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HYPERBOLICITY PROPERTIES
OF QUOTIENT SURFACES

BY FREELY OPERATING ARITHMETIC LATTICES

by E. OELJEKLAUS and C. SCHMERLING

0. Introduction.

During the last decades arithmetic quotients of bounded symmetric
domains have been intensively studied. However, only few results on the
hyperbolicity of these quotients are known. A complex space Y is called
hyperbolic^ if the Kobayashi pseudo metric dy on Y is a metric. Brody
[Br] has proved that a compact complex space is hyperbolic if and only
if every holomorphic map from C into Y is constant. In this paper we
shall prove that a special class of twodimensional arithmetic quotients of
bounded symmetric domains is hyperbolic.

THEOREM. — Let D be a bounded symmetric domain in C2 and
r C Aut° D an irreducible arithmetic lattice which operates freely on D.
Then the cusp-compactification X of X == D/Y is hyperbolic.

Note that Y is called hyperbolic modulo S C Y if d y ( x ^ y ) = 0
implies that x = y or that x € S and y € S. Let TT : X —> X be the minimal
resolution of the singularities of X and R := 7T~1{X\X).

COROLLARY. — X is a minimal surface of general type and hyper-
bolic modulo R.

Keywords: Bounded symmetric domain — Arithmetic lattice — Surface of general type.
Math. classification: 32M15 - 32N15 - 32F45 - 32J15.



198 E. OELJEKLAUS & C. SCHMERLING

In the first section we briefly recall the relevant aspects of the theory
of arithmetic quotients of bounded symmetric domains. Then we deal
with the logarithmic canonical bundle. Our method of proving Kobayashi-
hyperbolicity is to construct a so-called hyperbolic pseudo metric on X.
This is a hermitian pseudo metric with distance-decreasing property, which
degenerates only on a proper subvariety. In our situation the push-down of
the Bergman metric yields a Hermitian metric with negative holomorphic
sectional curvature on X = D / F . We modify this metric by multiplying
it with a suitable non-negative real function to get a pseudo metric on X
which still has the distance-decreasing property for holomorphic mappings
HI -^ X and degenerates exactly in the cusp points. For this purpose the
vanishing order of the function has to be carefully adjusted. We apply a
method which was used by Schumacher and Takegoshi in the compact case
[ST]. Of main importance for us were the results of Mumford in [Mu],
in particular, the estimates for the degeneration of the induced metric on
X C. X along the boundary divisor R^ see also [Ko], Our considerations
are also based on the explicit description of the minimal resolution X for
the cusp singularities given by Hemperly [He] for arithmetic ball quotients
and by Hirzebruch [Hi] for the Hilbert modular surfaces. In the situation
D = II2 we apply a theorem of Tai [AMRT], also proved with different
methods by Mumford [Mu], which guarantees for sufficiently small F many
pluricanonical holomorphic sections over X which vanish of high order
along the boundary divisor jR.

The above theorem is a generalization of results of the doctorate
thesis [S] of the second-named author, who would like to thank Siegmund
Kosarew for encouragement and helpful discussions.

1. Neat lattices and cusp resolution.

Let D be a bounded symmetric domain in C2 equipped with the
Bergman metric and Aut D the real Lie group of biholomorphic automor-
phisms of D. Recall that D is either biholomorphic to the two dimen-
sional ball B2 = {(^,w) € C2 | \z\2 + |w|2 < 1} or to the twofold prod-
uct H2 of the upper half plane. The groups AutB2 = 5T/(2,1,C)/Z3 and
Aut° H2 = PGL(2, R) x PGL{2, R) are simple and semisimple respectively.

Throughout this paper F denotes a lattice in G:= Aut° D, i.e. F is
a discrete subgroup of G and the quotient G/T has finite volume with
respect to the invariant Haar measure on G. The group r operates properly
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HYPERBOLICITY PROPERTIES OF QUOTIENT SURFACES 199

discontinuously on D. In particular, the groups F^ = {7 € f\^z = z} are
finite for all z e D. The quotient D/F carries a complex structure such
that the natural surjection D —> D/T is a holomorphic covering, ramified
in z C D if and only if I\ ^ {e}. A lattice F in POL(2, R) x PGL(2, R) is
called reducible, if F is commensurable with the direct product A = Fi x Fa
of discrete subgroups Fi,!^ C PGL(2^R'), i.e. the intersection F D A is a
cofinite subgroup (a subgroup of finite index) of both F and A. Otherwise
r is called irreducible.

