Annales de l'institut Fourier

Roberto Paoletti
 Symplectic subvarieties of projective fibrations over symplectic manifolds

Annales de l'institut Fourier, tome 49, no 5 (1999), p. 1661-1672
http://www.numdam.org/item?id=AIF_1999_49_5_1661_0
© Annales de l'institut Fourier, 1999, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SYMPLECTIC SUBVARIETIES OF PROJECTIVE FIBRATIONS OVER SYMPLECTIC MANIFOLDS

by Roberto PAOLETTI

1. Introduction.

Suppose that (M, ω) is a compact symplectic manifold of dimension $2 n$, such that the cohomology class $[\omega] \in H^{2}(M, \mathbb{R})$ lies in the integral lattice $H^{2}(M, \mathbb{Z}) /$ Torsion; we shall say that (M, ω) is almost-Hodge. It has been recently proved by Donaldson that for any sufficiently large integer k there exists a symplectic submanifold $W \subset M$ representing the Poincaré dual of any fixed integral lift of $[k \omega]$, [D].

In this paper, we specialize this result to the case of a symplectic fibration $p: E \rightarrow M$ whose fibre is a projective manifold F with a fixed Hodge form σ on it. For instance, E could be the relative projective space, or a relative flag space, associated to a complex vector bundle on M. Then, as follows from well-known symplectic reduction techniques ([W], [GLS]) E has an almost Hodge structure $\widetilde{\omega}$ restricting to σ on each fibre of p, [MS]. We adapt Donaldson's arguments to show that the symplectic divisor guaranteed by his theorem may be chosen compatibly with the vertical holomorphic structure. More precisely,

Theorem 1.1. - Let (M, ω) be an almost Hodge manifold. Let $F \subseteq \mathbb{P}^{N}$ be a connected complex projective manifold and set $L=\mathcal{O}_{F}(1)$,

[^0]the restriction to F of the hyperplane bundle on \mathbb{P}^{N}. Denote by σ the restriction to F of the Fubini-Study form on \mathbb{P}^{N}. Suppose that G is a compact group of automorphisms of \mathbb{P}^{N} preserving F. Let $p: E \rightarrow M$ be a fibre bundle with fibre F and structure group G, so that in particular there is a line bundle $L_{E} \rightarrow E$ extending $L \rightarrow F$. Then E admits an almost Hodge structure $\widetilde{\omega}$ vertically compatible with σ. Furthermore, perhaps after replacing $\widetilde{\omega}$ by $k p^{*}\left(\omega_{M}\right)+\widetilde{\omega}$ for $k \gg 0$, any integral lift of $[\widetilde{\omega}]$ is Poincaré dual to a codimension-2 symplectic submanifold $W \subset E$, meeting any fibre $F_{m}=p^{-1}(m)(m \in M)$ in a complex subvariety.

In general the submanifold W may not be transverse to every fibre. For example, if \mathcal{E} is a rank- 2 complex vector bundle on M and $E=\mathbb{P} \mathcal{E}^{*}$ with general fibre ($\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(1)$), then W is the blow-up of M along the zero locus Z of a section of a suitable twist of \mathcal{E}, and therefore contains all the fibres over Z.

In practice one may have a fibre bundle $E \rightarrow M$ with fibre a complex projective manifold (F, J_{F}) and structure group G preserving the complex structure J_{F} and some fixed Hodge form σ on F, and complexification $\widetilde{G} \subseteq \operatorname{Aut}\left(F, J_{F}\right)$. If L is a line bundle on F such that $c_{1}(L)=[\sigma]$, then by general principles from geometric invariant theory a lifting to $L^{\otimes k}$ of the action of G exists if $k \gg 0$. Therefore,

Corollary 1.1. - Suppose that $(F, \sigma), M$ and E are as just described. Then for $r \gg 0$ and $k>k(r)$ any integral lift of $\left[r \widetilde{\omega}+k p^{*}\left(\omega_{M}\right)\right]$ is Poincaré dual to a codimension-2 symplectic submanifold intersecting each fibre F_{m} in a divisor of the linear series $\left|L^{\otimes r}\right|$.

Again, W is not transversal to every fibre. In the case of a \mathbb{P}^{1}-bundle $E=\mathbb{P} \mathcal{E}^{*} \rightarrow M$, the projection $W \rightarrow M$ is a branched cover with non-empty ramification locus.

The theorem also yields that top Chern classes of symplectically very positive vector bundles have symplectic representatives, as already shown by Auroux, [A]:

Corollary 1.2. - Let (M, ω) be a $2 n$-dimensional almost Hodge manifold and let \mathcal{E} be a complex vector bundle on M of complex rank $r<n$. Let H be a complex line bundle on M with $c_{1}(H)=[\omega]$. Then for $k \gg 0$ there is a transverse section s of $\mathcal{E} \otimes H^{\otimes k}$ whose zero locus Z is a connected symplectic submanifold of M; in fact, $H_{j}(M, Z)=0$ if $j \leq n-r$.

As we shall see, these sections are also asymptotically almost holomorphic in the sense of [A].

Notation. - For any integer $r>0$, we shall denote by $\omega_{0}^{(r)}=(i / 2)$ $\sum_{\alpha=1}^{r} d z_{\alpha} \wedge d \bar{z}_{\alpha}$ the standard symplectic structure on \mathbb{C}^{r}. Furthermore, by C we shall often indicate an appropriate constant, appearing in various estimates, which is allowed to vary from line to line.

Acknowledgments. - I am grateful to Professor Donaldson for sending me a preprint of [D], and to the referee for suggesting various improvements in presentation.

