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INVERTIBLE COHOMOLOGICAL FIELD THEORIES
AND WEIL-PETERSSON VOLUMES

by Yuri I. MANIN and Peter ZOGRAF

0. Introduction and summary.

The aim of this paper is to record some progress in understanding
intersection numbers on moduli spaces of stable pointed curves and their
generating functions. Continuing the study started in [KoM], [KoMK] and
pursued further in [KaMZ], [KabKi], we work with Cohomological Field
Theories (CohFT), which is the same as cyclic algebras over the modular
operad H^Mg^n = H^{Mg^+ii K) in the sense of [GK] (here K is a field of
characteristic zero). Such algebras form a category with symmetric tensor
product and identical object. Isomorphism classes of (slightly rigidified) in-
vertible objects form K-pomts of an infinite-dimensional abelian algebraic
group which can be called the Picard group of the respective category. This
group can be identified with the product of K* and a vector space L con-
sisting of certain families of elements in all H*(Mg^mK)sn. The space L
is naturally graded by (co) dimension.

(A) The first problem is the calculation of L. To our knowledge, it is
unsolved, and we want to stress its importance. We know two independent
elements Ka and ^a m each odd codimension a ^ 1, and one element K,a in
each even codimension a ^ 2. There are only two divisorial classes in L,
namely, ^i and [L\. As it follows from the results of [KaMZ], the genus zero
restriction of L is generated by the /^-classes, and in genus one there is just
one additional class ̂  (see [KabKi]).

Keywords : Moduli spaces — Cohomological field theories — Weil—Petersson volumes.
Math classification: 14H10 - 14N10 - 58D29.



520 Y.I. MANIN, P. ZOGRAF

(B) The second problem is a description of a formal function on L (or
K* x L), the potential of the respective invertible CohFT.

It turns out that evaluating this function on the subspace generated
by Ka only, we get essentially E. Witten's generating function for r-
intersection numbers (total free energy of two dimensional gravity) but
written in a different coordinate system: the respective nonlinear coordinate
change is given by Schur polynomials. The proof uses the explicit formula
for higher Weil-Petersson volumes of arbitrary genus derived in [KaMZ].
This completes the calculation of the total generating function for these
volumes: the genus zero component was calculated in [KaMZ], and the
results of [IZu] about the genus expansion of the total free energy now allow
us to express all higher genus contributions through the genus zero one. This
is a version of the argument given in [Zo], see also Theorem 4.1 below. It
also leads to a complete proof of Itzykson's conjecture about asymptotics
of the classical Weil-Petersson volumes of Mg^n, see [Zo], formula (7):

f̂-T-Pn)! = ̂ -l+t(s-l)?+Wn)), n-oc.

For genus zero it was proved in [KaMZ]. The constant C does not depend
on g. It was mentioned in [KaMZ] that it is expressible via the first zero
of the Bessel function Jo- We supply here a detailed proof and extend it to
all genera.

Looking at the identification of generating functions from the other
side, we realize that the complete potential as a function on the moduli
space of invertible CohFT's is a natural infinite dimensional extension of the
total free energy. It would be interesting to derive differential equations for
this function extending the Virasoro constraints and higher KdV equations.

Finally, we discuss several related constructions and analogies:

(C) The cohomology space of any projective algebraic smooth man-
ifold V carries a canonical structure of CohFT (quantum cohomology).
The identity object of the category CohFT is the quantum cohomology
of a point. It is tempting to interpret any other invertible CohFT, T, as
generalized quantum cohomology of a point, and to define the generalized
quantum cohomology ofV as the cyclic modular algebra H*(V) (g) T. The
potential of this theory restricted to the /^-subspace can be derived from
the potential of V with gravitational descendants. Of course, it is an ad
hoc prescription which must be replaced by a more geometric construction.

This sheds new light on the mathematical nature of the large phase
space (see [W]): according to the comments (B), it must be a part of a very
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WEIL-PETERSSON VOLUMES 521

large phase space which is a suitably interpreted moduli space of generalized
quantum cohomology.

(D) The structure of the operad AT*(M^, K) restricted to the n = 2
part of it gives rise to an interesting bialgebra. A part of its primitive
elements can be obtained from L. It would be interesting to describe all
of them. The action of this bialgebra on H*(V) can be derived from a
complexified version of the path groupoid of V. This raises several problems
of which the most interesting is probably the construction of the quantum
motivic fundamental group, upon which this groupoid might act.

