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TWO RANDOM CONSTRUCTIONS
INSIDE LACUNARY SETS

by Stefan NEUWIRTH

1. Introduction.

The study of lacunary sets in Fourier analysis still suffers from a
severe lack of examples, in particular for the purpose of distinguishing two
properties. In order to bypass the individual complexity of integer sets, one
frequently resorts to random constructions. In particular, Li [16] uses in his
argumentation a construction due to Katznelson [13] to discriminate the
following two functional properties of certain subsets E C Z:

• A Lebesgue integrable function on the circle with Fourier frequencies in
E is in fact p-integrable for all p < oo. This means that all spaces L^(T)
coincide for p < oo, i.e. E is a A(p) set for all p in Rudin's terminology.
No sequence of polynomial growth has this property ([24], Th. 3.5). By
Theorem 4.7, almost every sequence of a given superpolynomial order of
growth is A(p) for all p.

• A bounded measurable function on the circle with Fourier frequencies in
E is in fact continuous up to a set of measure 0. This means that ̂ (T) and
C£;(T) coincide: E is a Rosenthal set. Every sequence of exponential growth
is a Sidon set and therefore has this property. By Bourgain's Theorem 2.5,
almost every sequence of a given subexponential order of growth fails the
Rosenthal property.

Key words: A(p) set - Rosenthal set - Equidistributed (or uniformly distributed) set of
integers.
Math. classification: 42A55 - 43A46 - 11K31.
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A Rosenthal set may contain arbitrarily large intervals [23] and thus
fail the A(p) property. This shows that these two properties cannot be
characterized by some order of growth, whereas the random method is
so imprecise that it ignores a range of exceptional sets. On the other
hand, Li shows that some set E is A(p) for all p and fails the Rosenthal
property: his construction witnesses for the quantitative overlap between
superpolynomial and subexponential order of growth. From a Banach space
point of view, Li's set E is such that Cg(T) contains CQ while L^(T) does
not contain i\.

We come back to Li [16] for two reasons: in the first place, we have
been unable to locate a published proof of Katznelson's statement. We
provide one for a stronger statement in Section 4. In the second place, we
want to precise and supple the random construction in the following sense:
can one distinguish the A(p) property and the Rosenthal property among
subsets of a certain given set ? That sort of questions has been investigated
by Bourgain in [4]. We give the following answer (see Th. 28):

MAIN THEOREM. — Consider a polynomial sequence of integers, or
the sequence of primes. Then some subsequence of it is A(p) for all p and
at the same time fails the Rosenthal property.

This is a special case of the more general question: does every set
that fails the Rosenthal property contain a subset that is A(p) for all p and
still fails the Rosenthal property? We should emphasize at this point that
neither of these notions has an arithmetic description. In fact, the family
of Rosenthal sets is coanalytic non Borel [9] and any description would be
at least as complex as their definition. This is why we study instead the
following two properties for certain subsets E C Z :

• Any integer n has at most one representation as the sum of s elements
of E. This implies that E is A(2s) by [24], Th. 4.5(b).

• E is equidistributed in Hermann WeyPs sense: save for t = 0 mod 27T,
the successive means of {elnt}n^E tend to 0, which is the mean of e^ over
[0,27r[. This implies that E is not a Rosenthal set by [18], Lemma 4.

Our random construction gives no hint for explicit procedures to build
such integer sets. The question whether some "natural" set of integers is
A(p) for all p and fails the Rosenthal property remains open.

Let us describe the paper briefly. Section 2 introduces the inquired no-
tions and gives a survey of former and new results. As the right framework
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for this study appears to consist in the sequences of polynomial growth, we
give them a precise meaning in Section 3, and show that they are nicely
distributed among the intervals of the partition of Z defined by {±2^-}.
Section 4 establishes an optimal criterion for the generic subset of a set
with polynomial growth to be A(p) for all p. Section 5 comes back to Bour-
gain's proof in [3], Prop. 8.2(i): we simplify and strengthen it in order to
investigate the generic subset of an equidistributed set.

Notation. — T = {t G C : \t\ = 1} is the unit circle endowed with
its Haar measure dm and Z its dual group of integers: for each n € Z, let
Cn(t) = tn. The cardinal of E = {n/J C Z is written |£'|. We denote by
Co (T) the space of functions on T which are arbitrarily small outside finite
sets; such functions necessarily have countable support.