At first we consider the case D = HI2. Let K = 'Q(Vd) be a totally
real quadratic number field, d 6 N square-free, and OK the ring of integers
ofK.

The embedding

a = r + 5Vd t — ^ r — 5Va =: a,

r, s € Q, of K into M induces an embeddding

SL(2,K)-> SL{2,R) x5 rL(2,R), A^ (A, A).

Now SL(2,K) can be viewed as a subgroup of S'L(2,1R) x 5'L(2,R), and
we define FK to be the image of SL(2,OK) under the canonical surjection
SL(2,R) x SL{2,R) -> PGL(2,M) x PG?L(2,R).

By a theorem of Selberg every irreducible non cocompact lattice F in
PGL(2,R) x PGI^.R) is commensurable to some FK as above, up to an
inner automorphism of PGZ^.R) x PGL(2,R). Therefore these lattices
are arithmetic in the sense of Borel [Bo].

Every lattice in AutB2 is irreducible. Note that there are non-
arithmetic lattices in AutIB2. However, if K = Q(\/^d), d G N square-
free, then every lattice F in G := AutB2 which is commensurable to
G H SL(3, OK) /^3, is arithmetic.

If the quotient X = D/T of D by an irreducible arithmetic lattice F is
not compact, then it can be compactified by finitely many points (cusps) to
a normal projective algebraic variety X, the so-called cusp-compactification
ofX.

Next we roughly describe the cusp-compactification of quotients
of bounded symmetric domains in C2 by irreducible arithmetic lattices.
This construction is a special case of a general construction in arbitrary
dimensions given by Baily and Borel [BB]. For details we refer to [He], [Ho]
in the case D = B2 and to [Fr2] for D = E2.
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200 E. OELJEKLAUS & C. SCHMERLING

The holomorphic action of G = Aut° D on D extends to a topological
action on the topological closure D of D in C2, and for x e 9D the isotropy
group Px = {g € G \ gx = x} is a minimal parabolic subgroup of G with
unipotent radical L^. Let F be an irreducible arithmetic lattice in G. A
point x € 9D is called a rational boundary point (with respect to F) if
r D Ux is a cocompact lattice in Ux. The set of rational boundary points is
invariant under the r-action on D, and the F-orbit Yx = {^x 17 e F} of a
rational boundary point is called a cusp. The assumptions on F imply that
the set Ay of cusps is finite. The complex structure on X := D/T can be
extended to a (uniquely determined) complex structure on X := X U Ar
such that X is a normal complex space, called the cusp-compactification
of X. Every cusp is a singular point of X. If F does not operate freely on
D, then there are also finitely many singular points in X corresponding to
z € D with I\ 7^ {e}. In every cusp K, G Ay we fix a point x^ and define
I\ :== r D PX^' Let r' be a cofinite normal subgroup of r. The cusp K
decomposes into finitely many F'-cusps ^ = ̂  U . . . U /^ , T\ = [F : F^F'],
and the holomorphic surjection X' = D/V —> X extends to a holomorphic
map a : X' —^ X with cr"^) = {^' € Ay \ ^ ' C K.} and ^cr"1^) = r^.

The vector space Vn of holomorphic r-automorphic forms of weight
n on D is finite dimensional, and each basis of Vn provides a holomorphic
embedding of X into some PN for ne N sufficiently large. In particular, X
is a projective algebraic variety, and there is a very ample holomorphic line
bundle 0{n) on X such that the global holomorphic sections of 0(n) are
in 1-1-correspondence with the elements of Vn.

