extensions of the a-module L^/(A), hence
by Proposition 4.8 S88 = S^8. Therefore for any 0(a)-coset u such
that S[u] or S^u] is a cuspidal a-module, we have S[u] c± S^u] and
M[u + Q] ^ M'[u +0]. In particular, we have M\t\ c± M'[t\ where
t = Supp S + Q. Therefore, we have

Lp(5)^/^a(A)^,,

from which the formula for chLp(5') follows. Q.E.D.

Appendix: Generalized Enright functors.

In the paper, some localizations with respect to some non-integral
powers have been used often. Indeed this tool can be used to generalize
the Enright functors. This appendix is devoted to one application of these
functors, namely Proposition A.3. Indeed this proposition was known [S],
but this approach provides an elementary proof.

Let a C A. For simplicity set e = e^, h = ha, f = fa, and s = SQ.
For u G r*, let Ca[u] be the category of all weight ^-modules M such
that SuppM C u and C\M is locally nilpotent. There is x 6 K such that
su == xa + u (indeed x is unique modulo an integer). For M € Ca[u\, set
Fu M = [m G /"^.Mj-l eN.m = 0 for some TV » 0}. It is clear that Fn M
belongs to Ca [su] and Fu : M ̂  Fu M is a functor from Ca[u] to CcJ.sn].

LEMMA A.I.— With the previous notations, assume that x ^ Z.
Then the functor Fu : Ca[u] —^ Ca[su] is an equivalence of categories, and
its inverse is Fsu-

Proof. — Let M € Ca[u\ be a ^-module. It is clear that Fsu °Fu M =
{m C M^e^.m = 0 for someA^ » 0}. In particular, there is a natural
map M —>• Fsu ° Fu M. The Lie algebra a := Ke Q Kh Q Kf is isomorphic
to 5l(2). Since x ^ Z, as an a-module M is a direct sum of simple
Verma a-modules with non-integral highest weights. For such a Verma a-
module V, the map V —> Vf is injective and Vf/V is a simple infinite
dimensional lowest weight module. It follows that V == {v € V^e^.v =
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0 for some TV » 0}. Therefore the natural map M —> Fgu o FuM is an
isomorphism, which proves the lemma. Q.E.D.

From now on, let us fix a basis B of A, which allows us to define
the category 0 (see e.g [Ja][D]). For a (non-necessarily integral) central
character \, let 0^ be the category of all modules M € 0 with generalized
central character \. For u € T*, let 0[u] be the category of all modules
M e 0 such that SuppM c u. Set O^^u] = 0^ H 0[u\.

LEMMA A.2.— Let u,v C T* be W-conjugated. Then the categories
0^[u] and (^^[v] are equivalent.

Proof.— It is enough to prove the assertion when u = s^.v for
some simple root a. Let x G K be a scalar such that v = x.a + u. It
can be assumed that u -^ v and therefore x ^ Z. Set u = ®/3eA+\Q:S/3-
Since u is ad(/)-invariant, we have f~xufx = u. Therefore the functor
Fu sends u-locally nilpotent modules to u-locally nilpotent modules, and
therefore Fu0[u] C 0[v}. Since f~xzfx = z for any ad(/^invariant
element z € U(o), the functor Fu preserves the central characters. Hence
we have Fu 0^[u] C 0^[v}. It follows from Lemma A.I that Fu induces
an equivalence of categories from 0^^'a] to O^^z?]. Q.E.D.

For a central character \, let HW{-\} be the set of all weights A such
that L(A) belongs to 0^ and let ~HW{\) be its image in T*.

LEMMA A.3.— Let \ be a central character. The blocks of 0^ are
the subcategories 0^[u], where u runs over HW{\). Moreover, they are
all equivalent.

Proof.— It is clear that 0^ decomposes into ^u^HW( ^^M-
Moreover, HW(\) consits of a single W-orbit and the subcategories 0^ [u]
are all equivalent by Lemma A. 2. Therefore it is only necessary to prove
that 0^['u] is indecomposable for any u € HW{\). There exists a unique
weight ̂  e uC\HW{\) such that (/A+ +p)(/ia) i Z<o for all a € A+. The
simple modules in C^^] are the highest weight modules L(A) where A G
unHW(\) and moreover we have unHW(\) = {w^fi^ +p) — p\w € Wu},
where Wu is the stabilizer of u in W. It follows from [D] (ch. 7) that for
any A € u H HW(\) the Verma module M(A) is a submodule of M^).
Therefore any simple module of O^^n] is a subquotient of M^). Since
-M^/^) is indecomposable, <9^[zt] is a block. Q.E.D.
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PROPOSITION A.4 (Soergel [S]).— Assume that g is simply laced.
Then any block in 0 is equivalent to a block with integral central character
of the category 0 of some Levi subalgebra.

Proof. — Let B be a block of 0. By Lemma A.3, we have B = 0^ [u]
for some central character \ and some u e T*. Set A' == {a € A| u(ha) =
0 modulo Z}. Since Q is simply laced we have ha-^-p = ha + hp^ for all
a, f3 € A such that a + /? G A. Hence the subspace 5' := () ̂  (Bc^A' fla ls a

Lie subalgebra, and it is easy to see that Q' is a Levi subagebra. Let B' be
a basis of A'. There exists w 6 W such that w(B') C B. By Lemma A.3,
B is equivalent to O^^wu}. Therefore it can be assumed that w = 1 and
B' CB.

For any /i € ^*, let LB'{^) be the simple ^'-module with highest
weight fi relative to B ' . Let A € nnl:fTV(^) be any weight and let \' be the
central character of the ^'-module L^/(A). Since \' is an integral central
character, B' := 0^ ^ is a block of the category 0 for 5'.

We claim that B and B' are equivalent. Set u' = A + 0(0'), let TV'
be the Weyl group of ^/, set u == (BaeA+VA'fla? an(! P = 0' ® u- Thus
p is a parabolic algebra, u is its nilradical. Since W = Wui we have
HW(\)nu C u ' . Hence we have SuppM C 2/+G(p) and H°(u, M) = M[u'}
for any M G B. It follows that the functors M € B \—^ M[u'} e B1 and
N ^ B' ^- Ind^TV are inverse to each other. Therefore B and 2?' are
equivalent. Q.E.D.
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