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IN SEARCH OF THE INVISIBLE SPECTRUM

by Nikolai NIKOLSKI

Dedicated to the memory of Stanislav A.Vinogradov

In this paper, we begin the study of the phenomenon of the "invisible
spectrum" for commutative Banach algebras. Function algebras, formal
power series and operator algebras will be considered. A quantitative
treatment of the famous Wiener-Pitt-Sreider phenomenon for measure
algebras on locally compact abelian (LCA) groups is given. Also, our
approach includes efficient sharp estimates for resolvents and solutions of
higher Bezout equations in terms of their spectral bounds. The smallest
"spectral hull" of a given closed set is introduced and studied; it permits
the definition of a uniformly bounded functional calculus. In this paper, the
program traced above is realized for the following algebras: the measure
algebras of LCA groups; the measure algebras of a large class of topological
abelian semigroups; their subalgebras — the (semi)group algebra of LCA
(semi)groups, the algebra of almost periodic functions, the algebra of
absolutely convergent Dirichlet series. Upper and lower estimates for the
best majorants and critical constants are obtained. Corresponding results
for weighted Beurling-Sobolev algebras are contained in [ENZ]. The cases
of radical algebras of formal power series, H°° quotient algebras, and some
operator algebras are considered in [N2].

0. Introduction
1. Preliminaries on (<^-n)-visibility, best majorants, and critical constants
2. Upper estimates for measure algebras on groups and semigroups

Keywords : Invisible spectrum — LCA groups — Measure algebra — Wiener-Pitt-Sreider
phenomenon — Norm-controlled inversion — Cyclic groups — Spectral hulls — Norm-
controlled calculi.
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3. A lower estimate for measure algebras on groups and semigroups

4. Remarks on finite groups and semigroups

5. Spectral hulls and norm-controlled functional calculi

Acknowledgements. — This paper is dedicated to S.A.Vinogradov,
who died of cancer November 14, 1997 in St. Petersburg. S. Vinogradov
was one of the sharpest mathematical minds and the most unpretentious
man I knew, a virtuoso of analytical subtleties, my closest friend and
university classmate. Experts in the field are well-aware of his mathe-
matics - constantly deep, amazingly unexpected, and full of inspirations -
but certainly Vinogradov's results merit to he known to a wider class
of mathematicians. While this short note is insufficient to adequately
express a lifetime of friendship and shared experience, I would like to
express my profound admiration and appreciation of Stanislav's talents as
a mathematician and a man. In particular, this paper is very much inspired
by many conversations with him.

Also, I thank M. Zarrabi for discussing this project, S. Kisliakov for
reading the manuscript, and E. Fricain for helping me with figures in
the text. A part of this project was realized during my stay at CalTech,
Pasadena, September 1997.1 am grateful to the Department of Mathematics
there, and especially to Nick Makarov who invited me to pass a month in
such beautiful surroundings.

0. Introduction.

0.1 Basic motivations.

To begin with, we recall three classical problems of harmonic analysis
and function theory related to a phenomenon we will call invisible spectrum.
Formal definitions are contained in Subsections 0.2 and 0.3 below.

• The first problem comes from convolution equations and is related
to what is usually called the " Wiener-Pitt phenomenon^. Namely, let G be
a locally compact abelian group (LCA group) written additively, and M. (G)
the convolution algebra of all complex measures on G. The fundamental
problem is to find an invertibility criterion for measures 11 G .M(G), that is,
a criterion for the existence of v G M.{G) such that ^ * v = SQ^ SQ being
the unit of .M(G) (the Dirac ^-measure at 0). An obvious obstruction for
invertibility is the vanishing of the Fourier transform /2(7) = 0 at a point 7
of the dual group G, since the equality /2 v = 1 is equivalent to the initial
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convolution equation. Generally, boundedness away from zero

(O.I.I) 6= inf |/2(7)| > 0
7CG

is necessary for fi to be invertible. N.Wiener and R. Pitt (1938), and
Yu. Sreider (1950, a corrected version of Wiener and Pitt's result) discovered
that, in general, this is not sufficient. Namely, there exists a measure ^ on
the line R whose Fourier transform

fl{y)= /e-^d/^), y e
JR

is bounded away from zero but for which there exists no measure v C M (K)
such that

EW»^, ,.R.

In fact, this result holds true for an arbitrary LCA group G which is
not discrete, see [Rul], [GRS], [HR] for references and historical remarks.
Using Banach algebra language, one can say that the dual group G, being
the "visible part" of the maximal ideal space 9JI = 9Jl(A) of the algebra
A = .M(T), is far from being a dense subset of 9JI. Nonetheless, later on we
show that some quantitative precisions of (O.I.I), namely a closeness of the
norm ||/x|| and 6 of (O.I.I), lead to the desired invertibility, and even to a
norm control of the inverse; see Subsection 0.4 below.

On the contrary, for a discrete group G, the classical Wiener theorem
on absolutely convergent Fourier series says that condition (O.I.I) implies
the invertibility of/^; moreover, in this case 9JI = G. However, in this setting
too, the problem of the norm control for inverses ^-1 is still meaningful
and interesting, in spite of the Wiener theorem, since the latter does not
yield any estimate. In fact, from the quantitative point of view, there is no
big difference between these qualitatively polar cases (we mean the cases of
nondiscrete and discrete groups). It turns out that, in both cases, one can
control the norms H^"1!! for ^ > 0 close enough to the norm ||/^||, but this
is not the case for small 6 > 0; see Subsection 0.4 below.

• The second problem we are interested in is to distinguish, among
all commutative unital Banach algebras A, those permitting an estimate of
the resolvents in terms of the distance to the spectrum. More precisely, we
want to know for which algebras A there exists a function (p such that

(0.1.2) IKAe-./r^l^dist^aC/-)))
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for all A 6 C \ a{f) and all / C A, ||/|| <, 1. Here e stands for the unit
of A, and cr(/) for the spectrum of / in the algebra A. In fact, we treat this
problem in a more general context of norm-controlled functional calculi,
that is, as a partial case of the norm estimates problem for functions
operating on a Banach algebra. For more details see Subsections 0.2-0.4
below, as well as Section 5.

• The third problem motivating this paper is a multi-element version
of the previous two. Postponing precise definitions and discussions until
Subsections 0.2 through 0.4 below, let us mention here the classical corona
problem for the algebra H°°(^) of all bounded holomorphic functions on f^,
an open subset of C71 or of a complex manifold. Recall that the problem is
to solve the Bezout equations

n

(0.1.3) Y,9kfk=^
k=l

in the algebra H°°(^l), where the data fk G H°°(fl,) satisfy an analogue of
condition (O.I.I),

(0.1.4) 62 = m^|/^)|2 > 0,
ze k=l

and to estimate solutions g^ € H°°(yi). As is well known, the Banach
algebra meaning of the corona problem is the following: the existence of
H°°(^) solutions for any data satisfying (0.1.4) is equivalent to the density
of n, the "visible part" of the spectrum 9JI = ̂ (H00^)), in 9Jt. In what
follows, we consider a norm refinement of this problem for several algebras
different from H°° (^).

Now, we are going to specify the statements of the problems, and the
results obtained.

0.2. Visibility levels. Main problems.

Let A be a commutative unital Banach algebra continuously
embedded into the space C{X) of all continuous functions on a Hausdorff
topological space X:

A C C(X).

Note that we do not suppose that the embedding is injective. However, the
point evaluations <^, where x 6 X,

W=f{x\ feA,
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are continuous complex homomorphisms of A. Hence, supposing A
distinguishes points of X, we can identify X with a subset of the maximal
ideal space of A (the spectrum of A), 9JI = 9Jt(A),

X c 9Jt(A).

Staying on X, we regard closX as the visible part of 9Jt. We write
/ i-̂  /(m), m € 9Jt, for the Gelfand transform of an element / € A, and so
foixeX we identify

fW = /(<y.

Recall that the spectrum a(f) of an element / € A coincides with the
range /(9JI) of the Gelfand transform. The following definition formalizes
different levels of "visibility" of the spectrum.

0.2.1. DEFINITION. — We say that the spectrum of A is

• n-visible (or, n-visible from X , n == 1,2,. . .) if for all f = (/ i , . . . , /„)
in A72 = A x • • • x A,

/(mi)=cios(/(x));
• and it is said to be completely visible if

W=c\osX.

It is clear that (n + 1)-visibility implies n-visibilty for any n > 1, and
that complete visibility is equivalent to n-visibility for all n >_ 1. Moreover,
the Gelfand theory of maximal ideals makes the following lemma evident.

0.2.2. LEMMA. — For a unital Banach algebra A, the following
properties are equivalent:

(i) the spectrum of A is n-visible',

(ii) for every / = (/i, . . . , /n) € A71 satisfying

(0.2.1) ^inf^l/^X),
k=l

there exists an n-tuple g € An solving the Bezout equation

(0.2.2) i^9kfk=e.
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In particular, the spectrum is 1-visible if and only if the following Wiener-
Levy theorem is true:

inf \f{x)\ > 0 implies that f is invertible in A. D
x^X

In this language, the Wiener-Pitt phenomenon is exactly the 1-invi-
sibility of the spectrum for the measure algebra M.(G), if we stay on
X = G. Rigorously speaking, the heart of the matter is the algebra
of Fourier transforms J='M(G) = {/2: /^ e M(G)} embedded into C(G),
but as we systematically identify these algebras in our setting, they are
isometrically isomorphic.

The next definition specifies the previous one in the case of norm
controlled invertibility instead of simple invertibility.

0.2.3. DEFINITION. — Let A and X be as above, and let 0 < 6 <, 1.

• The spectrum of A is said to be (^-n)-visible (from X) if there
exists a constant Cn such that any Bezout equation (0.2.2) with data
f = (A; • • . ? fn) ^ A71 satisfying (0.2.1) and the normalizing condition

(0.2.3) \\ff=: f^llAII2^!
fc=i

has a solution g ^ An with \\g\\ < Cn-

• The spectrum is called completely ^-visible if it is (6-n)-visible for
all n > 1 and the constants Cn can be chosen in such a way that sup Cn < oo.

n^l

Clearly, there exist best possible constants, in the following sense.
Setting

(0.2.4) Cn(6)=:Cn(6,A)=Cn(6,A,X)

n

= sup {inf (\\g\\: ̂ g^fk = e, g e A")},
/ A;=l

where the supremum is taken over all f C A71 satisfying (0.2.3) and (0.2.1),
we get the smallest number for which Cn = Cn (6) + e meets the requirements
of Definition 0.2.3 for every e > 0. In particular,

(0.2.5) ci(^) = sup^r'll : / G A, 6^ \f{x)\ < H/11 ^ 1, x € X},

and, in this case, we can take c\ = ci(^) in Definition 0.2.3; here we
formally set \\f~11| == oo for noninvertible elements of A.
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• We define the n-th critical constant 6n{A, X) by the relation

<^(A, X) = mf{6 : Cn(6, A, X) < oo}.

0.2.4. Main problems. — Our main objective is to estimate from
above and from below, and (if possible) to compute the critical constants
6n(A,X) and the majorants Cn{6,A,X) for basic Banach algebras A and,
thus, to study norm controlled visibility properties for these algebras.

For n = 1 we deal with more general objects. Namely, we are interested
in describing functions boundedly acting on a given algebra. Supposing that
a "visible part" of the spectrum is fixed, X c 9Jt(A), we can say that a
function (say, (p) defined on a C C acts on an algebra A if for every a e A
with a(X) C a there exists b e A such that (p o a = b on X. A "bounded
action" is defined in the same way but adding an estimate of the form
l l & l l ^ ^IMI*, where k = k{a,A,X) and || • ||^ is an appropriate norm
bounding ||^||^ = sup^ \(p\. We mention, however, that such a definition
is too broad to be useful: the spectral inclusion a(X) C a alone, without
any norm restrictions, cannot imply the boundedness of compositions. For
example, it is easy to see that the following holds true:

If for some positive 6 and C, the relation \a(x)\ > 6 (x G X) always
implies that Ha"1]] ^ C, then A is a uniform algebra with the norm
equivalent to the sup norm on X:

IHIx ^ M ̂  (2C6 + l)||a||x for all a <E A.

Indeed, we first observe that if inf|a| = e > 0, then \a{x)6/e\ > 6,
-K

x € X, and hence a is invertible and [[a"1!! ^ C 6 / e = CS^a-1^. Now,
for a given b e A we take A = \\b\\x + e and apply the previous statement
too = (b- \e)~1:

\\b\\=\\b-\e-}-\e\\<C6\\b-\\\x+X
< C6\\b\\x + {C6 + 1)A = (2C6 + l)\\b\\x + (C6 + l)e.

Letting e -^ 0, we get ||6|| ^ (2C6 + l)\\b\\x for all b C A. D

This argument shows that certain norm requirements are necessary.
The classic results on functions operating on Fourier transforms show many
specific examples of this kind; see [HKKR], [Rul], and further references
therein.
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In this paper, after adding the normalizing condition ||a|| ^ 1 to
the spectral inclusion a(X) C o , we look for a "minimal spectral hull"
h(a) = h(a, A, X) such that functions holomorphic on h(a) boundedly act
on a given algebra. An approach to this problem is developed in Section 5
below.

0.3. Main results.

In what follows, we examine the (^-n)-visibility of the measure
algebras M.(G) on LCA groups, and for their subalgebras M.d(G)
and I^(G) + C • e, respectively, of discrete measures and of absolutely
continuous measures (with the unit added). Their semigroup counterparts
M{S), M.d{S) and L^(S) + C • e are also considered. Here and below,
6' denotes a subsemigroup S C G satisfying some natural hypotheses;
see Subsection 2.2.1 for details. All frequently occurring semigroups,
like Z!}_, R!}., etc., verify these hypotheses. Our main results on these
algebras can be summarized as follows.

THEOREM A. — Let G be an LCA group, and let A be one of three
algebras A = M(G), Md{G), and L^G) + C • e.

(i) One has

6n(A,G) ^ — and Cn(6,A,G) ^ ̂ ^ for — < 6^ 1.

For the algebra A = L1 {G) +C • e on a nondiscrete group G, better estimates
are true for n = 1:

^i(A.G) ^ ^ and ci(^,A,G) < ̂ -^ if | < 6 < 1.

(ii) IfG is an infinite group, then for all three algebras A :

^n(A, G)^1 and Cn{6, A, G) > ——— for ^ < 6 < 1.
2 2o — 1 2

In particular, ^(L^G) + C • e,G) = \ and ci(^,A,G) = (26 - I)-1

for ^ < 8 < 1, for every nondiscrete group G.

THEOREM B. — Let S be an infinite semigroup satisfying the
conditions mentioned above, and let Sb be the semigroup of bounded
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characters on S. Then for each of the three algebras A = M(S), Md(S),
and L1 (5) + C • e we have

^(A, Sb) = _ and ci(^ A, ̂ ) = .—- for 1 < 6 <, 1.
^ zc) — -L z

In particular,

< ^ ( H 4 , D ) = J ; ci(^,Ty+,D)=^L^ d'^1)

for the analytic Wiener algebra IV+, as well as for its multidimensional
(on Z^) and continuous (on R^) analogues. The same is true for the unital
group algebra of R (and W):

^(L^+C.e.R)^ 1 ci^L^+C.e.R)^———.
^ lo — 1

For higher Bezout equations the following upper estimate holds:

U^W+C.e,R)^ —, c^L^+C.e^)^ ———
V2 2o- — 1

for ̂  < 6 < 1.

On the other hand, for the symmetric Wiener algebra W we can only
prove that

J^WT)^ and ^^(W)^^.

Postponing all comments on these estimates (as well as other
examples) until Sections 2 and 3, we only mention that, in fact, our
results are slightly more general than as stated in Theorems A and B.

There are also a few examples of algebras of a different nature;
see Theorems 2.5.1, 4.3.1 and 5.3.5.

The case of finite groups is briefly considered in Section 4.

The more general problem of functions boundedly operating on an
algebra is considered in Section 5. Namely, given a closed subset a C D and
a point A € C, we define the resolvent majorant by

C7(A,a;A,X) =: sup{||(Ae - /)-1!!: / € A, ||/|| < 1, f(X) C a},

and the (A, X)-spectral hull of a by

h(a',A,X)= { A e C : C ( A , a ; A , X ) = o o } .

The following theorem is proved.
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THEOREM C. — The (A,X)-spectral hull /i(<r;A,X) is always closed,
a C /^(a;A,X), and (7(A,a;A,X) ^ l/dist(A,/i(a;A,X)). The relation
h(cr; A, X) = a holds for all closed a if and only if'(^(A, X) = 0.

An open set Q, C C contains h(o", A, X) if and only if it is a norm
controlled calculus domain for a, in the sense that the Riesz-Dunford calculi
(p ^-> ^p(o} are well defined and uniformly continuous on Hol(f2) for all a e A
such that ||a|| ^ 1, a(X) C a.

For A = A4(S) and X = 9DT(A) = Sb-, where S stands for a semigroup
of the same class as above, the spectral hull /i(a; A, X) coincides with the
so-called horodisc expansion of a

hor(a)= \jD(z, 1 - \z\)
z^o-

and C(\,a) == l/dist(A,hor(or)).

Several examples of Banach algebras A are shown, whose spectral
hulls behave very differently. For instance, we show an algebra such that
/^(cr,A,9Jl(A)) = D for all o- C D, a ^ 0 (Theorem 5.3.5), and, in contrast,
other algebras satisfying h(a, A, 9Jl(A)) = a for all a C D (Subsection 5.3.6).