1. The space L.

By definition, L C Y[ H^(Mg^n^K) is the linear space formed by
all families I = {lg,n ^ H*(Mg^niK)} satisfying the following conditions:

(i) I g ^ ^ H ^ C M g ^ K ) ^ .

(ii) For every boundary morphism

(1) b : ^i^i+l x ^2,^2+1 -^ ̂ n

with g = g\ + ̂ 2? ̂ i + ̂ 2 = ̂ , we have

(2) ^*(^,n) = ^i,ni+l 01+10 ^2,n2+l-

(iii) For any boundary morphism

(3) 6': Mg,,^^Mg^

we have

(4) 6'*(^n)=^-l,n+2.

Recall that the boundary morphisms b (resp. V) glue together a pair
of marked points situated on different connected components (resp. on the
same one) of the appropriate universal curves.

PROPOSITION 1.1. — (a) L is graded by codimension in the following
sense: put L^ = L H n,,n H^^M^ K), then L = ̂  L^.

(b) Let (H, h) be a one-dimensional vector space over K endowed
with a metric h and an even basic vector Ao such that /i(Ao,Ao) = 1.
-For any structure of the invertible CohFT on (H, h) given by the maps
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522 Y.I. MANIN, P. ZOGRAF

Ig^n : H^ -^ H^Mg^K) put Cg^n = ^,n(A^). Let P be the group
of the isomorphism classes of such theories with respect to the tensor
multiplication (isomorphisms should identify the basic vectors). Then the
following map K* x L —> P is a group isomorphism:

(5) (^ {^n}) ̂  Kn = ̂ -2+n OX? (/,,,)}.

The proof is straightforward: cf. [KoMK], sec. 3.1, where most of it is
explained for genus zero. Notice that the statement on the grading means
that if one puts Ig^n = Ea4^ with 4^ ^ H^^Mg^K), then / e L is
equivalent to l^ 6 L for all a, where ^(a) = {4^}-

2. Classes Ka and /^a.

Put

f ( ( { n \\^\ -
(6) ^ = { ^,n;a = 7T* Ci 0;̂  ^^ € H^^g^^

r2a/7i/f z^\5'n

- i=l

where c^n is the relative dualizing sheaf of the universal curve TT = ^g,n ''
Cg^n -^ ^^,n5 and Xi are the structure sections of TT.

Furthermore, with the same notation put

(7) Ua = { ̂ ,n; a = ch^TT^n) }.

Classes l^g,n;a vanish for all even a: see [Mu].

Both K,a and [LQ, belong to L^: for K, this was noticed, e.g., in [AC], and
for p, in [Mu]. These elements are linearly independent for odd a because,
for example, f^g,n;a is lifted from Mg^ for g ^ 2, or from Mi^i, whereas
K'g,n;a IS not.

Remark 2.1. — The classes ^,n; a are denoted c^n(a) in [KaMZ]. We
use this opportunity to clarify one apparent notational ambiguity in that
paper. Namely, the initial definition of o^n(a) given by (0.1) in [KaMZ]
coincides with our (6). On the other hand, specializing the formula (2.4) of
[KaMZ] for ^^(ai,..., dp) to the case p = 1 we obtain a formally different
expression

^,n(a) = TT^Ci^+i^^-n)^1),

where Cg^n is canonically identified with Mg^i and Xn+i '- Mg^i —^
Cg^n-^-i is the respective section. Actually, the two definitions coincide

ANNALES DE L'lNSTITUT FOURIER
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because there exists a canonical isomorphism on C,g,n

523

g,n 1^^ ^«4+la;<?,n+l•
^==1

3. Three generating functions.

Witten's total free energy of two dimensional gravity is the formal
series
(8)

00 00 ^ ,F(^...)=^(^I,...)=E E ^^n^
9=0 9=0 ^i-l)h=3g-3 i=0 l'

Here (r^r[1...) is the intersection number defined as follows. Consider a
partition di + ... + dn = 3g - 3 4- n such that IQ of the summands d, are
equal to 0, ^ are equal to 1, etc, and put

(9) (^or[l...)=(r^...r^)= [_ ^ ... ̂
•7^,,

where ̂  = ̂ ^;, = ci(^*o;p^) and n = ̂ .

