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ALGEBRAS OF DIFFERENT1ABLE
FUNCTIONS ON RIEMANN SURFACES

by K. de LEEUW and H. MIRKIL

1. Introduction.

The structure of a C°° manifold is completely characterized
by the algebra of C°° functions on it. On a Riemann surface,
however, there is no obvious candidate for a characteristic
algebra of globally defined functions. It is the purpose of
this paper to define such an algebra, in fact denumerably
many such algebras.

The present paper is a sequel to [1] and we use the notation
and several of the results of that paper.

The main result established there is the classification of
rotating spaces of differentiable functions in the plane. These
are defined as follows. Denote by Co the space of all complex-
valued continuous functions in the plane that are zero at
infinity. For each set <t of constant coefficient differential
operators

Sa,,̂ /̂ /",

define Co(<^) to be the space of all f in Co that satisfy A/*e Co,
in the sense of the theory of distributions, for all A e a.
Each Co(<^) is translation invariant; those that are also rota-
tion-invariant are the rotating spaces of differentiable functions.

The familiar rotating spaces are C?, the space of those f
in Co having all derivatives of order ̂  N in Co, and Co° == n C?.

In [1] we show that the only other rotating spaces are the
Co(<^) for a a proper subset of

l^+^z^z": m+ n= N j
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for some positive integer N. We show that such a Co(<^) satis-
fies C? c Co(<^) <= C?~1 and that Co(<^i) and Co (^2) are distinct
if OLi and (^2 are distinct proper subsets of

l^+^z7"^: m+ M== N^.

Finally we show that each of these rotating spaces is a Banach
algebra in its natural topology.

The present paper introduces similar algebras on arbitrary
Riemann surfaces. Our main concern is showing that these
algebras determine conformal structure.

We outline our procedure. It is necessary first to introduce
the algebras associated with open subsets of the plane. Let U
be an open subset of the plane, C(U) the space of all complex
valued continuous functions on U. For each proper subset €L of

\ ̂ m4-n/^m5?l: m + n = N j

we define C(<Sl, U) to be the subspace of C(U) consisting of
those f having all derivatives of order ^ N — 1 in C(U)
and which further satisfy At e C (U), in the sense of the theory
of distributions, for all A e ai.

In § 2 we establish several useful properties of the C(<X, U).
In particular, we show that they are preserved under analytic
mappings. That is, if Ui and Ug are open subsets of the plane
and <& : Ui -> Ug is a complex analytic mapping, f o $ will be
in C(et, Ui) if f is in C(<x, Ug). This allows us in § 3 to extend
the definition of the spaces C(<X, U) to Riemann surfaces.
For a Riemann surface R and a a proper subset of

^m+n^ ;̂ ̂ ^ ^= N^

C(^L, R) is the space of those functions on R which are such
that, if ^ : U -> R is a coordinate disk, then f o <& is in C((^, U).
Because of the analytic invariance established in § 2, this
definition agrees with the previous definition if R is a planar
Riemann surface.

All the properties established for the C((X, U) now extend
to the C((X, R). In particular if Ri and Rg are Riemann sur-
faces, €L a proper subset of

l̂ +^z^?: m+ n= Nj,



ALGEBRAS OF DIFFEBENTIABLE 147

it is immediate from the definition that an analytic isomor-
phism of Ri with Rg induces an algebra isomorphism of
C(a, Ri) with C(dl, Rg); and if a is symmetric (1), an anti-
analytic isomorphism of Ri with Rg induces an algebra iso-
morphism of C(a, Ri) with C(a, Rg). The remainder of the paper
is devoted to establishing a converse of this assertion, that
algebra isomorphisms (and even homomorphisms) of the
C(OL, R) must be induced by analytic (or possibly anti-analytic,
if a is symmetric) mappings of the associated Riemann sur-
faces.

This result is established in three steps. We first show
(Theorem 3.7) that the multiplicative functionals are defined
by points, hence that a homomorphism of the function algebra
must be induced by a point mapping. Then (Propositions
4.3 and 4.4) the homomorphism problem for function alge-
bras on general R is reduced to the same problem on the
unit disk. Finally (Propositions 5.1 through 5.8) we get at
the heart of the question, and identify the homomorphisms
for function algebras on the unit disk. Thus the special ideas
of this paper lie mostly in Section 5, which can be read for
its own sake with only minimum reference to other sections.

