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ALGEBRAIC EQUIVALENCE
OF REAL ALGEBRAIC CYCLES

by M. ABANADES & W. KUCHARZ

1. Introduction.

Let X be a nonsingular, n-dimensional, quasiprojective variety over
R (that is, an irreducible, yi-dimensional, quasiprojective scheme over M,
smooth over R). We endow the set X(M) of R-rational points of X with
the topology induced by the usual metric topology on R, and assume that
X(M) is nonempty and compact. Thus X(R) is a C7°°, closed, n-dimensional
manifold. Given a nonnegative integer k, we let Zk{X} denote the group of
algebraic {n — ^)-cycles on X (that is, the free Abelian group on the set of
closed, (n — A^-dimensional subvarieties of X). There exists a unique group
homomorphism

cb:Zk(X)-^Hk(X(R)^/<2)

such that for every closed, (n — A^-dimensional subvariety V of X,
the cohomology class cl^V) is Poincare dual to the homology class in
^-A;(X(R),Z/2) determined by V(R) (cf. [5] for the definition of this ho-
mology class). In the present paper we study the cohomology classes of the
form cliR(^), where z is a cycle in Z^X) algebraically equivalent to 0 (we
refer to [7] for the theory of algebraic equivalence of cycles). Such cohomol-
ogy classes need not be trivial, but as we shall see below they must satisfy
quite restrictive conditions.
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The extreme cases, k = 0 and k = n, are easy to analyze. Obviously, a
cycle z in Z°(X) is algebraically equivalent to 0 if and only if z = 0. On the
other hand, every cycle in Zn(X) of the form XQ - a;i, where XQ and x^ are
points in X(R), is algebraically equivalent to 0. We have cip^o - x^) ̂  0
whenever a-o and a;i belong to distinct connected components of X(R).
It follows that a cohomology class u in ^(^(R), Z/2) can be written
as u = c\]§i(z) for some cycle z in Zn{X) algebraically equivalent to 0 if
and only if the homology class in Ho(X(R),Z/2) Poincare dual to u is
represented by an even number of points of X(R). In view of these facts,
we concentrate our attention on the intermediate cases, 1 ̂  k <^ n — 1.

Given a continuous map f : M —> N between topological spaces, we
denote by H^f) : H^N, Z/2) -. H^M, Z/2) the homomorphism induced
by /. Recall that a cohomology class u in Hk(M,Z/c2) with k ^ 1 is said
to be spherical if u = Hk(f)(c), where / : M -^ 6^ is a continuous map
into the unit ^--sphere 6^, and c is the generator of H k ( S k , Z / c 2 ) ^ Z/2.
We denote, as usual, by U and < -, - > the cup product of cohomology
classes and the Kronecker index (pairing) of cohomology and homology
classes, cf. [11]. If M is a (7°°, closed manifold of dimension n, we denote
by Wk(M) the A;th Stiefel-Whitney class of M and by IJLM the fundamental
homology class of M in Hn(M, Z/2).

THEOREM 1.1. — Let X be a nonsingular, n-dimensional, quasipro-
jective variety over R with X(R) nonempty and compact. Let z be a cycle
in Z^X) that is algebraically equivalent to 0. Then the cohomology class
d^(z) in ^(X(]R),Z/2) satisfies clp(z) U cl^) = 0 in H2k{X(R)^/2)
and

< cb(z) U Wi,(X(R)) U ... U w,,(X(R)), ^(K) > = 0

for all nonnegative integers Z i , . . . , ir with ̂ -{-'••-^-ir=n-k. Furthermore,
i f k = l o r i f k = n - l > l with X(R) connected, then the cohomology
class c\^(z) is spherical.