The generating function for Aig-Aer WeiJ-Petersson volumes was in-
troduced (in a slightly different form) in [KaMZ]:

00

(io) ^(^...^E^C^i--)
<7=0
00 00 QQ

-EE E (W2...)^!!^-
^=0 n=0 |m|=3^-3+n a=l a'

Here and below m = (m^m^.. .m^g-s+n) with |m| = E^'i3^^^
and

(11) ^r1/^2 . . . } = = / 1 ^ml ^m2 o ^m35-3+nv / \ 1 2 / / n/p,n;l^,n;2 • • •^,n;3^-3+n
•^ff.n

(all integrals over the moduli spaces of unstable curves are assumed to be
zero).

Actually, (10) is a specialization of the general notion of the the
potential of a CohFT, (H, h; {^,n}), which is a formal series in coordinates

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



524 Y.I. MANIN, P. ZOGRAF

of H and is defined as (exp (7)) where 7 is the generic even element of H
and the functional (*) as above is the integration over fundamental classes.
Considering variable invertible CohFT's, we will get the potential as a
formal function on H x K* x L which is a series in (x, t, Sa, r^,...). Here x
stands for the coordinate on H dual to Ao, t for the coordinate on K* as in
(5), Sa (resp. r^) are coordinates on L dual to i^a (resp. /^a), and dots stand
for the unexplored part of L (if there is any). More precisely, potential of
the individual theory (5) is

<S>{x^t) = ̂ ^>g(x^t) = ̂ (exp(^Ao))<,

_y(W^A^))_^^ r

~^ n} "^^k/ p('n)•

Now make Ig^n generic, that is, put

^'n = ̂  (^a^n; a + ̂ ,̂n; b +•..).
a.fc,...

Collecting the terms of the right dimension, we finally get the series

(12) ^(X, t, 5i, S-2, . . . , T-i, F2, . . .) = ̂  ̂ g{x, t, Si, 52, . . . , ̂ 1,^2, . . .)

9

^n 00 ^ma 00 rPb
. V^ Jb ^-2+nV^/ mi 7712 ,,Pi.,P2 \ TT ^a TT ' 6-Z^^ ' 6 2^1 ^2 • • • ^ ^ • • • / i i ^ - f i l . - -
^n n- a=l ma- b=l pb-

where the inner summation is taken over m, p , . . . with |m| + |p| + . . . = =
3g - 3 + n.

Putting here t = l,r*b == . . . = 0, we obtain (10). The following
Theorem 4.1 shows, that making an invertible change of variables in (8)
restricted to i\ = 0 we again can get (10). Thus (12) can be considered as
a natural infinite dimensional extension of (8).

Some information about the coefficients of (12) with non-vanishing
pb is obtained in [FP]. If L is not generated by the K- and /^-classes, these
coefficients provide the natural generalization of Hodge integrals of [FP].

ANNALES DE L'lNSTITUT FOURIER
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4. Relation between generating functions.

The main result of this section is:

THEOREM 4.1. — For every g == 0,1,... we have

K g ( X , S - t , . . . ) = Fg(to,t-i,...)\tQ=x,tl=0,tj+l^Pj(Sl,...,Sj)'

Here pj are the Schur polynomials defined by

( 00 \ 00

1 - exp - ̂  X'Si j = ̂  A-^-O?!,..., Sj).
i=l ) j=l

Proof. — The statement of the theorem is a convenient reformulation
of formula (2.17) of [KaMZ]:

/.-mi ^39-3+n\
^1 " ' ^Sg-S-^-n /

mi!.. .7713^-34-^!

_ ̂  (-l)l|m||-fc (^(1)1^...^)^)

^ - 2^ J,\ ^ mW\...mW\
k==l n^m^+.-.+mW

where |[m|| = ̂ m^ m^ = (m^,... ,m^_3+J 7^ 0, m^! = m^!

