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KAHLER MANIFOLDS WITH SMALL EIGENVALUES
OF THE DIRAC OPERATOR
AND A CONJECTURE OF LICHNEROWICZ

by Andrei MOROIANU

1. Introduction.

The problem of finding optimal lower bounds for the eigenvalues of
the Dirac operator on compact manifolds was for the first time considered
in 1980 by Th. Friedrich [3]. Using the Lichnerowicz formula [19] and a
modified spin connection, he proved that the first eigenvalue A of the Dirac
operator on a compact spin manifold (M™, g) of positive scalar curvature
S satisfies

2 n_.
(1) A > -1 111‘1/1f S.

The limiting case of this inequality is characterized by the existence
of real Killing spinors. After several partial results of Th. Friedrich, I. Kath,
R. Grunewald, and O. Hijazi ([12], [6], [7], [8], [12]), the geometrical
description of simply connected manifolds carrying Killing spinors was
obtained in 1991 by C. Bér [1], who made an ingenious use of the cone
construction. On the other hand, already in 1984, O. Hijazi remarked
([11], [13]) that Kahler manifolds never carry Killing spinors (except in
complex dimension 1), and thus raised the question of improving Friedrich’s
inequality for Kahler manifolds. This was done in 1986 by K.-D. Kirchberg

Keywords: Dirac operator — Kirchberg’s inequality.
Math. classification: 53A50 — 53C40 — 53C12 — 53C35.
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[16], [17], who showed that every eigenvalue A of the Dirac operator on a
compact Kahler manifold (M?™, g, J) of positive scalar curvature S satisfies

(2) 2> mt1 i}I\l/If S, if m is odd,
and

2 m . . .
(3) A > —4(m ) 111\1/If S, if mis even.

The manifolds which satisfy the limiting case of these inequalities
(called limiting manifolds for the remaining of this paper), are characterized
by the existence of Kahlerian Killing spinors (see [17], [14]) for m odd and
by the existence of spinors satisfying some more complicated equations
((8)—(11) below), for m > 4 even (cf. [17], [10]). In complex dimension
m = 2, they were classified in 1993 by Th. Friedrich [5]. Limiting manifolds
of odd complex dimension were geometrically described by the author in
1994 [21], whereas the problem in even complex dimensions m > 4 has
remained open until now.

It was remarked by K.-D. Kirchberg [17] that a product N x T2, where
N is a limiting manifold of odd complex dimension and T2 is a flat torus, is
a limiting manifold of even complex dimension. More generally, this holds
for suitable twisted products, i.e. for suspensions of commuting pairs of
isometries of N preserving a Kéhlerian Killing spinor, over parallelograms
in R? (Section 7).

The main goal of this paper is to show that, conversely, every limiting
manifold of even complex dimension can be obtained in this way (see
Thm. 7.4 for a precise statement). A similar result (omitting, however, the
twisted case) appears in [20], but the argument is incomplete, as observed in
[22]. The assertion that each limiting manifold of even complex dimension is
locally isometric to N x R?, where N is a limiting manifold of odd complex
dimension will therefore be referred to as Lichnerowicz’ conjecture.

The most important part of this paper (Section 3 to 6) is devoted to
proving that the Ricci tensor of a limiting manifold is parallel, a missing
point in [20]. The main ideas are the following: in [22] we showed that
the Ricci tensor of a limiting manifold M has only two eigenvalues, and
that M is foliated by the integral manifolds of the two corresponding
eigenspaces (see Theorem 3.1 and Corollary 3.2 below). Using this, we
consider (Section 4) a suitable 1-parameter family of metrics on M and
show that they are all limiting metrics, thus obtaining information about
the curvature of M. In Section 5, ideas from [21] and the classification
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of (simply connected) Spin® manifolds with parallel spinors [23] allow us
to show that every Spin® structure carrying Kéhlerian Killing spinors (of
special algebraic form) has to be a spin structure. Next comes the key step
of the proof: we consider (Section 6) the restriction of a limiting spinor
to the maximal leaves of one of the above distributions (corresponding
to the non-zero eigenvalue of the Ricci tensor), and show that it is
a Spin® Kahlerian Killing spinor on each such leaf. Together with the
results obtained in the two previous sections, this implies that the Ricci
tensor of M is parallel and that the leaves are limiting manifolds of odd
complex dimension. This proves the above mentioned (local) conjecture of
Lichnerowicz.

Finally, the complete classification of limiting manifolds of even
complex dimension is obtained in Section 7, after a careful analysis of the
action of the fundamental group of M on its universal cover.

Acknowledgement. — 1 would like to thank Paul Gauduchon and
André Lichnerowicz for their interest and several enlightening discussions.

2. Preliminaries.

We follow here the presentation and notations from [10]. For basic
definitions concerning spin and Spin® structures see [23]. Let (M?™,g,J)
be a spin Kéahler manifold and let ¥M be the spinor bundle of M. We
denote by S the scalar curvature of M and by (2 the Kahler form, defined
by Q(X,Y) = g(JX,Y).