For a space of integrable functions on T and E C Z, XE denotes the
space of functions with Fourier spectrum in E: XE == { / e X : f(n) =

e_nfdm=0ifn^ E}.

We shall stick to Hardy's notation: Un =^ Vn (^s. Un ̂  Vn) if u^/Vn
is bounded (vs. vanishes) at infinity.

Acknowledgment. — I would like to thank Daniel Li for several
helpful discussions.

2. Equidistributed and A(p) sets.

DEFINITION 2.1. — Let E = {nk}k>i c Z ordered by increasing
absolute value |n/c|.

(i) ([24], Def. 1.5.) Let p > 0. E is a A(p) set if, for some — or
equivalently for any — 0 < r < p , L^(T) and L'^(T) coincide:

30 V/€^(T) H/11 , <||/||p< 011/H,.

(ii) ([26], § 7.) E is equidistributed if for each t 6 T\{1} the successive
means

(i) A^—E^W^—— °-ri —, k—>-oo
J=l

Thus E is equidistributed if and only if the sequence of characters in E
converges to 1^ for the Cesaro summing method. If fk tends pointwise to
f e co(T), then E is weakly equidistributed.
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If E is weakly equidistributed, then / defines an element ofC^T)-1--1.
By Lust-Piquard's [18], Lemma 4, C£;(T) then contains a copy of CQ and E
cannot be a Rosenthal set.

For example, Z and N are equidistributed. Arithmetic sequences are
weakly equidistributed: there is a finite set on which fk -^ 0. Polynomial
sequences of integers ([26], Th. 9 and [25], Lemma 2.4, see [19], Ex. 2)
and the sequence of prime numbers (Vinogradov's theorem [5], see [19],
Ex. 1) are weakly equidistributed: fk(t) may not converge to 0 for rational
t. There are nevertheless sequences of bounded pace that are not weakly
equidistributed ([8], Th. 11). Sidon sets are A(p) for all p ([24], Th. 3.1),
but not weakly equidistributed since they are Rosenthal sets.

Example 2.2. — Consider the geometric sequence E = {3k}k>_l and
the corresponding sequence of successive means fk' By [8], Th. 14, the fk
do not converge to 0 on a null set of Hausdorff dimension 1. Consider

f k = ^ ' 3 / ^ e3fcl+ ...+3^'
l<^ki,...,kj<^k

=k-^j\ ^ + ^ )e^^...^•
\ l^ki<...<kj<k 1 <ki,...,kj <k /

not all distinct

Let j > 1. Put E^ = {3^ + ... + 3^ : 1 < k^ < . . . < kj} and let f^ be
the corresponding successive means (1). Then

| |^-f0-)|| < ( ( k Y l -^V^+i^-—^-^II;, /^||oo< [ [ ^ ) k U \ j ) ^ kA^ ( k - j ) \ )

=2(1-^)I)-7->0•

Therefore the /^ do not converge to 0 outside a countable set, and
E^\ which is A(p) for all p ([20], Th. IV.3) and not Sidon, is not weakly
equidistributed.

However, as Li notes, these two classes meet.

THEOREM 2.3 ([16]). — There is an equidistributed sequence that
is A(p) for all p.

Sketch of proof. — Li uses the following random construction, dis-
covered by Erdos ([6], [7]) and introduced to harmonic analysis by Katznel-
son and Malliavin ([14], [15]).
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CONSTRUCTION 2.4. — Let E C Z and consider independent {0,1}-
valued selectors ̂  of mean 6n {n C E), i.e. P[^ = 1] = ^. TAezi the
random set E/ is defined by

E / = { n e E : ^ = 1}.

The first ingredient of the proof is Born-gain's following

THEOREM 2.5 ([3], Prop. 8.2(i)). — Let E = N in Construction 2.4.
If6n decreases with n while 6^ > n~1, then E' is almost surely equidis-
tributed.

Remark 2.6. — In this sense, almost every sequence of a subexpo-
nential growth given by {6n} is equidistributed: indeed, for almost every
E 'CN,

\E' n [0,n]| ~ 60 + ... + 6n » logn

by the Law of Large Numbers. Note however that the set E^ defined in
Example 2.2 has subexponential growth: \E^ n [-n,n]| ^ (logn)-7, and is
not equidistributed.

The second ingredient is a result announced without proof by Katznel-
son.