2. Proof of the theorem and corollaries.

Let $\pi: P \rightarrow M$ be the principal G-bundle associated with the fibration. 'Given a connection for π, the existence of a compatible almost Hodge form on E follows from well-known symplectic reduction arguments, [MS]. In fact, minimal coupling produces a compatible closed 2 -form $\vartheta=\vartheta_{\min }$ on E, [GS]. Explicitly, let the induced connection be given by the horizontal distribution $\mathcal{H}(E / M) \subset T E$ and denote by $V(E / M) \subset T E$ the vertical tangent space. Let \mathbf{g} be the Lie algebra of G and view the curvature F as a \mathbf{g}-valued 2 -form on M. Let $\mu: F \rightarrow \mathbf{g}^{*}$ be the moment map for the action. If $e \in E$ and $x=p(e)$, let $U \subseteq M$ be an open subset over which P trivializes and let $\gamma: U \times F \rightarrow p^{-1}(U)$ be the corresponding trivialization. Then $\mathcal{H}(E / M)$ and $V(E / M)$ are mutually orthogonal for σ. Furthermore, with abuse of language, $\left.\vartheta\right|_{V(P / M)}=\sigma$, while if $X, Y \in T_{x} M$ and X^{\sharp}, Y^{\sharp} are their horizontal lifts at $e=\gamma(x, f)$, then $\vartheta_{e}\left(X^{\sharp}, Y^{\sharp}\right)=\left\langle\mu(f), F_{x}(X, Y)\right\rangle$. Therefore $\widetilde{\omega}_{(k)}=\vartheta+k p^{*}(\omega)$ is a compatible symplectic structure on E if $k \gg 0$. However, in order to adapt Donaldson's construction we shall need to describe $-2 \pi i \vartheta$ as the curvature of a connection on a suitable line bundle on E.

Clearly, the action of G lifts to L and preserves the unit circle bundle $S_{L} \subset L$. Let ∇_{L} be the unique covariant derivative on L compatible with the complex and hermitian structures, that is, the restriction to F of the connection on $\mathcal{O}_{\mathbb{P}^{N}}(1)$. Let $\mathcal{H}\left(S_{L} / F\right) \subset T S_{L}$ be the corresponding S^{1} invariant horizontal distribution, which by uniqueness is also G-invariant. The line bundle $L_{E}:=P \times_{G} L$ over E restricts to L on every fibre of p and has an hermitian metric extending that of L. Then the unit circle
bundle $S_{L_{E}}=P \times_{G} S_{L} \subset L_{E}$ has a connection over E, as follows. Let $p^{\prime}: S_{L_{E}} \rightarrow M$ be the projection, a fibre bundle over M with general fibre S_{L}. Given $s \in S_{L_{E}}$ mapping to $e \in E$, set $x=p(e)$ and choose as above a trivialization of P in a neighbourhood U of x, with induced trivializations $\gamma: U \times F \rightarrow p^{-1}(U)$ and $\gamma^{\prime}: U \times S_{L} \rightarrow p^{\prime-1}(U)$. If $e=\gamma(x, f)$ and $s=\gamma^{\prime}(x, \ell)\left(\ell \in S_{L}\right.$ lies over $\left.f \in F\right)$, then the horizontal space of $S_{L_{E}}$ at s is $\mathcal{H}\left(S_{L_{E}} / E\right)=\mathcal{H}\left(S_{L_{E}} / M\right) \oplus d \gamma_{(x, \ell)}^{\prime}\left(\mathcal{H}_{\ell}\left(S_{L} / F\right)\right)$. This gives a well-defined connection $\nabla_{L_{E}}$ on L_{E}, and we leave it to the reader to check that $\vartheta_{\min }$ may also be obtained as the normalized curvature of $\nabla_{L_{E}}$:

Lemma 2.1. - Let ϑ be the normalized curvature form on E of the connection $\mathcal{H}\left(S_{E} / E\right)$. Then for $k \gg 0$ the 2 -form $\widetilde{\omega}_{(k)}=\vartheta+k p^{*}(\omega)$ is a compatible symplectic structure, and $\mathcal{H}(E / M)$ is the symplectic complement of $V(E / M)$ for $\widetilde{\omega}$. In particular, the subbundle $\mathcal{H}(E / M) \subset T E$ is symplectic with respect to $\widetilde{\omega}$.

We shall need an auxiliary non-degenerate 2 -form $\omega_{\text {aux }}$ on E. The vertical tangent bundle $V(E / M)$ has an obvious symplectic structure, the restriction of $\widetilde{\omega}$, that we shall also indicate by σ, and an obvious complex structure J_{vert}, inherited by that of $T F$. The horizontal distribution $\mathcal{H}(E / M)$, on the other hand, carries the symplectic structure $p^{*} \omega$. Then $\omega_{\text {aux }} \in \Omega^{2}(E)$ will denote the orthogonal direct sum of σ and $p^{*} \omega$. In general $\omega_{\text {aux }}$ will not be closed, and in view of the minimal coupling horizontal component of ϑ we see that $\omega_{\text {aux }} \neq \widetilde{\omega}_{(1)}$ when P is not flat. Let us pick some $J_{M} \in \mathcal{J}(M, \omega)$ and view it in a natural manner as a complex structure on $\mathcal{H}(E / M)$; then $J_{\text {aux }}:=J_{M} \oplus J_{\text {vert }} \in \mathcal{J}\left(E, \omega_{\text {aux }}\right)$. Thus $g_{\text {aux }}(\cdot, \cdot)=\omega_{\text {aux }}\left(\cdot, J_{\text {aux }} \cdot\right)$ is a riemannian metric on E. On the other hand, we have $\widetilde{\omega}_{(k)}=\widetilde{\omega}_{(k)}^{h} \oplus \widetilde{\omega}_{(k)}^{v}$, where $\widetilde{\omega}_{(k)}^{h}$ and $\widetilde{\omega}_{(k)}^{v}=\sigma$ denote, respectively, the horizontal and vertical components. Now $\alpha_{k}:=(1 / k) \widetilde{\omega}_{(k)}^{h}$ is a sequence of symplectic structures on the vector bundle $\mathcal{H}(E / M)$, converging to $p^{*} \omega$ in the \mathcal{C}^{1}-topology, namely $\left\|\alpha_{k}-p^{*} \omega\right\|<C / k$ and $\left\|\nabla\left(\alpha_{k}-p^{*} \omega\right)\right\|<C / k$. Given a vector bundle \mathcal{F} on a manifold and any symplectic structure η on \mathcal{F}, there is a retraction $r_{\eta}: \mathcal{M e t}(\mathcal{F}) \rightarrow \mathcal{J}(\mathcal{F}, \eta)$ depending pointwise analytically on η, where $\operatorname{Met}(\mathcal{F})$ is the space of all riemannnian metrics on \mathcal{F}, and $\mathcal{J}(F, \eta)$ denotes the space of all complex structures on \mathcal{F} compatible with η ([MS], ch. 2). Denote by $g_{\text {aux }}^{h}$ the restriction of $g_{\text {aux }}$ to $H(E / M)$, and let $J_{k}^{h}:=r_{\alpha_{k}}\left(g_{\text {aux }}^{h}\right) \in \mathcal{J}\left(H(E / M), \alpha_{k}\right)$ for each k; then $\left\|J_{k}^{h}-J_{M}\right\|<C / k$, $\left\|\nabla\left(J_{k}^{h}-J_{M}\right)\right\|<C / k$. Therefore $J_{k}:=J_{k}^{h} \oplus J_{\mathrm{vert}} \in \mathcal{J}\left(E, \widetilde{\omega}_{k}\right)$ and
$\left\|J_{k}-J_{\mathrm{aux}}\right\|<C / k,\left\|\nabla\left(J_{k}-J_{\mathrm{aux}}\right)\right\|<C / k$. Let $\bigwedge_{J_{\mathrm{aux}}}^{(1,0)} T_{E}^{*}$ and $\bigwedge_{J_{\mathrm{aux}}}^{(0,1)} T_{E}^{*}$ denote, respectively, the \mathbb{C}-linear and \mathbb{C}-antilinear complex functionals on $\left(T_{E}, J_{\mathrm{aux}}\right)$, and let $\mu_{k}: \bigwedge_{J_{\mathrm{aux}}}^{(1,0)} T_{E}^{*} \rightarrow \bigwedge_{J_{\mathrm{aux}}}^{(0,1)} T_{E}^{*}$ be the morphism of vector bundles relating J_{k} to $J_{\mathrm{aux}},[\mathrm{D}]$. Then $\left\|\mu_{k}\right\|<C / k$ and $\left\|\nabla \mu_{k}\right\|<C / k$.