A k-form w acts by Clifford multiplication on XM by
w-¥= Z w(eiy,  +y€iy) €+ ip - T,

1< <1k

where {ej,---,e,} is an arbitrary local orthonormal frame on M. The
Clifford action of the Kéhler form on a spinor ¥ may then be written
as

1 2m 1 2m
(4) Q~\Il=§zei‘o]6i"1’=—§E:ljei'ei"l’~
=1 =

For every vector X € TM and every spinor ¥ we have

(5) QX T=X-Q U+2JX-0.
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It is well-known (see [15]) that ¥ M splits with respect to the Clifford
action of Q) into

(6) oM =P IM,

q=0
where ¥£IM is the eigenbundle of rank (Z‘) associated to the eigenvalue
ip? = i(29 — m) of Q.

On the other hand, on every even-dimensional spin manifold M?™,
the Clifford action of the complex volume element w® := i™eq - ... - eam
(where {e1,---,eam} is an oriented local orthonormal frame) yields a
decomposition XM = X M ®3¥_M, where ¥ M is the eigenbundle of XM
corresponding to the eigenvalue +1 of wC. If ¥ = ¥, 4+ W_ with respect to
this decomposition, we define its conjugate ¥ := ¥, — ¥_ = wC . ¥, It is
easy to check that for M Kahler, this decomposition of XM is related to
(6) by

(7) SiM= P =M, and B_M =P M.

geven qodd

We also recall that ¥ M carries a parallel C-anti-linear automorphism
. . . . . . . . m m+1!
j commuting with the Clifford multiplication and satisfying j* = (—1) -y
The C-anti-linearity of j easily shows that j(t99t) = t™~9901.

We now turn our attention to limiting manifolds of complex dimension
m = 2¢ > 4 and recall their characterization in terms of special spinors.

THEOREM 2.1 (cf. [17], see also [10]). — Let (M,g,J) be a spin
compact Kahler manifold of complex dimension m = 2f. Then every
eigenvalue A\ of the Dirac operator of M satisfies the inequality (3).
Moreover, for m > 4, equality holds in (3) if and only if the scalar curvature
S of M is a positive constant and there exists a spinor ¥ € T'($¢+1 M) such
that

(8) Vil = —%(X _iJX)- DU, VX,
©) VxD¥ =~ (Ric(X) + iJ Rie(X)) - ¥, VX,
(10) k(X — iJX) - ¥ = (Ric(X) — iJ Ric(X)) - ¥, VX,

(11) k(X —iJX) - D¥ = (Ric(X) — iJ Ric(X)) - D¥, VX,

where Kk =

— In particular, (8) implies (after a Clifford contraction)
that DU € I'(¢M).
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These relations correspond to formulas (58), (59), (60) and (74)
from [17], with the remark that ¥ above and %=1 of [17] are related by
¥ = jy®~*. They are also obtained in [10], where one can moreover find
a very elegant proof of inequalities (1)—(3) by means of elementary linear
algebra.

In the next section we will also need the following stronger version of
the “if” part of the above theorem

THEOREM 2.2 (cf. [10], Proposition 2). — Let (M, g,J) be a spin
compact Kahler manifold of complex dimension m = 2¢. Suppose that there
exists a spinor ¥ € T'(X**1M) and a real number \ such that U satisfies
(8), DV € I'(X¢M) and D?*¥ = \2W. Then ) satisfies the equality in (3).

;From now on, when speaking about limiting manifolds without speci-
fying their dimension, we always understand that they have even complex
dimension m = 2¢ > 4.

3. Eigenvalues of the Ricci tensor of limiting manifolds.

In [22] we obtained the following

THEOREM 3.1 (cf. [22], Thm. 3.1). — The Ricci tensor of a limiting
manifold of even complex dimension has two eigenvalues, k and 0, the first
one with multiplicity n — 2 and the second one with multiplicity 2.

COROLLARY 3.2. — The tangent bundle of M splits into a J-
invariant orthogonal direct sum TM = £ & F (where £ and F are the
eigenbundles of TM corresponding to the eigenvalues 0 and k of Ric
respectively). Moreover, the distributions £ and F are integrable.

Proof. — All but the last statement are clear from Theorem 3.1, so
we only prove the integrability of £ and F. Let p denote the Ricci form
of M, defined by p(X,Y) = Ric(JX,Y), which, of course satisfies dp = 0.
Remark that X_p = 0 for X € £ and X1p = —kJX for X € F. We
consider arbitrary vector fields X,Y € £ and Z € F and obtain (o stands
for the cyclic sum)

0=dp(X,Y,Z) = o(X(p(Y,Z) — p([X,Y], Z))
= —p([X, Y]v Z)7
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so & is integrable. Similarly, for X,Y € F and Z € £ we have
0=dp(X,Y,2) = o(X(p(Y, 2) - p([X,Y], Z))
=Z(p(X,Y)) - p([Y, Z], X) - p([Z, X],Y)
= r(Z(9(JX,Y)) — g(JIY, 2], X) — g(J[Z, X],Y))
=k(9(VyZ,JX) - 9(VxZ,JY)
= —kg([X, Y], J2),
which proves the integrability of F. ]

JFrom (8)—(11) follows that for every section X of £ we have
(12) (X —iJX) ¥ = (X —iJX)-D¥ =0

(13) Vx¥ =VxDV =0.
Conversely, we have

LEMMA 3.3. — The equations (12) and (13) characterize the kernel
of the Ricci tensor; in other words, if X satisfies these equations, then
X eé&.