It is worthhile summarizing our main results.

THEOREM 1. — Let Ri and Rg be connected Riemann sur-
faces, a a proper subset of

l^+^^bz71: m + n= N ^ .

Each analytic mapping of Ri into Rg induces an algebra homo-
morphism of C(a, Rg) into C(a, Ri). If a is symmetric, each
anti-analytic mapping of Ri into Ra induces an algebra homo-
morphism o/*C(a, Ra) into C(a, R^). No other algebra homomor-
phisms from C(a, Rg) to C((Sl, Ri) are possible.

Let us also list here some notation that will be used throu-
ghout the paper.

For R an open subset of the plane, or more general any
Riemann surface, we denote by C(R) the space of all conti-
nuous complex valued functions on R, (^(R) the space of
functions on C(R) that are N-times continuously differentiable,

(1) We call ($t symmetric if 6?"+ft^zm&zn in €i implies y^^fWW1 in ($L.
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CQO(R) the space of functions in C(R) that are infinitely diffe-
rentiable, D(R) the space of functions in C°°(R) that have
compact support, D'(R) the space of distributions on R,
that is, the dual space of D(R). If R is the plane E, these
spaces will be denoted simply by C, C^ C00, D and D'.

Suppose UcV. If f is a function defined on V, then f\\]
denotes its restriction to U. On the other hand if fis originally
defined on U, then /*|V denotes its extension to V by taking
f(p) = 0 for p ^ U. We shall use the latter notation only when U
is an open subset of V and f has compact support in U, in
which case /*|V has the same differentiability properties as /*.

2. Definition and properties of the C(Cl, U).

If f is a function and A is a constant-coefficient differential
operator, the statement « At is continuous » is meant in the
sense of distribution theory: there is some continuous h (uni-
que if it exists) such that

fhg=ff^g
for g that are C°° with compact support, where A* is the formal
adjoint (2) of A.

Write
_^_ ̂  _1_ ̂ _ . ̂ _\ , _6_ ̂  J_ / b _ . ̂ _\
^ "̂  2 \^x l ̂ / / n ^ ~ 2 \bx l^"/

We show in [1] that if % is some proper subset of the opera-
tors

C ^m+n

^ : m + n = N[ ,
^Z7"^71

and if
C p^^" }

a= % u -—— : 0 < m + n< N ? ,
^z^z" ^

then Co(%) == Co(<^). From now on in the present paper we
shall consider only such an (X, which we shall call a complete
proper set of rotating operators.

(a) If A = Sâ "̂ /̂ "̂ !/", A* = S(—l)^^^^"/^"1^/".
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Let U be an open connected subset of the plane. We define
C(d, U) to be the set of all functions f on U such that A/* is
continuous for each A e a. The natural topology on C(d, U)
declares that fj converges to f if, for each A e €L and each
compact K c U, A/y converges to A/* uniformly on K.

It is the purpose of this section to establish certain elemen-
tary properties of the C(^L, U).

PROPERTY 2.1. — Membership in €((91, U) can be verified
locally.

PROPERTY 2.2. — D(U) is dense in C(dl, U).

PROPERTY 2.3. — C(<si, U) is a topological algebra,

PROPERTY 2.4. — Given f e C((X, U) and y analytic on
f(U), then 9 o/*eC(a,U).

PROPERTY 2.5. — Given y analytic on U anrf /*e C((St,y(U)),
^en /*o <peC(a, U).

PROPERTY 2.6. — Given y anti-analytic on U ayid

/•eC^^U)),
?̂n /*o <p eC(a, U).

/ ^ ^ ^"*-f-n _ ^ ^ ^+71 \
( Definition : ——— e €L if and only if ——— e (St. |
\ ^z"1 •/ ^z^z" /

Each of the above properties is equivalent to, or follows
easily from, the corresponding more detailed proposition
below. In particular, it is clearly enough to establish properties
(2.1), (2.3), (2.4), (2.5) and (2.6) for the case where a consiste

^w-pi
of the single highest-order differential operator —^—^ together

y^s ^z ^Z
with all —— of lower order. Such an €i we shall call ^mln.