PROPOSITION 2.7 ([13], § 2). — Put h =}pk-^Pk] withpj, > pl_,
(k > 1). Let E = N in Construction 2.4. There is a choice of (4) with
4 > log?/, such that for 6n = 4/|4| {n e 4), E ' is A(p) for all p almost
surely.

Li suggests to apply the content of Proposition 2.7 with pk = 2^ and
4 = k: then 6n > n~1 and Theorem 2.3 derives from Theorem 2.5. D

We shall generalize Katznelson's and Li's results with a new proof
that permits to construct E' inside of sets E with polynomial growth
(see Def. 3.1) and yields an optimal criterion on 4. We shall subsequently
generalize Bourgains's Theorem 2.5 to obtain the Main Theorem via

THEOREM 2.8. — Let E be equidistributed (vs. weakly) and with
polynomial growth. Then there is a subset E ' C E equidistributed (vs.
weakly) and at the same time A(p) for all p.

A precise and quantitative statement of this is Theorem 5.5.
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3. Sets with polynomial growth.

We start with the definition and first property of such sets.

DEFINITION 3.1. — Let E = {n/J^i C Z be an infinite set ordered
by increasing absolute value and E[t] = \En [-t, t] \ its distribution function.

(i) E has polynomial growth if rik ^ A^ for some 1 ̂  d < oo. This
amounts to E[t] ^ t8 for e = d~1.

(ii) E has regular polynomial growth if there is a c > 1 such that
\n\ck~\ | < 2|rifc| for large k. This amounts to E[2t} > cE[t} for large t.

Proof. — (i) If \nk\ ̂  Ck6- for large k and Ckd < t < C(k+l)d, then
E[t] > k > (t/CY - 1. Conversely, if E[t] > ct5 for large t and c^ = k,
then \nk\ <t= (k / c ) d .

(ii) If \n^k'] I ^ 2|r^| for large k and k is maximal with |n/,| < t, then
E[2t] > E[2\nk\} ̂  ck = cE[t]. Conversely, if E[2t] > cE[t] for large t, then
E[\nk\\ € {k,k+ 1} and E[2\nk\] >. ck. Thus \n^\ < 2\rik\. D

In particular, polynomial sequences have regular polynomial growth.
By the Prime Number Theorem, the sequence of primes also has. Property
(ii) implies property (i): if E[2t] > cE[t] for large t, then E[t\ ^ t10^.
The converse however is false as shows F = IJ^22^22^1], for which
F[t} ̂  t1/4- while F[2t] = F[t] infinitely often.

Let us relate Definition 3.1 with certain partitions of Z. Regular
growth means in fact that E is regularly distributed on the annular dyadic
partition of Z

(2) P= {[-po,po],Ik = [-Pk,-Pk-i[U]pk-i,pk}}^ where pk = 2k

and F shows that there are sets with polynomial growth which are not
regularly distributed on the partition defined by pk = 2^. However, the
intervals of the gross partition
(3)

p = {[-Po^Po^h = [-Pk,-Pk-i[^\Pk-i,Pk\} with \ogpk > logp/,_i

grow with a speed that forces regularity. Put pk = 2^' for a simple explicit
example. We have precisely

PROPOSITION 3.2. — Let E C Z, P = {4} a partition ofZ and
Ek = E D I k . Then log |£/c| ^ log \Ik\ in the two following cases:
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(i) E has regular polynomial growth and P is partition (2);

(ii) E has polynomial growth and P is partition (3).

Proof. — (i) Choose K and c > 1 such that E^] ^ cE^-1} for
k ̂  K. Then E^] ̂  ck. Thus

|̂ | = E[^} - E^-^ > (1 - c-^E^] ^= ̂  = 2^°^.

(ii) In this case p^ ^> pk-i for each positive e. Now there is e > 0
such that

\Ek = E\pk] - E\pk-i] ̂  Pi ̂  141'. 0

4. Sets that are A(p) for all p .

In this section, we establish an improvement (Th. 4.7) of Katznelson's
statement in [13], §2. We first recall several known definitions and results.
A(p) sets have a practical description in terms of unconditionality. We shall
also use a combinatorial property that is more elementary than [24], 1.6(b):
to this end, write Z^ for the following set of arithmetic relations :

^^^{CeZ* 7 " : C i+ . . .+Cm=0 and |Ci| + ... + |Cm| ^ 2s}.