Let us note that, in general, the cohomology class d^(z) of Theo-
rem 1.1 need not be spherical. Indeed, suppose X = X' x X" (product over
SpecR), where X' and X" are nonsingular, projective varieties over R such
that X'(R) is nonempty and X'^R) is disconnected. Let z ' be any algebraic
cycle on X ' . Choose two points po and pi in X"(R) that belong to distinct
connected components. Since the 0-cycle z" = po-Pi on X" is algebraically
equivalent to 0, the cycle z ' x z " on X is algebraically equivalent to 0 as
well. Furthermore, the cohomology class cip^' x z " ) = cip^') x ciR^") is
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spherical if and only if the cohomology class dpO') is spherical (for po and
pi belong to distinct connected components of X^R)). Taking X' = Pj^,
we have cl^^X')) = Hk(Xf(R)^/2), and the unique nontrivial co-
homology class in Hk(Xf(R),Z/2) ^ Z/2 is not spherical, provided that
1 ̂  k < m- 1 and m is even. In particular, "connected" cannot be omitted
in the last part of Theorem 1.1.

If dp (z) is spherical, then dR(»Ud]R(» = 0 is automatically satisfied,
and Theorem 1.1 is in some sense the best possible result. More precisely,
we have the following.

THEOREM 1.2. — Let M be a C°°, closed, n-dimensional manifold
and let u be a spherical cohomology class in H1^ (M, Z/2) with 1 < k ^ n-1.
Then the following conditions are equivalent :

(a) There exist a nonsingular, projective algebraic variety X over R
and a C°° diffeomorphism ̂  : X(R) -^ M such that Hk^)(u) = clp(^) for
some cycle z in Z^X) algebraically equivalent to 0;

(b) < uUw,, (M)U.. .Uw^(M), UM >= 0 for all nonnegative integers
% i , . ..,ir with %i + • • • +^ = n- k,

Let us mention that Theorem 1.2 is an improvement upon inefficient
[10], Theorem 2.4.

2. Proofs.

Let X be a nonsingular, n-dimensional, quasiprojective algebraic
variety over R with X(R) nonempty and compact. Recall that if an
algebraic cycle z in Zk(X) is rationally equivalent to 0, then cl^O) = 0
(cf. [5], 5.13) and hence dp induces a homomorphism, also denoted by dp,
from the Chow group Ak{X) of X into ^(X(R),Z/2). It is known that
dp : A*(X) -^ ^(X^.Z^) is a homomorphism of graded rings [5],
p. 495. Thus

%g(X(IR),Z/2) = dR(Z*(X)) = dM(A*(X))
is a graded subring of ^*(X(R),Z/2). We shall need the following result
[10], Theorem 2.1 :

(1) < dpO) U v, /^C(K) > = 0

for all cycles z in Zk{X') algebraically equivalent to 0 and all v in
^(X(R),Z/2).
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Assume now that X is projective. Then the set X(C) of C-rational
points of X is a compact complex manifold of complex dimension n. There
exists a unique group homomorphism

cIcr^PO-^^Q.Z)
such that for every closed, (n - A;)-dimensional subvariety V of X,
the cohomology class clc(V) is Poincare dual to the homology class in
^2n-2fc(X(C),Z) determined by V(C) (cf. [5] for the definition of this ho-
mology class). In other words, if TT : Xc = X xspecR SpecC -^ X is the
canonical projection, then clc(^) is the cohomology class corresponding to
the pullback algebraic cycle 7r*{z) on Xc, cf. [5], 4.2 or [7], Chapter 19. In
particular,

(2) clc(^) = 0
for all cycles z in Zk(X) algebraically equivalent to 0, cf. [5], 4.14 or [7],
Proposition 19.1.1. Furthermore, it follows from the proof of [2], Theorem A
that
(3) CI]R(^) U d^(z) = the reduction modulo 2 ofr(clc(^))
for all z in ^(X), where r : ^(X^.Z) -^ ^(XO^.Z) is the
homomorphism induced by the inclusion map X(R) ^-> X(C).

Proof of Theorem 1.1. — By Hironaka's resolution of singularities
theorem [8], 3, we may assume that X is projective.

We obtain ch(z) U cl^O) = 0 directly from (2) and (3).