0.4. How this paper is organized.

In Section 1 we introduce two general methods: a method for upper
estimates of the visibility constants Cn{6, A, X), and a method for their lower
estimates. The first one, described in Lemma 1.4.3 and Theorem 1.4.7, is
based on an additive splitting property, that is, on the existence of a linear
functional (p such that ||a;|| == \\x — ^>{x)e\\ + \^(x)\ for every a: € A. A weak
symmetry property of the algebra A (the so-called X-symmetry defined in
Subsection 1.4) is important for applications to algebras for which ^ is not
an evaluation functional at a point of X.

The method for lower estimates for Cn(6, A, X) given in Theorem 1.5.1
refers to elements of A with "almost independent" powers.

Section 2 deals with applications of the first of the above methods to
algebras M(G), M(S), and their subalgebras described in Subsection 0.3.
The class of semigroups S C G considered in this section is described in
Subsection 2.2.1. A comparison of upper estimates for ^-visibilities from G
and from Sb (the semigroup of bounded characters of 5, which is much
larger than G), is given in Subsection 2.3. In Subsection 2.5, we use the
same method for a semigroup of different type (a nilpotent semigroup).
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Section 3 is devoted to lower estimates of Cn(6,A,X) and ^i(A,X)
for the same algebras as above. To check the hypotheses of Theorem 1.5.1,
we use Sreider measures, which are denned as measures with real Fourier
transforms and the spectrum filling in a disc. A specific approximation
of such measures based on the Bochner characterization of the Fourier
transform ^FM(G) is also used. For the case where Sreider measures do not
exist, that is, for discrete groups G, we move to the Bohr compactification
of G. In fact, all these techniques work for a class of subalgebras of M(G)
described axiomatically in the corresponding theorems (Theorem 3.2.2 for
groups, and Theorem 3.3.7 for semigroups). This class contains the three
main cases mentioned in Subsection 0.3.

Therefore, Theorem A (i) is contained in the union of Theorems 2.1.1,
2.4.2 and Remarks 2.4.3; and Theorem A (ii) coincides with Corollary 3.2.5.
Theorem B splits into Theorem 2.2.2 and Theorem 3.3.7.

Section 4 contains several remarks on the case of finite groups and
semigroups. Elementary arguments show that in this case the critical
constant 6^(M(G),G) is zero, and the visibility majorants Cn(6,M(G), G)
have a linear growth as 6 —^ 0; see Lemma 4.1.1. The problem of exact values
of Cn(6,M(G),G), and even of ci(<5,.M(G),G), is still open, and we deal
instead with uniform bounds for the latter constants for the cyclic groups
Gn = Z/nZ, and for the finite nilpotent semigroups Zyi == Z+/(n + Z+).
For the first of these series a uniform lower estimate is shown, and for the
second one the same estimate is proved to be sharp; see Theorems 4.2.3
and 4.3.1.

Finally, in Section 5, we deal with a more general framework for (6-n)-
visibility properties, namely with norm-controlled functional calculi and
the so-called spectral hulls h(a, A, X) introduced in the same section. Some
general properties of spectral hulls can be found in Theorem 5.1.2. Their
relations to the norm-controlled calculus are established in Theorem 5.2.2.
The full spectral hulls for the measure algebra M(S) on a semigroup S are
described in Theorem 5.3.2.

Therefore, Theorem C is contained in the union of Theorems 5.1.2,
5.2.2 and 5.3.2.

The algebra of functions of a model operator MQ is shown to have
an extremely invisible spectrum, namely /i(a, A, X) = D for every a / 0
(Theorem 5.3.5). Examples of Beurling-Sobolev algebras on Z and Z+
having a well-visible spectrum, namely such that h(a, A, X) = a for every
closed a C D, are described in Subsection 5.3.6.
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0.5. Historical remarks.

As already mentioned, the prehistory of the ideas presented in this
paper began with the classical theorems of Wiener-Levy and Wiener-Pitt-
Sreider quoted above.

The second wave of results, sharpening the Gelfand and Riesz-
Dunford functional calculi, were devoted to functions operating on Fourier
transforms, and were mostly due to H. Helson, J.-P. Kahane, Y. Katznelson,
and W. Rudin. The main problem considered and resolved was to describe
functions y? defined on an interval a = [a, b] C M and such that ^p(^f) G J-A
for every f e A with ^f(G) C a, where A = M(G) or A = L^G). See
[HKKR], [Rul], [GMG], [Kl], [HR] for exhaustive presentations and further
references. Nonanalytic functions operating on certain weighted algebras of
Fourier transforms ^^(Z.w) occurred in the papers of J.-P. Kahane [K2]
and of N. Leblanc [L]. However, no quantitative aspects similar to those of
Subsections 0.1-0.4 were explicitly presented.

The third wave of results related to norm-controlled calculi can be
linked with constructive proofs of the Wiener-Levy theorem on inverses.
We mention the proofs of A. Calderon, presented in [Z], P. Cohen [C] and
D. Newman [New]. The Calderon approach was profoundly developed by
E.Dyn'kin [D].

The problem of norm-controlled inversion (for the Wiener algebra
A = -^(Z)) was first mentioned by J. Stafney in [St], where the existence of
a,b,K > 0 was proved such that sup{||/-l||A : ||/|| ^ K,f(J) C [a,6]}=oo.
This implies that ci(^,A,T) = oo for some 6 > 0. The proof, based on
Y. Katznelson's results, does not permit one to specify the value of 6.
Independently and in a more constructive way, this result was obtained
by H. Shapiro [Shi] (in response to a question posed by a physicist,
G. Ehrling), but also without any concrete value of 6. Several remarks were
made in Shapiro's note attributing to various authors certain estimates
for quantities we call the critical constants ^l(^ l(Z+),5) and (^(^(Z),!);
no precise references were given. In fact, I started this work by analyzing
Shapiro's construction. In the paper ofJ.-E. Bjork [B], a problem related to
uniform functional calculi was considered. In our language, it is equivalent
to an estimate for ^?(A, 9Dt(A)), a microlocal version of 8\ (A, 9Jt(A)) studied
in Section 5 below. In [B], a criterion was given in terms of another quantity
which can be regarded as a "uniform spectral radius" of the algebra, but
no applications were shown.

In the paper of S. Vinogradov and A. Petrov [VP], a description was
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given of Banach spaces A of functions on T satisfying the following property:
/ € A and |/| > 6 on T imply 1/f C A.

We finish these remarks by mentioning that the case of higher Bezout
equations (the "corona problems") related to the constants Cn(6, A, X) and
6n(A,X) for n > 1 is considered in this paper very briefly. For its history
see [Gar], [Gam], [Nl], as well as [Tol] and [To2].

1. Preliminaries on (<$-n)- visibility,
best majorants, and critical constants.

Let A be a commutative Banach algebra with unit e, and let X
be a HausdorfF topological space such that A is continuously embedded
in C(X). We also use other notations introduced in Section 0. The group of
invertible elements of A is denoted by Q(A). We start with simple general
observations about our main subjects.

1.1. Monotonicity of (5-n)-visibility and critical constants.

1.1.1. LEMMA. — If the spectrum of A is (6-n)-visible for some
positive <5, it is also (S'-n)-visible for 6 < 6 ' < 1 and Cn(8') < Cn{6).
If the spectrum of A is (6-n)-visible for any 6 > 0, it is n-visible. Also,
Cn(^) ^ Cn-^i(6) for all6 > 0 and n > 1.

Proof. — Obvious from the definitions. D

It is clear from this lemma that, given an integer n > 1, there exists a
critical constant 0 < (5yi < 1,

6n=6n(A)=6n(A,X)

such that for 6n < 6 < 1 the spectrum of A is (^-n)-visible, and for
0 < 6 < 6n it is not. Always, 6n < ^n+i. We regard these quantities as
one of the fundamental characteristics of a given algebra A. In Sections 2
through 4 we compute or estimate the critical constants 6n for certain
convolution Banach algebras defined on LCA groups. Several weighted
convolution algebras are considered in subsequent papers [ENZ], [N2], [EZ].

1.1.2. COROLLARY. — If the spectrum is not n-visible, there exists
6 > 0 such that the spectrum is not (6-n)-visible. In this case, the constant
of (0.2.4) is Cn(6) = oo, and the critical constant is positive: 6n > 0. D
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1.1.3. LEMMA.

(i) Let B be a subalgebra of A endowed with the induced norm and
stable with respect to inverses, that is G(B) = G(A) D B where Q stands
for the group of invertible elements. Then Cn(S,A^X) ^ Cn(6,B^X) for
all n > 1 and 6 > 0.

(ii) Let Y C X be a subspace of the topological space X. If A C C{X)
and A C C(Y), then Cn(6, A, Y) > Cn(6, A, X) for all n > 1 and 6 > 0.

Proof. — Obvious from the definitions. D

1.1.4. Remark. — In general, no relations between c^(^),A,X) and
Cn(6^ B, X) follow from contractive inclusions B C A C C(X). For instance,
for C^^T) CW C C(T), where W stands for the Wiener algebra, we have
Cn(6,C^\T) < oo, Cn(6,C,T) < oo for all 6 > 0, n ^ 1 (see 1.2.1 below),
but ci(i,W,T) = oo (Section 3).

1.2. Known examples.

1.2.1. Algebras with local norms. — Let Q be an open subset of R^,
N > 1. It is clear that the algebras of all bounded functions, A = 5(f^),
and of all continuous bounded functions, A = Q,(f^), endowed with the
usual supremum norm, have completely ^-visible spectra with respect to
X = fl. for all 6 > 0, and Cn{S, A, f^) == 6~1 for all n and 6 > 0. Indeed, we
can always take the standard solution of Bezout equation (0.2.2)-(0.2.1):
9k = fk/\f\2^ k = 1,... ,n, where by definition fk stands for the complex
conjugate of fk and

i/i^EiA2-
k=l

The complete 6- visibility also holds true, for all 6 > 0 and for all
other Banach algebras with "local norms". In particular, this is the case
for A = C^ (^), the algebra of all i times differentiable functions /
on f^ with Q^f e Q)(^), |a[ ^ ^, endowed with an appropriate norm;
or for A = 14^(^2), the Sobolev space satisfying the embedding theorem
W^(^) C Cfo(^). One can easily check that in the latter two examples
c^,A,Q) ^const/6w,n= 1,2,... .
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1.2.2. Holomorphic algebras with local norms. — Let ^ be an open
subset of the complex plane C, and H°°(^) = B(^) n Hol(^), as before,
the algebra of all bounded holomorphic functions on f^. Next, by definition,
let X = fl, be the visible part of the spectrum. Obviously, the spectrum
W(H00^)) is (^-l)-visible with c^H°°(^)^) = 6-\ 6 > 0.

The famous Carleson corona Theorem says that for the unit disc
^ = D = [z e C:\z < l } , a s well as for domains ^ conformally
equivalent to D, the spectrum of H°°(^) is (^-n)-visible for all n > 1
and all 6 > 0; see [Gar] for a proof based on the original L. Carleson idea
with T. WolfTs improvements. Using another T. WolfTs approach, again
for fl = D, V. Tolokonnikov [Tol] proved the complete <5-visibility with
Cn(^H°°(B),B) < 25/^4, 6 > 0 (independently, M. Rosenblum [R] proved
that Cn(6,H°°(]S]))^) ^ 64/^4, 6 > 0). Probably, the best known estimates
were presented in [Nl], Appendix 3:

maxG'^2)<c"^<!+^[7^10gi+20104]•
For further information concerning multiconnected domains f^ c C

and some infinitely connected ^ see [Gam], [Gar]. For ^ c CN, N > 1, the
problem is open even for polydiscs and balls.

An interesting example was provided by B. Cole, see [Gam]. Namely,
there exists a Riemann surface ^2 such that the spectrum ^(H00^)) is
2-invisible (i.e. is not 2-visible). We do not know any example of a Banach
algebra A C C(X) whose spectrum is n-visible but (n + l)-invisible for an
integer n > 1.

Many other holomorphic algebras with local norm, like C^^) n
Hol(^), W!p(p) nHol(^), LipanHol(^), etc., were considered in [S], [To2].

1.2.3. Fourier-transformed (nonlocal) norms. — One classic example
has already been mentioned: A = ^M(G), X = G, where G is a locally
compact abelian nondiscrete group. The Wiener-Pitt-Sreider theorem says
that the spectrum is 1-invisible, and so the corresponding critical constant
^i is positive, <^i > 0; see Corollary 1.1.2 above. The Stafney [St] and
Shapiro [Shi] results show that the same is true for G = Z and X = G = T
(= 9Jt), and hence for any group G containing a copy of Z. However, as we
show later on in Section 2, for any LCA group G the spectrum of FM(G)
is (<5-n)-visible for all n > 1, if 6 is sufficiently close to 1. More precisely, we
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show that any infinite LCA group satisfies \ < 6n(J^M(G),G} < — for
all n > 1. We also consider some subalgebras of J:M.(G)\ see Sections 2, 3,
and 4.

1.3. Two general properties.

We start linking the resolvent estimate problem with (6-1)- visibility.

1.3.1. Distance controlled resolvent growth. — We say that A is an
algebra of distance controlled resolvent growth if there exists a monotone
decreasing function ( p : M^ -^ R^ = (0, oo) such that

(1.3.1) | |(Ae-/)- l | |<^(dist(A,a(/)), A e C \ a(/)

for all / C A, 11/H ^ 1. It is easy to see that this estimate implies

||(Ae-/)-l||^^(^dist(A^(/))), A c C \ a ( / )

for all / G A. The following lemma links the (6-1)- visibility property with
the distance controlled resolvent growth. A similar relationship can be
established for (6-n)- visibility and the "n-resolvent" (\Cn - /)~1, where
Xe^ = (\ie,..., A^e) <E An, \k C C.

1.3.2. LEMMA. — The spectrum of an algebra A is (6-l)-visible from
X = m(A) for all 6 > 0, that is ^(A,TO(A)) = 0, if and only if A obeys
the distance controlled resolvent growth.

Similarly, 6^(A,X) = 0 for a subset X C OT(A) if and only if
the spectrum of A is 1-visible and there exists a function (p such that
IKAe-/)-1]! < ^(dist(AJ(X))) for all A € C\a(f) and all f € A, ||/|| ^ 1.

Proof. — It is clear from the definitions that (1.3.1) implies (6-1)-
visibility (with respect to X = 9Jl(A)) with ci(^ A, 9JI) ^ (p(6).

Conversely, let ci(^A,97t) < oo for all 6 > 0. For an element / C A,
11/H < 1, and a complex number A € C \ a(/), we set g = Xe - f and
^=dist(A,a(/)).

• If |M| < 1, directly from the definition of ci(<5) we deduce that
ll^ll^ci^A^).

• If H ^ l l > 1, we set h = g/\\g\\ and get \h(x)\ = \g(x)\/\\g\\ >
6(2 + 6)-1 for all x G W(A), because ||^|| < |A| + ||/|| < 6 + 2||/|| < 6 + 2.
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Hence, l^-1]! ^ H/i-1]! < ci((^(2 + ^-^A.ajt). Since ci(^,A,9Jl) <
ci(^(2 + ^)~1) (see Lemma I.I.I above), estimate (1.3.1) follows with
^(6)=c,(6{2+6)-\A^).

Clearly, ^i(A,X) = 0 implies clos/(X) = a(f) for every / 6 A.
Hence, the second part reduces to the first one. D

1.3.3. (6-n)-visibility and reproducing kernels. — The next lemma
links the (<5-1 ̂ visibility property with properties of the corresponding
multiplication operators. In fact, it means that the (<5-1 ̂ visibility is
equivalent to the following ^reproducing kernel definiteness": for a
multiplication operator, the pointwise invertibility on reproducing kernels
should imply the true invertibility. Precisely, the following lemma holds.

1.3.4. LEMMA. — Let A C C(X) be a continuously embedded
commutative unital Banach algebra, and 6^ € A* the reproducing kernel
of A at a point x C X, that is, an element of the dual space A* such that

{g^x) =^x(g) =g(x)
for all g € A. For an element f C A, denote by f : A —> A the multiplication
operator^ fg = fg, g 6 A, and by f * : A * — ^ A* its adjoint. Let 6 > 0.

(i) The lower estimate \f{x)\ ^ ^, x G X, is equivalent to the estimate

(1.3.2) l |r<U^ ^IIM, ^ex.
(ii) The invertibility off with the inequality H/"1!] < 6~1 is equivalent

to the following lower estimate for f*:

(1.3.3) ||r^||> ^|M|, ^eA* .

Proof. — (i) Since

^,f*^) = (fg,^) = f(x)g(x) = {gj(x)^}
for all g C A, we have f*^ = f(x)6^, x e X (we use a bilinear duality ( . , . )) .
The assertion follows.

(ii) If / is invertible, the operator f (and hence f*) is invertible as
well. Conversely, estimate (1.3.3) implies that f is a surjection, whence there
exists an element g C A such that fg = e. Therefore, / is invertible, and
then (1.3.3) means that IKf*)"1]! < S~~1. This implies that H/-1!] < 6~1. D

Therefore, to get the (^-1)-visibility of the spectrum, we need to derive
the general estimate (1.3.3) from a reproducing kernel estimate (1.3.2)
(on the unit ball ||/|| ^ 1).
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1.4. Splitting X-syrnrnetric Banach algebras for upper estimates.