The riemannian metric $g_{M}=\omega\left(\cdot, J_{M} \cdot\right)$ on M induces a distance function d; for k a positive integer, let d_{k} denote the distance function associated to the pair $\left(k \omega, J_{M}\right)$, that is to the metric $k g_{M}$. Similarly, let d_{F} be the distance function on F associated to the pair $\left(\sigma, J_{F}\right)$. Furthermore, on M there is an hermitian line bundle H together with a unitary connection on it having curvature form $-2 \pi i \omega$. Replacing $\widetilde{\omega}$ by $\widetilde{\omega}_{(k)}$ amounts to replacing L_{E} by $B=p^{*}\left(H^{\otimes k}\right) \otimes L_{E}$ with the tensor product connection. Thus we are looking for a section s of B for some $k \gg 0$ whose zero locus is a symplectic submanifold $Z \subset E$ with respect to $\widetilde{\omega}$, meeting each fibre F_{x} in a complex subvariety.

Let ∇_{B} be the covariant derivative on B. Given the almost complex structure J_{E}, we have a decomposition $\nabla_{B}=\partial_{B}+\bar{\partial}_{B}$. The zero locus $Z=Z(s)$ of a smooth section s of B will be symplectic if $\left|\bar{\partial}_{J_{k}, B} s\right|<\left|\partial_{J_{k}, B} s\right|$ at every point of Z ([D]; Lemma 4.30 of [MS]); the two latter terms represent, respectively, the $(0,1)$ and $(1,0)$ components of $\nabla_{B} s$ with respect to the almost complex structure J_{k}. Following the path of Donaldson's construction, we shall produce such a section as a linear combination of certain "concentrated" building blocks. In order for $Z \cap F_{x}$ to be a complex subvariety of F_{x} for every $x \in M$, these basic pieces must be chosen in an appropriate way.

Definition 2.1. - If $U \subset E$ is an open set, a smooth function $f: U \rightarrow \mathbb{C}$ will be called vertically holomorphic (in short, v-holomorphic) if its restriction to $U \cap F_{x}$ is holomorphic, whenever the latter set is non-empty. Let A be any complex line bundle on E. A v-holomorphic structure on A is the datum of an open cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of A, together with v-holomorphic transition functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbb{C}^{*}$. With such an assignment, H will be called a v-holomorphic line bundle. There is a natural notion of equivalence of v-holomorphic structures. Clearly, the restriction of A to any fibre F_{x} is a holomorphic line bundle A_{x}. A local section of A on $U \subset E$ is called v-holomorphic if it restricts to a holomorphic local section of A_{x} for every $x \in M$ for which $U \cap F_{x} \neq \emptyset$. Let \mathcal{O}_{E}^{v} denote the sheaf of rings of v-holomorphic functions on E; the sheaf of v-holomorphic sections
of A, denoted $\mathcal{O}_{E}^{v}(A)$, is a sheaf of \mathcal{O}_{E}^{v}-modules.
Let $f: U \rightarrow \mathbb{C}$ be a smooth function on an open subset $U \subset E$, and let $(d f)_{\text {vert }} \in V(E / M)^{*} \otimes \mathbb{C}$ be the restriction of its differential to the vertical tangent bundle. Let j denote the complex structure of \mathbb{C}. Then f is v-holomorphic if and only if $\bar{\partial}_{\text {vert }} f:=(d f)_{\text {vert }}+j \circ(d f)_{\text {vert }} \circ J_{\text {vert }}=0$; the left hand side is the \mathbb{C}-antilinear component of $(d f)_{\text {vert }}$. Now the line bundle L_{E} is naturally v-holomorphic, and restricts to L on each fibre. Thus Theorem 1.1 is a consequence of the following:

Proposition 2.1. - For $k \gg 0$ there is a v-holomorphic section s of B such that $\left|\bar{\partial}_{J_{k}, B} s\right|<\left|\partial_{J_{k}, B} s\right|$ at all points of the zero locus of s.