Note that Z} and Z^ (m > 2s) are empty, and that every C e Z'j is of
form Ci • (1, —I) : this is the identity relation.

DEFINITION 4.1. — Let l < ^ p < o o , s > l integer and E C Z.

(i) ([12]) E is an unconditional basic sequence in L^T) if

SUp ^ ±dn Gn ^ C y^ Qn e^
± nCE P nCE P

for some C. IfC = 1 works, E is a 1-unconditional basic sequence in L^T).
m

(ii) E is s-independent if^^qz -^ 0 for all 3 < m ^ 25, C ^ ^F and
i

distinct <7i , . . . ,^ € ^.

PROPOSITION 4.2. — L e t l < p ^ 2 < o o , 5 ^ 1 integer and E C Z.

(i) (724J, proof of Th. 3.1.) E is a A(max(p, 2)) set if and only ifE is
an unconditional basic sequence in LP{T).
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(ii) ([22], Prop. 2.5, Rem. (1).) E is a 1-unconditional basic sequence
in L^T) if and only ifE is s-independent.

We need to introduce a second classical notion of unconditionality
that rests on the Littlewood-Paley theory.

DEFINITION 4.3 ([11]). — Let T = {4} be a partition ofZ in finite
intervals. P is a Littlewood-Paley partition if for each 1 < p < oo there is
a constant Cp such that

{ ^
(4) V/e27(T) s^p||^±A||^ ^||/||^ with f,= f on I,.

By Khinchin's inequality, this means exactly that

\1/2|
V/e^(T) ll/llp^K^IAI2)

In particular, the dyadic partition (2) and the gross partition (3) are
Littlewood-Paley [17]. By Proposition 4.2 and (4), we obtain

PROPOSITION 4.4. — Let {Ik} be a Littlewood-Paley partition and
Ek c Ik- If Ek is s-independent for each k, then E = \jEjc is an
unconditional basic sequence in L^T) and thus a A(2s) set.

We generalize now Katznelson's Proposition 2.7.

LEMMA 4.5. — Let s > 2 integer, E C Z finite and 0 ^ £ <, \E\.
Put 6n = ^/\E\ in Construction 2.4, so that all selectors ^n have same
distribution. Then there is a constant C{s) that depends only on s such
that

fis
^[E' is s-dependent] < C(s)—.

1^1

Proof. — We wish to compute the probability that there are 3 <
m < 2s, C € Z^ and distinct qi,...,qm e E ' with ^;C^ = 0. As the
number C(s) of arithmetic relations C e Z^ (3 ^ m < 2s) is finite and
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depends on s only, it suffices to compute, for fixed m and C e Z^

P^i,..., q^ e E' distinct : Ci^i + Cm<7m = o1
r m-i
p^ • • • ̂ m-i eE'distinct : -C,1 ̂  C^ € ^/ \ { g i , . . . ̂ m-i}

%=i

m-l

U [-Cm1 E ̂  C £;' \{gi,.... q^}]
•jQm-l z=l91,. .. ,qm-l

€ £" distinct

m—1

U [^=-cl^c^€^\{^}^l&^=...=^=l1
gi , . . . ,g^_l ^1 -I
.G £'distinct

The union in the line above runs over
____l-^r____ ^ iT^im-1

(|£;|-m+l)!-'" '
(m - l)-tuples. Further, the event in the inner brackets implies that m out
of |£'| selectors ^ have value 1: its probability is bounded by (^/[^D771.
Thus

pm p2s
P[£" is 5-dependent] <, C(s) max \E\rn~l-—^ < C(s)——. D

The random method we shall use is the following random construc-
tion.

CONSTRUCTION 4.6. — Let E C Z. Let {4} be a Littlewood-Paley
partition and Ej, = E H 4. Let (4)^i with 0 < 4 ^ |Efc| and put

^[^n=l}=6n=£k/\Ek\ (neEk)
in Construction 2.4. Put E^ = E ' D I k .

THEOREM 4.7. — Let E C Z have polynomial (vs. regular) growth
and {Ik} be the gross (3) (vs. dyadic (2)) Littlewood-Paley partition. Do
Construction 4.6. The following assertions are equivalent:

(i) log4 < log |4|, i.e. log4 < logpfc (vs. log4 < k ) ;

(ii) E ' is almost surely a A{p) set for all p.