It follows from [5], p. 498 that w,(X(R)) is in ^g(X(R),Z/2), and
hence if z i , . . . , ir are nonnegative integers with zi + • • • + Zy, = n — k, then
the cohomology class

v = w,, (X(R)) U . . . U w^(X(R))
belongs to 7y(X(R),Z/2). In view of (1), we have < d^z) U v,
/^X(R) >= 0, which completes the proof of the first part of the theorem.

Given an invertible sheaf C on X, we denote by C^ (resp. £c)
the topological real (resp. complex) line bundle on X(R) (resp. X{C))
determined by C in the usual way. If C corresponds to a Well divisor D on
X, then

wi(/:R) = cb(D) and ci(£c) = clc(^),

where wi (-) and ci (-) stand for the first Stiefel-Whitney class and the first
Chern class, respectively, cf. [5], p. 498, p. 489. Note that the restriction
£c|X(lR) of £,c to X(R) is the complexification of £]R, and hence

ci(/:c|X(R))=/3(wi(/:R)),



ALGEBRAIC EQUIVALENCE OF REAL ALGEBRAIC CYCLES 1801

where (3 : H1{X(]K)^/2) -> ̂ (X^.Z) is the Bockstein homomorphism
that appears in the long exact sequence

... -^ ̂ (XW.Z) ̂ ^(XW.Z) -> ̂ (XW.Z^) ̂ ^(XW.Z)

cf. [II], Problems 15-C and D. The last equality can be written in an
equivalent form

(4) r(clc(D))=/3(clR(D)),

where r : ^(^(C^Z) -^ ^(X^.Z) is the homomorphism induced by
the inclusion map X(R) ̂  X(C).

Suppose now that k = 1, that is, z is a Weil divisor on X. By (2)
and (4), we have /3(c\^(z)) = 0, which means that c\^(z) is the reduction
modulo 2 of a cohomology class in ^(^(R), Z). This last fact implies that
the cohomology class c\^(z) is spherical, cf. [9], p. 49.

Let us now assume that k == n — 1 > 1 and X(R) is connected. We
already know that < c\^(z) U Wi(X(IR)), ^x(R) >= 0; which in view of the
connectedness of X(M) is equivalent to c\^(z) U wi(X(R)) = 0. The last
condition implies that the homology class in H-i(X(R),Z/2) Poincare dual
to cliR^) can be represented by a C7°°, closed curve in X(R), with trivial
normal vector bundle, cf. for example [4], p. 599. This in turn implies that
c\^(z) is spherical, cf. [12], Theoreme 11.1. Thus the proof is complete. D

Proof of Theorem 1.2. — By Theorem 1.1, (a) implies (b), and we
show below that (b) implies (a).

Choose a nonsingular, irreducible algebraic subset W ofM^1, which
has precisely two connected components Wo and VFi, each diffeomorphic
to the unit A;-sphere 5^ (for example, W = { (a '1 , . . . ,rc/c+i) € M^1 | x\ —
^x\ + 1 + x^ + • • • + a'i_^i = 0}). Let c be the unique generator of the
group ^(TVo, Z/2) ^ Z/2, viewed as a subgroup of ^(W, Z/2). Since the
cohomology class u is spherical, there exists a C°° map h: M —> W such
that h(M) C WQ and u = ̂ (/^(c). Choose a regular value yo of h in Wo.
Then u is Poincare dual to the homology class in Hn-k(M, Z/2) represented
by the C°° submanifold h~l(yo) of M, cf. [5], 2.15. Clearly, there exists a
unique C°° map f : M —> W such that for every connected component S
of M and every point x in 5, we have f{x) = h(x) if S D h~l(yo) ̂  0 and
f[x) = yo if S n h~l(yo) = 0. The map / satisfies

(5) /(M) C Wo and ^ = ̂ (/)(c).
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Furthermore, each connected component of f~l(yo) is a C°° submanifold
of M of dimension either n - k or n. Also, each connected component of
M contains a connected component of /^(^A))- Since n — k ^ 1, we can
find a C°° closed curve C in M such that