Hereafter we assume that r operates freely on D. Then X = D/Y is
a complex manifold, and the natural surjection D —>• D/Y is an unramified
holomorphic covering. For the minimal resolution TT : X —> X of the
singularities ofX the divisors Tr"1^), K € Ar, have normal crossings. Their
structures have been described in detail by [He] and [Ho] for D = B2, and
by [Hi] for D = H2:

a) D = B2 : E^ := Tr"^) is a smooth elliptic curve for every K € Ar.

b) D = H2: RK := Tr"1^) is either a rational curve BQ with an ordinary
double point and self intersection number B^ < — 1 or a cycle of r ^ 2
smooth rational curves Bo, . . . , Br-i with the following structure:
a) r == 2: ^1,^2 intersect transversally in two points, and B2 ^ —2,

Bj <, -3.
/?) r > 3: BiBi^ = BoBr-i = 1, B2 <-2, B2^ < -3, 0 <.i <, r-2.

For the following considerations we have to put an even stronger
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HYPERBOLICITY PROPERTIES OF QUOTIENT SURFACES 201

assumption on r, namely that F is a neat subgroup of G. Recall that an
element g e GL{n, C) is called neat, if the subgroup of C* generated by the
eigenvalues of g is torsion-free. A subgroup H C GL(n, C) is called neat if
every element in H is neat. In our situation we call F a neat subgroup of
G if every element of F has a neat representative in 677(2,1,C) (resp. in
5L(2,]R) x S'L(2,IR)). A neat arithmetic lattice F in G operates freely on
D because every finite subgroup of F is trivial.

For every finitely generated number field with ring of integers o
and every 7 e SL(n,o}, 7 7^ e, the group SL{n,o) contains a cofinite
neat normal subgroup Ai with 7 ^ Ai, see [Bo]. It follows that every
subgroup A C SL(n,C), which is commensurable with SL(n,o), has a
similar property: If 7 e A, 7 ^ e, and Ai is a cofinite neat subgroup of
SL(n,o) with 7 ^ Ai, then A H ^}g^gA^g-1 is a cofinite neat normal
subgroup of A. This implies

LEMMA 1. — Let D be a bounded symmetric domain in C2 and
r an arithmetic subgroup of G = Aut° D. For every finite set M C F
with e ^ M the group F contains a cofinite neat normal subgroup r7 with
M n r = 0. Q

2. The logarithmical canonical bundle.

Beside the minimal resolution X -^ ~X we take more generally into
account all resolutions TT : X -^ ~X of the singularities of ~X such that R :=
Tr'^X^) has normal crossings, and we identify X with TT'^X) C X. The
canonical line bundle of X can be extended to a holomorphic line bundle
KX(\ogR) over X, which is characterized by the following property: For
every open polycylinder A C X satisfying

A n R = {(z, w) e A I z = 0} (resp. A H R = {{z, w) e A | zw = 0})

a holomorphic section of KX(logR) over A has the form

/ \(^z A j \ / .fdz/\dw\a{z, w)[ — A dw , resp. a ( z , w) ———— ) ,
\ z / \ zw /

where a(z,w) is holomorphic in A. The bundle KX(logR) is called
logarithmical canonical bundle of X (with respect to K). From the above
property it follows immediately that KX(\ogR) is isomorphic to the
holomorphic line bundle K (g) L, where K is the canonical line bundle of X
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202 E. OELJEKLAUS & C. SCHMERLING

and L is the holomorphic line bundle associated to the boundary divisor
R. Note that dim^X,!/1) = 1 for every n € N. For each irreducible
neat arithmetic lattice r in G and any n e N4" the pull-back 7r*(0(n))
of the ample line bundle 0{n) on X is isomorphic to the line bundle
(KX^ogR))^ on X, see [He] and [Mu], Prop. 3.3 and 3.4, and therefore
isomorphic to X71 (g) I/1. We note for later use:

LEMMA 2. — For every XQ^ x\ ^ X C X , XQ ^ rci, and n € N
sufficiently large, there exists some s G H°(X^ Kn 0 L71"1) with s(xo) ~^- 0
and s(x\} = 0.