^zs yn+n
We shall abbreviate ——— by Z"^", and sometimes by Z^".

bz"1^71 v v

PROPOSITION 2.1'. — Let f be defined on U == u Ua, open
subsets of the plane. Suppose for each a, jfe C((X, Ua.) Then
^C(a,U).
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Proof. — Differentiation and continuity are both defined
locally.

PROPOSITION 2.2'. — Let U be a plane domain, let K be a
compact subset of U, let / 'e=C(a,U), and let £ > 0. Then
there is some g e D(U) such that for each A e a, we have

^ |A/*(p)—Ag(p)|<£.

PROPOSITION 2.3'. — Let f and ge 0(0^, U). Then Z^/g)
is a fixed linear combination of terms (Z^/^Z^g) with p and
r <^ m, q and s ̂  n.

Proof of Proposition 2.3' in case both f and ge D(U). This
is simply a version of the classical Leibniz formula. See, for
instance, Lemma 6.1 of [1].

Proof of Proposition 2.3' in case fe D(U) and ge C '̂", U).
Each side of the formula makes sense for such f and g, and
indeed for gesD'(U). Fixing /*, each side is continuous in g
for the weak topology on D'(U). Hence the present case follows
from the preceding case by passage to the limit.

Proof of Proposition 2.2'. Choose in D(U) some h = 1 on
a neighborhood of K. By Property 2.1 the extended function
/%/E belongs to Co(<St). Apply Proposition 2.2 of [I], which
asserts the density of D in Co(d), and restrict back to K.

Proof of Proposition 2.3' in the general case. We need only
to verify the formula near each point p. Hence multiply by
some local constant A, as in the proof of Proposition 2.2'
above, pushing everything into Co{a) where the formula is
already established (Lemma 6.2 of [1]).

For an alternate proof, employ another passage to the
limit. Start from the case where fje D(U) and ge 0(0^, U),
then let fj-^fin the topology of C^^U). The right hand
side of the formula converges uniformly on compacts, and
the left-hand side at least in weak distribution topology.

The inductive step in each of the remaining proofs will
depend on the chain rule formulas below, valid for any diffe-
rentiable f and g with properly matching domain and range.
We write f o g for the composite function {fo g)(p) = /'(g(p)).

Formula 2A.

nfog)-{Zf.g)Zg+{lfog)Zg.
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Formula 2B.

Z(/ '< 'g)=(Z/og)Zg+(Z/-og)Zg.

PROPOSITION 2.4'. — Let fe C^^V"'", U) one? let y &6 analytic
on some open set containing f{V). Then Z^o o f) is a linear
combination of terms each of which is some Z^y o f times certain
factors V^f with p ̂  m and q <^ n.

Proof. — For f e. D(U) the stated facts about the formula
for Z^'^y o f) are established by straightforward induction on
the order m -(- n^ using Formulas 2A and 2B. The general
case is now handled by passage to the limit, exactly as in the
alternate proof of the general case of Proposition 2.3'.

PROPOSITION 2.5'. — Let y be analytic on U and let
fe C^7"'^ 9(U)). Then Z^^o y) is a linear combination of
terms each of which is some V^f o (p, with p ̂  m and q ̂  n,
times certain factors Z^y, times certain factors Z^cp.

Proof. By induction for f e D. Then pass to limit as in Propo-
sitions 2.3' and 2.4'.

PROPOSITION 2.6'. — Let <p be anti-analytic on V(i.e. let y be
analytic) and let /'eC^a"1'71, 9(U)). Then Z^f o 9) is a linear
combination of terms each of which is some V^f " y, with p ̂  n
and q ̂  m, times certain factors Z^y times certain factors Z^y.

Proof. — Same as above.

3. Definition and properties of the C((3L, R).

Throughout the following, the unit disk |Z: |Z| < 1| will
be denoted by W.

Let R be a connected Riemann surface, (ft a complete
proper set of rotating operators. C(cl, R) is defined to be the
subspace of C(R) consisting of all functions f that satisfy the
following:

For each analytic mapping <p : W -> R, the function f o y
is in C(W, a).

If R is an open subset of the complex plane considered as a
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Riemann surface, the definition we have given of C(R, Ct)
agrees with that of § 2 because of Property 2.5.