As before, we consider a commutative unital Banach algebra A
continuously embedded into the space C{X\ A C C[X\ on a Hausdorff
topological space X C 9Jt(A). Now, we need the following definition.

1.4.1. DEFINITION.

• We say that an algebra A splits at the unit if there exists a subspace
AQ C A such that

(1.4.1) A = e - C + A o

(a direct sum) and for f = \e + fo, /o ^ Ao we have \\f\\ = |A| + ||/o||-

• An algebra A is said to be X-symmetric if for every f G A there
exists an element g C A such that \\g\\ < \\f\\ and for all x G X

g(x) = f(x).

As a comment, we recall that the splitting property is satisfied by
the algebras A obtained by the standard adjoining of unity to a Banach
algebra Ao without unit. For instance, this is the case for the group algebra
Ao == ^(G) of a nondiscrete LCA group G. Also, it should be mentioned
that the classic symmetry property of Banach algebras corresponds, in our
language, to 9Jl(A)-symmetry. For X -^ 9DT(A), X-symmetry may happen to
be a considerably weaker property. For instance, the algebra A = J^M^G)
is obviously G'-symmetric: for / = /2 6 A take g = /2^, where

/^(a) = /^(-cr), a C G.

But it is not 971-symmetric for a nondiscrete LCA group G. This latter
property essentially coincides with the Wiener-Pitt phenomenon.

For X-symmetric algebras, the (^-n)-visibility properties are related
to each other as follows.

1.4.2. LEMMA.. — For an X-symmetric algebra A, the (6-1)-visibility
of the spectrum implies the (V6-n)-visibility for all n ^ 1, and even the
complete ^-visibility with

supCn{V6,A,X) <ci(^,A,X).
n>l
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Proof. — Let /= (/i,...,/,) e A-, let

^I/^I^^IA^I^II/II2^!
k=l

for all x G X, and let gk be elements of A corresponding to the fk as in the
definition of X-symmetric algebras. Then h e A, where

(1-4.2) ^^y^
fc=i

and

6 < h(x) = ̂ \h(x}\\ \\h\\ < (f; IIAH2) 12 (f>fcll2) 5 < 1.
A;=l A;==l k=l

By assumption, /i is invertible and H/i"1!! < Ci(^,A,X). Hence,

^=(^- l,...,^- l)cAn,
n

and ^ fk(9kh~1) = e. Moreover,
A;=l

IMI^Ell^"1!!2)^
A;=l

^II^^Ell^ll2)' ^ l l ^ l l - 1 1 / 1 1 <ci(<5,A,X).
fc=i

Hence, Cn(v^A,X) < ci(^,A,X). D

The following lemma is inspired by an observation of S.A.Vinogradov.

1.4.3. LEMMA. — Let A be an algebra splitting at the unit, and
let f = Xe + fo,^ < 6 < \\\ < \\f\\ < 1. Then f is invertible in A, and
H/-1!!^!^-!).

Proof. — One has / = \(e + A-Vo) and

I IA-Voll = I A I - ^ I I / H - |A|) < |A|-1 -1 ̂  <r1 -1 < i.
Hence, the sum e + A"'1^ is invertible, and / is invertible as well, and

. 1 .-i.,^ |A|-1 ^ 6-1 1
\\f 1 1 ^ l-^-i+l ^^6~^26~1 D
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1.4.4. X-dominated unit evaluation functional. — The main result
of this subsection, Theorem 1.4.7 below, gives sufficient conditions for the
(^-n)-visibility of the spectrum. The statement uses the splitting property
(1.4.1) and the following functional y?e evaluating the coefficient of the unit
in the standard expansion of an element of the algebra:

(1.4.3) ^ ( A e + / o ) = A

for \e + /o G A = C • e + Ao. Note that (pe is a norm 1 linear functional
on A, not necessarily multiplicative. The following definition will be useful.

1.4.5. DEFINITION. — Let A = e-C+Ao be a direct sum decomposition
of a Banach algebra A, and let X C 9Jt(A). We say that the unit evaluation
functional (1.4.3) is X-dominated if

|^(/)| ^ x

for every / G A, where ||/||x = sup |/|.
x

The following lemma gives another form of the X-domination
property. Recall that ̂  means the evaluation functional at a point x € X:
6^f)=f(x)hTf^A.

1.4.6. LEMMA. — The following assertions are equivalent:

(i) the functional (^g of (1.4.3) is X-dominated',

(ii) (pe ^ conv(<^c : x G X), where conv(.) stands for the weak-^closed
convex hull of ( . ) .

Proof. — (i) =^ (ii). By the Riesz-Markov theorem there exists a
measure ^ on the closure X C 9?l(A) such that ^pe(f) = f f(x) d/ji(x) for
every / C A, and \\u\\ = Var(/^) = 1. Since 1 = ^e(^) = P'(^)^ we obtain
[i > 0, whence it follows that ^ is a probability measure on X. Using
Riemann sum approximations to the integrals, we get a net (/^)^eJ °f
discrete probability measures on X weakly convergent to <^e. This proves
property (ii).

The converse (ii) => (i) is obvious. D

1.4.7. THEOREM. — Let A be a unital Banach algebra continuously
embedded into the space C(X), X C SDt(A), and satisfying the following
conditions:
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(i) A is X-symmetric;

(ii) A splits at the unit;

(iii) (^g is X-dominated.

Then, the spectrum of A is (6-n)-visible for all n > 1 and all 6
satisfying — < 6 < 1, and even completely 6-visible with

c^,A,X)<^1^-.

Proof.—Let/=(/ i , . . . , /„) e A71 be such that <^ \f(x)\ ̂  \\f\\ ̂  1
for all x e X. As in Lemma 1.4.2, consider the element h € A defined by
formula (1.4.2). As before, j < 62 < h(x) ^ \\h\\ < 1 for all x C X.
Using condition (iii), Lemma 1.4.6, and the obvious fact that the interval
[^2,!] is a convex set, we obtain 62 < (pe{h) < 1. Condition (ii) and
Lemma 1.4.3 imply that h is invertible and H/i"1!! < 1/(262 - 1). Hence,
9= (9ih~\..., gnh~1) eA^and

i^fk(gkh-1) = e, ll^ll = (f^ H^-1!!2)' ^ ll/r1!! • ll/n ^ .̂ -
fc=i fc=i / ^ -iA:=l k=l

as desired. D

1.4.8. Remarks. — Here, modifying (i) and (iii) of Theorem 1.4.7, we
list some other sufficient conditions for norm-controlled inversion. These
observations, as well as Theorem 1.4.7, are based on the obvious idea that
the better we can reconstruct the coefficient ^pe(f) of (1.4.3) using the
values f(x), x G X, the smaller will be the constant 6 allowing a norm
control of the inverse of /. In particular, the convex hull in Lemma 1.4.6
can be replaced by other tools. In Theorem 1.4.7, we have assumed that (pe
is an approximate convex combination of <^, x e X, simply because this is
the most frequently used condition.

In the following assertions, we always assume condition (ii) of
Theorem 1.4.7. First, we improve the estimates of Theorem 1.4.7 by
sharpening condition (iii); the simplest version (a) (see below) will be
useful for the group algebras and measure algebras on semigroups, see
Subsection 2.2. Condition (b) means that the element / is an "outer
function" with respect to X; see Subsection 2.3.4 for comments. It should
be stressed that the bottom conditions are individual, that is, they are
related to an individual element / 6 A.
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(i)Jf

(a) ^e(/) C clos(/(X))
or

(b) log|(^(/)| econv{log|/(rr) | : ;reX},

and if ^ < 6 = infx |/(^)| ^ ||/|| ^ 1, then H/-1!] < (26 - I)-1. In
particular, if (we mean the weak-^ closure)

^Pe ^ C\OS(6^:X € X),

then6^(A,X) < \ andc^(6,A,X) < (26 - I)-1 for ^ < 6 ̂  1.

Indeed, the hypotheses imply |^e(/)| > 6, and the assertion follows
from Lemma 1.4.3. Q

(ii) Supposing conditions (ii) and (iii) of Theorem 1.4.7, we let f e A
be such that \\f\\ < 1 and

sup{inf(Re(^)): 11^11 < 1 } = : ^ > J .

Then f € G(A), and

l l r l l l< (27 - l ) -
Jn particular, this is the case if f ranges in a disc segment, that is, there
exists a rotation z ̂  e-10 z such that Re( e~^ef(x)) > 7 > j for all x G X.

Indeed, let e > 0, and let \\g\\ <, 1 be such that Re(fg) > 7(1 - e) > j
everywhere on X. Since {2; C C:Re(^) ^ 7(1 - e)} is a convex set,
Lemma 1.4.6 implies the inequality Re((pe(fg)) > 7(1 - e). Lemma 1.4.3
finishes the proof. Q

Observe that always 7 < 6 = inf |/|.x

1.5. A method for lower estimates.

The method to get a lower estimate for ci(^, A, X) we are considering
in this subsection is inspired by Shapiro's example [Shi] mentioned above.
Essentially, it reduces to the existence of elements a G A whose normalized
powers ak/\\a\\k,0 < k < p, for a given p are e-equivalent to the standard
basis of an ^-space, whereas asymptotically they tend to zero faster than
a given exponential. We use this method in Section 3; see also [ENZ].
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1.5.1. THEOREM. — Let A be a unital commutative Banach algebra
continuously embedded into the space C(X), X being a Hausdorff topolo-
gical space. Let e > 0, and let A6 denote the set of all elements a e A such
that \\a\\c(x) < c and ||a|| = 1. Suppose that

(1.5.1) 1 1 psup E6^ >E^
i(=2le II A——•aCA k=0 k=0

for all p ^ 0, e > 0, and bf, > 0. Then

ci(^A,X)>
20 — 1

for a22 6 such that j < 6 < 1. Jn particular,

^i(A,X)^|.

Proof. — Let j < 6 < 1 and t > 0 be such that
t < 6~1 - 1. Setting 1+t

> 6, that is

f= 1-^-t
(e - to)

for an element a e A6, we get ||/|| < 1 and

1^)1 ^rh01-^^
for all a; e X. Moreover,

II^II-^+^IE^H'
k>0

which implies

lir1!!^ (i+^(|| E^I-E^-^+^lE^ -Ql±^-
A;=0 A;>p /i;=0 1 ^

Choosing e > 0 in such a way that 6 ' > 6, and passing in the last
inequality to the supremum over all a e A6, we obtain

1 - ̂ +1 t^^^)ci(^A,X) > ci(^A,X) > (1 +^) -
1-^ 1-^

^-<1-)^
Passing to the limit first as p -^ oo, then as ^ -^ tg = 8~1 - 1, we get

ci(^A,X) > ]-̂  = 1 .v 1-^ 2^-1

The following property will be useful in Section 3.

D
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1.5.2. LEMMA. — Let A and X be as in Theorem 1.5.1. If the unit
evaluation functional (pe of the algebra A is C(X)-continuous (in particular,
if it is X-dominated, as defined in 1.4.5), then (1.5.1) implies

P ,, P
sup l^^ll >^h

a(EA^ k=o k=o
for all e > 0 and b^ > 0, where

A^ = {a G A : ||a||c(x) < e, ||a|| = 1, ^(a) = 0}.

Proof. — By assumption, there exists a constant C > 0 such that
|^e(a)| ^ C\\a\\x for all a <E A. Let 77 > 0. By (1.5.1), for every bj, > 0 and
every e > 0 there exists an element a e A6 such that

llE^I^-^E^
fc=0 fc=0

Clearly, the latter inequality is stable under small perturbations of a. Thus,

replacing a by a' = a - / e we obtain a similar inequality with 1 - rj

replaced by 1 - 2rj and with an element satisfying

l l a ' H = 1, ^(aQ = 0 and Ha'H^x) < (C + l)e/(l - Ce) = e .

Hence, a' C Ap , and the result follows. Q

2. Upper estimates for measure algebras on groups
and semigroups.

2.1. The measure algebra Al(G').

Let G be an LCA group and M(G) the convolution algebra of all
complex Borel measures on G endowed with the standard variation norm
|H| = Var(^). The Fourier transforms F^ = /2,

^(7) = ?(7) = / (-x, 7) d/^(a;), 7 e G,
JG

form an algebra of functions on the dual group G. We denote this algebra
by FM{G} and endow it with the range norm ||JF |̂| = ||̂ ||. Clearly,
JT(^ * v) = (JF^) • (JFz/) for all /^, ̂  e M(G), and so the Banach algebras
M(G) and ^FM{G) are isometrically isomorphic. The term "the measure
algebra of G" will be used to refer to both.
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We regard the inclusion J='M{G) C G(X), where X = G, as the
natural injective embedding defining the visible spectrum of M(G) in
the sense of the preceding sections. In particular, G C W(M(G)), and
clos/2(G) C a{fi) for any fi e M(G). The Wiener-Pitt-Sreider Theorem
implies (see Introduction) that W(M(G)) = closG if and only if G is a
discrete gjroup; in fact, if this is the case, the maximal ideal space is simply
equal to G: Wl(M(G)) = G. However, even in this latter case, the problem
of norm-controlled inversions, as described in previous sections, is still of
interest. Moreover, from the quantitative point of view, there is no advantage
to discrete groups, for which the spectrum G = W(M(G)) is completely
visible (in the sense of Definition 0.2.1), as compared with the general LCA
groups, for which X = G -=f=- W(M{G)) and the spectrum is even 1-invisible.
This is an essential distinction between the concepts of n-visibility (without
any norm control) and ((^-visibility. Speaking informally, the 1-visibility
ofW(M{G)) for discrete groups, guaranteed by the classical Wiener-Levy
theorem, is illusory because it does not endure quantitative specifications
by (^-l)-estimates of inverses.

In this section, we give an upper estimate for the norm-controlling
constants

Cn{6,M(G))=Cn(6,M(G),G),

as defined in 0.2.3.

2.1.1. THEOREM. —For every LCA groupG, thespectrum ofM(G) is
completely 6-visible for — < 6 ^ 1, and, consequently, 6n{M(G),G) <, —
for all n > 1. Moreover, for — < S ^ 1 and all n ̂  1

(2.1.1) Cn^M(G\G}<,^——^

Proof. — We simply check three conditions of Theorem 1.4.7.

• Condition (i) is obvious, and already mentioned: the algebra
^FM.{G) is (^-symmetric; see comments to Definition 1.4.1.

• Condition (ii) is also obvious because i f / ^= \6o +;/ and ^({0}) == 0,
then

|H| = Var(^) = |A| + IMI.
Hence, to fit Definition 1.4.1, we may set

M(G)o = [v € M(G): v{{0}) = 0}.
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• To verify condition (iii), we choose a base of compact symmetric
neighbourhoods of zero of the form Va = Wa — Wa, and set

l^Ot. = JOL * JOLI

where fa = {mWa)~^ Xw^^ / { x ) = /(—a;) for re e G, m == me stands for
Haar measure on G, and XE for the characteristic function of a set E. Then
A?a(7) ^ 0 for 7 e G, 0 < ka{x) ^ 1 = ^(0) for x e G, and /^(a:) = 0
for x ^ Va (the A^o: are called triangular functions on G). Set

(^a(^) =: / kad^
JG

for every ^ G ^(C?). Since

^(/^) = /^^a (7)^(7) dmg(7),
<^G'

the functional (^Q belongs to the hull conv(^:7 G G'), ^(/^) = /z(7)•
Moreover, from the properties of ka mentioned above, it follows that

lim^(^) = /^({O}) = ^e(/^)

for all p. € A^(G), whence (^g C conv(^ : 7 € G).

Now, inequality (2.1.1) follows from Theorem 1.4.7. D

2.1.2. Remark. — So, the last part of the proof shows that the algebra
M(G) and, therefore, all its subalgebras have G-dominated unit evaluation
functional in the sense of Definition 1.4.5.

2.2. Measure algebras on semigroups.

Here we consider the convolution measure algebras A4(S) on
semigroups. Since harmonic analysis for these algebras is not well advanced
and not commonly known, and even the basic language of the theory is not
canonically fixed, we clarify, first, what objects we are dealing with. In fact,
we restrict ourselves to Borel subsemigroups of LCA groups, but all results
are correct for abstract LCA semigroups as well; the only difference is that
the latter case requires more prerequisites, for instance, as presented in [T].
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2.2.1. Basic definitions. — By a semigroup S we mean the following:

(i) S is a Borel subset of a LCA group G such that x,y e S
implies x + y C S,

(ii) 0 e S.

• A bounded character (also called semicharacter) on 5' is a bounded
continuous function 7 : 6' ̂  C such that 7(0) = 1 and ^(x + y) = ̂ (x)-f(y)
for all x,y e S. It is clear that every such function is bounded by 1:
\^(x)\^^xeS.

^ ^ The set of all bounded characters of S is denoted by 65. Obviously,
G C 6'b, in the sense that the restriction 7^ of a character 7 C G is a
bounded character of 6'.

In what follows, we assume that the following separation property
holds.

(iii) For every x C S, x -^ 0, there exists a bounded character 7 e Sb
such that 17 (a;) | < 1.