Proof. — The bundle 0(n) is very ample for n ^> 0. In particular,
there exists some t C H°(X,0(n)) with t(7r(.ro)) 7^ 0 and ^(7r(a;i)) =
t(y) = 0 for every cusp point y € X\X. Then 7r*(t) € ^(X.K71 (g) J71)
vanishes on J?U{.ri} and 7r*(t)(a;o) 7^ 0. Define s := 7L-jt)- for some d -^ 0 in
H°{X,L). D

For a cofinite normal subgroup F' of F let TT' : X' —r X be a resolution
of the singularities of the cusp-compactification X of X' = P/F' such
that the divisor K := X'\X' has normal crossings. We denote by K ' the
canonical line bundle of X' and by L' the holomorphic line bundle on
X' associated to the divisor R ' . Let X' be the minimal resolution with
canonical bundle K1.

LEMMA 3. — Let F be an irreducible arithmetic lattice in Aut° HI2.
Then F contains a cofinite neat normal subgroup F' with the following
properties:

1) X' is a minimal surface of general type.

2) For every finite set B C X' C X' there exist no <E N and s e
^(X', K^0 (g) L'-1) with s(x) + 0 for every x € B.

Proof. — We may (and will) assume that IHP/F is not compact and,
by Lemma 1, that F is neat. Let F be commensurable with YK = SL(2, oj<)
for some totally real quadratic number field K. For n 6 N let Fj<(n) be
the principal congruence subgroup of FK with respect to n. The cusp-
compactification ofIHP/F^n) does not contain any rational or elliptic curve
if n is sufficiently large [Fri]. Choose F' C Fj<(n) to be a cofinite normal
subgroup of F. Then X' is a minimal projective algebraic surface with
only finitely many rational (and no elliptic) curves, all of them contained
in R ' . Therefore X' is either a minimal surface of general type or a
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HYPERBOLICITY PROPERTIES OF QUOTIENT SURFACES 203

minimal 7^3-surface, but the latter case would contradict Lemma 2, since
dimi^X',!/71) = 1 for every n e N.

To prove 2) note that the pluricanonical map fk maps X' holo-
morphically and birationally onto fk{X') C P^ for k > 5. It suffices to
study the case B == {xo}. Since XQ is not contained in any (—2)-curve,
/fe(^o) ^ fk(^)' For m ^> 0 there is an irreducible hypersurface S C P^
of degree m with /^(^'o) ^ 5'? fk(K) C 6'. This implies the existence of a
holomorphic section t e H°(X1'.K'^) which vanishes exactly on f^1^).
Define no := m/c and s := -jr for some d' ^ 0 in ^°(X', L'). D

Finally we will study the case D = B2 in more detail, assuming that F
is a neat arithmetic lattice in AutB2. Let F' be a cofinite normal subgroup
of r. Since E' := X'\X' is a disjoint union of finitely many smooth elliptic
curves £^/, ^! € Ar', the unramified holomorphic covering map X' —r X
of degree [F : F7] extends to a holomorphic map p : X' —> X, ramified
along E ' . We can easily calculate the ramification order of p over £^,
/^ € Ay. Let E^^...^E^ be the irreducible components of p"^!^)
with r^ = [F : r^r'] and F^ :== F' H I\. The map p is ramified of order
[r : r'] • [r : r^r']~1 = [r\ : r'J along these curves and the ramification
divisor of p equals

D= E E^-^i-1)^-
/<eAr ^K=I

Let ̂  := E^=i^,^ for K ^ ^^ Since K ' = p^K) (g) [P] (cf.
[BPV], p. 41) and since p*(Z) = (^^Ar^^^^ we obtain

LEMMA 4. — Let r be a neat arithmetic lattice in Aut B2 and let
r' be a cofinite normal subgroup ofT. Then

p*(jr10 r1-1) = K^ ® 0 [E^]71-^-^]
/<eAr

for aJ2 n € N. D

3. Degeneration of the Bergman metric
along the boundary divisor.

In 1977 Mumford generalized the Proportionality Theorem of Hirze-
bruch to the case of non-compact quotients of bounded symmetric domains
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204 E. OELJEKLAUS & C. SCHMERLING

by neat arithmetic lattices. For our setting we extract the following result
from the Main Theorem and Proposition 3.4 in [Mu], which yields a descrip-
tion of the invariant Bergman metric h on X along the boundary divisor
R = X\X on X.