•••^J-s+n1- To show this, fix m = (mi, . . . ,m^g-.^n) and compare
the coefficients at the monomial x ' ^ s ^ 1 . . . s^g39.^^ in the series Kg and
F^(rr,0,pi,p2, • • •)• The contribution from the term

t13

(i4) (^..^nn
( 1 7 .'J-

to this coefficient is nontrivial if and only if IQ = n, l\ = 0 and there exists
a partition m = m^ + ... + m^ with k = l^ + Is -(- . . . such that for
any j = 2,3, . . . there are exactly lj sequences m^ = {m\\m^\...) with
|m^| = j - 1. Then, obviously, (r^1 . . .) = (^^(1)1+1.. .r^w^) .
Let us subdivide the set of k -==- l^ + h + ... sequences m^ into subsets
consisting of equal sequences and denote the cardinalities of these subsets
, ,(1) ,(2) ,(1) ,(2) ,(1) ,(2) , ^ ,(a) _ , g_ ,
°y ^ ^2 -> • ' ' ' "3 ' "3 ' • • • •> "j ' "j i ' ' • -> so lnal 2^a "j ~ h' ^mce lne

polynomials pj are explicitly given by

P,(.,,..,.,)=- ̂  n^1)"1'^.'mi
|i-n|=^' i=l

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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we can rewrite the contribution from (14) corresponding to the partition
m = m^ + ... + m^ as

n 1 \ k ( ^-^n m^'w^,i«.-in,»i«>jfyn—ra;n - n (-l)•";"^
1 1 3 j^lla^ ' i=l \ b=l m}) !

(15)
= f_nl|mH-fc 1 (^|m(i)|+l^T|^),^) ̂ r^C-^

v / n-a^ m(l)!...m(fc)! n!

Since there are exactly k\/ n^ ̂ a)l partitions of m = (mi , . . . , m^g-^n)
that are equivalent to the above partition m = m^ 4- ... + m^ under
permutation of indices 1,..., k, the coefficient in (15) coincides with the
corresponding term in (13), which completes the proof.

COROLLARIES 4.2.— It follows from Theorem 4.1 that all known
properties of the function F can be automatically translated to K. First,
F satisfies the Virasoro constraints (or, equvalently, 912F/9t^ is a solution
to the KdV hierarchy). The same is true for K up to a change of variables.
However, one should take into account that in order to get K, we first
restrict F to the t\ = 0 hyperplane so that the derivatives in the in-
direction must be first eliminated.

Second, we can express each Kg with g ^ 1 in terms of KQ in the same
way as it was done in [IZu] for F. Let us remind the genus expansion of
F obtained in [IZu] (cf. also [EYY]). Put UQ = F^ where a prime denotes
the derivative with respect to to, and define a sequence of formal series
Ji,/2,. . . by

h=\-\, 4+i=4. A; =1,2, . . .UQ UQ

Then Fi == ^ log^o, and for g ^ 2

3<7-2 .rrife
/lfi\ p — V^ / m2 ms m3g-2\ /2^-2+||m|| TT ^fc{1Q) l^g- / , \T2 Tg ...T3^_2 ;^Q J^ _-y.

^(z-l)m^==39-3 ^=2 k '

Substituting here to = x, t-^ = 0 and ^4-1 = p,(si,.... 5,), z ^ 1 we get the
identical formula for Kg.

ANNALES DE L'lNSTITUT FOURIER
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5. Topological interpretation of the genus expansion.

Differentiating n times the both sides of (16) with respect to to and
using the definition of I k , one easily gets that

f)nu / ̂ jr \l~9-\\m\\ 3^-3+n/^_^3 . m^OF^ - y a9^ ( 0 - F O } n ( °\
^ '^fcs./111 ̂  n ^tw)

with certain constants a^ depending on g , n and m = (mi , . . . , msg-3+n)-
These constants are linear combinations of the intersection numbers
{r^r^3 . . . ) , and the corresponding p (3g — 3 + n) x p (3g — 3) matrix (where
p (k) is the partition number of k) can be written quite explicitly (cf. [EYY],
Theorem 1 and Appendix D). Below we give a topological interpretation
of the numbers a^; details will appear elsewhere [GoOrZo].

Denote by tz € H^BU.Q) the class associated with the hyperplane
section line bundle on CP1; the classes tz form the canonical multiplicative
basis of the homology ring H^(BU,Q)). Let us treat the classes ^ ^,n;i ^
H^^Mg^niQi) as the components of the Chern character of a (virtual)
vector bundle on Mg^ni and denote by <^g,n;k the corresponding roots. Put
Q(a) = l+]C^i ̂ ti and consider the homology class in H^g-e^n^U^)
defined by

\Tf 1 — / n D(rv . } — V^ h9^j.mi ,'m3g-3+n
[^p,nj — /_ YY^V^g^k) — / , 0^ ^l '"hg-3+n-

JM9^ k |m|=3^-3+n

Similar to K{x^ si , . . . ) , we introduce the formal series

3^-3+nB(^,..)=^ ^ ^ n c1.
g,n |m|=39—3+n ^=1

THEOREM 5.1. — (a) The classes [Mo,n] form a multiplicative basis of
the homology ring H^(BU^ Q) and for any g ^ n we have the decomposition

[Mg,n} = E <1 "n [M°."]mi
|m|=3g-3+n ^=1

in H^(BU,Q)) with the same constants a^1 as denned above.