To prove the proposition, we shall first produce a suitable choice of compactly supported v-holomorphic sections, peaked at points of E in an appropriate sense, to be used as the basic buiding blocks in Donaldson's construction. Next we shall give an appropriate open cover of E on which to perform the inductive part of his argument.

Fix $e_{0} \in E$ and let $U_{0} \subseteq M$ be an open neighbourhood of $x_{0}=p\left(e_{0}\right)$ over which P is trivial; perhaps after replacing ω by some multiple, there is a Darboux cooordinate chart $\chi: B^{2 n} \rightarrow U_{0} \subseteq M$ centred at x_{0} for ω, which is \mathbb{C}-linear at the origin. Let η be a unitary section of H over U_{0} such that the connection matrix θ_{M} of H on U_{0} with respect to η satisfies $\chi^{*} \theta_{M}=A$, where $A=:(1 / 4) \sum_{\alpha=1}^{n}\left(\bar{z}_{\alpha} d z_{\alpha}-z_{\alpha} d \bar{z}_{\alpha}\right),[\mathrm{D}]$. We have an induced trivialization $\gamma: U_{0} \times F \rightarrow p^{-1}\left(\left.E\right|_{U_{0}}\right)$, under which $\gamma^{*}\left(L_{E}\right) \cong q_{2}^{*}(L)$, where q_{2} is the projection on the second factor; suppose $e_{0}=\gamma\left(x_{0}, f_{0}\right)$. We may assume that $\forall f \in F$ the local section $\gamma_{f}(y)=\gamma(y, f)$ defined over U satisfies $d_{x_{0}} \gamma_{f}\left(T_{x_{0}} M\right)=H_{e}$, where $e=\gamma_{f}\left(x_{0}\right)$. The product map $\phi=\gamma \circ\left(\chi, \operatorname{id}_{F}\right): B^{2 n} \times F \rightarrow E$ is holomorphic along $F_{x_{0}}$ with respect to $J_{\text {aux }}$, i.e. $d_{(0, f)} \phi: \mathbb{C}^{n} \times T_{f} F \rightarrow T_{\gamma(x, f)} E$ is \mathbb{C}-linear for all $f \in F$.

The picture may be rescaled on the base. If $\delta_{k}(z)=z / \sqrt{k}$ for $z \in \mathbb{C}^{n}$, define $\widetilde{\chi}_{k}=\chi \circ \delta_{k}: \sqrt{k} B^{2 n} \rightarrow U_{0},[\mathrm{D}]$. There are product maps

$$
\widetilde{\phi}_{k}: \sqrt{k} B^{2 n} \times F \xrightarrow{\left(\widetilde{\alpha}_{k}, \mathrm{id}_{F}\right)} U_{0} \times F \xrightarrow{\gamma} E .
$$

The function $\widetilde{\phi}_{k}$ maps diffeomorphically onto $p^{-1}\left(U_{0}\right)$, and is holomorphic along $F_{x_{0}}$ and on $B^{2 n} \times F$ we have $\widetilde{\phi}_{k}^{*} \widetilde{\omega}_{(k)}=\omega_{0}+\sigma+O(1 / k)$. One can check arguing as in [D] that it is approximately holomorphic, in the following sense.

Lemma 2.2. - Let $J_{\text {pr }}$ denote the product complex structure $J_{0} \times$ J_{F} on $\sqrt{k} B^{2 n} \times F$, and let $\mu_{k}^{\prime}(z, f): \bigwedge_{J_{\mathrm{pr}}}^{1,0}\left(\mathbb{C}^{n} \times T_{f} F\right) \rightarrow \bigwedge_{J_{\mathrm{pr}}}^{0,1}\left(\mathbb{C}^{n} \times T_{f} F\right)$, $(z, f) \in \sqrt{k} B^{2 n} \times F$, be the bundle morphism relating $\widetilde{\phi}_{k}^{*}\left(J_{k}\right)$ to J_{pr}. Then $\left|\mu_{k}^{\prime}\right| \leq C|z| / \sqrt{k},\left|\nabla \mu_{k}^{\prime}\right| \leq C / \sqrt{k}$.

If $\nu \in H^{0}(F, L)$, the product $\eta^{\otimes k} \otimes \nu$ may be regarded as a v holomorphic section of B on $p^{-1}\left(U_{0}\right)$. We may choose $\nu_{0} \in H^{0}(F, L)$ and an open neighbourhood $V_{0} \ni f_{0}$ so that $1 / 2 \leq\left|\nu_{0}\right| \leq 1$ on $V,\left|\nu_{0}\right| \leq 1 / 2$ on $F \backslash V_{0}$ and $\left|\nu_{0}(f)\right|=1 \Leftrightarrow f=f_{0}$. The connection matrix θ of ∇_{L} with respect to the trivialization ν_{0} satisfies $\theta\left(f_{0}\right)=0$.

Let $\theta_{L_{E}}$ and $\tilde{\theta}$ be the connection matrices of $\nabla_{L_{E}}$ and ∇_{B} with respect to the trivializations ν_{0} and $\eta^{\otimes k} \otimes \nu_{0}$, respectively. We may assume that $\theta_{L_{E}}\left(e_{0}\right)=0$; let ς_{0} denote the resulting section of B over U_{0}. If the t_{i} 's are local coordinates on F centred at f_{0} and the $x_{1}, \cdots, x_{2 n}$ are the local coordinates on M centred at x_{0} given by the chart χ, in the resulting trivialization on $\widetilde{\chi}_{k}\left(B^{2 n} \times F\right)$ we have $\widetilde{\phi}_{k}^{*} \theta_{B}=\theta+A+\beta_{k}$, where $\left|\beta_{k}\right|=O(1 / \sqrt{k})$.

The function $g(z)=\exp \left(-|z|^{2} / 4\right)$ is a holomorphic section of the trivial line bundle ξ on \mathbb{C}^{n} with the connection $A,[D]$. If β is the standard cut-off function centred at the origin and $\beta_{k}(z)=\beta\left(k^{-1 / 6}|z|\right)$, then $\varphi_{k}=\beta_{k} g$ is the compactly supported, approximately holomorphic section of (ξ, A) constructed in [D]. The following lemma shows that $\vartheta_{0}(e)=\varphi_{k}\left(\widetilde{\chi}_{k}^{-1}(x)\right) \varsigma_{0}(e)$, where $e=\gamma(x, f)$, is a good candidate for the seeked concentrated v-holomorphic section of B.