LEMMA 5 (Mumford). — Let D be a bounded symmetric domain
in C2 and F a neat irreducible arithmetic lattice in G = Aut° D. The
holomorphic tangent bundle T and the canonical line bundle of X = D/F
can be extended to holomorphic vector bundles t and KX(\ogR) on X
such that h and (det/i)"1 define singular metrics on t and KX(\ogR)
respectively, in the following sense:

For every open polycylinder A C X satisfying

A H R = {{z, w) <E A z = 0} (resp. A D R = {(z, w) C A | zw = 0})

and for every local basis oft and of KX(\ogR) over A the following is
true:

1) There are constants C > 0 and m, n € N such that :

IM )̂1 < ^.(logM)2^
(det^-^w) < C. (log H)2-, {resp. \h^w)\ < C . (log H+log H)27",
(det^-^w) ^ C - (log \z\ +^^1)2"

for every (z, w) € A H X.

2) For every holomorphic section s € ^f°(A H X,T) the following
statements are equivalent:

i) 5 = «5|Anx for some s € H°(^t)

ii)

^,w)(^) ^ C. (log H)^ (resp./i(^)(5,s) ^ C-(log M+log H)2771

for some (7 > 0 and some m € N.

in

5(^,w) = a ( ^ w ) - (^Q-) +&(>,w)—(resp.s(>,w) =a (z ,w) - [z—\

+b{z,w)'(w—} with a,beO(A).

Proof. — (See [Mu] Main Theorem) For the equivalence i)<^ ii) see
[Mu], Prop. 1.3. For the equivalence ii)<=> iii) we refer to [Mu] Prop. 3.4. D
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From Lemma 5 we immediately deduce the following estimates for
the Bergman metric h in a neighbourhood of the boundary divisor R:

COROLLARY. — Let A be an open polycylinder in X with A D R =
{(z, w) e A I z = 0}(resp. A D R = {(z, w) C A | z • w = 0}).

For every local basis of T over A there exist constants C > 0 and
m € N such that

1^-MI ^ ^(logl^.H-^resp. \h^w)\ < C.(log M+log H)2-

.H-^H-2

for every {z, w) e A D X. D

In the situation D = H2 we shall apply a general theorem of Tai
[AMRT], Theorem 2, later also proved with different methods by Mumford
[Mu], Theorem 4.1 and Proposition 4.2, which, in this situation, reads as
follows:

Jfr is an irreducible neat arithmetic lattice in Aut° D, then for some
cofinite normal subgroup F' ofF every desingularization of X' = D/Y' is
of general type.

The unramified covering X' —> X can be extended to a meromorphic
map p : X' —f X. A finite sequence of suitable blow ups of X' leads to a
desingularization X' of X' and a birational holomorphic map T : X' —r X1

such that p := por is holomorphic. Note that X'\X' has normal crossings.
A central step in the above cited proofs of Taps Theorem is a verification
of the following statement, see [AMRT], p. 301 and [Mu], p. 270-272.

LEMMA 6. — Let m € N and s G H°(X, K^ (g) L^) with s{x) = 0
for every x € X\X. There exists a cofinite normal subgroup F' in F such
that p* {s) C ^ { X ' . K ' ^ ) . D

4. Construction of a hyperbolic pseudo metric.

Now we construct a continuous Hermitian pseudo metric on the cusp-
compactification X of X = D/T for a neat irreducible arithmetic lattice F
in Aut° D. More precisely, we construct such a pseudo metric on a suitable
desingularization X of X and push it down to X and X. This pseudo
metric will be distance-decreasing for holomorphic mappings from the unit
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206 E. OELJEKLAUS & C. SCHMERLING

disk E into X and vanishes exactly in the cusp points. By an averaging
process such a pseudo metric can be constructed for every freely operating
irreducible arithmetic lattice.