In particular, Sn(-S) = {0} if a semigroup S satisfies condition (iii).
Let

M(S)={^eM(G):^G^=0}
be the subspace of M(G) consisting of all measures supported by S. An
immediate verification shows that M{S) is a (closed) subalgebra of.M(G);
indeed, for /^, v G M(S) and for any bounded Borel function / on G
vanishing on S, we have

/ / d(/, * v) = f f(x + y) d^(x) d^y)
JG JGxG

= f(x + y) d^(x) dv{y) = 0;
JSxS

therefore, (^ * ̂ )\{G\S) = 0-

Now, we define the Fourier-Laplace transformation on Sb setting
for ^eM(S)

^(7) = /2(7) = / 7^) d/^), 7 € ^.
</5'

Clearly, the functional

(2.2.1) ^^/^(^ ^eA^(5),
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is a norm continuous homomorphism of the algebra A4(S) for every 7 c S^.
Moreover, £^(7) = ^^{—^f) for all 7 6 G. The Fourier-Laplace transform
Cti is a continuous function on Sb endowed with the weak*topology
a((M(S))*,M(S)), precisely as for the dual group G. Hence,

CM(S) c C7(^),

and it is natural to consider the space of bounded characters S^ as the
visible part ofW{M(S)).

The following theorem gives an upper estimate for the {S-1)- visibility
constant of A4{S) (if we stay on S^)- Examples and comments are presented
in Subsection 2.3 below.

2.2.2. THEOREM. — Let S be a semigroup satisfying conditions
(i)-(iii), and S^ the space of bounded characters of S. Then,

(2.2.2) 6,{M(S)^Sb) ̂

(2.2.3) ci(^(5),5,)<^-^

for all 6, j < 6 <, 1

Proof. — As in Theorem 2.1.1, it is obvious that the algebra M.{S)
splits at the unit. Let ^ = \6o + f C M(S), ||/^|[ ^ 1, and |j2(7)| > 6 > j
for 7 C Sb.

It suffices to show that A == /^({O}) € clos(/2(5'5)), and to use
Remark 1.4.8 (i). To this end, we take e > 0 and a compact set K C S\ {0}
satisfying

I d|^| < 6.
Js\(KUfO}}JS\{KU{0})

Such a compact set exists since the variation |^| is a regular finite Borel
measure on G supported by 6'. For a point x 6 K, we take a bounded
character 7 such that |7(^)| < 1; see condition (iii) above. Then, |7a:(^)| < ^
for 7^ == 771 and for a sufficiently large integer n. Being continuous, the
character \^x\ is strictly less than e on a neighbourhood Vx of x. Taking a
finite covering for K, say, V^, i = 1,... ,m, we get a bounded character

m
7 == PI 7^ such that \^{x)\ < e for every x ^ K. This implies

1=1
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|?(7)-^({0})|=| / 7(^)d/^)
' ^{o}

^ [ dH+ ( | 7 (^ ) |d |^ |<e+6=26 .
^5\(XU{0}) JX

The required inclusion (and, therefore, the theorem) follows. D

2.3. Examples and comments.

2.3.1. Symmetric and analytic Wiener algebras. — Let G = Z be the
additive group of integers, and let S = Z+ = {n € Z: n :> 0}. Then

A^(Z)=^(Z), .M(Z+)=^(Z+),

and

W = ̂ A^(Z) = {/2 = ̂ ^(n)^ :^ e ̂ (Z)}
—ry ^n€Z

is the Wiener algebra of absolutely converging Fourier series on the circle
group Z = T = { C e C : | C | = l } . The bounded characters of Z+ fill in the
closed unit disc

Sb = D = [z ^C:\z\ < 1}.

The corresponding Fourier-Laplace transformation is p, i-» ft(z) =
^ /^(n)^", and

n^o

TV+ = /:A^(Z+) = {/2 = ̂ ^{n^ :/. e ̂ (Z+)}
n>0

is the analytic Wiener algebra on D. Our theorems say that

(^e ̂  71< ̂ 1/I(C)1 ^ MM^ < 1 for Id =1)
ll^1!! < 1

-2^-1
and

(^ C W+, ^ < ̂  |/2(z)| ^ ||̂ |̂  < 1 for |^| < l)

ll^-1^ 1
2^-1
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Similar norm-controlled inversion theorems hold for the multivariate
Wiener algebra

W=J^M(ZN)=^= ̂  AW^C^Z^)}
nez^

on the torus T^, and for analytic Wiener algebra

W^=CM(^)={fl= ̂  ^(n)^:/.e^(Z^)}
nez^

_]\[
on the polydisc D .

2.3.2. Continuous versions of Wiener algebras. — These algebras
correspond to G = R, S = R+ = {x € M: x > 0}, and - in several variables -
to G = R^, 5' = R^. Here G = M, and

5b=C+= {^eC:Im(^) ^0},

the closed upper half-plane. The Fourier-Laplace transformation is the
classical one,

C^z)= I e—d/^), ^CC+.
JR+

^. ^ _AT
Similarly, for several variables, G = R^, Sb = C_^.

2.3.3. Cones in Z^ and M^. — Instead of the cones R^ c M^ and
Z^ = R^ H Z^, we may consider an arbitrary subsemigroup 6' of R^
containing 0 and such that 5' \ {0} is contained in an open halfspace (this
requirement guarantees the separation property (iii) of Subsection 2.2.1).
Usually, S is a convex cone satisfying the latter property, or, in its discrete
version, the intersection of such a cone with Z^. For the continuous version,
the characters are x ̂  e^'^ with z C 5'̂ ,

Sb= {zeCN : lm(x . z) ̂  0 for all x C S},

N
where x ' z = ̂  x^z^. The Fourier-Laplace transformation is again the

k=l
classical one,

C^z)= [ e^d/^), z e S b .
Js
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For instance, for

S = {(^1,^2) C M 2 : rci ^ 0, -tei ^ ^2 ^ ̂ 1}

where A; > 0, we have

^ = {(^2) e C2 : A;|Im(^)| < Im(^i)}.

Another example is the halfspace

S = {(^1^2) e R2: ;ri > 0} u {0},
with the corresponding dual set of characters

Sb = {(^1^2) e C2 : Im(^) = 0, Im(^i) > 0} = C+ x R.

2.3.4. Comment: G versus Sb. — We would like to emphasize once
more that {6-n)- visibility properties and visibility constants c^(<5,A,X)
depend essentially on the choice of the "visible spectrum" X.

For instance, the algebra ^FM(S) C J^M{G) for a semigroup S
described in Subsection 2.2.1 can be viewed as being embedded into C(G),
and into C(Sb) as well. The preceding results say that 6-i(M(S),Sb) < ^
and ci(^), M{S), Sb) < {26 - I)"1, and, moreover, one can derive from these
results and Corollary 3.3.8 below that 6^(M(S), Sb) = 6^(M(S), {0}) = \.
But no restrictions on the behaviour of |jE2| on G can guarantee that an
element p. 6 M(S) is invertible in M(S). Take G = Z, S = Z+ and G = T,
Sb = D with j5(C) = C, < € T, as an example. However, some specific
value disributions of ^(7), 7 € G, can be rewarded by the invertibility of fi
in M(S), see 2.3.5 below.

Moreover, even for the latter classical case, taking the smaller
set T = G for visible spectrum, we can guarantee the norm-controlled
invertibility of a function /2 € FM{S) = IV+, as well as of any other
function belonging to FM.(G) = W, under more restrictive hypotheses than
in the previous paragraph, and only in the larger algebra FM{G) = W,
and with cruder estimates. Namely, we can only say that the relations

— «^ |/2(C)| < M^l ( forCeT)
V2

imply the invertibility in W and the estimate H/^'^lw ^ (262 - 1)~1. Later
on, in Subsection 3.3, we show that even staying on D = Sb, we have
sup^l^H: ft G W+, S < \fi(z)\ ^ M < 1, z G D} = oo for S ^ j. If we
stay on G, the interval ^ < 6 < — still represents an open problem.
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In return for these difficulties of the case X = G, caused by a restricted
accessibility to the unit coefficient /^({O}) = <^e(/^) from the visible values
j2(7), 7 € G, we profit from G-symmetry of M.(G) in getting an easy route
to all (6-n)- visibility constants.

By contrast, staying on S^ = D, we know more about ci(^) but
cannot say anything about the bounds Cn(6, W^, D) for solutions of Bezout
equations for n >_ 2 (at least at the same elementary level as before;
cf. our Theorem B and the results of [EZ]). The same is true for general
subsemigroups 6' C G. We can give at least two reasons for this difference.
First, the algebra A4(S) is not inversion stable: indeed, the measure
6x € M(S) is invertible in M.(G) but the inverse 6^1 = 6-x does not
belong to M(S) for x € 5' \ {0}. Second, the algebra M(S) is neither G-
nor ^-symmetric.

However, the estimates 6n(W,J) ̂  — and Cn(6,W,T) < (262 - I)-1

are still valid for all n. They ensure the existence of norm-controlled
solutions for Bezout equations, but in TV, not in W^-. The same is true for
general subsemigroups S C G. The next remark shows that under a more
specific hypothesis on the localization of the range j5(G) we can relax the
lower bound — up to the value - as if we stayed on Sb-

2.3.5. Comment: "outer measures" on S and disc segment ranges.
Applying Remarks 1.4.8 for the case A = M(S), we can improve the
preceding results. Namely, let S C G be a semigroup as in Theorem 2.2.2,
and let ^ C M(S), ||/^|| ^ 1.

Supposing |iS(7)| ^ 6 > j for 7 e G (not for 65!), we deduce from
Remark 1.4.8 (i), part (b), that if/z is an "outer element" of A4(S)^ that is,

log|(^e(^)| € conv{log|/2(7)| :7 e G},

then 11 C G(M(S)) and H/x"1]! < (26 - I)-1. The reason to call such an
element ji outer is that, for the classical case G == Z, S = Z+ and G = T,
Sb = D, an outer function 7^ in the standard Hardy space sense obviously
verifies condition (b) of 1.4.8 (i). Moreover,

log |̂ )| = log |^(0)| = f log |^(C)| dm(C).
Jr

Another specific hypothesis implying invertibility is the disc segment
distibution of the values /2(7), 7 € G, as described in Remark 1.4.8 (ii).
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Namely, suppose that there exists a measure u e M(S) such that ||i/|| ^ 1
and

Re(P(7)/2(7)) > 6 > ̂  for 7 e G.

The main special case is when v = e-^o, and so e-^/2(G) is contained in
the disc segment A = {z € C: 6 ^ Re(z) ^ |^| < 1} (see Figure 1).

Figure l:Re{af) > 6 > j.

Then, by 1.4.8 (ii), the measure ^ is invertible in M(S) and
H/^ll^^-l)-1. Q

2.4. Some subalgebras of .M(G) and .M(5').

In this subsection, we briefly consider two classical subalgebras of
M(G) (or M(S)), namely, the algebras of absolutely continuous and
discrete measures on G (respectively on 5).

2.4.1. The group algebra L^G). — Let G be an LCA group,
and 1^(0) the convolution group algebra on G. By the standard
identification of a function / e ^(G) with the measure /dm, we can
view the algebra ^{G) as a subalgebra of M{G). These algebras coincide
if and only if G is a discrete group, and if and only if L^G) contains
a unit. In general, ^(G) becomes an algebra with a unit if we adjoin
the Dirac point mass at the origin e = So, that is, consider the algebra
^(G) + C • e. We call this subalgebra of M(G) the unital group algebra.
In this subsection, for the case of a nondiscrete LCA group, we improve
the upper estimate for c^{6) contained in Theorem 2.1.1 above. In the next
Section 3 we show that this new estimate for L^(G) + C • e is sharp.
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2.4.2. THEOREM. — The critical constant (^(L^G) + C • e, G) for the
unital group algebra of a nondiscrete LCA group G is less than or equal
to ^. Moreover, for all ^ < 6 <^ 1,

(2.4.1) ci^L^+C.e.G)^^^.

For n > 2 we still have estimates (2.1.1).

Proof.—Since ||A^o+/dm|| = |A|+| l / l l i for all / C L^G) and A e C,
the algebra L l(G)+C•e splits at the unit. Moreover, the Riemann-Lebesgue
lemma implies that

A = lim /2(7)
7-^00

for ^ = Xe + fdm G (^(G) + C • e). Hence, for an element p, with \\u\\ < 1
and |iS(7)| > 6 > j, 7 e G, we can apply Lemma 1.4.3 which gives
ll^ll < (2^ - I)-1, and (2.4.1) follows. Since the algebra L^G) + C . e
is G-symmetric, Lemma 1.4.2 implies that

Cn{^L\G) +C • e,G) < ci^.L^G) + C • e,G) ^ (2^ - I)-1

for all n > 2 and — < 6 < 1. Q

2.4.3. The algebra of almost periodic functions yMd{G), the
semigroup algebra CMa(S), and the algebra of Dirichlet series CMd(S).
Let M.d(G) be the algebra of discrete mesures on an LCA group G,
and M.a(G) the algebra of measures absolutely continuous with respect
to Haar measure me. We denote by Md(S), respectively by Ma(S),
their subalgebras of measures supported by a subsemigroup S satisfying
hypotheses (i)-(iii) of Subsection 2.2.1. The case of the group algebra
M-a(G) = ̂ (G) is considered in Subsections 2.4.1 and 2.4.2 above, here
we make some remarks on three other algebras.

• The unital semigroup algebra

M a { S ) + C ' e = L l ( S ) - ^ C ' e

is an inversion stable subalgebra of M(S), and so Theorem 2.2.2 gives the
same estimates as in A4(S):

^1' c l< W-\ for 12<6<l•
It will be shown that these estimates are sharp; see Section 3 below.
Comments 2.3.4 and 2.3.5 are still valid in this case too.
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• The algebra J^M.d(G) of Fourier transforms of discrete measures is
the algebra of almost periodic functions with absolutely convergent Fourier
series. It is obvious and well known that M.d(G} is an inversion stable
subalgebra of M(G). (Indeed, if ^ e Md(G) H G(M(G)) and v is its
inverse in M(G), then 60 = p. * v = p. * ̂  4- ^ * Vc, where v^ ^ stand
for the discrete and continuous parts of v respectively; hence, ji * i/c = 0
and, finally, Vc = 0.) Thus, Theorem 2.1.1 works for this algebra too (the
visible spectrum is, of course, X = G). As for the entire algebra M(G),
we will show in Section 3 that the critical constant 6^Md{G),G) is
at least ^. It should be mentioned that here, as before, the absence of
the norm-controlled inversion, that is, the fact that c^(6,Md(G),G) = oo
for 0 < 6 ^ i, is not related to the evident insufficiency of X = G for
recognition of all the spectrum W{Md{G)). Indeed, despite the fact that
the latter is much larger than G and, in fact, coincides with the so-called
Bohr compactum (G)~, we show that even staying on the Bohr compactum
we still have 6^(Md(G), (G)~) ^ j; see Corollary 3.3.8 below.

• Similarly, ^Md{S) is the algebra of absolutely convergent Dirichlet
series

/(7)-^^(M)(^7), 7e5,, ^|/.({^})|<oo.
x^S x^S

The case of the classical Dirichlet series

z^^akC-^, Re(z) > 0,
k^l

corresponds to the case S = IR+, Sb = {z e C: Re{z) > 0} with the pairing
(x,z) ^ e"^. Like Md(G), the algebra Md(S) is an inversion stable
subalgebra of M(S). Hence, Theorem 2.2.2 and Comments 2.3.4-2.3.5 are
still valid for this algebra as well.

2.5. Other semigroups.

Probably, many other semigroups can be treated in a similar way,
even if they do not satisfy our requirements (i)-(iii). As an example, we
consider the quasinilpotent semigroup S = [0,1] endowed with the quotient
operation of M+/(l + R+): x o y = x + y f o r x + y < 1, and x o y = 1
for x -(- y > 1. The convolution of two Borel measures on S is well defined
as the restriction to S of its convolution on R+; in particular, for ^ = f dx,
v = g dx with /, g e ^(0,1) we have for 0 < x < 1

[ x

^ * ̂  = (/ * 9) dx, where / * g{x) = \ f(y)g(x - y) dy.
Jo
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In what follows we consider measures without point mass at point 1, or,
equivalently, endow the space M(S) with the seminorm ||/i||io,i) - ll^l[o,i)ll-
On the subspace -M([0,l)), this seminorm coincides with the usual norm.

It is easy to see that if ^|[o,i/n] = °'then

||̂  * • • • * ^11(0,1) =°-

This implies that lim H^H^) = 0 for all measures with ^({0}) = 0. Hence,
the space M([0,1)? endowed with the above convolution becomes a umtal
Banach algebra with the only nonzero complex homomorphism being

y: fii—»^({0}).

It is also obvious that the algebra M{[0,1)), as well as its suba^ebra
LKO 1) + C • e splits at the unit and is X-symmetric with X = W - W-
Therefore, using Theorem 1.4.7, we obtain the following result.

2 5 1 THEOREM — For the convolution algebra A4([0,l)), and for

X = 9Jt(M[0,1))) = M. we have ̂ M^-1))'x) ̂  ^ • Morcover'

ci(^([0,l)))<^1-^ ^ | < ^ < 1 >

cn(6,^([0,l))) $ ̂ L-! for " ̂  2 and ̂  < ̂  1.

