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ALGEBRAIC EQUIVALENCE
OF REAL ALGEBRAIC CYCLES

by M. ABANADES & W. KUCHARZ

1. Introduction.

Let X be a nonsingular, n-dimensional, quasiprojective variety over
R (that is, an irreducible, n-dimensional, quasiprojective scheme over R,
smooth over R). We endow the set X (R) of R-rational points of X with
the topology induced by the usual metric topology on R, and assume that
X (R) is nonempty and compact. Thus X (R) is a C*°, closed, n-dimensional
manifold. Given a nonnegative integer k, we let Z¥(X) denote the group of
algebraic (n — k)-cycles on X (that is, the free Abelian group on the set of
closed, (n — k)-dimensional subvarieties of X). There exists a unique group
homomorphism

cg : Z¥(X) —» H*(X(R),Z/2)

such that for every closed, (n — k)-dimensional subvariety V of X,
the cohomology class clg(V) is Poincaré dual to the homology class in
H,_(X(R),Z/2) determined by V(R) (cf. [5] for the definition of this ho-
mology class). In the present paper we study the cohomology classes of the
form clg(z), where z is a cycle in Z*(X) algebraically equivalent to 0 (we
refer to [7] for the theory of algebraic equivalence of cycles). Such cohomol-
ogy classes need not be trivial, but as we shall see below they must satisfy
quite restrictive conditions.
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The extreme cases, k = 0 and k = n, are easy to analyze. Obviously, a
cycle z in Z°(X) is algebraically equivalent to 0 if and only if z = 0. On the
other hand, every cycle in Z™(X) of the form zg — 1, where x¢ and x; are
points in X (R), is algebraically equivalent to 0. We have clg(zg — z1) # 0
whenever zp and z; belong to distinct connected components of X (R).
It follows that a cohomology class u in H™(X(R),Z/2) can be written
as u = clg(z) for some cycle z in Z"(X) algebraically equivalent to 0 if
and only if the homology class in Hy(X(R),Z/2) Poincaré dual to u is
represented by an even number of points of X (R). In view of these facts,
we concentrate our attention on the intermediate cases, 1 < k <n — 1.

Given a continuous map f : M — N between topological spaces, we
denote by H*(f) : H*(N,Z/2) — H*(M,Z/2) the homomorphism induced
by f. Recall that a cohomology class u in H*(M,Z/2) with k > 1 is said
to be spherical if u = H*(f)(c), where f : M — S* is a continuous map
into the unit k-sphere S*, and c is the generator of H*(S*,Z/2) = 7/2.
We denote, as usual, by U and < —, — > the cup product of cohomology
classes and the Kronecker index (pairing) of cohomology and homology
classes, cf. [11]. If M is a C°, closed manifold of dimension n, we denote
by wg (M) the kth Stiefel-Whitney class of M and by pas the fundamental
homology class of M in H,(M,Z/2).

THEOREM 1.1. — Let X be a nonsingular, n-dimensional, quasipro-
jective variety over R with X (R) nonempty and compact. Let z be a cycle
in Z*(X) that is algebraically equivalent to 0. Then the cohomology class
clg(z) in H*(X(R),Z/2) satisfies clg(z) U clg(z) = 0 in H?**(X(R),Z/2)
and

< clr(z) Uw;, (X(R))U...Uw;, (X(R)), pxm)y >=0

for all nonnegative integers iy, ...,t, withi;+---+1i, = n—k. Furthermore,
ifk=1orifk=n-12>1 with X(R) connected, then the cohomology
class clg(z) is spherical.