The standard Bergman metric on D is a Kahler-Einstein metric with
Kahler-Einstein coefficient A = —1. The ball B2 has constant negative
holomorphic sectional curvature Ky := —|, and the holomorphic sectional
curvature of H2 is bounded from above by K^2 := — ^ .

PROPOSITION. — Let D be a bounded symmetric domain in C2 and
r an irreducible arithmetic lattice in Aut° D which operates freely on D.
For every XQ e X C X there exists a continuous function (f) : X —> R>o
with (t){xo) > 0 and the following properties:

1) The curve R = X\X is contained in N^ := {x € X \ (f)(x) = 0},
and (f) is smooth on X\N(p.

2) The product ( f ) ' h defines a continuous pseudo metric on X which
is identically zero on R.

3) There exists a € R, 0 < a < —KD, such that for every holomor-
phic map f : E —> X and every ^ € f~l(X\N^) the equation
(1) Q^of) o^eKrk){ ) w w
holds.

Proof. — It suffices to prove the proposition for some cofinite neat
normal subgroup r' C r, replacing {xo} by some finite set B C X' =
D / T ' C X ' . In fact, if p : X' —> X is the meromorphic extension of the
natural holomorphic covering map X' —> X and if 0 satisfies the above
conditions on X' with B := p~l{xo), then^: x -^ p>o, ̂ x) := / n ^

V^/ep-1^)
n = [r : r'], has the desired properties for X and XQ. Therefore we assume
that r is an irreducible neat arithmetic lattice, see Lemma 1.

We study the cases D = B2 and D = HI2 separately.

I. D = B2

We fix no € N such t(xo) ^ 0 for some t e ^{X.K710 (g) I/10-1)) and
choose a cofinite normal subgroup r' of F with [I\ : r^] > 2no for all cusps
K G Ar, see Lemma 2 and Lemma 1. We define

s :=p*(t) e ^{X^p^K^ <g)L710-1)).
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Note that p : X' —^ X is holomorphic. In the terminology of Lemma 4 let
d € ^(^(^^Art^]^"1^) be a holomorphic section with zero-divisor
Z^GAr^ : ̂ l^- Applying Lemma 4 we note that
(/>(x) := (\s(x)\2 . \d(x)\2 . (det/i^))-^)^ for ^ e X>\

(f)(x) := 0 for x e R ' = X'VC',
is a non-negative real function on X ' .

Let A C X' be an open polycylinder with Anj^' = {(z, w) € A|^ == 0}.
Lemma 5 yields for all (z, w) C A H X':

10(^)1 ̂ (logl^l)2^!4^
with suitable constants G > 0 and n € N. In particular, (f) satisfies
condition 1) on X ' . For the pseudo metric 0 • h the corollary to Lemma 5
yields

|<^w) 'hi,(z,w)\ < C ' (log 1^1)^ . |̂

for all (2^ w) (E A H X' and suitable constants (7 > 0 and m e N. Therefore
the pseudo metric ( f ) ' h satisfies condition 2) on X ' .

Finally,
^log^o/) ^ _4 ^^(det^/i))

V 3 / 7 ^^7 ^;
9C9C 7 5^

for every C € /-1(X'\A^). Hence for a := ^ < j = -^ equation (1)
holds.

II. D = E2

According to Lemma 3 and the above remarks we assume that there exist
no e N and s e H°(X, K^ 0 L-1) with s(xo) ̂  0. Let d € H°(X, L71^1)
with zero-divisor (no + 1)-R. Then sd e ^(X.K710 0 L710), and Lemma 6
yields a^cofinite normal subgroup F' c F such that t := p*(sd) e
H^^X', K^0)^ where p : X1 -. X is the holomorphic map used in Lemma 6.
Let d' € H°(X^ L^0) with zero-divisor n^R'. We define a non-negative real
function (j) on X' as follows:
^^(^'(^^•(det^))-^)^! for xeX^

(t>(x) := 0 for x € ^' = X'VX'.
Applying Lemma 5 in both cases A D ^/ == {(z,w) e A | ^ = 0} and
A n I?' = {(2;, w) € A [ 2: • w = 0} we see that 0 satisfies condition 1) on X ' .
It follows from the corollary to Lemma 5 that ( j ) ' h also satisfies condition 2)
on X9 since 2^^ > 2 and

|(^,w)./^(^w)| < C.(log|^|)2m.|^|(2(no+ l)+2no)4^T-2^

resp. |^-^(2;,w)| < ^•(logl^l+loglwD^-l^wl1^?
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208 E. OELJEKLAUS & C. SCHMERLING

for every (z, w) € A H X' and for suitable constants C > 0 and m € N.