In particular, if

J : L^O,!) -^ ^(0>1)

is an operator of integration,

j/(o0 = / * xio.i)^) = [ x f^ dy' ;r e (°'1)'*/ o

and p(z) = E ^^^^ is a P0^0™^ such that

fc=0

then

lb(*xio,i))||^) = 11^)11 < 1 and l^^1'

ll̂ '1!̂  2b(0^
-in ^ 1 n
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2.5.2. Remark. — It is worth mentioning that the same integration
operator J behaves in a different way on other classical spaces. For example,
for the norm closed algebra A = A(J, L2) generated by

J^O.l)-^2^,!),

and for X == 9Jt = {(^}, we have ^i(A, X) = 1, and, thus, the spectrum of A
is (<5-1)-invisible for all ^, 0 < 6 < 1. See Theorem 5.3.5 below. On the other
hand, for the algebra A = A(J, H2) generated in a similar way by the same
operator

J ' . H 2 ^ ) —.^(D),

but on the classical Hardy space, it can be shown that <$i(A,X) = 0;
see [N2]. Whence we see that the spectrum of this algebra is ((5-Invisible
for all 6, 0 < 6 ^ 1. See [N2] for details.

3. A lower estimate for measure algebras on
groups and semigroups.

Our goal in this section is to determine a common lower estimate of
ci (6, A, X) for the measure algebras of groups and semigroups and for their
subalgebras considered in Section 2 above. In particular, we show that the
critical constant <5i is greater than or equal to | for every infinite LCA
group and for most semigroups. This finishes the proof of Theorems A
and B of Subsection 0.3.

In fact, we have at our disposal two approaches to lower estimates.
The first one is based directly on the existence and properties of measures
carried by independent Cantor sets; in what follows a special kind of such
measures will be called Sreider measures. The corresponding theory is surely
one of the most subtle chapters of measure algebra theory; see [GRS], [Rul],
[GMG]. The second method is inspired by H. Shapiro's example [Shi]. In our
setting, it depends on some improvements to the technique of exponential
norm behaviour || e^^^MfG) ^OT t > 0. This technique is well known to
be the base of the theory of functions operating on an algebra; see [Rul],
[GMG], [K]. The first way is faster, and we use it in this section. The second
way is more explicit, and can be found in [ENZ] and [Sh2].

We start by recalling some classical facts about measure algebras,
essentially as exposed in [Rul].
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3.1. Measure algebra prerequisites.

For an LCA group G, we denote by 9Jt = W(M{G)) the spectrum of
the algebra M(G).

3.1.1. Sreider measures. — Suppose G is not discrete. Then there
exists a positive measure IJL e M(G) such that

/2(G) c [-1,1] and /2(mt) = D, ||̂ || = 1;

see Sreider [Sr] for G = R, and [Rul] Theorem 5.3.4, for the general case
and history. We call such /^'s Sreider measures. Moreover, it is known
that there exist continuous Sreider measures ^ such that the convolution
powers and their translates, ^k, 6^ */^, are all mutually singular; see [Rul],
[GMG]. It is worth mentioning that 0 € /2(G) for all known examples of
such measures.

3.1.2. The Bochner characterization of J='M(G). — Let (p be a
continuous function on G. The following are equivalent:

(i) there exists ^ C M{G) such that (p = /2 and ||̂ || < TV;

(n) |S^W(7A;)| ^ ^ll/lloo for every trigonometric polynomial / on G
of the form f(x) = E^(^7/c), 7fc e G.

See [Rul], Theorem 1.9.1. This theorem implies that ||̂ || < hm ||/^|| if
iei

a net of Fourier transforms (jS,),ej of^ e M(G) converges to /2 pointwise.

3.1.3. G-semicontinuity of inversion. — Let (^)^J C ̂ (G) be a net
of measures on G, and fi e M(G) such that /2(7) = lim/2,(-7) for 7 C G.

Then Inn \\^\\ > \\^l~l\\, where we mean \\^~l\\ = oo in the case where ;/
i^I

is not invertible.

Indeed, let limll/^1!! < oo for a subnet. Since |P(7)| ^ ||;/|| for all

7 € G and v c A^(G), it is clear that

lim^1)^) = lim(^^.(7))-1 = ̂

is a continuous function on G. Then, passing to the limit in 3.1.2 (ii) written
for ipj = ̂ 7^1, we get a measure v e M(G) such that P = 1//2 on G and
IMI < lim \\^\\. Hence /x * v = ^o. D
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3.1.4. Bohr compactification. — For an LCA group G, we denote
by Gd the dual group G endowed with the discrete topology, and set
G = (Gd) . The compact group G is called the Bohr compact!fication of G;
in fact, G is a dense subset of G, and G = W(M(Gd)) = W(Md(G)).

3.2. Lower estimates on groups.

Here we prove a general statement, Theorem 3.2.2 below, which
contains the required lower estimates for all three algebras in question in
the case of groups: M{G), ̂ (G) + C ' 6 o , and M.d(G). We use the following
simple method, which we informally refer to as to "a walk to the Bohr
compact". Namely, the method consists of the following steps:

1) staying on an infinite group G, we lift ourselves up to the Bohr
group G D G;

2) being nondiscrete, G carries a Sreider measure, say ^, whose
polynomials give the required lower estimate (see Lemma 3.2.1 below);

3) using almost periodic approximations of^7^, we get the same lower
estimate on G (via the Bochner criterion 3.1.2). Of course, for a nondiscrete
group G, steps 1) and 3) are not necessary.

3.2.1. LEMMA. — Let v be a Sreider measure on a nondiscrete LCA
group G, and let

^ = 6e+ (1 -<^2,

where j < 6 < 1, and e = 60 stands for the unit of M{G). Then

|H|=1, /2(G)C[<5,1], 11^11=^-.

Proof. — It is clear from the definition and the spectral mapping
theorem that y2 = y ^ y is also a Sreider measure with (.^^(G) C [0,1]
and cr(^2) = (^r(W) = P. Hence, jS(G) C [6,1] and a(^) = ft(W) =
6 + (1 - ̂ )D. This implies that

^ ^ ^ dist(0,^)) = 26-1

On the other hand, ^-1 = 6~1 ̂  f3——5)^^2A '• Therefore,
k>0

n,-.,,,-.̂ )̂ .
k>0
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To accomplish step 3) of the program described above, we need a
kind of a strengthened weak topology, precisely, a version of Beurling's
well-known narrow topology.

• Namely, we say that a net (^)zeJ C M{G) is G- convergent to a
measure ^ € M(G) if Inn ||/^|| < ||̂ || and lim/2,(7) = ^(7) for 7 0 6 .

iei iel

(In fact, Urn ||̂ || = ||̂ || due to 3.1.2.)
i

• A set A C M.(G) is said to be G-dense in a set B C M.(G) if every
IJL € B is a G-limit of a net of measures belonging to A.

3.2.2. THEOREM. — Let G be an infinite LCA group, and let A be a
unital subalgebra of M(G) {not necessarily closed) verifying the following
conditions:

(i) A is G-symmetric;

(ii) AisG-denseinM{G).

Further, given a number 6, ^ < 6 < 1, let

A([6,1]) = {a C A : H| < 1, a(G) C [6,1]}.

Then

sup Ha- 1 ! ! ^————
Q(EA([<UD 20-1

In particular, ^i(A, G) ^ \, and ci(^, A, G) > (2<5 - I)-1 for j < <5 ^ 1.

Proof. — We want to use Lemma 3.2.1 but, in the case where G is
a discrete group, there are no Sreider measures on G. In accordance with
the idea described at the beginning of this section, we consider a Sreider
measure v on the Bohr compactum G. Let a C G be a finite set, and
let e > 0. Since G is dense in G, there exists a finitely supported measure
T e M(G) such that ||T|| < 1 and

1^(7) -^(7)| < €, 7 ̂  .̂

(To get such a measure, consider Riemann sum approximations for the
integrals J^(-^7) dj/(x), 7 € a.)

Now, using (ii), we choose a measure (3 e A such that ||/3|| < 1 and

|^(7)-?(7) | <e , 7Ca .
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Taking

a=<5e+(l -^*^) ,

where /^ is the measure symmetric to f3 as defined in Subsection 1.4.1, we
get a measure a e A([<5,1]) approximating the measure p, = 6e + (1 - 6}v2

of Lemma 3.2.1 on the set a:

|/2(7)-0(7) | <4e, 7 OCT.

Letting e —^ 0, we obtain

^^/T^) < sup l^a^a-^) ^||/||oo. sup
7€<7 Q'€A([<$,I]) ' ̂ ^ ^eA([<$,i])

la-1]

where, as in 3.1.2, / stands for a linear combination of characters
fW = S ̂ (^7)? ^ € G; G4 € C. Using Bochner's characterization 3.1.2

7Co_

(for ^M(G)) and Lemma 3.2.1, we finish the proof. D

3.2.3. Remark. — In fact, we have proved a slightly stronger result:
if Mf is the algebra of finitely supported measures on G, Bf is the unit
ball of Mf, and M^ = {p: p = 6e + (1 - 6)(r * T,), r <E Bf}, then

sup Up-1!! >
- 2 6 - 1

P^f6

Another comment is that Lemma 3.2.1 is a statement of the same type
as Theorem 1.5.1. The difference is that, due to the properties of Sreider
measures, we do not need any estimate: we simply use the spectral mapping
theorem.

And the last remark on the Sreider measures approach is that no
functions of an independent Sreider measure containing 0 in its visible
spectrum can help to improve the above estimate for the critical constant
^i(A, G) and, therefore, to penetrate into the gap interval [j, —]. Indeed,
let ^ be a Sreider measure with mutually singular convolution powers ^k,
k > 0 (see 3.1.1 above) and let

>A = A(/^) = span^^(/^ : k ^ 0)

be the norm closed algebra generated by ^ and e. Clearly, the mapping
P ̂  ?(/^ defined first for complex polynomials p, has a unique continuous
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extension up to an isometric isomorphism from the Wiener algebra Tt (Z+)
onto A. The visible spectrum^of A, say X , can be naturally identified with
j£(G) C [-1,1]. Since 0 e j£(G) and the algebra ̂ ^Z^) splits at the unit,
we get (^i (A, X) ^ j and ci(^ A, X) < (26 - I)-1; see Lemma 1.4.3 above.
So, the algebras A(^) cannot provide us with any sharper example than we
already have. Q

3.2.4. Subalgebras ofM(G). — Now, we are in a position to finish the
proof of Theorem A, Subsection 0.3. Namely, the following is an immediate
consequence of Theorem 3.2.2.

3.2.5. COROLLARY. — Let G be an infinite LCA group. Then the
algebras A = .M(G), A = L^G) +C . e, and A = Md(G) satisfy the
hypotheses of Theorem 3.2.2. Consequently, for each of these algebras

ci((5,A,G)^^-^ for ^ < 6 < ^ 1 .

Moreover,

ci(^,A,G) =00 for 0<6 < ^ ;

whence

<^i(A,G)>J. D

3.3. Lower estimates on semigroups.

In this subsection we prove a semigroup counterpart of Theorem 3.2.2
by using the same method of moving to the Bohr compactum as in
Subsection 3.2. However, the construction of measures giving the maximum
H^"1!! when inf|/2| is fixed is necessarily different. Indeed, the previous
one is based on the G-symmetry of M(G) and the positive definiteness of
the corresponding Fourier transforms; see Subsection 3.2. Both reasons fail
for semigroups. Instead, we are using a more complicated, but general,
construction of Theorem 1.5.1. By the way this gives another proof
to Theorem 3.2.2 too; see Remark 3.3.3 below. Moreover, to realize
the technique of narrow approximations on a semigroup instead of the
entire group, we restrict ourselves to a class of semigroups S described
in Subsection 3.3.4. This class contains all frequently used semigroups,
in particular, all examples of Subsection 2.3 above.
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We start with three lemmas on measure algebras on groups, then
describe the class of subalgebras of M(S) we are working with, and finally
prove Theorem 3.3.7, our main result on lower estimates on semigroups.
In this subsection, we denote by A a subalgebra of M.(G)^ and by A a
subalgebra of M{S).

3.3.1. LEMMA. — Let G be a nondiscrete LCA group. Then the
algebra A = M{G) satisfies (1.5.1). Moreover, for every e > 0, there exists
a measure /2 e A6 (A6 is defined in Theorem 1.5.1) such that for all p > 0
and bk > 0

jE^hE^
k=0 k=0

Proof. — Let r C M(G) be a Sreider measure with mutually singular
powers (see 3.1.1 for the definition), and let

v = (e — T * T)^.

ThenP(G) C [0,1], and

IMI = II E^-iMI'EQii^i'EC)^.
k=0 k=0 k=0

Hence, sup \v\ < 1 < e||i/|| for N sufficiently large. Moreover,
G

llE^I-llE^E^t-^l-llEf-2)' E »C)11
k=0 k=0 j=0 J j=0 J / N < k < p J

^11 2ji | V^ , ^^ \^ V^ ?. fkN\
= L I I T J I I L ^( J = L L ^( , )

j=0 J / N < k < p J J=Oj/N<k<p J

=^2^ ̂ W.
k=0 k=0

Setting ^ = v I \ \ v \ |, we obtain the required measure. D

3.3.2. LEMMA. — Let G be an infinite LCA groups and let A be a
subalgebra of A4(G) which is G-symmetric and G-dense in M.(G) (but not
necessarily closed and/or unital). Then, A satisfies (1.5.1) with X = G.
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Proof. — If A does not contain the unit, we add it setting
Ae == A + C • e. Suppose first that G is nondiscrete. Let e > 0, let N
be such that 62^ > 1, and let v and r be the measures participating in
the proof of Lemma 3.3.1 for some numbers bk ^ 0 given in advance (and
for Ae instead of A). Let further (T^)^J be a net in Ae G-convergent to
the measure r. Without loss of generality, we may assume that ||r-J| = 1
for i e I . This implies that 0 <, |T^|2 = (r^ * (^)*)^ < I? where (r-^ stands
for the measure G-symmetric to r^.

Now, we set

^ = (^o - ̂  * (^)*) ,

where, as usual, 60 stands for the Dirac measure at zero. We have ^ € Ae
and Vi(G) C [0,1] for all i C I . Moreover, lim ̂ (7) = ^(7) for 7 6 G, whence

we see that lim ||̂ || ^ ||^|| == 2^. This implies that /^ = ^i / l l^l l ^ A^ ^OT

i
indices i large enough (.46 is defined in Theorem 1.5.1).

p p P
Denoting p = ^ bj,^ and ^ = ^ ̂ fe, we get ||p|| == ^ ̂

k=0 k=0 k=0
(Lemma 3.3.1). On the other hand, limp^ = J9 on G, which implies
lim | pi\\ > \\p\\. Hence,

i p psup y^^^ > y^bk.
_ /- A e I ' " I I ' —aCA6

fc==0 /c=0

Since the converse inequality is obvious, the result follows in the case
of a nondiscrete group G. For a general infinite G^ consider the Bohr
compactification G. Since (G) = (G)^, the algebra M(G) is (G) -dense
in M.(G). Hence, so is A. Applying the part already proved to Ae C A^G),
we get the result for the algebra Ae'

For the case of A without the unit, to finish the proof we apply
Lemma 1.5.2 to the algebra Ae, and observe that (^4e)o = ^e- The
hypothesis of this lemma is fulfilled as has been explained in Remark 2.1.2
above. D

3.3.3. Remark. — Lemma 3.3.2 and Theorem 1.5.1 give another proof
of Theorem 3.2.2 and Corollary 3.2.5.

Now, we describe the class of semigroups we are working with to get
lower estimates for ci(^).
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3.3.4. Absorbing- semigroups. — Let S be a semigroup embedded
into an LCA group G, S C G, and satisfying hypotheses (i)-(iii) of
Subsection 2.2.1. We say that G verifies the absorption condition if the
following is true:

(iv) For every compact set K C G there exists an element x e G such
that x + K C 5.

If S is absorbing, in fact, there exists an element x € S such that
x + K C S (consider K U {0}), and, therefore, (iv) implies the following
generating property: G = S - S. On the other hand, if S is generating
and S \ {0} is open, or S contains an open generating part, then S is
absorbing. For instance, this is the case for all examples of Subsection 2.3.

3.3.5. LEMMA. — Let S C G be an absorbing semigroup of an LCA
group G, and let ^ e M{G). Then, given e > 0, there exists x e S such
that

sup \\PG\S(OX' *^)|| < e ,
x'Ex-\-S

where PE stands for the projection of restriction to a subset E C G:
P E U ' = U \ E -

Proof. — Let e > 0, and K be a compact set such that ||^|(G\J<)I| < ^
This implies ||(^ * ̂ )|(G\(o;+x))ll < e, whence ||(^ * ̂ )|(G\5)11 < e if x e S
is chosen in such a way that x + K C 5'. n

Now, we describe the class of subalgebras of M(S) we are working
with.

3.3.6. S-subalgebras of M{S). — Roughly speaking, we suppose
that our subalgebra A C M{S) contains the restriction to S of a "small"
subalgebra of M(G).

Namely, let 5' be a semigroup, 6' C G. We say that A is an S-subalgebra
of M{S) if A is a subalgebra of A4(S) containing a "small" subalgebra of
the form PsA + C • e,

A D PsA + C • e,

where A C M(G) stands for a subalgebra of M(G) verifying the following
conditions (compare with the conditions of Theorem 3.2.2):
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(i) A is (^-symmetric;

(ii) AisG-densemM(G);

(iii) A is ^-invariant, that is, 6x * w4 C v4 for x € 5';

(iv) G is a boundary for 9Jl(A), that is, lim H^H1771 = sup^ |/2| for every
/^ G A.

Observe that A is not assumed to be unital. The standard subalgebras

A=Md(S) and A = L l ( S ) ^ C • e ,

with obvious group counterparts A = Md{G) and A = L1(G), respectively,
are 5'-subalgebras of M(S). Hence, so is any bigger subalgebra. For instance,
Md{S) + ^(S), and M(S) itself, are 6'-subalgebras. Another example is
the algebra Mf(S) of finitely supported measures on 6'. Now, we are ready
to prove of the following lower estimate for semigroups.