In three instances C((X, R) can be given an equivalent
definition in terms of exterior differential operators defined
globally on R :

C(b/^, R) == |/': /*and ^/"continuous on R ^ ,
C(b/^z, R) == [f: /"and ?/* continuous on R ^ ,
C(^/^z, R) == [f: jfand A/1 continuous on R { ,

where the operators ?), b and A, taking functions into differen-
tial forms, are defined in terms of any coordinate system by

^f=^dz, ^f=^dz, ^f=i^-dzdz.dz ^z 4 ̂ z

Corresponding to the Properties 2.1 through 2.6 of C((X, U)
one can make analogous statements, call them Properties
3.1 through 3.6, about C(<t, R). We assert that these are true
properties of C^, R).

Let us first examine Property 3.1. Suppose R is the union
of subdomains Ra such that ^|R<x e C((X, R^) for each a. Suppose
9 : W -> R is analytic. We can express W as the union of
subdisks Wp such that each <?(Wp) lies entirely in some R<x.
To show f o <p e C(OL, W) it is enough, by Property 2.1 ,to show
each fo 9|Wp e= C(Ct, Wp). And this follows by applying the
definition of C(d, Ra) with the mapping 9|Wp.

Property 3.2 is meaningless until we define the natural
topology on C^, R). We do not insist here on this (quite
straightforward) definition and proof, since we shall have no
need of this property. Omitting topology, 3.3 follows from 2.3
by localizing. Similarly 3.4 from 2.4.

Properties 3.5 and 3.6 follow from 2.5 and 2.6 respectively
by direct use of the definition of C(dl, R).

We conclude this section by identifying the multiplicative
linear functionals on C(OL, R).

THEOREM 3.7. — E^ery multiplicative linear functional y.
on C(dl, R) is defined by evaluation at some point p e R.

Proof. — Assume that R is non-compact. Since R is connec-
ted, by the theorem of Rado [3], R is 2nd countable. Thus one
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can find a real C°° function f on R going to + oo at infinity.
Adding an appropriate real constant to /, we can take p//*) == 0.
Now suppose, contrary to fact, that [x is defined by no p e R.
Then for each p there is some gp e C(Ct, R) such that gp(p) == 1
but p-(gp) == 0. And multiplying gp by an appropriate non-
negative C°° function of compact support, we can suppose
Re[gp] ̂  0 everywhere on R. Let K be the compact set on
which /*^0, and choose gp^ . . . .g^ such that

Re|^+ • • • + f t J > 0

everywhere on K. Then for some £ > 0 we have

Re|£/ l+^+ • • • + g j >0

everywhere on R. In particular, by Property 2.4,
Ef+ & < + • • • + gpn

has its reciprocal in C((9L, R), contradicting the fact that
P^8/* + Spi + •" + gpn) == 0. This proves the theorem for
non-compact R. For compact R, the same argument works,
omitting all mention of /*.

4. Homomorphisms of C(eX, R).

Let RI and Rg be connected Riemann surfaces. For any
<p : RI —> Rg write y for the transpose mapping of functions on
Rg into functions on Ri defined by 9/*== f ° y. Now let €L be
a complete proper set of rotating operators. Then from Pro-
perties 3.5 and 3.6. we have immediately :

PROPOSITION 4.1. — If y : RI —> Ra is analytic, or possibly
anti-analytic ifd is symmetric (1), then the transpose mapping y
is an algebra homomorphism (3) from C(^t, Rg) into C(<^L, Ri).

On the other hand, from Theorem 3.7 we have :

PROPOSITION 4.2. — Every algebra homomorphism (3) from
C(a, Rg) into C(ci, Ri) is the transpose y of some point mapping
<p : Ri -> Rg.

(3) An algebra homomorphism y is assumed to satisfy y(l) == 1.
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Proof. — For each y e R^, the mapping

f-^my). /^C(a,R,),
is a multiplicative linear functional, so by Theorem 3.7, there
is a point Xy in Rg satisfying

Tf{y)=f(x^ /•eC(d,R,).
If y : Ri —> Rg is defined by

y^) == ̂  y e Ri»
then y satisfies ff=f° 9. No other mapping T can satisfy
Tf= f o y since C(d, Rg) separates points of Rg.

Our aim in the rest of this paper is to show that the y in
Proposition 4.2 must be of the sort exhibited in Proposition 4.1,
namely analytic or possibly anti-analytic if €i is symmetric. In
the remainder of this section we show how to reduce this
question to that where both Ri and Rg are disks. And this
special case is settled in § 5.