Let us consider, as in [D], the following real function on $M \times M$:

$$
\ell_{k}\left(x, x^{\prime}\right)= \begin{cases}e^{-d_{k}\left(x, x^{\prime}\right)^{2} / 5} & \text { if } d_{k}\left(x, x^{\prime}\right) \leq k^{1 / 4} \\ 0 & \text { if } d_{k}\left(x, x^{\prime}\right)>k^{1 / 4}\end{cases}
$$

Lemma 2.3. - If $x=p(e)$ then $\left|\vartheta_{0}(e)\right| \leq \ell_{k}\left(x, x_{0}\right)$. If $d_{k}\left(x, x_{0}\right) \leq$ $k^{1 / 6} / 4$, then $\left|\vartheta_{0}(e)\right| \geq \exp \left(-d_{k}\left(x, x_{0}\right)^{2} / 3\right)\left|\nu_{0}(f)\right|$; in particular, for a fixed $R>0$ and all $k \gg 0$, if $d_{k}\left(x, x_{0}\right) \leq R$ and $f \in V_{0}$ then $\left|\vartheta_{0}(e)\right| \geq 1 / C$. For all $e \in E$, we have

$$
\begin{gathered}
\left|\nabla_{B} \vartheta_{0}(e)\right| \leq C\left(1+d_{k}\left(x_{0}, x\right)\right) \ell_{k}\left(x_{0}, x\right) \\
\left|\bar{\partial}_{J_{k}, B} \vartheta_{0}(e)\right| \leq C k^{-1 / 2}\left(1+d_{k}\left(x_{0}, x\right)+d_{k}\left(x_{0}, x\right)^{2}\right) \ell_{k}\left(x_{0}, x\right)
\end{gathered}
$$

and
$\left|\nabla_{B} \bar{\partial}_{J_{k}, B} \vartheta_{0}(e)\right| \leq C k^{-1 / 2}\left(1+d_{k}\left(x, x_{0}\right)+d_{k}\left(x_{0}, x\right)^{2}+d_{k}\left(x_{0}, x\right)^{3}\right) \ell_{k}\left(x_{0}, x\right)$.

Proof of Lemma 2.3. - We may introduce an additional almost Kähler structure on $\left.E\right|_{U}$, as follows. Given the trivialization $\gamma: U \times F \cong$ $\left.E\right|_{U}$, for each $e=\left.\gamma(x, f) \in E\right|_{U}$ we have $T_{e} E \cong d_{x} \gamma_{f}\left(T_{x} E\right) \oplus V_{e}$. We define a horizontal distribution $H^{\prime} \subset T E$ over U by setting $H_{e}^{\prime}=d_{x} \gamma_{f}\left(T_{x} E\right)$, so that $T E \cong H^{\prime} \oplus V$. Let us pull back the almost complex structure J_{M} to an almost complex structure J_{M}^{\prime} on H^{\prime} and then set $J^{\prime}=J_{M}^{\prime} \oplus^{\prime} J_{\text {vert }}$, where \oplus^{\prime} is the direct sum with respect to the latter decomposition. By construction $H_{e}^{\prime}=H_{e}$ and so $J_{\mathrm{aux}}(e)=J^{\prime}(e) \forall e \in F_{x_{0}}$. Similarly set $\omega^{\prime}:=\omega \oplus^{\prime} \sigma$, where ω is implicitly pulled-back to H^{\prime}. Then ω^{\prime} is a nondegenerate 2form on $\left.E\right|_{U}$ and $J^{\prime} \in \mathcal{J}\left(\left.E\right|_{U}, \omega^{\prime}\right)$. Hence $g^{\prime}:=\omega^{\prime}\left(\cdot, J^{\prime} \cdot\right)$ is a riemannian metric on $\left.E\right|_{U}$ and $g_{k}^{\prime}=g_{\mathrm{aux}}$ on $F_{x_{0}}$. Let $\mu^{\prime}=\mu^{\prime}(x, t): \bigwedge_{J^{\prime}}^{1,0} T E \rightarrow \bigwedge_{J^{\prime}}^{0,1} T E$ be the morphism of vector bundles relating $J_{\text {aux }}$ to J^{\prime}. Thus $\mu^{\prime}(e)=0$ $\forall e \in F_{x_{0}}$ and so $\left|\mu^{\prime}\right| \leq C|x|$. Let μ_{k}^{\prime} be the vector bundle morphism relating $\widetilde{\phi}_{k}^{*} J_{\text {aux }}$ to $\widetilde{\phi}_{k}^{*} J^{\prime}$; then $\mu_{k}^{\prime}=\delta_{k}^{*} \mu_{1}$, hence $\left|\mu_{k}^{\prime}\right| \leq C d_{k}\left(x, x_{0}\right) / \sqrt{k}$ and $\left|\nabla \mu_{k}^{\prime}\right|<C / \sqrt{k}$. Similarly, replacing ω by $k \omega$ in the above construction but leaving the vertical component σ unchanged, we get non-degenerate 2-forms $\omega_{\text {aux }}^{(k)}$ and $\omega^{\prime(k)}$, and riemannian metrics $g_{\text {aux }}^{(k)}$ and $g^{\prime(k)}$; perhaps after restricting U for $k \gg 0$ the corresponding quadratics forms $q_{\text {aux }}^{(k)}$ and $q^{\prime(k)}$ are equivalent on $\left.E\right|_{U}$. In turn, $q_{\text {aux }}^{(k)}$ is equivalent to $q^{(k)}$ (the quadratic form associated to g_{k}). On the upshot the claimed estimates may be proved using $q^{(k)}$, by an adaptation of the arguments in [D]. Let us give some detail for ϑ_{0} and $\nabla_{B} \vartheta_{0}$. As to the former, the claim follows direclty from the definition. As to the latter, the proof is straightforward on the region T where $d_{k}\left(x_{0}, x\right) \leq k^{1 / 6} / 4$ and $f \in V_{0}$. Fix $e_{1} \notin T$. Let ϑ_{1} be a section constructed as above, but with reference point e_{1}. Then $\vartheta_{0}=s \vartheta_{1}$ near e_{1} for a suitable v-holomorphic function s, and therefore $\left|\nabla_{B} \vartheta_{0}\left(e_{1}\right)\right|=\left|d s\left(e_{1}\right)\right|$. The claim easily follows from this.