3.3.7. THEOREM. — Let S be a semigroup satisfying conditions (i)-
(iii) of Subsection 2.2.1 and the absorption condition (iv). Let A be an
S-subalgebra ofM(S) {not necessarily closed). Then

^ i (A,^ )>J . ci(^,A,^)>^^ for all 6, j < 6 < 1.

Proof. — We check (1.5.1) with X = 5^. Namely, we prove that

I I p psup y^^ = y^bk
aeA£ " k^O k^

for every e > 0 and for all p ^ 0 and bj, ^ 0. Here, as in Theorem 1.5.1,

A6 = {a € A: sup |a < e, ||a|| = l}.
?b

It is clear that it suffices to check this property for 6'-subalgebras of
the form

A=PsA+C'e,

where A stands for an algebra on G satisfying conditions (i)-(iv) of
Definition 3.3.6.
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Now, we fix an integer p > 0 and numbers bk > 0 for 0 < k < p.
By Lemma 3.3.2 applied to A, given positive numbers e, 6', there exists an
element a C A such that sup |S| < e, ||a|| = 1, and

G

HE^II >(i-^)f>-
A;==0 fc=0

First of all, we show that whatever is x in 6', there exists n e N such
that the latter inequality still holds true if we replace a by the shifted
measure 6^ * a with x ' = nx. To this end, let

(3=^bka^ (3y=^bk(6y^a)\
k=0 k=0

where y e G, and let /(t) = ^ 0^,7), ^ e G, be a trigonometric
7€o-

polynomial satisfying sup |/| < 1, a being a finite subset of G. Then ̂  <E A
G

for every ^/ C 5', and

0n^)=^b^ 7)^(7)'
A;=0

for all 7 € G. Since |(a;, 7)] = 1, we can use the classical Kronecker theorem
and choose a sequence n = n^ j = 1,2,. . . , such that lim(a;,7)^ = 1 for

^ ^ J

every 760. Hence, lim/3^(7) = ^(7) for 7 € a, and, therefore,

|^c^(7) <imi|^c^(7) ^iim II^H.
7^<7 7€o-

Bochner's Criterion 3.1.2 implies that ||/3|| < lim \\(3nx\\' Consequently,
there exists infinitely many indices n such that

II^H >(1-6')^^.

k=0

Now, we observe that the latter inequality is stable under sufficiently small
(say, of size e") perturbations of the element 6nx^0i. Applying Lemma 3.3.5
for /^ = a and e = e", we find a point x C S such that

\\^^a-Ps{6n^a)\\<ett



1972 NIKOLAI NIKOLSKI

for all n e N. Consequently, there exist infinitely many indices n such that

ll̂ w x1-6')^
fc=o " a 1 1 fc=o

where a = Ps{^nx * oO. Clearly, ^na; * a € A.

By Definition 3.3.6, a € A. In fact, a/||a|| e A6. To prove that, we
recall that

supl^^*^) <e||(5^*a||,
G

and the written sup is the spectral radius of 6nx * ̂  (condition (iv)
of 3.3.6). The spectral radius is a norm continuous function on M.(G),
which implies that limlla771!!1/771 < e||a|| for e" small enough. It is also

m

clear that |a(7)| <; limlla771!]1/771 for any bounded character of 6'. Hence
771

a/1 |a|| C A6 (with X = Sb). Passing to the limit as e' -^ 0, we finish the
verification of (1.5.1).

The result follows from Theorem 1.5.1. D

3.3.8. COROLLARY. — Let S be a semigroup satisfying conditions
(i)-(iii) of Subsection 2.2.1 and the absorption condition (iv). Let A be one
of the following subalgebras ofM(S) : M(S) itself; Md{S) ; L\S) + C • e;
A^d(5')+ ^(S); or Mf(S), the algebra of finitely supported measures
on S. Then the conclusion of Theorem 3.3.7 holds true for A. D

4. Remarks on finite groups and semigroups.

In this section we briefly consider the measure algebras M. on
finite groups G, M. = M.(G) = L1(G), and on finite semigroups,
M. = M(S) = L1^). In general, exact computations of the majorants
Cn(6^M,X) for finite groups and semigroups are, probably, even more
complicated than in the infinite case. This is why we mainly restrict
ourselves to two examples: namely, to cyclic groups Cd = Z/c?Z of
order d ^ 1, and to nilpotent semigroups Z^ = Z+/(d + Z+) of order d.
In a sense, the groups Cd "exhaust" the group Z, and the semigroups
Zd "exhaust" Z+. Essentially, we study the asymptotic behaviour of
ci(^,.M(Cd),Q) and c^M(Zd).Zd) as d -^ oo.
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4.1. Preliminaries on finite groups.

Let G be a finite group, written additively, and me the invariant
(Haar) measure normalized by mG({x}) = 1 for all x € G. Clearly, the
space M{G) = L^G) = ̂ (G) is a convolution Banach algebra with the
unit e = So. The Fourier (Gelfand) transformation is

^/(7)=/(7)=E^)(-^ 7GG,
x^G

where G stands for the dual group of unimodular characters written
multiplicatively. The Haar measure m = m^ is normalized to have total
mass 1, so that the Fourier transformation T is a unitary operator
from L2(G) to ^(G). For the spectrum of M(G) we have

m{M(G)) = G.

Moreover, it is easy to see that, as a subset ofA^(G), every convolution
algebra A on G is of the form

A = [fi e M(G) :/I|̂  = const. z c J},

where {crJ,eJ stands for a partition of G. Hence, the spectrum 9Jt(A) can
be identified with a subset of G. Therefore, we can regard the dual group
G as the visible spectrum for any convolution algebra on G. That is, in our
previous notation, we set X = G. Moreover, the description mentioned of
the convolution algebras on G obviously implies that every such algebra A
is 9Jl(A)-symmetric, see Definition 1.4.1.

The following easy lemma shows that on finite groups the majorants
ci(^, A, G) always have linear growth rate as 6 —> 0.

4.1.1. LEMMA. — Let G be a finite abelian group, and A a unital
convolution Banach algebra on G. Then ^(A, G) = 0 for all n > 1, and for
all 0 < 6 ^ 1

Cn(^A,6)<^(A)min(^^).

Moreover, l^-1!] < k{A)/6 for every [i e A satisfying \fl(^)\ > 6, 7 G G.
Here k{A) is a constant depending on A only, and

k(M(G)) < (card^))^
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Proof. — The norm || • HA is equivalent to ||/2||oo = max 1^(7) |, ^ € A,
76$

and we see that there exists a constant k(A) such that

(4.1.1) MIA^(A)HMIL

for fJi G A. In particular, for every fi with |/2(7)| > ^, 7 G (7,

II^IIA^A)!!!!! ^ f c ( A ) -
This proves the desired estimate for Ci(<5, A, (7).

For n > 1 we use Lemma 1.4.2 and the symmetry of A mentioned
above. This yields

^(^A,G)<^.

Another way to bound a solution v = (1/1,..., v^) of the equation

n

E^ ^ ̂  = e
i=l1=1

is to set vi = Ji\f\~2, where /, = ^ and |/|2 = Y, |/,|2, and apply^i — J i I J I ; vv 11<:;1 ̂  J z ~ f^z a'lL^ I J | — L̂̂  I J % I ?

inequality (4.1.1) n times:

n j_ n j_

IMlA—— (Ell^ll'A)3 ^^(^(Ell^ll2-)3^lloo ^
1=1 1=1

<^)(tll^:)^<-
Hence, c»(<?,A,G) ^ fc(A)n3/^2.

In the case where A = .M(G) = ^(G), we can write

II^-'IIL^G) ^ (card^))3!!/,-1!!^^) = (card(G))^ 111/^11^^^

< (card(C?))s || 1/^||^ ̂ ^< (card(G))^-1. D
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4.2. The cyclic groups Cd-

Now, we take G = Cd = Z/dZ^= { 0 , 1 , . . . , d - 1} with the quotient
convolution on Cd. The dual group Q is the group of d-th roots of unity

Cd = {0 = ̂  •' 0 ^ k ^ d - 1}, where < = C(d) = e27^^.

The Fourier transform of an element / e A^(Q) is

^fW=f{Ck)= ^ /(^)C^ OeQ,
0<s<d

and the norm is ||/|| = ^ \f(s)\. Let ej, = X{fc} be the basic functions
0<,s<d

on Q. The convolution on Q, which we denote by o, follows the rule

eroes = ei,

where t ̂  Cd,t = {r -\- s) mod (d).

Note that, instead of {0 ,1 , . . . ,d - 1}, we can choose an arbitrary
interval {k,..., k + d - 1}, k e Z, of length d as a model for Z/dZ, endowing
it with the d-periodic convolution Or o Cs = e^, where ^ € { A ; , . . . , A ; + d - l } ,
^ = ( r+s) mod (d).

Now, we consider the behaviour of the upper bound ci((5,{Q})
denned by

(4.2.1) ci(^{Q}) =sup{ci(^A^(Q),Q):d>l}, 0 < (^ ^ 1.

First, we observe a consequence of our general upper estimate for symmetric
algebras.

4.2.1. LEMMA. — For all 6, — < 6 < 1, we have
v2

ci(W4)<^-

Proof. — This is immediate from Theorem 2.1.1. D

The following lemma shows that, in a sense, the algebras M(Cd)
approximate the algebra A^(Z) = -^(Z).
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4.2.2. LEMMA. — For all 0 < 6 < 1

ci(^{Q})>ci(^^(Z),T).

Proof. — Let ^i(.A^(Z),T) < ^ <: 1, and let 6 > 0. We take a finitely
supported measure? G .M(Z) such that ^ < |p(C)| ^ IHI.M(Z) ^ 1 ^ov C c: r^
and

Ih-^z^ci^M^^-e.

Here p~1 means the inverse in .M(Z): p * j?~1 = e = ^o? where e = CQ. Let

A^ = deg(p) = sup{|A;|: p(k) -^ 0, A; € Z},

and let C^ = { ~ ^ 5 . . . , 0 , . . . , n} be the cyclic group of order d = 2n + 1,
where n ^> N. For a, b € Z, we denote by [a, b] an interval of Z,
[a, 6] = [k € Z: a <, k < b}, so that Q = [-n, n]. We write p~1 = q + r,
where

^= ̂  (p'^^e^
|s|<n-N

and regard p and q as elements of (7^ identifying them with the restrictions
to Cd = [—^ ^]. Let us check that

(4.2.2) q o p = e + € n ,

where €n € M(Cd) with

\im\\€n\\M(Cd) =°-

Indeed, by the definition of the convolution on Cd, we have

q o p = (<7*p)|[-n,n],

and (g *p)|(z\[-n,n]) = 0- Hence,

qop= ((p"1 -r) *p)|[-n,n] = e- (r*p)|[_^] = e + C n ,

where e^ = -(r *p)|[-n,n]- Clearly,

ll^llAI^) = IMI.M(Z) < ||y*P||^((Z) ^ lhl.M(Z:h
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and the latter norm tends to zero as n —> oo. It follows from the
representation (4.2.2) that p^~^ = q o (e + e^)^"1^, where j/~^ stands
for the inverse in M(Cd)' This implies that

NÎ C.) = Î M^n)!!̂ ) < ll̂  I^C^+IMA^J-

Since lim |M|.M(C^) = 0, we get

II^HAKC.) ^ II^IA^) - ̂  > Ih"1!!^) - 2^ > ci(^.M(Z),T) - 36

for n sufficiently large. Since the element p € M(Cd) satisfies

6<\pW\=\Wk)\<\\P\\M^<^

for C,k G Cd, we obtain

ci(^A^(Q),Q) >ci(^^(Z),T) -36.

The lemma follows. D

As in (4.2.1), we can define the upper bound Cn(<^{Cd}) for
an arbitrary n > 1, and then prove an analogue of Lemma 4.2.2:
Cn(^{Q})>C,(^^(Z),T).

We summarize the preceding lemmas as follows.

4.2.3. THEOREM.

(i) Cn(6,M(Cd),Cd) ^ d ^ m m ^ / ^ . n ^ / S ) for all 0 < 6 < 1 and n ̂  1.

(ii) Cn{6, M(Cd\ Cd) < 1/(2^2 - 1) for all -^ < 6 < 1 and n ̂  1.

(iii) ci(^{Gd}) ^ c^MW.J) for all 0 < 6 <, 1, where ci(^{Q})
is defined in (4.2.1). In particular^ c-^(6,{Cd}) = oo for 0 < 6 < |, and
ci(^ {Gd}) ^ {26 - I)-1 for aJ2 \ < 6 ^ 1. D

4.3. The nilpotent semigroups -Z^*

The semigroup Z^ = Z+/(c? + Z+) is defined as the set Zd =
{ 0 , 1 , . . . , d — 1, d} endowed with the operation (5, t) \—> mm(s + t, d), and
with the measure m({s}) = 1 for 0 < s < d and m({d}) = 0. Therefore, on
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the basic functions e^ es(t} = <^ (the Kronecker delta), the convolution is
denned by the formula

Cs 0 Of = Gs-^-t

for s +1 < d, and eg o e^ = 0 for s +1 > d.

The space M{Zd) = ^(Zd.m) of all measures (functions) on Zd
endowed with this convolution and with the usual L1 norm is a unital
d-nilpotent Banach algebra. Namely, the algebra M(Zd) has a generator ei
such that ef = 0. Hence, the only character on Zd is the trivial one: 0 i—^ 1
and s ̂  0 for s > 0. We write Zd = {0}, and m{M{Zd)) = {0} with the
only homomorphism on M(Zd),

^=W)^s<d^^W'

The following theorem gives the exact value of c^{6,M{Zd), {0}).

4.3.1. THEOREM. — For all 0 < 6 < 1,

c^M(Zd^{0})=6-1 ̂  (1^)',
0<^k<d

and, therefore, c^(6,M(Zd), {0}) ~ ^-d as 6 -^ 0. Moreover, for aii
0 < ^ < 1

ci(^,{Z4) =:sup{ci((5,^(Z^),{0}) : d> 1} =ci(^A^(Z+),D);

that is,

( 00 for 0 < 6 < L.C•(M^4)= ^ -.«-.
Proof. — If ^ e A^(Zd) and 6 ^ |^(0)| ^ ||̂ || < 1, then

AA = ^(O)eo + ei o v, where |H| = ||̂ || - |^(0)| < 1 - 6. Therefore, since
^d n —_ i - -___ef = 0, we have

/r^-iY^ 6? 0;/A: /n\-i V^ e^o i /^
>•(°) i^W""" ^7W-^-"m-1^

k>0 ^v
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which implies

^<- Wl- E ̂  ̂ - S: W
0^fc<d l r v / 1 0<A;<d

To check the converse inequality, we simply take ^ = ^eo + (1 — ^)^:h for
which choice

ii^hor-E^^EW
0<k<d ' v / 0^fc<d

The theorem is proved. D

5. Spectral hulls and norm-controlled
functional calculi.

In the four preceding sections, we considered the problem of uniform
upper bounds for inverses when staying on a given subset X C 9Jt of the
maximal ideal space 9Jt. Here we treat a more general form of the same
problem: the so-called full X-spectral hull /i(cr, X) of a given set a C C is
defined and studied. In this language, the uniform boundedness of inverses
is equivalent to the property 0 ^ h(o~6^ X), where as stands for the annulus
{z 6 C:6 <^ z |< l} . I t i s proved that /i(a, X) is the minimal set satisfying
the following uniform calculus property: for every open set ^2 C C containing
h{a^X) there exists a constant k = A:(f2,X) such that ||/(a)|| ^ ^||/||o t01"
all / C Hol(^) and for all a C A with a(a) C a and ||a|| < 1. Precisely
this latter requirement distinguishes our approach from classical studies of
functions operating on a Banach algebra; see [HKKR], [Rul].

5.1. Full spectral hulls and resolvent majorants.

Let A be a unital Banach algebra, and let X be a subset of the
maximal ideal space 9Jt(A) endowed with the induced topology, so that
A C C(X).

5.1.1. DEFINITION. — Let a C D. We set

A(a;X) = {a e A : ||a|| < l,a(X) C cr},

C7(A,a;X)=G(A,a;A,X)

= sup{||(Ae - a)-1]] : a € A(a;X)}, A <E C,
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where we take ||(Ae - a)"1!] = oo for X e a(a). Let also

/i(a; X) = /i(a; A, X) = {\ c C : C(A, a; X) = oo}.

The set h(a;X) is called the X-spectral, or (A, X) -spectral, hull of a; the
full spectral hull of a is

h(a) =/i(a;A,mi(A)).

The complement p(a; X) = C \ h(a', X) is called the norm-controlled (X-)
resolvent complement of a.

For a positive constant k > 0, we introduce

h(cr, k', X) = {X e C : G(A, a) > k}

and p(a, k; X) = C\h(a, k; X), and call them the k-level {X-) spectral hull of
a, and the A;-level resolvent complement of a, respectively. For X = 9Jl(A)
we simplify the notation as follows:

A(a)=A(a;ajl(A)), /i(a, k) = /i(a,A;;mi(A)), p{a^k) = p(a,A;;W(A)).

It is clear that the definition of the (6-1)- visibility is a special case of
the definition of the norm-controlled resolvent complement. Indeed, let cr<§
be an annulus,

as = [z C C:6 ^ \z\ ̂  l}.