(b) The series K{x^ s\,...) and B(x^ i\,...) are related via the formula

K(x, si, . . . ) = = B(x, t^...) |t,=^(^,..,s,),

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



528 Y.I. MANIN, P. ZOGRAF

where qi are the ordinary Schur polynomials denned by

( 00 \ 00

exp ^A^, -l+^A^i,...^).
z==l / j=l

The proof essentially follows from Theorem 4.1 and formula (16).

Remark 5.2.— If we formally put Q(^) = E^o^^ then for

Witten's total free energy we have the formula

F(^I,...)=^- i nw^)-
^,n fl" JM9,r^ ,=1

This is reminiscent of J. Morava's approach to Witten's two dimensional
gravity [Mo], although we do not make use of complex cobordisms.

6. Asymptotics for the volumes.

We start with defining some constants. Consider the classical Bessel
function

_(- l ) - /^x-w=\-(^[j) •
yn=0 ' / ' /

Denote by JQ its first positive zero and put

(17) xo = -^o^oOo), yo = -^j^ A = -j^J^jo).

Constants XQ and A are positive. Put also Vg^n = (^-3+n). Recall that
the Kahler form UJWP of the Weil-Petersson metric on Mg^ extends as
a closed current to Mg^n and [o;^p] = 2/7^2^l in the real cohomology
(see [Wo]). This means that, up to a normalization, Vg^n are the classical
Weil-Petersson volumes of moduli spaces. In the unstable range we put by
definition Vg^n = 0 for 2g + n ^ 2 and Vb,3 = 1.

THEOREM 6.1.— We have the following asymptotical expansions
valid for any fixed g and n —> oo:

c8' at^t-^'c.+^^^+E^)n!(n+3,-3)I - '"T'' *» \ ^

ANNALES DE L'lNSTITUT FOURIER
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where

(19) Bo=———7-V-> B,=-
A y r ( l\^ 48

\ 2 / °

and for g ̂  2

(20) Bg = ————————Aa2———.———— (T,33-3).
2-(3,-3)!^(5^5)^(2

Remark 6.2. — By definition,

-23('-3)=/_ ^•••^-3.
^A^sg-s

/.-3<?-3v _
\ ' 2 / —

These numbers can be consecutively calculated using a simple recursive
formula established in [IZu], sec. 6. We reproduce it here for a reader's
convenience. Put bo = -1, b, = ̂  bg = I5^^5) (r^-3) for g ^ 2.
Then we have

25^2 - 1 , 1 ̂  ,
9+1 = ——24—— 9 + 2 ̂  ̂ +l-m0m .

m=l

^ooEquivalently, the formal series \(t) = ^^obgt' 2 satisfies the first
Painleve equation

^X"+X2-t=0.

The constants Bp^ in the asymptotical expansion (18) are also
calculable in terms of known quantities: see below.

Proof 6.3 of Theorem 6.1.— The proof breaks into two logically
distinct but tightly interwoven parts.

In the first part we calculate the smallest singularity of the function
00 ,.<") ^Eî f̂ r-

and establish its behavior near this singularity. It turns out that the
convergence radius of (21) is XQ (see (17)), and that near this point the
function (or its derivative for g = 0,1) can be represented as a convergent
Laurent series in (xo - a;)1/2 with the leading term

(22) ^)^-_(^_^
A2

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)
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(23) ^-A^———^48 (.TO - x}

and for g ^ 2

(24) ys(a;) ~ 2^-3)! ̂ 3S^ ̂ ° - x^ •

The right hand side of (18) can now be obtained in the following way.
Expand each monomial dy{xQ - xY into the Taylor series near x = 0 and
take the sum of the standard asymptotic expansions of their coefficients in
n. The leading singularities (22)-(24) produce the leading terms in (18).

The justification of this procedure is the second part of the proof.
Instead of proceeding directly, we will show that we can apply to our
situation Theorem 6.1 of [O], Chapter 4, which is a version of the stationary
phase method.