The estimates on $\bar{\partial}_{J_{k}, B} \vartheta_{0}$ and $\nabla_{B} \bar{\partial}_{J_{k}, B} \vartheta_{0}$ also follow by similar arguments, in view of the fact that, up to $\left(1-\bar{\mu}^{\prime} \bar{\mu}^{\prime-1}\right)$ etc,

$$
\begin{gathered}
\bar{\partial}_{J_{k}, B} \vartheta_{0}=\bar{\partial}_{J_{\mathrm{aux}}, B} \vartheta_{0}-\mu_{k}\left(\partial_{J_{\mathrm{aux}}, B} \vartheta_{0}\right), \\
\bar{\partial}_{J_{\mathrm{aux}}, B} \vartheta_{0}=\bar{\partial}_{J^{\prime}, B} \vartheta_{0}-\mu_{k}^{\prime}\left(\partial_{J_{\mathrm{aux}}, B} \vartheta_{0}\right), \\
\partial_{J_{\mathrm{aux}}, B} \vartheta_{0}=\partial_{J^{\prime}, B} \vartheta_{0}-\mu_{k}^{\prime}\left(\bar{\partial}_{J_{\mathrm{aux}}, B} \vartheta_{0}\right), \quad[\mathrm{D}] .
\end{gathered}
$$

We now need to describe a suitable open cover of E. This is obtained by locally taking products of open sets in an open cover of M depending on k as in [D] and in a suitable fixed open cover of F. For $k \gg 0$ let $\mathcal{U}=\left\{U_{i}\right\}$ be an open cover of M by a collection of g_{k}-unit balls U_{i}, with centres x_{i},
$i=1, \cdots, M_{k}$, satisfying the properties stated in Lemmas 12 and 16 of loc. cit. In particular, for every $e \in E$ and $r=0,1,2,3$ one has

$$
\begin{equation*}
\sum_{i=1}^{M_{k}} d_{k}\left(x_{i}, x\right)^{r} \ell_{k}\left(x_{i}, x\right) \leq C \tag{1}
\end{equation*}
$$

For $D>0$, let $N=C D^{2 n}$ and the partition of $I=\bigcup_{\alpha=1}^{N} I_{\alpha}$, where $I=\left\{1, \cdots, M_{k}\right\}$ be as in the statement of Lemma 16 of loc. cit.

For each i fix a trivialization $\gamma_{i}: U_{i} \times\left. F \cong E\right|_{U_{i}}$. Consider an open cover $\mathcal{V}=\left\{V_{j}\right\}_{j \in J}$ of $F, J=\{1, \cdots, R\}$, by balls of a suitable g_{F}-radius $\delta>0$ centred at points $f_{j} \in V_{j}$, so that for each j there exists $\nu_{j} \in H^{0}(F, L)$ satisfying $1 / 2 \leq\left|\nu_{j}\right| V_{j} \mid \leq 1$ and $\left|\nu_{j}(f)\right|=1$ if and only if $f=f_{j}$. We thus obtain an open cover $\mathcal{W}=\left\{W_{i j}\right\}$ of E, where $W_{i j}=\gamma_{i}\left(U_{i} \times V_{j}\right)$. For each (i, j) there is a v-holomorphic section $\vartheta_{i j}$ of B supported near $F_{x_{i}}$ and peaked at $e_{i j}=\gamma_{i}\left(\left(x_{i}, f_{j}\right)\right)$. Partition the index set $I \times J$ as $I \times J=\bigcup_{\alpha, j} I_{\alpha} \times\{j\}$, which may be rewritten as $I \times J=\bigcup_{\beta=1}^{N R} S_{\beta}$, where $S_{k N+\alpha}=I_{\alpha} \times\{k+1\}, k=0, \cdots, R-1,1 \leq \alpha \leq N$. Now let us insert the $\vartheta_{i j}$'s in Donaldson's construction. Given any $\vec{w} \in \mathbb{C}^{N R}$, with $\left|w_{\beta}\right| \leq 1 \forall \beta$, set $s_{\vec{w}}=\sum_{i} w_{i j} \vartheta_{i j}$; since $s_{\vec{w}}$ is v-holomorphic, its zero locus $Z_{\vec{w}}$ meets any fibre F_{x} in a complex subvariety. For any $(i, j) \in I \times J$, the local functions $f_{i j}=s_{\vec{w}} / \vartheta_{i j}$ are defined on $W_{i j}$, and by Lemma 2.2 , when viewed as functions on a suitable multidisc Δ^{+}of fixed radius in \mathbb{C}^{n+d}, they satisfy properties as in lemmas 18 and 19 of [D]. We may then proceed by adjusting the coefficients w_{β} 's in $N R$ steps to obtain a $\vec{w}_{f} \in \mathbb{C}^{N R}$, such that $s_{\vec{w}_{f}}$ satisfies $\left|\partial_{B} s_{\vec{w}_{f}}\right|>\left|\bar{\partial}_{B} s_{\vec{w}_{f}}\right|$ on Z_{f}, so that Z_{f} is a symplectic submanifold of E.