The spectrum of A is (6-Invisible if and only if 0 G p(cr<$;X). Moreover,

ci(^A,X) = C7(a<5,0;A,X), 0 < 6 < 1.

Note that n-variable counterparts of A(a;X),(7(A,cr;X), etc., could be
considered as well, but in this paper we restrict ourselves to the case n = 1.

The next subsection contains some general properties of G(A, cr;A, X)
and h(a, A;; A, X) we need for applications.

5.1.2. General properties. — Let A be a unital Banach algebra, let
X C 9Jt(A), and let crbe a closed subset of the unit disc D.

(i) The X-resolvent complement p(a;X) is an open subset of C,
p((T;X) D C\D, and

____\____ ^ ^/^ y\ ^ C{z,g',X)
dist(A,/i(a;X)) -^^a^)- l-\z-\\c{z^',X)

for all z C p(a;X) and \z - A| < l / C ( z , a',X).
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Indeed, let C(z,a;X) < oo, and let a e A(cr;X). Then

||(Ae - a)-1)! = \\(ze - a)-1 • (e - (z - \){ze - a)-1)-1])

,^1-AMK.e-^r,^^^

for \z - \\ < l/C(z,a;X). Hence A € p(<r;X), and

r(\ y^ C'(^;X)G(A,a;X)^^_^_^^^^.

This implies the left hand side inequality too. D

(ii) C(., o",X) is a positive continuous function from C to R+ == (0, oo],
and log((7(. ,a;X)) is subharmonic on p(a;X). Moreover, /i(cr,A;;X) is an
open set, and

h(a^X)= F| h(^k)
k<oo

is a closed subset of the unit disc D such that a C h(a;X).

Indeed, it is clear that Xe € A(o-) for A € a, and so (7(A,a;X) = oo.
This means that a C /i(cr;X).

The right hand side inequality of (i) implies that (7(-,a;X) is
a continuous function on p(a;X). The left hand side inequality gives
lim C{\,a',X) = oo for every z € /i(cr;X). Hence, C7(',o-;X) is continuous
\—>z
onC.

In particular, the set h{a, k\X) is open. The set /i(a;X) = C \ p(a-,X)
is closed as the complement of an open set.

The function log((7(-,(7;X)) is subharmonic as an upper bound
of a family of subharmonic functions A ^—> log|((Ae — a)"1,^)], where
a G A(o-;X) and (p € A*, \\(p\\ < 1. D

(iii) The sequence (/i(cr,A;;X))fc>i decreases and uniformly converges to
h(a;X).

The inclusions h(a, k\X) D fa(a, k + 1;X) are obvious. It follows from
the continuity of C{., cr;X) that

dos(h((T, k',X)) =: h(a, k;X) =: { z e C : C(z, a',X) > k}
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and we see that

h(^X)= F|/i(a,A;;X).
k>l

Since_ ||(Ae - a)-1 < (|A| - I)-1 for all a C A(a;X) and |A| > 1, the
sets h(a,k-,X) are compact, and, therefore, the previous equality implies
that the convergence of h(a,k',X) to h(a;X) is uniform: for every open
neighbourhood ^ D h(a;X), there exists k such that ^ D /i(cr, k\X). D

(iv) h(a',X) = a for every closed a- C D if and only if (^(A,X) = 0,
where <5i(A,X) is the critical constant for the pair (A, ,X) (see also (vi)
beJow).

Necessity: taking (TS = {z ^. C:6 < z\ < 1} for a given 6 > 0, we
get as = h{a6;X), and so 0 ^ h(ag,X). As mentioned before, the latter is
equivalent to ci(^,A,X) < oo. Hence, ^i(A.X) = 0.

Sufficiency: if ^i(A,X) = 0, the spectrum of A is 1-visible
(Lemma 1.1.2), which gives ^i(A,9JT(A)) = ^i(A.X) = 0 and h(a;X) =
/i(cr;9Jl(A)). By Lemma 1.3.2, the algebra A obeys the distance controlled
resolvent growth, which immediately yields /i(a;9Jt(A)) == cr; see esti-
mate (1.3.1). Q

(v) Ifd\ = dist(A,a) and |A| < 1, one has

C(A,a;X)<ci(^——A,x);

for |A| > 1, we simply have C(A,cr;X) < (|A| - I)-1.

The second inequality is obvious. To check the first one, we take
/ € A(a;X) and set g = (Ae-/)/||Ae-/|| for ||Ae-/|| > 1, and ^ = Xe-f
for ||Ae-/|| < 1. Clearly, ||Ae-/|| < 1+|A|, which implies \g\ ̂  dA/(l+|A|)
on the set X. Hence

KAe-/)-1!!^-1!!^^^,^)

and the assertion follows. Q

(vi) If ^i(A, X) stands for the critical constant for (A, X), one has

h(a;X) C { A e D : dist(A,cr) ^ (1 + |A|)^i(A,X)}

C { A C D : dist(A,cr) <2^i(A,X)}.

This is immediate from (v). Q
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Note that the latter inclusion is informative for 6^(A,X) < 1 only.
For pairs (A, X) satisfying some extra conditions we prove another inclusion
and an estimate in the next subsection.

5.1.3. Horodisc expansions and an upper estimate. — Denote

D{z^ r) = {C e C : |C - z\ < r}, D{z, r) = {< c C : |C - z\ < r}.

In the hyperbolic geometry of the unit disc D, the discs

D(z, 1-M), z e B

are called horodiscs. Given a closed set cr C D, we call the set

hor(a)=|j(D(^l-|^|))
^eo-

the horodisc expansion of a. See Subsection 5.1.5 below for some pictures
related to hor(a).

The following theorem will be useful for measure algebras A C M(S)
on semigroups; see 5.3.2 below.

5.1.4. THEOREM. — Let A be a unital Banach algebra satisfying
the splitting hypothesis of Subsection 1.4, and let the visible part of the
spectrum X C 9Jt(A) be such that ^e e clos(^ : x <E X) (see 1.4.8 for
details).

(i) One has h(a', X) C hor(cr) and for X G C

^^^dis^horOT))'

(ii) One has

C{\^X)^c^R^\A,X)

where

d\ = dist(A, cr), R), = max(rA, 1)

rx =sup( |A-^ |+ ( l - |z|))
zCcr

and ci ( . ) stands for the standard visibility constant denned by for-
mula (0.2.5). Note that RQ = 1 and

h(a'^X) C { A C D : dx ̂  RX^(A^X)}.
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Proof. — (i) First, we observe that

^l io+/ \ L^./^\ — ^(f\ \ ^\ /1 l ^ l \ \ +dist(A,hor(a)) = inf( |A - z\ - (1 - \z\)}'
zCo-

for all A C C, where ^+ = max(0, x), x e M.

Let A € C \ hor(a), and let / e A(cr;X), which means ||/|| < 1
and f{X) C a. By the hypothesis, z =: ^(/) e a. Moreover, since
Ae - / = (A - 2Q(e - (A - ̂ -^y - ze)) and |A - ̂ | - (1 - \z\) > 0, we have

l^-7'"^^-"1-1.-.I'••II/-.el,

- |A -^ -(1-|^|) ^ dist(A,hor((7))'

Therefore, C(A,cr;X) ^ l/dist(A,hor(cr)) < oo, and, in particular,
A^/ i (a ,X) .

(ii) To prove this property, we slightly amplify the reasoning in 5.1.2,
part (v). As in part (i) above, we take / e A(a',X) and set z =: (pe{f) ^ cr.
This implies

||Ae - /|| = |A - z + ||/ - ̂ || < |A - z + (1 - H) = r.

Setting g = (Ae - /)/||Ae - /|| for ||Ae - /|| > 1, we get

1 ^ 1 > dx > ( h > d ^w- \\\e-f\\ - r - R^

on the set X. In the case where ||Ae - /|| ^ 1, we set g = Xe - f and obtain

\9\^d^^^
R\

Hence ||(Ae - y)-1!! ^ H^-1]! < c^dx/R\,A,X). The assertion follows. D

5.1.5. COROLLARY. — The following inclusions and inequalities are
special cases of Theorem 5.1.4 {for pairs (A, X) satisfying the hypotheses of
the theorem, in particular, for the analytic Wiener algebra A = TM^L^)
with X = D, and for all algebras A from Theorem 3.3.7 with X = Sb).

(i) h(a^X) C hor(a<$) = 0-26-1 for \ < 6 < 1 {see Figures 2 and 3),
where as = {z G C : 6 < \z\ <, 1}. Moreover,

C{X,a^X)<
- (2^-1)- |A|
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for \\\ < 26 - 1. Recall that ci(^ A, X) = C(a^ 0; X).

(ii) For a disc segment ss = {z eB : Re(z) > 6}, we have

h{ss', X) C hor(5<§) = ss U ̂

where 5^ is the mirror reflection of ss in the line Re(z) = 6 (see Figure 4).
In particular, h(ss', X) ̂  D for ah 6 > 0.

(iii) For a disc a = D«, e), where 0 < e < min(^ 1 - 6) and 6 = |C|, the
spectral hull h(D(^, e); X) is contained in

hor(^(C,6));

the latter is a subset of D which is symmetric with respect to the
diameter passing by (\ contains the shadow arc 7 C T of -D(<^ 6) (of
length |-7| = 2arctg(e/^)), and satisfies (see Figure 5)

(CR)n^(D(^6) ;X)=[2(^ -6) - l , l ]— D

Now, we pass to converse inclusions for h(o",X) and to lower estimates
forC(A,cr;X).

5.1.6. Microlocalization and a lower estimate. — It is clear that lower
estimates for spectral hulls and resolvent majorants heavily depend on the
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0- = Ss a=D(^e)

Figure 4: h(s6) = SQ U s^ Figure 5: a = D(^ e)

geometry of a given subset a C D. For instance, A(a;X) = {const} for
every X C 9Jt(A) equipped with an analytic structure and for every a- with
int(a) = 0; see 5.3.1 for examples. Having in mind this last constraint, we
restrict ourselves to the case where

a = clos (int(cr)).

In this case, the behaviour of C7(A,a;X) depends on the following
microlocal version of the critical constants and the inversion majorants.

Let A be a unital Banach algebra, let X C 9Jl(A), and let 0 < 6 <^ 1.
A microlocal upper bound (majorant) for inverses is defined by

c?(^,A,X) = ̂ (sup^ir1!! ^ 11/11 < 1. fW C ̂ , diam/(X) < 6})

and the microlocal critical constant is defined by

(^(A,X) = mf{6'.c°^A,X) < oo};

here, as before, as = {z € C: 6 <_ \z\ < 1}.

General properties of these microlocal constants are similar to those
of the general ones, that is, of <^i(A, X) and ci(^, A, X) defined in Section 1.
Namely, the following is true.

(i) c?(^, A, X) is a decreasing function of 6.

(ii) c^.A.X) ^ ci(^,A,X), and6^A,X) ̂  ^i(A.X).

(iii) If a pair (A, X) satisfies (1.5.1) of Theorem 1.5.1, then6^(A,X) > \
andc^(6,A,X) ̂  (26-I)-1.
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If, in addition, A splits at the unit and y?e is X-dominated (see
1.4.4-1.4.6 about that), we have

^(A,X)=^(A,X)-
Zi

and for j < 6 < 1

c;(^,A,X) =ci(^,A,X) = (26-1)-1.

The claimed inequalities are easy consequences of the proof of
Theorem 1.5.1, since this proof is based on a microlocal construction
with diam(/(X)) < e for a test function.

Conversely, assuming that A splits at the unit and ̂  is -X-dominated,
we take 6 > \, e' > 0 and an element f e A satisfying f(X) C erg and
diam/(X) < e. Lemma 1.4.6 implies

^e(/)econv(/(X)).

Since conv(/(X)) c ^(1 - 6') for e > 0 small enough, we infer from
Lemma 1.4.3 that

iir'ii^o-eQ-rr1.
By the above definition of c ,̂ A, X), we get c^, A, X) < (26 - I)-1. The
result follows. Q

The following is a special case of (iii).

(iv) For the same measure algebras A C M(S) on semigroups as in
Subsections 2.2, 2.4 and 3.3.6, one has

c?(6,A,^) =ci(^,A,^) = (26- I)-1 and ^?(A,^) = (5i(A,^) = 1.

In particular, this is the case for A = M(S),Md(S), L^S) + C • e on
semigroups S satisfying (i)-(iii) of 2.2.1 and (iv) of 3.3.4. D

Now we apply microlocal constants to spectral hulls.
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5.1.7. THEOREM. — Let A be a unital Banach algebra splitting at
the unit, and let (pe be X-dominated {see 1.4.4-1.4.6 for details). Let
a = clos(int((7)) C D, and <5? = <5?(A, X). Then, ̂  < |, and

hor(a,(^) C/i(cr;A,X),

where hor(a, 6) = \J [~D{z, -——-(1 - \z\)}} and moreover,
z^er v v 1 — 0 / /zEo-

C7(A,a;A,X) >snp(r^c^A,X)),
z^o-

where r^ = |A - z\ + (1 - \z\) and 6^ = \\ - z \ / r ^ , that is, —z— — ' z }

1 - ̂  1-1^1

Proof. — Let A € B, z e int(a), and let 6, e > 0 be such that 6 > 6^
and D(z, e) C o~.

Let / € A be an "almost extremal" element from the definition of
c^S.A.X), that is, ||/|| < lJ(X) C ̂ , diam/(X) < je^ and

iir'^a-^^A^)
(with an obvious modification in the case where c^(6,A,X) = oo). There
exists a point C € ^ such that f(X) C D{^ je^). Now, we infer from
Lemma 1.4.6 that ̂ e{f) ^ ^(C, |>^), that is, ^e(/) = C+^ where |^| < ^e6.
Let

.=Ae-^/.

By the definition,

A- z
g(X) =X- ——^f(X) C A - ̂ -D(C, 2^) c JD(z'e)• C -"/-- —^D^^

Moreover, for e > 0 sufficiently small

llffll= A-^——^^e(/) |+

X - z
«+*) +~r

\-z \- Z\

\-Z\

C r
A — z\

- he(/)|)

1 1 - I C + t l )

-IC+^I)

<:\z\+e+
X - z\

: l - K I ) + e

< \z\ + ^—^(1 - 6) + 2e < \z\ + ̂ —^(1 - ̂ ).
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Since |2;| + ^ z (1 - ̂ ) = l^ we obtain ||^|| < 1. Therefore,

C(\^X}>\\(\e-^\\= -^— . l l^^————O-^c^AX).
\\-z\ 1 1 J "' |A-z |

Passing to the limit as e' -^ 0 and 6 -^ 6^ we get

^(A.^A.X^r^c^.A.X).

Since z C hit (a) is arbitrary, and a = clos(int(a)), the stated
inequality follows.

Moreover, since 1 - |A| ^ r, < 2 and c;(^,A,X) = oo for
^ < ^?(A,X), we get C(A,a;X) = oo if min^ ^ ^?(A,X). We conclude
that A C /i(a;X) if there exists z e a such that ^ ^ ^?(A,X), that is, if

_ f\o ^
x e D ^ r^o^ ~ I^D)- The ̂ l^on hor(a,^) C /i(a;A,X) follows. D

5.1.8. Comments. — Observe that under the splitting hypothesis we
always have

^? (A ,X)<^(A,X)^ J

(and, therefore, ^/(l - ̂ ) < 1), and

hor(a,^) c hor(a, J ) ^ hor(a).

The equality hor(a,(5?) = hor(cr) holds for all a C D if and only if
^X)=^.

It should be mentioned that the converse inclusion h(a;A,X) c
hor(cr) is proved in Theorem 5.1.4 (i) under a stronger hypothesis,

(^e ^ clos(^:a- e X),

than those of Theorem 5.1.7 (namely, ̂  e conv(^ : x e X)). In particular,
Theorem 5.1.7 is available for both pairs A = M{G),X = G and
A = M{S), X = Sb, whereas Theorem 5.1.4 (i) does it for the latter
one only.



1990 NIKOLAI NIKOLSKI

We combine both theorems in the following statement.

5.1.9. COROLLARY. — Let A be a unital splitting Banach algebra,
X C 9Jt(A) be a subset dominating y?e, and let o- = clos(int(a)) c 5>.

(i) One has

hor((7^?) C /i(a;A,X) C hor(a, ^ ) = hor(a),

and

sup^c^A^)) < C(A,a;A,X) ^ 1 . ^
Z(E(T dist(A,hor(a))

where 6^ = 6^(A,X) < j and the left hand sides of these statements are
denned in Theorem 5.1.7.

(ii) If6^(A,X)= ̂  we have

/i(a;A,X)=hor(a).

(iii) Jf^(A,X)= j andc°^A,X)=(26-l)-\ we have h(a; A, X) =
hor(cr) and

C(A,a;X)=^^^. D

5.2. Norm-controlled calculi.

The Gelfand theory guarantees the existence of a holomorphic calculus
on the spectrum of every element of a Banach algebra A: if a C A, the
function of a

f(a)=——f fW^e-ar'dX
^JQ^

is well defined for every / € Hol(f^) and for every open neighbourhood of the
spectrum fl, D a(a) (the Riesz-Dunford calculus). As we know from Sections
1 through 4, this does not guarantee any estimate of the norm ||/(a)||, even
for the simplest functions such as f{z) = 1 / z , and even if we add the
normalizing condition ||a|| < 1 to the spectral inclusion a (a) C f^. A real
question is the following: What are the relations between the spectrum a(a)
(or the visible spectrum a(X)) and a domain f2 that guarantee the uniform
continuity of the ^-calculus? That is, does there exist a compact set K C ^
and a constant c > 0 such that ||/(a)|| <; csup |/| for every / e Hol(^) and

K
every a G A(a)? We formalize this by the following definition.
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5.2.1. DEFINITION. — Let A and X be as above, and let a = a C D.
We say that an open set 0 C C X-dominates the set cr, or is a norm-
controlled calculus domain for a.ifo-C^l and the calculi

f^fW, /eHol(f2)

are well defined and uniformly continuous for

a C A(cr; X) = {ae A: a(X) C a, ||a|| ^ l}.