Finally
^log^o/) ^ 2np ^Mdetg*^))

9C9C 4no+l 9CaC ^
for every < e f-^X^N^). Hence for a := 4^- < \ = -K^z equation (1)
holds for (f) instead of (f). Let T : X' —> Xf be the birational holomorphic map
introduced at the end of Section 3. Then (f) := cj) o r~1 obviously satisfies
the statement of the proposition for X ' ' . D

Recall that the Kobayashi pseudo metric dy on a connected complex
space V dominates every continuous pseudo metric p on Y which is
distance-decreasing with respect to holomorphic mappings from the unit
disk E into Y:

dy{y, z) ^ p ( y , z) for all y , z € V.

In particular, if yo e Y and p(yo, z) > 0 for all z ^ yo in some neighborhood
of yo, then dy(^/o, z) > 0 for all z -^ yo in Y.

THEOREM. — Let D be a bounded symmetric domain in C2 and
r C Aut° D an irreducible arithmetic lattice operating freely on D. Then
the cusp-compactification X of D/T is hyperbolic.

Proof. — Let XQ C D/T C X. By the above remark it suffices to show
the existence of a continuous pseudo metric p^o on X which is distance-
decreasing with respect to holomorphic mappings E —> X and satisfies
Pxo{xo,y) > 0 for all y ^ XQ in some neighborhood U of XQ. In fact, this
implies that d^(x,y) = 0 if and only if x = y or x,y e R. In particular,
the image of every holomorphic map C —> X is contained in R, and every
holomorphic map C —^ X has to be constant. Let KD and a be defined
as above and ( j ) : X —> R>o a function which satisfies the statement of the
proposition. It is sufficient to show that for some r > 0 the pseudo metric
r • 0 • h on X is distance-decreasing with respect to holomorphic mappings
f ' . E - ^ X .

We apply a method which was used in the compact case in [ST] and
verily the inequality

«/«) := | w(0) • (/m)(i - ici2)2 ^ —^y ̂  ^
for every ^ 6 E. Recall that a < —KD and

^log^o/) ^(detCrfe)) tf.^<r\
9^ (co) = (-a)———9^———(co) = -a(/ )(co)-
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Following the standard proof of the Lemma of Ahlfors we note that there
exists Co € f~l(X\N^) with

u/(Co) = max{u/(C) | C € E}, <o = Co(/),

and therefore
Q2 log Uf

^^T^^ipg^o/) ^loga^) , c>2 2= -"ac^r"^"^^0^^^^)lc=co-
The sectional curvature condition for the metric h yields

a^Wh) (^h}(^—^-^-—(Co) >. -^D{J h)[(,o)

and obviously ̂  log(l - ICI^k^o = (1-^y

Finally we obtain

0 ̂  -a((/*/i)(Co)) - KD(rh)(Co) - ^ _ 2 , ^ -

hence
-^(o+^^^^^^l-ICol2)2^!.

This proves

^(C) < ̂ (Co)
• ^(^(Co)) l<< ^_L^ ^Vf*^^^< < / -V1 I/- |2^2 ^ ll^lloo= ^-L ^ ^ ' o^"^^^^))^ (^))(Co)( l-ICol ) < ~(~r~K~\—^a-\-J\D) 2, —\a-}-J\D)

for every ^ 6 E. D

COROLLARY. — Let TT : X —^ X be the minimal resolution of
the singularities of X. Then X is a minimal surface of general type and
hyperbolic modulo R = TT'^^X). D
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