The following lemma is the result that allow us to reduce our
problem to that for disks.

LEMMA 4.3. — Let Ri and Rg be Riemann surfaces^
y : Ri —> Ra a mapping with y(C(a, Rg)) contained in C(ai, Ri).
Let Si and Sg be open subsets of Ri and Rg respectively with
(p(Si) c Sg. Then y(C(a, Sg)) is contained in C(a, Si).

Proof. — Let f be any function in C(^L, Sg). We must show
that 9/* = f o <p is in C(OL, S^); i.e., if Y : W -> Si is an analytic
mapping, then /*o y o ^F is in C(^L, W). By Property 2.1 it is
enough to show that, for any interior subdisk V of W,
(/*o y o Y)|V is in C(^L, V), and this is what we shall establish.
<p is a continuous mapping of Ri into Rg, since for any h in
C"^), h o y is in C(Ri). ¥ is also continuous and thus 9(T(V))
is compact in S^. Let/ceD(S2), k=i on 9(¥(V)). kf^ C(a, 82),
so by Property 2.1, the extension kf\}L is in C(Ct, Rg). Denote
the extension by g. Then yg == g ° y is in C(<X, Rg), so
g o y o (Y|V) is in C(a, V). But

goyo^m^oyo^ i v ,
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which is the function we were to show in C((X, V). This comple-
tes the proof of Lemma 4.3.

We now state the main theorem of this section. We prove it
under the assumption of Proposition 5.1, which is the special
case of the theorem for R.i and Rg disks.

PROPOSITION 4.4. — Let RI and Rg be connected Riemann
surfaces, €L some complete proper set of rotating operators,
9 : RI —> Rg a mapping which is such that y takes C((X, R^)
into C((t, Ri). Then if a is non-symmetric, 9 must be analytic.
If €L is symmetric, y must be either analytic or anti-analytic.

Proof. — Let x be any point of Ri, Wg c Rg a coordinate disk
containing 9(^)5 Wi c R^ a coordinate disk containing x and
satisfying 9(Wi) c Wg. By Lemma 4.3 and Proposition 5.1, y is as
claimed on Wi. We are finished in the case that €L is non-
symmetric. In the case that (X is symmetric, by the connec-
tedness of RI, <p cannot be analytic on some coordinate disk and
antianalytic on another unless it is a constant map. Thus y must
be either analytic or anti-analytic on all of Ri.

At this point, assuming Proposition 5.1 ,we have established
all of the results summarized in the Theorem 1.1. The first two
sentences of the theorem are the content of Proposition 4.1
and the last is Proposition 4.4.

5. Homomorphisms of C(dt, W).

The proof of Theorem 4.4 assumed the validity of the
following special case of that theorem.

PROPOSITION 5.1. — Let €i be a complete proper set of rota-
ting operators, 9 : W —> W a mapping which is such that y
takes C(W, €i) into itself. Then ifa as non-symmetric, <p must be
analytic. If €i is symmetric, y must be either analytic or anti-
analytic.

This section is devoted to the establishment of this result.
We shall denote C(a, W) by B. By the results of § 2, B is

a topological algebra containing C°°(W) as a dense subalgebra.
We denote by B* the dual of B and by Bo the ideal in B of
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those functions in B vanishing in a neighborhood of 0. The
annihilator B^ of Bo in B* is then the set of linear functionals
having support |0j. Using the density of C°°(W) in B, we
identify in the next lemma the elements in B^r with differentia-
tion operators at 0.

For each b^z^ in a denote by T,,, the element of B*
defined by

^(^o^'8-
LEMMA 5.2. — IT^J is a basis for B^.

Proof. — It is clear that [ T^} c B^ and is linearly inde-
pendent, so it suffices to show that it spans B^. Let T e= B^.
By the closed graph theorem, the injection (^(W) -> B is
continuous. Then T, restricted to C°°(W), is a continuous linear
functional on C°°(W) having support |0|. As a consequence
there is a constant-coefficient differential operator Ao so that

T/^Ao/^O), /^CTW).