Let us prove Corollary 1.1. If L is a holomorphic line bundle on F with $c_{1}(L)=[\sigma]$, there are an hermitian structure on L and a unitary connection on it whose normalized curvature form is σ. For $r \gg 0$, the action of G on F admits a linearization $\widetilde{\nu}: \widetilde{G} \times L^{\otimes r} \rightarrow L^{\otimes r}$ ([M], section 1.3). Let s be the section of $B=L^{\otimes r} \otimes H^{\otimes k}$ for $k>k(r)$ provided by the theorem, Z its zero locus. Given a v-holomorphic line bundle A on E we define its v-holomorphic direct image, $p_{*}^{v}(A)$, as the sheaf of modules over the ring of smooth functions on M given by $p_{*}^{v}(A)(U)=\mathcal{O}_{E}^{v}\left(p^{-1} U, A\right)$ for any open subset $U \subseteq M$. Then $\mathcal{F}:=p_{*}^{v}(B)$ is a smooth vector bundle on M of rank $r=h^{0}\left(F, L^{\otimes r}\right)$ and $\mathcal{O}_{E}^{v}(B) \cong \mathcal{A}(M, \mathcal{F})$, the latter being the space of smooth sections of \mathcal{F}. Let V be the vector space of v-holomorphic
sections of B spanned by the ϑ_{i} 's and let $W \supseteq V$ be a finite dimensional space of \mathcal{C}^{∞} sections of \mathcal{F} that globally generates \mathcal{F}. Then $s \in W$ has an open neighbourhood Q consisting of v-holomorphic sections of B whose zero locus is a symplectic submanifold of E. On the other hand, except for those in a subset of W of measure zero the elements of W are transversal to the zero section and this is true in particular for some section $s^{\prime} \in Q$. But for $r \gg 0$ certainly $\operatorname{rank}(\mathcal{F})=h^{0}\left(F, L^{\otimes r}\right)>\operatorname{dim}(M)$ and therefore s^{\prime} is nowhere vanishing.

Finally let us come to Corollary 1.2. Fix an hermitian metric on \mathcal{E} and thus an associated principal $U(r)$-bundle. With $E=\mathbb{P E}^{*}, L_{E}$ is the relative hyperplane line bundle and $p_{*}^{v}\left(L_{E}\right)=\mathcal{E}$. Let \mathcal{H} be the connection on L_{E} induced by the compatible connection on $L=\mathcal{O}_{\mathbb{P}^{r-1}}(1)$. Replacing \mathcal{E} by $\mathcal{E} \otimes H^{\otimes k}, L_{E}$ changes to $L_{E} \otimes p^{*}\left(H^{\otimes k}\right)$. When $k \gg 0$ the theorem yields a v-holomorphic section σ of $B=L_{E} \otimes p^{*}\left(H^{\otimes k}\right)$ with zero locus D at each point of which $\left|\bar{\partial}_{J_{k}, B} \sigma(e)\right|_{k}<C k^{-1 / 2}\left|\partial_{J_{k}, B} \sigma(e)\right|_{k}$, where $|\cdot|_{k}$ is the norm induced by g_{k}. By perturbing σ slightly, the section $\widetilde{\sigma}$ of $\mathcal{E} \otimes H^{\otimes k}$ corresponding to it may be assumed transverse, with smooth zero locus $Z \subseteq M$. Now $J_{\text {aux }}$ and J_{k} differ by $O(1 / k)$ and $q_{\text {aux }}^{(k)}$ is equivalent to $q^{(k)}$. Thus $\left|\bar{\partial}_{J_{\mathrm{aux}}, B} \sigma(e)\right|_{\mathrm{aux}, k}<\left|\partial_{J_{\mathrm{aux}}, B} \sigma(e)\right|_{\mathrm{aux}, k}$ at all $e \in D$, where $|\cdot|_{\mathrm{aux}, k}$ denotes the norm associated to $q_{\text {aux }}^{(k)}$, and therefore $\omega_{\text {aux }}^{(k)}$ restricts to an everywhere non-degenerate 2 -form on D. I claim that this implies that Z is a symplectic submanifold of M. If not, there exist $x \in Z$ and $v \in T_{x} Z$ such that $\omega_{x}(v, w)=0 \forall w \in T_{x} Z$. The restriction $\left.p\right|_{D}: D \rightarrow X$ is a \mathbb{P}^{r-2}-bundle off Z, while $D_{Z}=p_{D}^{-1}(Z)$ is $\left.\mathbb{P E}^{*}\right|_{Z}$. Identify a tubular neighbourhood of Z in M with a neighbourhood of the zero section in $\left.\mathcal{E}\right|_{Z}$. If $v^{\perp} \subset T_{x} M$ is the symplectic annhilator of v and $W=E(x) \cap v^{\perp}$, then $\operatorname{dim} W \geq 2 r-1$ and $\operatorname{dim} W \cap(i W) \geq 2 r-2$, where i is the complex structure of $E(x)$. Thus there is a complex hyperplane Λ of $E(x)$ with $\Lambda \subseteq v^{\perp}$. If $\lambda \in p^{-1}(x)$ is the corresponding point, $T_{\lambda} D$ is generated by $T_{\lambda} D_{Z}$ and $2(r-1)$ vectors $w_{1}, \cdots, w_{2 r-2}$ projecting to a real basis of Λ. Let $v^{\sharp} \in \mathcal{H}_{\lambda}$ be the horizontal lift of v; by construction v^{\sharp} lies in the kernel of $\left.\omega_{\text {aux }}^{(k)}\right|_{T_{\lambda} D}$, a contradiction. Now essentially the same argument as in the proof of Proposition 39 of [D] (with $\omega_{(k)}$ in place of $k \omega$) shows that E is obtained topologically from D by attaching cells of dimension $\geq n+r-1$, so that by Lefschetz duality $H^{k}(E \backslash D)=0$ for $k \geq n+r$. Since $E \backslash D$ is a \mathbb{C}^{r-1}-bundle over $M \backslash Z$, this implies $H_{j}(M, Z)=0$ for $j \leq n-r$ (cf. [S] and [L], §1).