This is equivalent to the existence of a compact set K C ^l and a constant
c{K) = c(K, X) > 0 such that

\\f(a)\\<c{KMK

for every function f € Hol(f^) and every a € A(a;X). Here \\f\\K =
m9.x{\f(z)\:zeK}.

Obviously, the definition of (($-Invisibility, as well as the definition of
the distance-controlled resolvent growth (see Subsection 1.3.1) are special
cases of the latter concept. The following theorem shows that the domains
that X-dominate a given set a can be described in terms of the spectral
hulls h(cr',X).

5.2.2. THEOREM. — Let A be a unital Banach algebra, let X C 9Jl(A),
and let a C D and ^l C C be a closed and an open set, respectively.
The following assertions are equivalent:

(i) f^ is an X-dominating domain for cr;

(ii) ^D/ i (c r ;X) ;

(iii) there exists k > 0 such that ^ D h(a, k', X).

Proof. — (i) =^ (ii). I fA^ and fx(z) = (\-z)-\ then A € Hol(^),
and || (Ae - a)-1]] < c{K)\\fx\\K for all a <E A(cr;X). By the definition of
h{a',X) (see 5.1.1), this implies A ^ h(o",X).

(ii) => (iii). This follows from Theorem 5.1.2 (iv).

(iii) => (i). The function C(., cr;X) is continuous by Theorem 5.1.2 (ii).
Hence, the {k+ l)-level spectral hull h(a, k-}-l',X) is compactly contained in
the A:-level spectral hull h(a, k'.X), that is, clos(/i(cr, k + l',X)) C h{a, k-,X).
Therefore, there exists a domain Q with rectifiable boundary <9f2 such that
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c\os(h{cr^k + l;-^)) C ^ C ^ C h{a,k',X) (in fact, there exists a polygon
with these properties). The standard Riesz-Dunford functional calculus
gives

fW=—— I /(AKAe-o)-1^,
27TZ Jffd

and

ll/Wll^c^-H/llan,

where c stands for the length of 0^1. The result follows. D

5.3. Examples of spectral hulls.

Here we exhibit examples of three different types.

• One of these examples pertains to algebras A whose hull operation
is trivial in the sense that /i(<7;SDT(A)) = a for every a = a C D. This is
Example 5.3.6 below.

• For algebras A of the second type, the same operation a i—^
/i(cr;9Jl(A)) is also trivial, but in a different way, namely, /i(a;9DZ(A)) = D
for every nonempty a = a C P, even for singletons. This is Example 5.3.4
below.

• For the middle type algebras the full spectral hull /i(cr;9Jt(A))
essentially depends on a but is different from it. For instance, this is
the case for the algebras A = A4(S) on semigroups of the same class
as before. In this case we can completely compute the full spectral hulls
h(a;Sb) and the resolvent majorants C { ' , a ' , S b ) . This is Theorem 5.3.2
below. These computations represent a refinement of our results on the
visibility constants Cn(6^M(S), 65); see Theorem B, Section 0.3.

5.3.1. Spectral hulls for measure algebras on semigroups. — We start
with a remark about the analytic Wiener algebra A == A^(Z+) == ^(Z-i-),
or, equivalently, A = ^1(Z+) = IV+, in which case 9Jl(A) = D. Since a
nonconstant holomorphic function is an open mapping, the sets

A(a) = A(a,D) = {f G W^ : ||/|| ^ 1, /(D) C a}

and A^'), where

a ' = clos(int(cr)),
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differjrom each other by constant functions taking values in a \ a ' . Hence,
h(a,1D) = ^(cr'.D) U (a \ a'\ and we can restrict ourselves to the case
where a = a''.

In fact, supposing a = a', we easily derive from Corollary 5.1.9 a
description of h(a;Sb) for all subalgebras of M(S) considered in Sections 2
and 3.

5.3.2. THEOREM. — Let A = ^M{S), or let A be any algebra
A C M(S) satisfying the hypotheses of Theorem 3.3.7. Let a be a closed
subset ofD such that a = clos(int(a)). The following properties hold:

(i) h{a;Sb)=hov{a).

(ii) C7(A, a; Sb) = I/ dist(A, hor(a)) for A € C.

(iii) An open set ^l is a norm-controlled calculus domain for a if and
only ifTl D hor(a).

Proof. — Assertion (iii) is a straightforward consequence of (i) and
Theorem 5.2.2 (see also Definition 5.2.1 of norm-controlled calculi).

Assertions (i) and (ii) are special cases of Corollary 5.1.9, because
^(A.Sb) = ^ by Theorem 3.3.7, and ^(/) = /(O) € f(Sb) for every
/ G M(S). n

5.3.3. COROLLARY. — Let A = J='M{S) be an algebra satisfying the
hypotheses of Theorem 3.3.7 (in particular, the analytic Wiener algebra
A = ̂ A^(Z+) is allowed). The following values of full spectral hulls and
resolvent majorants are special cases of the theorem:

(i) h(as) = (T^-I for |, < 6 < 1 and h(as) = D for 0 < 6 <, j.
Moreover,

G(A,a^)=^_^_^

for \\\ < 26 - 1 and C(A, a^ S^) = oo for 26 - 1 < |A| ^ 1. Here, as above,
as = [z C C : 6 < \z\ ̂  1}. Recall that c^6, A, Sb) = C(^, 0; Sb).

(ii) h(a) = D ifO C clos(int(a)), whence G(A, a; Sb) = oo for all |A| ^ 1.

(iii)^For the spectral hulls of a disc segment s^ = {z G D : Re{z) > 6},
h(s6; Sb) = ssUs^ and a small disc D(6, e) with 0 < e < mm(6,1-6), see
Corollary 5.1.5 above. Q
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5.3.4. Full spectral hulls equal to D. — Here we give examples of bad
Banach algebras for which the full spectral hull of every spectrum is equal
to D. To this end, we need a bit of model operators. All properties claimed
below can be found in [Nl].

Let Q be a singular inner function in D, and let

e=exp(^^d/.(C)), z e
/ T ^ - C

be its canonical integral representation, where ^ is a positive measure on T
singular with respect to the Lebesgue measure dm. Sometimes, we write
0 = Q^. The simplest example is

6^ ^expf^-^V / z e D ,
\z — (,/

where < C T. Further, let

KQ = H2 0 QH2

be the orthogonal complement of the corresponding ^-invariant subspace
QH2 of the Hardy space H2. The compression

f^Mef=Pezf, f ^ K e
of the multiplication operator is called a model operator', PQ stands for the
orthogonal projection on KQ. An H°° function of MQ is well denned by

^(Me)/=Pe^ /e^e,
and the mapping (p i—^ (/?(Me) is an algebra homomorphism from H°°
to the algebra L(KQ) of all bounded linear operators on KQ. Moreover,
(^(Me) = 0 if and only if ^ € QH00, and

||^(Me)|| = inf{||^ + Qh\\^: h e H00}.

Therefore, an operator (^>(Me) is invertible if and only if there exist
two functions ^, h € H°° such that ̂  + Qh = 1. The Carleson corona
Theorem (with subsequent improvements, see Subsection 1.2.2) shows
that there exists a constant c > 0 such that the norm of the inverse
(p(Me)~1 = ̂ (Me) satisfies

6__ ^ II^A.f^-111 ^ ^A-2l^ (\< ^(Me)-1!!^^-2^^)

where

^=^(K^)|+|8(z)|).
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It is an exercise to show that cr(Me) = supp(^) c T and ||Me|| = 1.

Now, we define our algebra A = Ae as the norm closure of polynomials
in Me.

It is worth mentioning that, for 6 = 9 ^ , there exists a unitary
operator U: K@ -^ ^(O.l) such that the algebra UAeU-1 is the norm
closure of polynomials of the integration operator

Jf(x)= I f(t)dt^ x €(0,1)
Jo

on L^O, 1). It can be proved that

^t(Ae) = a(Me) = supp(^)

and, thus, a{(p(Me)) = (/?(supp(^)) for every (p e C7(D) n H°°.

5.3.5. THEOREM. — Let A= AQ be the above Banach algebra corres-
ponding to a singular inner function 6=6^ with the representing measure
^ supported on a subset of zero Lebesgue measure : m(supp(/^)) = 0. Then
for every closed subset a C D, a -^ 0, we have

/i(cr;9Jl(A)) =D.

Proof. — Clearly, it suffices to prove the theorem for a singleton
a =_[s}, s e D. Fixing points t, X e D, we denote by C the point satisfying
C C D and

W=s^

where b\(z) = (A - z ) / ( l - Xz) stands for a conformal automorphism of the
unit disc.

By the classical Rudin interpolation theorem, [Ru2], see also [Gar],
there exists a disc algebra function h € C7(D) D H°° such that

h^ = ~rr^ for z e ̂ PP^) ^d l l ^ l l p = i.Ot(Z)

Setting g = C bth, we get a function in G(D) H Tf^ such that

g(z) = C for 2: c supp(^), ^(^) = 0, ||^||p < 1.
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Finally, the function / denned by / = b\ o g satisfies

f(z) =s for z C supp(/,), f(t) = A, 11/Hp < 1.

We conclude that /(Me) C Ae, a(f(Me)) = /(supp(/^)) = {s}, and
||/(Me)|| < 1, that is, /(Me) e Ae(M;CT(Ae)).

On the other hand,

\\(f(Me)-\Irl\\>c6-^

where ^ = inf(|/(^) - A| + \Q(z)\). Taking z = t, we get
^EB

| |(/(Me)-AJ)- l | |>c|e(^)|-2.

Therefore, C7(A, {s};9Jt(Ae)) > c|e(t)|~2 for every t <E D, and hence

G(A,{5};CT(Ae))=oo.

The result follows. D

5.3.6. Spectrally closed sets. — It is natural to call subsets
a C C (A, X)- spectrally closed (or A-spectrally closed in the case where
X = W(A)) if

/l(a;A,X) =cr.

Theorem 5.1.2 (v) says that all closed subsets a C C are (A,X)-
closed if and only if ^i(A,X) = 0. The paper [ENZ] is especially devoted
to this case, and many algebras with this property are exhibited there.
For instance, all weighted Beurling-Sobolev algebras with regularly varying
weights tending to infinity have this property. Actually we mean the
following pairs (A,X) of convolution algebras and their maximal ideal
spaces X = 9Jl(A):

. A = ^(Z,w), X = {z e C : r _ ^ |^| < r+}, where r± ==
lim (^(n))1/71;

n—>-±oo

• A = ^(Z+,w), X = {z C C: H < r+}, where r+ =
lim (w^))1/71 > 0.

n^c»

Hence, we can say that among the weighted Beurling algebras
^(Z,w), -^(Z-)-,'^) with regularly varying weights and positive spectral
radius (r+ > 0) the only exception with nontrivial spectral hulls are the
"flat" Wiener algebras ^(Z^^Z^). Reasons for such a behaviour are
discussed in [ENZ].
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Radical weighted algebras of formal power series, that is, ^(Z-^w)
with r+ = 0 and X = 9Jt(A) = {0}, are different: both possibilities
<5i(A,X) = 0 and ^i(A,X) > 0 can occur even for sufficiently regular
weights w. See [N2] for details.

BIBLIOGRAPHY

[B] J.-E. BJORK, On the spectral radius formula in Banach algebras, Pacific J. Math.,
40, n°2 (1972), 279-284.

[Co] P. COHEN, A note on constructive methods in Banach algebras, Proc. Amer.
Math. Soc., 12, n° 1 (1961), 159-164.

[D] E.M. DYN'KIN, Theorems of Wiener-Levy type and estimates for Wiener-Hopf
operators, Matematicheskie Issledovania, Kishinev, I. Gohberg ed., 8:3 (29) (1973),
14- 25 (Russian).

[ENZ] 0. EL-FALLAH, N. NIKOLSKI, M. ZARRABI, Resolvent estimates in Beurling-
Sobolev algebras, Algebra i Analiz, 10, n°6 (1998); English transl.: St. Petersburg
Math. J., 10:6 (1999).

[EZ] 0. EL-FALLAH, M. ZARRABI, Estimates for solutions of Bezout equations in
Beurling algebras, to appear.

[Gam] T.W. GAMELIN, Uniform Algebras and Jensen Measures, London Math. Soc.
Lect. Notes Series 32, Cambridge Univ. Press, Cambridge.

[Gar] J.B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981.

[GRS] I.M. GELFAND, RAIKOV D.A., G.E. SHILOV, Commutative normed rings
(Russian), Fizmatgiz, Moscow, 1960; English transl.: Chelsea, New York, 1964.

[GMG] C.C. GRAHAM, O.C. MCGEHEE, Essays in Commutative Harmonic Analysis,
Springer, Heidelberg-New York, 1979.

[HKKR] H. HELSON, J.-P. KAHANE, Y. KATZNELSON, W. RUDIN, The functions which
operate on Fourier transforms, Acta Math., 102 (1959), 135—157.

[HR] E. HEWITT, K.A. ROSS, Abstract Harmonic Analysis, Vol. I and II., Springer,
Heidelberg-New York, 1963 and 1970.

[Kl] J.-P. KAHANE, Series de Fourier absolument convergentes, Springer, Heidelberg-
New York, 1970.

[K2] J.-P. KAHANE, Sur Ie theoreme de Beurling-Pollard, Math. Scand., 21 (1967),
71-79.

[L] N. LEBLANC, Les fonctions qui operent dans certaines algebres a poids, Math.
Scand., 25 (1969), 190-194.

[New] D.J. NEWMAN, A simple proof of Wiener's 1/f theorem, Proc. Amer. Math. Soc.,
48 (1975), 264-265.

[Nl] N. NIKOLSKI, Treatise on the shift operator, Springer, Heidelberg-New York,
1986.

[N2] N. NIKOLSKI, Norm control of inverses in radical and operator Banach algebras,
to appear.



1998 NIKOLAI NIKOLSKI

[R] M. ROSENBLUM, A corona theorem for countably many functions, Integral Equat.
Oper. Theory, 3, n° 1 (1980), 125-137.

[Rul] W. RUDIN, Fourier Analysis on Groups, Interscience Tract n° 12, Wiley, New York,
1962.

[Ru2] W. RUDIN, Boundary values of continuous analytic functions, Proc. Amer. Math.
Soc., 7 (1956), 808-811.

[S] F.A. SHAMOYAN, Applications of Dzhrbashyan integral representations to certain
problems of analysis, Doklady AN SSSR, 261 (1981), n°3, 557-561 (Russian);
English transl.: Soviet Math. Doklady 24:3 (1981), 563-567.

[Shi] H.S. SHAPIRO, A counterexample in harmonic analysis, in Approximation Theory,
Banach Center Publications, Warsaw (submitted 1975), Vol. 4 (1979), 233- 236.

[Sh2] H.S. SHAPIRO, Bounding the norm of the inverse elements in the Banach algebra of
absolutely convergent Taylor series, Abstracts of the Sixth Summer St. Petersburg
Meeting in Mathematical Analysis, St. Petersburg, June 22-24, 1997.

[Sr] Yu.A. SREIDER, The structure of maximal ideals in rings of measures with
involution, Matem. Sbornik, 27 (69) (1950), 297-318 (Russian); English transl.:
AMS Transl., 81 (1953), 28pp.

[St] J.D. STAFNEY, An unbounded inverse property in the algebra of absolutely
convergent Fourier series, Proc. Amer. Math. Soc., 18:1 (1967), 497- 498.

[T] J.L. TAYLOR, Measure algebras, CBMS Conf., n° 16, Amer. Math. Soc.,
Providence, R.I., 1972.

[Tol] V.A. TOLOKONNIKOV, Estimates in Carleson's corona theorem and finitely
generated ideals in the algebra H°°, Functional. Anal. i ego Prilozh., 14 (1980)
85-86 (Russian); English transl.: Funct. Anal. AppL, 14:4 (1980), 320- 321.

[To2] V.A. TOLOKONNIKOV, Corona theorems in algebras of bounded analytic
functions, Manuscript deposed in VINITI, Moscow, n° 251-84 DEP, 1984
(Russian).

[VP] S.A. VINOGRADOV, A.N. PETROV, The converse to the theorem on operation of
analytic functions, and multiplicative properties of some subclasses of the Hardy
space H°°, Zapiski Nauchnyh Semin. St. Petersburg Steklov Institute, 232 (1996),
50-72 (Russian).

[Z] A. ZYGMUND, Trigonometric series, Vol. 1., Cambridge, The University Press,
1959.

Manuscrit recu Ie 18 fevrier 1998,
accepte Ie 8 mars 1999.

Nikolai NIKOLSKI,
Universite de Bordeaux I
UFR de Mathematiques et d'lnformatique
Laboratoire de Mathematiques Pures
351 cours de la Liberation
33405 Talence (France).
nikolski@ mat h. u—b ordeaux. fr