By the definition of the topology of B, there is a subdisk V of
W and a constant K so that

|Ao/'(0)| = |T/1 < K S sup|A/^)|, /-eCTW).
A€($f a;GV

In particular, for all f in D with support in W,

|AoAO)| < K S HA/II.
Ae^t

By Theorem 7.1 of [I], this is impossible unless Ao is a linear
combination of the A in a. Thus T agrees with a linear combina-
tion of the T^ on (^(W), which is dense B, so T agrees with
a linear combination of the T^,s on all of B. This completes
the proof of Lemma 5.2.

We shall denote by B^ the annihilator in B of B^, so that by
Lemma 5.2 a function f in B is in B^1 if and only if Tp, == 0,
all r, s. Since Bo is a linear subspace of B, B^ is simply the
closure of Bo in B. As a consequence Bi± is an ideal in B, for
Bo is an ideal and the multiplication in B is continuous.

We shall denote by z the function defined on W by z(L) = ̂ .
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For each f in B, we define the function /o by

/> =S J . (T^)^+/>o,
r,s ' •& •

so 'Tr,sfo = 0, all r, s, and /o is in the ideal B^1.
The next lemma shows, in the case that €L is not symmetric,

that for certain fin B, the fact that ^f/^z == 0 at 0 is equivalent
to an assertion about f of an algebraic nature.

LEMMA 5.3. — Assume €i not symmetric. Choose fm, n) so
that y14-71/^1^ is in a, ̂ -"/Bz^71 not in dl. Let f be a function in
B with f in B and f(0) == 0. Then the following are equivalent:

lo ̂ z = 0 at 0;
2° fY" is in the ideal B^.

Proof. — We must treat separately the two cases where
m + n == 1. Let m == 1, n = 0, as that 5/^z is in Ct, ^z is not.
The assertion to be proved is that ^f/^z = 0 at 0 if and only if
feB^-. This is clear, since by Lemma 5.2, B^ has as basis
(T T (
( i O.I? ^O.O ) •

If m == 0, n == 1, then b/()z is in d, ^)/bz is not. The assertion
to be proved is that b/y^z ==0 at 0 if and only if /*€= B^1. This
is also clear, since by Lemma 5.2, B^ has ^T^o? To,o ^ as basis.

We may now assume m + n ̂  2. We show first that 1°
implies 2°. If 1° holds for /*, then

f == cz + (terms in z^, r + 5 > 1) + /o?
f = cz + (terms in z^, r + 5 > 1) + (^)o.

As a consequence

^m == ^z"* + (terms of order > m) + (element of B^),
^ === c"?" + (terms of order > n) + (element of B^1),

using the fact that B^ is an ideal. Thus, since zuzv e= B^ if
u + ^ > m + n,

ym^n ̂  c^Vz71 + (element of B^).

But ^"eB^-1- by Lemma 5.2 because of the choice of (m, n).
Thus /^ e B^.
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We show next that 2° must be false if 1° is false. We may
assume ^ffoz == 1 at 0. Then

f == az + z + (terms of order > 1) + /o,
f === az + z 4~ (terms of order > 1) + (^)o.

There are two cases to discuss, depending on whether or not a is
0.

Case J. a == 0. Then

fmjn ̂  ̂ n _^ (element of B^).

z^z" is not in B^ since b^^z"^ is in a. Thus f^ is not in B^.

Ca^e JJ. a =/= 0. Then

^m === (az + z)"* + (terms of order > m) + (element of B^1),
y^ = (az + z)" + (terms of order > n) + (element of B^),

so

(5.1) /'T1 == (^ + ̂ (^ + J^)n + element of B^).

But

(5.2) (az + z^az + z)" == S c^z^,
—m

where

c,= s (T)^^-'11 ("X:)'-1'"O^r^m \r / X s / O^r^m \ ' / \ ° /
O^-s^n O-^5-^"
^—r==( 5—r=(

4-n

In particular c1 ̂  0, all (, so by Lemma 5.2, S c^z^1

—m

cannot be in B^. Thus, because of (5.1) and (5.2), f^ is not
in B^1. This completes the proof of Lemma 5.3.

We next state the analogue of Lemma 5.3 for symmetric €L.