Let us note that, in general, the cohomology class clg(z) of Theo-
rem 1.1 need not be spherical. Indeed, suppose X = X’ x X"’ (product over
SpecR), where X’ and X" are nonsingular, projective varieties over R such
that X'(R) is nonempty and X" (R) is disconnected. Let 2’ be any algebraic
cycle on X'. Choose two points py and p; in X”(R) that belong to distinct
connected components. Since the 0-cycle 2/ = po—p; on X" is algebraically
equivalent to 0, the cycle 2/ x 2” on X is algebraically equivalent to 0 as
well. Furthermore, the cohomology class clg(2’ x 2”) = clg(2’) x clg(2”) is
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spherical if and only if the cohomology class clg(2’) is spherical (for py and
p1 belong to distinct connected components of X”(R)). Taking X’ = Pg,
we have clg(Z*(X’)) = H¥(X’'(R),Z/2), and the unique nontrivial co-
homology class in H*(X'(R),Z/2) = Z/2 is not spherical, provided that
1 <k <m-1and m is even. In particular, “connected” cannot be omitted
in the last part of Theorem 1.1.

If clg () is spherical, then clg(z)Uclg(z) = 0 is automatically satisfied,
and Theorem 1.1 is in some sense the best possible result. More precisely,
we have the following.

THEOREM 1.2. — Let M be a C*°, closed, n-dimensional manifold
and let u be a spherical cohomology class in H*(M,7/2) with1 < k < n—1.
Then the following conditions are equivalent :

(a) There exist a nonsingular, projective algebraic variety X over R
and a C* diffeomorphism ¢ : X(R) — M such that H*(p)(u) = clg(2) for
some cycle z in Z*(X) algebraically equivalent to 0;

(b) < uUw;, (M)U...Uw; (M), pr >= 0 for all nonnegative integers
2.1,.‘.,7,.,,‘ with 21++’LT =n—k.

Let us mention that Theorem 1.2 is an improvement upon inefficient
[10], Theorem 2.4.

2. Proofs.

Let X be a nonsingular, n-dimensional, quasiprojective algebraic
variety over R with X(R) nonempty and compact. Recall that if an
algebraic cycle z in Z¥(X) is rationally equivalent to 0, then clg(z) = 0
(cf. [5], 5.13) and hence clg induces a homomorphism, also denoted by clg,
from the Chow group A*(X) of X into H*(X(R),Z/2). It is known that
clg : A*(X) —» H*(X(R),Z/2) is a homomorphism of graded rings [5],
p- 495. Thus

aig(X(R), Z/2) = clg(Z7(X)) = clr(A"(X))

is a graded subring of H*(X(R),Z/2). We shall need the following result
[10], Theorem 2.1 :

(1) < clR(z) Uv, uxg) > = 0
for all cycles z in Z¥(X) algebraically equivalent to 0 and all v in

HJF(X(R),Z/2).
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Assume now that X is projective. Then the set X(C) of C-rational
points of X is a compact complex manifold of complex dimension n. There
exists a unique group homomorphism

cle : Z¥(X) — H*(X(C),Z)

such that for every closed, (n — k)-dimensional subvariety V of X,
the cohomology class clc(V) is Poincaré dual to the homology class in
Hsp—21(X(C),Z) determined by V(C) (cf. [5] for the definition of this ho-
mology class). In other words, if 7 : X¢ = X Xgpecr SpecC — X is the
canonical projection, then clg(z) is the cohomology class corresponding to
the pullback algebraic cycle 7*(2) on Xc, cf. [5], 4.2 or [7], Chapter 19. In
particular,

(2) ce(z) =0

for all cycles z in Z¥(X) algebraically equivalent to 0, cf. [5], 4.14 or [7],
Proposition 19.1.1. Furthermore, it follows from the proof of [2], Theorem A
that

(3) clr(z) Uclg(z) = the reduction modulo 2 of r(clc(2))

for all z in Z¥(X), where r : H?*(X(C),Z) — H?*(X(R),Z) is the
homomorphism induced by the inclusion map X (R) — X (C).

Proof of Theorem 1.1. — By Hironaka’s resolution of singularities
theorem [8], 3, we may assume that X is projective.

We obtain clg(z) U clg(z) = 0 directly from (2) and (3).