We now examine the almost complex geometry of the sections of $\mathcal{E} \otimes H^{\otimes k}$ produced in Corollary 1.2. Let us write \mathcal{F} for $\mathcal{E} \otimes H^{\otimes k}$ and, in
the notation of the proof, fix $x \in Z$ and a unitary frame f_{1}, \cdots, f_{r} for \mathcal{F} in a neighbourhood U of x. Then $\widetilde{\sigma}=\sum_{i} a_{i} f_{i}$, where the a_{i} 's are smooth functions and $Z \cap U=\left\{a_{i}=0 \forall i\right\}$. Therefore $\nabla_{\mathcal{F}} \widetilde{\sigma}(x)=\sum_{i} d_{x} a_{i} \otimes f_{i}(x)$ and so $\partial_{J, \mathcal{F}} \widetilde{\sigma}(x)=\sum_{i} \partial_{J} a_{i}(x) \otimes f_{i}(x), \bar{\partial}_{J, \mathcal{F}} \widetilde{\sigma}(x)=\sum_{i} \bar{\partial}_{J} a_{i}(x) \otimes f_{i}(x)$ whence $\left\|\partial_{J, \mathcal{F}} \widetilde{\sigma}(x)\right\|^{2}=\sum_{i}\left\|\partial_{J} a_{i}(x)\right\|^{2},\left\|\bar{\partial}_{J, \mathcal{F}} \widetilde{\sigma}(x)\right\|^{2}=\sum_{i}\left\|\bar{\partial}_{J} a_{i}(x)\right\|^{2}$. Given that $B=\mathcal{O}_{\mathbb{P}\left(\mathcal{F}^{*}\right)}(1)$, we have on $\mathbb{P}\left(\mathcal{E}^{*}\right)=\mathbb{P}\left(\mathcal{F}^{*}\right)$ the short exact sequence $0 \rightarrow \Omega^{1}{ }_{\text {rel }} \otimes B \rightarrow \pi^{*}(\mathcal{F}) \xrightarrow{\alpha} B \rightarrow 0$, where Ω^{1} rel is the relative cotangent bundle. In loose notation, on $\pi^{-1}(U)$ we have $\sigma=\alpha(\widetilde{\sigma})=\sum_{i} a_{i} F_{i}$, where $F_{i}=\alpha\left(f_{i}\right)$. At any $e \in \pi^{-1}(x)$, we have $\nabla_{B} \sigma(e)=\sum_{i} d_{x} a_{i} \otimes$ $F_{i}(e)$, and therefore $\partial_{J_{\mathrm{aux}}, B} \sigma(e)=\sum_{i} \partial_{J_{\mathrm{aux}}} a_{i}(x) \otimes F_{i}(e), \bar{\partial}_{J_{\mathrm{aux}}, B} \sigma(e)=$ $\sum_{i} \bar{\partial}_{J_{\mathrm{aux}}} a_{i}(x) \otimes F_{i}(e)$. Now $\left\|\bar{\partial}_{J_{\mathrm{aux}}, B} \sigma(e)\right\|_{\mathrm{aux}, k}<C k^{-1 / 2}\left\|\partial_{J_{\mathrm{aux}}, B} \sigma(e)\right\|_{\mathrm{aux}, k}$ at every $e \in \mathbb{P}\left(\mathcal{F}_{x}^{*}\right)$. For $i=1, \cdots, r$ let $e_{i} \in \mathbb{P}\left(\mathcal{F}_{x}^{*}\right) \cong \mathbb{P}^{r-1}$ be the point where all the F_{j} 's except F_{i} vanish. Evaluating the latter inequality at e_{i}, we obtain $\left\|\bar{\partial}_{J_{\mathrm{aux}}} a_{i}(x)\right\|_{\mathrm{aux}, k}<C k^{-1 / 2}\left\|\partial_{J_{\mathrm{aux}}} a_{i}(x)\right\|_{\mathrm{aux}, k}$ and thus $\left\|\bar{\partial}_{J_{M}} a_{i}(x)\right\|<C k^{-1 / 2}\left\|\partial_{J_{M}} a_{i}(x)\right\|$ on M for every i, whence $\left\|\bar{\partial}_{J, \mathcal{F}} \widetilde{\sigma}(x)\right\|<$ $C k^{-1 / 2}\left\|\partial_{J, \mathcal{F}} \tilde{\sigma}(x)\right\|$. In fact, we also know that $\left\|\partial_{J_{\mathrm{aux}, B}} \sigma(e)\right\|_{\mathrm{aux}, k}>\eta$ at all $x \in D$ for some $\eta>0$ independent of k, and the argument just given then shows that $\left\|\partial_{J, \mathcal{F}} \widetilde{\sigma}(x)\right\|>\eta$ for all $x \in Z$.

Furthermore, these sections are asymptotically almost holomorphic in the sense of $[\mathrm{A}]$. By construction, $\sigma=\sum_{i, j} w_{i j} e_{j} \otimes \sigma_{i}$, where $\left|w_{i j}\right| \leq 1$ for all i, j, while the σ_{i} 's are compactly supported sections of $H^{\otimes k}$ as in Proposition 11 of [D], and the e_{j} 's are local sections of \mathcal{E}, chosen once for all and thus independent of k. A slight modification of the arguments proving Lemma 14 of [D] then leads to the estimates stated in Definition 1 of $[A]$.

BIBLIOGRAPHY

[A] D. Auroux, Asymptotically Holomorphic Families of Symplectic Submanifolds, GAFA, 7 (1997), 29-58.
[D] S. Donaldson, Symplectic Submanifolds and Almost Complex Geometry, J. of Diff. Geom., 44 (1996), 666-705.
[GLS] V. Guillemin, E. Lerman, S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge University Press, 1996.
[GS] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, 1984.
[L] R. Lazarsfeld, Some Applications of the Theory of Ample Vector Bundles, in: Complete Intersections, Acireale 1983, S. Greco and R. Strano eds, Lecture Notes in Mathematics, 1092, Springer Verlag (1984), 29-61.
[MS] D. Mcduff, D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1995.
[M] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Springer Verlag, 1994.
[S] A. Sommese, Submanifolds of Abelian Varieties, Math. Ann., 233 (1978), 229-256.
[W] A. Weinstein, A Universal Phase Space for Particles in a Yang-Mills Field, Lett. Math. Phys., 2 (1977), 417-420.

Manuscrit reçu le 13 octobre 1998, révisé le 1er mars 1999, accepté le 19 mars 1999.

Roberto PAOLETTI,
Università di Pavia
Dipartimento di Matematica Via Abbiategrasso 215 27100 Pavia (Italia).

[^0]: Keywords: Symplectic submanifold - Projective fibration - Almost complex structure. Math. classification: 53C15-57R95.