LEMMA 5.4. — Assume a symmetric. Choose (m, n) so that
m + n == N and ^"'^/^z^z7" is not in <X. Let f be a function in
B with f in B and f(0) = 0. Then the following are equivalent:

1° Either b/^z == 0 at 0 or b//Bz == 0 at 0;
2° f^ is in the ideal B^.
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Proof. — Here we must have m + n >. 2. That 1° implies 2°
is proved exactly as in Lemma 5.3. And that 1° false implies 2°
false is proved as in Case II in Lemma 5.3.

Suppose now that 9 : W -> W is a mapping that satisfies
9(B) c B. We will use the two preceding lemmas to show that 9
must be analytic, or possibly anti-analytic if <x is symmetric.

First observe that 9 must be at least C1. For z and z are in
B, 9(z) = 9 and 9(2) = 9, so 9 and 9 are both in B. If

N > 1, B c C^W),
so 9 must be C1. If N = 1, one of the operators ^z or b/^z
is in (X, and since both 9 and 9 are in B, 9 must be C1.

COROLLARY 5.5. — Let 9 : W -> W satisfy 9(0) = 0 and
9(B) c B. If €i is not symmetric, then ^l^z = 0 at 0. If 0, is
symmetric, then either ^9/^5 == 0 or ^9/62 = 0 at 0.

Proof. — 9 : B —> B is continuous by the closed graph
theorem. Since 9(0) = 0, 9(Bo) c Bo, and thus by the conti-
nuity of 9, 9(Bo'1) c B^. Choose (m, n) as in the preceding two
lemmas, z^ e Bo1 so ^(zV) e B^. But

9(z"y1) = (92)W = ̂
so 9m97^ e= BO'S and the conclusion follows from Lemmas 5.3 and
5.4.

It is simple now to obtain the analogue of the above corollary
for any point of the disk.

COROLLARY 5.6. — Let 9 : W -> W satisfy 9(B) c B. If a
is not symmetric, then ^9/62 == 0 at all points of W. If a is
symmetric, then at each point ofW either ^l^z = 0 or bfl^z = 0.

Proof. — Choose any point x of W. Let ^ :W —> W be a
mapping of the form ^(z) = az + b, a > 0, with ^(0) == x.
Let 9 : W -> W be a mapping of the form Q(z) = cz + d,
c>0, with 6(9(3?)) = 0. Define Y] to be 6 0 9 0 ^ . Then

Y)(W)cW,Y](0) =0

and YI(B) = ̂ (9(§(B))) c B, using Proposition 2.5 twice. Assume
Ct non-symmetric. Then, by Corollary 5.5 applied to Y),

^/^z == 0
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at 0, so 69/^5 == 0 at x. Assume €L symmetric. Then, by Corol-
lary 5.5 applied to Y], either ^^z = 0 or ^Y)/^S == 0 at 0, so
either ^(p/bz === 0 or ^9/6z •=== 0 at x.

The proof of Proposition 5.1 is now almost complete.
Corollary 5.6 contains the part of Proposition 5.1 concerned
with non-symmetric Ct. And to finish the symmetric case it is
clear that we need only one additional fact, which is Lemma
5.8 below. For the proof of this lemma we use the following
theorem of Radd. See [2].

PROPOSITION 5.7. — Let g be a continuous function defined
in W. Suppose that g is analytic on

^:zeW,g(z)^Oj .

Then g is analytic throughout W.

LEMMA 5.8. — Let 9 be a C1 function with domain W.
Suppose that at each point of W either ^9/^2 == 0 or ^y/6z == 0.
Then either by/^z=0 or by/^^O.

Proof, — We shall denote the functions ^9/^3 and 69/62 by
9^ and 97. Let

U = = ^:.reW,9^)^0|.

We first show 9^ analytic in U. On U we have 97 == 0. Thus the
distribution

/ 6 \ / 6 \ / ^v^ \
( — U — I ffi == ( — V — If lQ

\^A^7 ww
is zero in U, s o — 9 is an analytic distribution in U. But an? bz 1 v

analytic distribution must be an analytic function, proving 9^
analytic in U. By Proposition 5.7, 9^ is analytic in all of W.
The same type of argument shows 97 analytic in W. Since W is
the union of the two sets \x: 9^) == 0| and [ x : ̂ j[x) = = 0 ^ ,
which are closed in W, one of them must contain a disk. Thus
either 9^ or 97 vanishes on a disk. But they are both analytic
in W, so either 9^ or 97 vanishes on all of W.
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