Now we will explain the precise meaning of (22)-(24) and prove the
statements above.

The genus zero generating function y(x) := ^{x) near zero as
a formal series is obtained by inverting the Bessel function x{y) :=
-^/2/Jo(2\/1/)• A simple direct proof of this fact based upon an earlier
result by P. Zograf is given in the introduction of [KaMZ]. The derivative
of x(y) in y is Jo (2^). All roots of this function are real and simple (see
e.g. [0]). Clearly, the first root is yo (see (17)). On the half-line (-00,yo)
the function x(y) strictly increases from -oo to XQ. It follows that these
half-lines are identified by a well defined set-theoretic inverse function
y(x). Since x(y) is holomorphic (in fact, entire) and y{x) is a series in x
with positive coefficients, it converges to the set-theoretic inverse in the
interval (-xo.xo) and in the open disk \x\ < XQ. Near y = yo we have
x{y) = XQ- A{yo - y)2 + 0((yo - y)3) (see (17)). Projecting the complex
graph of x(y) in C2 to the y-oxis we see that, over a sufficiently small
disk around y = yo, the function (xo - x)^ lifted to this graph is a local
parameter at (xo.yo). Hence y(x) can be expanded into Taylor series in
(XQ — x) '2 starting with

(25) y = yo - -^ (^o - x)^ + 0{(xo - x)).

This explains (and proves) (22).

Notice that XQ is the closest to zero singularity only on the branch
of y{x) described above and analytically continued to the cut complex
plane C \ [xo, oo]. The other branches contain a sequence of real positive

ANNALES DE L'lNSTITUT FOURIER
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ramification points tending to zero. In fact, the critical values of Jo{x) are
real and tend to zero.

We now pass to the cases g ^ 1. Formula (10) shows that (pg(x) is
the specialization of Kg(x,s) at 5i = 1,^2 = 53 = .. . = 0. Therefore, in
view of Theorem 4, it is the specialization of Fg{to, ̂ i , . . . ) at to = x, i\ =/ _ i \ fc
0, tk = ( fc_ni ^or ^ ^ 1- I11 particular, UQ gets replaced by y{x) and prime
means now the derivation in x so that ^i(x) = ̂  \ogy\x) which together
with (22) establishes (23).

Finally, to treat the case g ^ 2 denote by fk{x) the specialization of
Ik corresponding to the above values of ti. So, we have

w f^-^. f»-^
and
(27)

3^-2 » ,fk(x)1^
k^

/. (^\ _ V^ (T^T13 Tl39~2\^lf(T}29~'2^li TT J k y x

^ g ^ ) — 7 . ^2^ • • • ̂ 9-2 / y [ x ) " 11 —i",
^i-l)l,=3g-3 k=2 k'

Since y ' ^ x ) x^y) = 1 on the graph of our function, the r. h. s. of (27) can
be rewritten in the following way:
(28)

V- . ^lU-h,l3 _^-2V 1 y^O/)4

E -̂i <r2T3-T3ff-2)^)2-2^S^-^
^^ y=y{x)

Each term of (28) as a function of y is meromorphic on the whole ^/-plane.
Hence we can substitute into its Laurent series at XQ the Taylor series of
y(x) at .TO and get the Laurent series for ^g{x).

In particular, an easy induction starting with (25) shows that all fk(x)
are finite at XQ. On the other hand, y ' { x } replacing UQ in (16) starts with
—^-r {XQ — x)~^. Therefore the leading singularity in (27) is furnished by
2.A 2
the unique term for which the sum ̂  ̂  is maximal, that is,

02,...^3<7-2)=(3^-3,0,...,0).

To deduce (24) from here, it remains to notice that ^2(^0) = 2A.

We now pass to the second part of the proof. Let q(x) denote y(x)
or one of the summands in (27). We want to get the asymptotic expansion
(for n —>• oo) of the integral taken over a small circle around zero

(29) —— [ x-^^ q(x)dx.
Z7T1 J
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According to the previous discussion, this contour can be continuously
deformed in the definition domain of our branch oiy(x). The natural choice
is to take F to be the inverse image of the circle \y\ = yo under the map
x ^-> y{x). We owe to Don Zagier the crucial remark that F is a closed
curve without self-intersections, x ^-> x(y) is a homeomorphism of F, and
the circle \x\ = XQ lies strictly inside F except for one point x = XQ where
this circle touches F. In other words, \x(yQe^)\ > XQ unless (f) € 27rzZ. (The
easiest way to convince oneself in this is to look at the computer generated
graph of \x(yoe^^)\—XQ produced for us by Don Zagier. One can also supply
a straightforward analytic proof which we omit.) Denote by r-(- the part of
r in the upper half-plane run over clockwise and by F_ the lower part run
over counterclockwise so that