It follows from [5], p. 498 that w;(X (R)) is in H}, (X (R),Z/2), and
hence if iy,...,1, are nonnegative integers with é; +--- 4+ %, =n — k, then
the cohomology class

v=w;, (XR)U...Uw;, (X(R))
belongs to H:lgk(X(]R),Z/Q). In view of (1), we have < clg(z) U v,
px(®) >= 0, which completes the proof of the first part of the theorem.

Given an invertible sheaf £ on X, we denote by Lgr (resp. Lc)
the topological real (resp. complex) line bundle on X(R) (resp. X(C))
determined by £ in the usual way. If £ corresponds to a Weil divisor D on
X, then

wl(lIR) = ClR(D) and Cl(l:(g) = Cl(g(D),

where w; (—) and ¢; (—) stand for the first Stiefel-Whitney class and the first
Chern class, respectively, cf. [5], p. 498, p. 489. Note that the restriction
Lc| X (R) of L¢ to X (R) is the complexification of Lg, and hence

c1(Lel X (R)) = B(wi(Lr)),
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where 8 : H'(X(R),Z/2) — H*(X(R), Z) is the Bockstein homomorphism
that appears in the long exact sequence

.. > HY(X(R),z) ZHY(X(R),Z) — H (X (R),Z/2) & H*(X(R), Z)

— ...,

cf. [11], Problems 15-C and D. The last equality can be written in an
equivalent form

(4) r(cle(D)) = B(clr(D)),

where r : H*(X(C),Z) — H%*(X(R),Z) is the homomorphism induced by
the inclusion map X (R) — X (C).

Suppose now that k = 1, that is, z is a Weil divisor on X. By (2)
and (4), we have §(clg(z)) = 0, which means that clg(z) is the reduction
modulo 2 of a cohomology class in H!(X(R), Z). This last fact implies that
the cohomology class clg(2) is spherical, cf. [9], p. 49.

Let us now assume that k =n — 1 > 1 and X(R) is connected. We
already know that < clg(z) Uw; (X (R)), ux®) >= 0, which in view of the
connectedness of X (R) is equivalent to clg(z) U wq(X(R)) = 0. The last
condition implies that the homology class in H; (X (R),Z/2) Poincaré dual
to clg(z) can be represented by a C*, closed curve in X (R), with trivial
normal vector bundle, cf. for example [4], p. 599. This in turn implies that
clg(z) is spherical, cf. [12], Théoréme II.1. Thus the proof is complete. O

Proof of Theorem 1.2. — By Theorem 1.1, (a) implies (b), and we
show below that (b) implies (a).

Choose a nonsingular, irreducible algebraic subset W of R¥*!, which
has precisely two connected components Wy and Wi, each diffeomorphic
to the unit k-sphere S* (for example, W = {(z1,...,zx+1) € RF*! | 2} —
4z2 + 14+ 2% + - + 22, = 0}). Let ¢ be the unique generator of the
group H*(Wy,Z/2) & Z/2, viewed as a subgroup of H*(W,Z/2). Since the
cohomology class u is spherical, there exists a C* map h : M — W such
that h(M) C Wy and u = H*(h)(c). Choose a regular value yo of h in Wj.
Then u is Poincaré dual to the homology class in H,,_x(M, Z/2) represented
by the C* submanifold h~!(yo) of M, cf. [5], 2.15. Clearly, there exists a
unique C* map f : M — W such that for every connected component S
of M and every point z in S, we have f(z) = h(z) if SNh™1(yo) # 0 and
f(z) =yo if SNh™!(yo) = 0. The map f satisfies

(5) f(M) C Wy and u= H(f)(c).
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Furthermore, each connected component of f~!(yg) is a C* submanifold
of M of dimension either n — k or n. Also, each connected component of
M contains a connected component of f~!(yo). Since n — k > 1, we can
find a C'*° closed curve C' in M such that