Proof. — Note that by Proposition 3.2, there is a positive a such
that |̂ | > 141°' for large A;.
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(i) =^ (ii) Let s > 2 be an arbitrary integer. By Proposition 4.5,
00 00 ^5

^ P [̂  is 5-dependent] ^ (7(5) ̂  ——
fc=l k=l ' A ; l

For each rj > 0, 4 < |4|77 for large A;. Choose rj < a/2s. Then ̂ /|^ <
\Ik 2sr]~a for large k, and the series above converges since \Ik\ ̂  2^. By the
Borel-Cantelli lemma, E^ is almost surely ^-independent for large k. By
Proposition 4.4, E ' is almost surely the union of a finite set and a A(2s)
set. By [24], Th. 4.4(a), E ' itself is almost surely a A(2s) set.

(ii) =^ (i) If E' is a A(2.s) set, then by [24], Th. 3.5 or simply by [4],
(1.12), there is a constant Cs such that \E^\ < C^l175. As \E'^\ - 4
almost surely by the Law of Large Numbers (cf. the following Lemma 5.1),
one has log 4 < log \Ik |. D

Remark 4.8. — As one may easily construct sets that grow as slowly
as one wishes and nevertheless contain arbitrarily large intervals (see also
[24], Th. 3.8, for an optimal statement), one cannot remove the adverb
"almost surely" in Theorem 4.7(ii).

Remark 4.9. — The right formulation of Katznelson's Proposition
2.7 thus turns out to be the following. Let E = N and Ik =]pk-i,Pk] with
Pk > cpk-i for some c > 1 in Construction 4.6. Then E ' is almost surely a
A(p) set for all p if and only if log 4 <€ logpfc-

Remark 4.10. — Theorem 4.7 shows that there are sets that are A(p)
for all p of any given superpolynomial order of growth. This is optimal since
sets with distribution E[t] ^ ^ fail the A(p) property for p > 2 / e by [24],
Th. 3.5. Such sets may also be constructed inductively by combinatorial
means: see [10], § II, (3.52).

5. Equidistributed sets.

In this section, we shall finally state and prove our principal result.
To this end, we shall first generalize Bourgain's Theorem 2.5 in order to
get Theorem 5.4.

The following lemma is Bernstein's distribution inequality [2] and
dates back to 1924.
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LEMMA 5.1. — Let Xi , . . . ,X^ be complex independent random
variables such that

(5) |X,|<1 and E X , = 0 and E |Xi|2 + . . . + E \Xn 2 < a.

Then, for all positive a,

(6) p[ | jCi+. . .+XJ >a] <4exp(-a2/4((7+a)).

Proof. — Consider first the case of real random variables. By [1] (8b),
P[Xi + . . . + Xn > a] < exp(a - (a 4- a) log(l + a/a));

as log(l - u) <, -u - ̂ 2/2 for 0 <, u < 1,
P[Xi + .. . + Xn ̂  a] < exp(-a2/2(a + a)).

One gets (6) since for complex z
\z >a ==^ moix^z, -SRz, ̂ sz, -^sz) ^ a/V2. D

The next lemma corresponds to [3], Lemma 8.8, and is the crucial
step in the estimation of the successive means of {e^}^^/. Note that its
hypothesis is not on the individual 6n, but on their successive sums a^. this
is needed in order to cope with the irregularity of E.

LEMMA 5.2. — Let E = {rik} C Z be ordered by increasing absolute
value. Do Construction 2.4 and put Ok = (^ + . . . + 6^' If^k > log \nk\,
then almost surely
(7)

k1 1
l^n{n,,..,^|^E^"-^E^d{k) = .^

k—>oo
>0.

Proof. — Note that
n/ K

^ en = ̂ n, e^., l̂ ' n {Hi, . . . ,7lfc}| = ̂ .̂.

E'n{ni,...,nk} J==l J=l

Center the ̂  by putting / = ̂  ( .̂ - ̂ .) e^.. Then
j=i

d(fc)^ Kl^n^,..,^}!-1-^1)^^^^! +K-VII,
.>'=!