^ 2^ /a;-(n+l) ̂ dx = 2^ (/„ - /J x-(n+l) qwdx-

Now we have to check that the conditions (I)-(V) stated in [O], IV.6.1 are
satisfied so that we can apply Theorem 6.1 of loc. cit. to our Jp . Except
for (III), everything is already checked. In particular, the crucial condition
(V) is precisely the fact that F includes the circle \x\ = XQ. A part of the
condition (III) requires the order of q(x) at XQ (Olver's A — 1) to be greater
than —1. Since in our situation this order can be | (1 — g) (for the leading
term when g ^ 2) we have to start with representing q(x) as qoo(x) + qo{x)
where qoo is a linear combination of negative powers of (XQ — x)^ and the
order ofqo{x) is greater than —1. Then the first summand is treated directly
whereas for the second one we have the stationary phase expansion.

This completes the proof of Theorem 6.1. We will now complement
it by an explicit prescription for the calculation of all the coefficients Bg^.
To adapt Olver's formula IV. (6.19) to our situation, notice that his ^ is 1,
and his A — 1 is now the order of qo(x) at x = XQ which depends on g and
on the summand in (27) that we are treating. Define the coefficients a,k by

00

(31) o;oe^o(^) = ]>>^+A-1

s=0

near v = 0 (this is Olver's formula IV. (6.09)). Then the asymptotic
expansion of (29) for even g reads

1 f 1 00

(32) S* /. ̂ "'W^ = ̂  .o '̂ gr(t + A) ̂ ^

from which arbitrary number of coefficients Bg^ can be calculated.
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7. The path groupoid in quantum cohomology.

The first term of any operad is a monoid. Since H^M is the operad of
coalgebras (with comultiplication induced by the diagonal), we get a bial-
gebra B^ = ^g^iH^{Mg^) and the dual bialgebra B* = ]~[^i ff*(M^,2).
More precisely, denote here by b the family of boundary morphisms

^i,<?2 : ^1,2 x M^,2 -^ ^i+<?2,2

glueing the second point of the first curve to the first point of the
second curve. It induces a multiplication on the homology coalgebra and a
comultiplication on the cohomology algebra

^ : B^B^-^ B^ V : B* -^ B* 0 B*

making each space a bialgebra. Moreover, renumbering the structure sec-
tions x\ <->• 3:2 we get an involution s of Mg^ inducing an involution of
i^c, resp. B*. The latter is an automorphism of the comultiplication on
homology, resp. multiplication on cohomology, but an antiautomorphism
of the remaining two structures, because from the definition one sees that

&°^i ,2 == s o bo (s x s)

where a\^ is the permutation of factors.

PROPOSITION 7.1.— Let V be a smooth protective manifold. Then
the family of Gromov-Witten correspondences I g^ € A^(y2xMg^) defines
an action of the algebra B^ and a coaction of the coalgebra B* on H*{V).

This is a part of the general statement that H*{V) is a cyclic algebra
over the modular operad H^M.

The geometry of this (co)action (explained e.g. in [KoM]) shows that
morally it reflects the properties of the complexified groupoid of paths on V:
a stable map of a curve with two marked points to V should be considered
as a complex path from the first marked point to the second one. This
agrees with the composition by glueing the endpoint of one path to the
starting point of another, and the smoothing of the resulting singularity
plays the role of homotopy. Notice that there may well exist non-constant
stable maps of genus zero with only two marked points whereas there are
no stable curves with this property. For this reason, one may hope that B^
(and possibly B*) can be extended by the genus zero component, perhaps
by taking an appropriate (co)homology of the respective Artin stack Mo^
which might be close to the (co)homology of BGm-
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As we mentioned in the Introduction, it would be highly desirable to
introduce quantum fundamental group of V, with appropriate action of our
path groupoid. In any case, we are interested in the primitive elements h of
B* satisfying b*{h) == h 0 1 4-1 0 h. Clearly, restricting L to its n = 2 part
we get a supply of such elements. Their full classification may be easier
than that of L.
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