(6) f(C) = {^L

the normal vector bundle of C in M is trivial, and each connected compo-
nent of M contains a connected component of C. Choose an integer d with
2n+1 < d and let D be a compact, nonsingular, irreducible, 1-dimensional
algebraic subset of R^ that has the same number of connected components
as C. Replacing M by its image under a suitable C°° embedding into R^,
we may assume that

(7) D = C C M C R<

By Tognoli's theorem [13] or [I], Corollary 2.8.6, there exists a
nonsingular real algebraic subset A of R^, for some p, diffeomorphic to
M. Consider the disjoint union N = M II A and the C°° map F : N —> W
defined by F(x) = f(x) for x in M and F(x) = yo for x in A. We assert that
if w is a cohomology class in H^^W, Z/2) and if j i , . . . ,js are nonnegative
integers with ji + • • • + js = n - £, then

< H\F){w) U Wj, (TV) U ... U w^ (N), ̂  >= 0.

Indeed, first note that w = 0, unless £ = 0 or £ = k. If £ = 0, then either
H°(F)(w) = 0 or H°(F)(w) = 1. In the latter case the assertion holds
since M and A are diffeomorphic. If £ = k, then either Hk(F)(w) = 0 or
^(F^w) = u (we view Hk(M, Z/2) as a subgroup of Hk{N, Z/2)). In the
latter case the assertion follows from condition (b). Thus the assertion is
proved. It implies that there exist a C°° compact manifold N with boundary
9N = N and a C°° map F : N -^ W satisfying F\N = F, cf. [6], 17.3.
In other words, the map / : M —> W and the constant map A —» W,
which sends A to ?/o, represent the same class in the unoriented bordism
group of W. By construction, the normal bundle of D in M is trivial, so
the restriction v\D to D of the normal bundle v of M in R^ admits an
algebraic structure. Therefore, by [I], Theorem 2.8.4 and in view of (6) and
(7), one can find a nonnegative integer e, a nonsingular algebraic subset
V of R^ x R6, a C°° diffeomorphism ^ : V —^ M, and a regular map
g : V —^ W (the latter designates the restriction to V of a rational map
from R^ x R6 into R^4"1 which has no poles on V and maps V into W)
such that g is homotopic to / o (p and D x {0} C V. Since D is irreducible
and each connected component of V contains a connected component of
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D x {0}, it follows that V is irreducible as well (this is the only place where
D is needed).

Irreducibility of V and W allows us to choose nonsingular, quasipro-
jective varieties T and Y over R with T(R) = V and Y(R) = W. By
Hironaka's resolution of singularities theorem [8], 3, we may assume that T
and Y are projective (and still nonsingular). Let g : U -^ Y be an algebraic
morphism over R, denned on a Zariski open neighborhood of T(R) = V
in T, such that g\T(R) = g . By applying Hironaka's theorem on removing
points of indeterminacy [8], 3, we can find a nonsingular, projective alge-
braic variety X over R and an algebraic morphism G : X -^ Y over R
satisfying X(R) = T(R) and G\X(R) = g.

Let 2/1 be a point in W^ and let (3 be the class in A^V) of the 0-cycle
yo - 2/1 on V. By (5), u = H^f)^^)) (although, of course, clR(/3) ^ c).
Since G\X(R) = g is homotopic to / o ̂  we obtain

H\^(u) = ̂ )(^(/)(cl^))) = H\f o ̂ )(cl^))
= ^(G|X(M))(clK(/3)) = clM(^*(^)),

where the last equality is a consequence of the functorial property of
clip : A* -^ H\ cf. [5], 5.12. Let z be a cycle in Z^X) that represents in the
Chow group Ak{X) the pullback class C7*(/3). Then cl^) = clM(G*(/?)) =
^ ((/:?)(n)• T^ proof is now complete since the cycle 2/0-2/1 is algebraically
equivalent to 0 on Y and hence the cycle z is algebraically equivalent to 0
on X. Q
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