^^
-1 ""i<?»,+.. .+&"fc

î + • • . + ̂• • • r Snfc
-i E^•+^ l lj=i

< 2(7-ll
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Let R = [t (E T : ^1^1 = 1} and u C T such that \f(u)\ = \\f\\^. Let
t e R be at minimal distance of u: then |t — u\ < 7r/4|nfc|. By Bernstein's
theorem,

ii/iioc - I/MI < \f{u) - fw\ <^\t-u\ n/'ii^ < jii/ii^;
||/||oo^5sup|/M|.

t^R

(For an optimal bound, cf. [21], § 1.4, Lemma 8). For each t e R, the
random variables Xj = ( .̂ - <^.) e^(t) satisfy (5), so that

P[|/MI > a] < 4exp(-a2/4(^ +a)).

As|7?|=4|nfc|,

P [ l l / l loo > 5a] < P [sup \f{t)\ >a\< 4|^| . 4exp(-a2/4(^ + a)).
'-tCT? -1

Put ak = (12crfc log Infcl)1^. Then a^ < cr^: therefore

P [l l / l loo >5^]^|n^|-2

and by the Borel-Cantelli lemma,

<7^1 l l / l loo ^ a ' k / o ' k —> 0 almost surely. D

Remark 5.3. — The hypothesis in Lemma 5.2 contains implicitly
a restriction on the lacunarity of E. If o-k ^> logln^l? then necessarily
logln^l < k and E[t\ » \ogt. In particular, E cannot be a Sidon set by
[24], Cor. ofTh. 3.6.

We now state and prove the equidistributed counterpart of Theo-
rem 4.7.

THEOREM 5.4. — Let E = {rik} C Z be equidistributed (vs.
weakly), and ordered by increasing absolute value. Do Construction 2.4 and
suppose that 6n, decreases with j. Put o-k = ^m+.. .+^. Jfo-fc >log|rifc|,
then E ' is almost surely equidistributed (vs. weakly). This is in particular
the case if

(a) <^ > (Kl - K-iD/K-il;
(b) E has polynomial growth and (^ ^> k~1.

Proof. — Lemma 5.2 shows that almost surely (7) holds. It remains
to show that

^ k ^ k
lim ̂  S ̂  en. = lim ̂  ̂  e^'

j=l j=l
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i.e. that the matrix summing method (a^.) given by

a^.=<f^/^ l^<k

I 0 if not
is regular and stronger than the Cesaro method C\ by arithmetic means.
This is the case because cikj > 0, ̂ ^j = 1 and (cf. [27], § 52, Th. I)

j
VA; E^l^' - ̂ j+ll = E^0 '̂ - O^j+l) = 1 < 00

3 3

since a/cj decreases with j for each k.

(a) In this case 6^ > log |nfc| - log \rik-i\ and thus a/c > log |n/c|-

(b) In this case, Of, > log/c ^ log \nk\. D

In conclusion, we obtain, by combining Theorems 4.7 and 5.4, our
principal result.

THEOREM 5.5. — Let E C Z be equidistributed (vs. weakly) and
do Construction 4.6. Then E ' is almost surely A(p) for all p and at the
same time equidistributed (vs. weakly) in the two following cases:

(i) E is a set of regular polynomial growth, {Ij} is the dyadic
Littlewood-Paley partition (2), 1 < log^ < j and ^j/\Ej\ decreases
eventually.

(ii) E is a set of polynomial growth, {Ij} is the gross Littlewood-Paley
partition (3), ^j/\Ej\ decreases eventually and £j > logpj+i while log^ <
logpj. This is the case if we put pj = 2-7' and ij = min((j + 2)!, \Ej\).

Proof.— In each case log^ < ^gl^l- Let us show that the
hypothesis of Theorem 5.4 is verified. If n^ e Ej C 1^ then \nk\ ^ pj
and

j'-i
^^EE^-^+'- '+^- i

i=ln^Ei

and in each case ^_i ^> logp^ — logp^_i.

Let us make sure in (ii) that our choice for pj and £j is accurate.
Indeed, there is an e > 0 such that \Ej\ ^ 267'. Thus (j + 2)! < |^-|
and ^ = (j + 2)! for large j. Note further that (j + 2)! » (j + 1)! while
log(j+2)!<j!. Finally

^•+1 ^ 0'+3)! . ̂ . ^ ̂  . A-
t 7 ' . . - l • Oed+11! v nf/i-l-111 "̂ 0,1 ^ ] 7-1|^+i | ^ 2£y+l)! v 2£0+l)' 2^' " 1 -̂
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so that £j/\Ej\ decreases eventually. D
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