(6) f(C) = {yo},

the normal vector bundle of C' in M is trivial, and each connected compo-
nent of M contains a connected component of C. Choose an integer d with
2n+1 < d and let D be a compact, nonsingular, irreducible, 1-dimensional
algebraic subset of R? that has the same number of connected components
as C. Replacing M by its image under a suitable C* embedding into R?,
we may assume that

(7) D=CCMCR-

By Tognoli’s theorem [13] or [1], Corollary 2.8.6, there exists a
nonsingular real algebraic subset A of RP, for some p, diffeomorphic to
M. Consider the disjoint union N = M II A and the C*° map F: N - W
defined by F(z) = f(z) for z in M and F(x) = yo for z in A. We assert that
if w is a cohomology class in H¢(W,Z/2) and if ji, ..., s are nonnegative
integers with j; +--- + js = n — £, then

< HY(F)(w) Uwj;,(N)U...Uw,; (N), uy >=0.

Indeed, first note that w = 0, unless £ = 0 or ¢ = k. If £ = 0, then either
H°(F)(w) = 0 or H°(F)(w) = 1. In the latter case the assertion holds
since M and A are diffeomorphic. If £ = k, then either H*(F)(w) = 0 or
H*(F)(w) = u (we view H*(M,Z/2) as a subgroup of H*(N,Z/2)). In the
latter case the assertion follows from condition (b). Thus the assertion is
proved. It implies that there exist a C*° compact manifold N with boundary
ON = N and a C® map F : N — W satisfying F|N = F, cf. [6], 17.3.
In other words, the map f : M — W and the constant map A — W,
which sends A to yo, represent the same class in the unoriented bordism
group of W. By construction, the normal bundle of D in M is trivial, so
the restriction v|D to D of the normal bundle v of M in R? admits an
algebraic structure. Therefore, by [1], Theorem 2.8.4 and in view of (6) and
(7), one can find a nonnegative integer e, a nonsingular algebraic subset
V of R% x R®, a C™ diffeomorphism ¢ : V — M, and a regular map
g : V. — W (the latter designates the restriction to V of a rational map
from R% x R® into R¥*! which has no poles on V and maps V into W)
such that g is homotopic to fo¢ and D x {0} C V. Since D is irreducible
and each connected component of V contains a connected component of
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D x {0}, it follows that V is irreducible as well (this is the only place where
D is needed). «

Irreducibility of V' and W allows us to choose nonsingular, quasipro-
jective varieties T' and Y over R with T(R) = V and Y(R) = W. By
Hironaka’s resolution of singularities theorem [8], 3, we may assume that T’
and Y are projective (and still nonsingular). Let g : U — Y be an algebraic
morphism over R, defined on a Zariski open neighborhood of T(R) = V
in T, such that §|T'(R) = g. By applying Hironaka’s theorem on removing
points of indeterminacy [8], 3, we can find a nonsingular, projective alge-
braic variety X over R and an algebraic morphism G : X — Y over R
satisfying X (R) = T(R) and G|X(R) = g.

Let y; be a point in W; and let 3 be the class in A*¥(Y") of the 0-cycle
yo— 1 on Y. By (5), u = H*(f)(clr(8)) (although, of course, clg(8) # c).
Since G| X (R) = g is homotopic to f o ¢, we obtain

H*(0)(u) = H*(0)(H*(f)(clr(8))) = H*(f o ¢)(clr(8B))
= H*(G|X(R))(clr(B)) = clr(G*(A)),

where the last equality is a consequence of the functorial property of
clg : A* — H*, cf. [5], 5.12. Let z be a cycle in Z*(X) that represents in the
Chow group A*(X) the pullback class G*(3). Then clg(z) = clg(G*(B3)) =
H*(p)(u). The proof is now complete since the cycle yo —y; is algebraically
equivalent to 0 on Y and hence the cycle z is algebraically equivalent to 0
on X. a
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