Proof. — Immediate consequence of (9), (10). a

For later use, we remark that taking the covariant derivative in (12)
with respect to some arbitrary vector field Y on M yields

(14) Vy(X —iJX) ¥ =Vy(X —iJX) - D¥ =0.

4. The curvature tensor of limiting manifolds.

In this section we collect information on the curvature tensor of
limiting manifolds by using deformations of the metric tensor in the £-
directions. More precisely, we show that such a deformation by a constant
factor does not affect the property of M to be a limiting manifold, and
using the results from the previous sections we interpret this in terms of
the curvature tensor.

DEFINITION 4.1. — An adapted frame {e;, f;} (¢ € {1,2}, j €
{1,...,n — 2}) is a local orthonormal oriented frame on M such that
& = span(e;) and F = span(f;).
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(From now on, we shall use such adapted frames for several compu-
tations, without explicitly stating it at each time.

THEOREM 4.2. — Let M be a limiting manifold and TM =& & F
the decomposition given by Theorem 3.1. Denote by g¢ and g” the
restrictions of the metric tensor to the two distributions £ and F and define
a family of Riemannian metrics on M by g* = t2g% + g7 (so, of course,
g* = g). Then, (M, g*) is a limiting manifold for each t > 0. Moreover, the
Ricci tensor of gt does not depend on t.

Proof. — Let us denote by X — X! the canonical isometry between
(T:M,g) and (T, M,g') given by X* = X for X € F, and X* = X/t
for X € &;. We choose a (local) adapted frame u = {e;, f;} and let
X,Y, Z belong to this frame. Using the Koszul formula and Corollary 3.2
we compute

9(VxY,Z), if N is even
(1/)g(VxY,Z) , if N is odd

where N is the number of X,Y, Z belonging to £. Using this, we compute
the spin covariant derivative in the new metric (for the sake of simplicity,
we set (M, g') = M?). The isometry X — X' constructed above yields a
bundle isomorphism Pso, M — Pso, M?, u — ul, satisfying (ua)? = u?
for all a € SO,,, hence the composition

Pspin, M — Pso, M — Pso, M"

(15) g'(Vi: Yt ZY) = {

a

defines a spin structure on Mt. Nevertheless, in order to avoid confusion,
we shall not identify the spin structures on M and M?, but only denote
the canonical isomorphism between them by v — ~!. We thus obtain an
isomorphism of the spin bundles of M and M?, & — ®' which satisfies
(X - ®)! = X* . ®'. Consider our spinor ¥ and write it as ¥ = [v,£],
where 7 is a local section of Pspin, M projecting over the adapted frame u.
Then, classical formulas for the (spin) covariant derivative together with
(15) yield, for X € F,

1
Vi W' = [V, X1+ 5 Yo' (VS
i<j
1
+5 D 9(Vkeh fel- £V

i<2,j<n~2

1
+ 3 th(fotef-,e;)eﬁ el - wt

i<j



1644 ANDREI MOROIANU

— (VXU -(1-97 X a(Vxen e - )

i<2,j<n—2

= (Vx¥) 4+ (1 - —)2 Z(prf(vxez) e; - U)t.

1<2

On the other hand, a simple use of (12) and (14) shows that the last
sum vanishes:

Zpr}-(vxei) e, U =pre(Vxey) -e1- ¥ +pre(VxJey) Je - ¥
i<2
= ipr}-(VXel) -Jey - U+ pr}-(VxJel) -Jey - ¥

= —iJe; - pre(Vxer) -V +pre(VxJer) - Jey - ¥
=Je; -pre(VxJer) - U+pre(VxJey) Jey - ¥
=0,

so finally

(16) ViUt = (VD)

for every section X of F. A similar argument shows that this equation is
also satisfied if X is a section of £. Finally, the equations that we used to
prove this formula (i.e. (12) and (14)) also hold for D¥, so we obtain in
the same way

(17) Vi (DU)! = (VxD¥)t, VX.

Then, using (13) and (16) yields D*¥? = 3" ff. Vtt\Ilt (DW¥)t, and
similarly D*(DW¥)t = (D?¥)t = A\2¥¢, hence (D!)?¥t = A2*. We have thus
shown that W' is an eigenspinor for the square of the Dirac operator D! on
M with the eigenvalue A\2. Theorem 2.2 then implies that M? is a limiting
manifold for all t. Consequently, by Theorem 3.1, the Ricci tensor of M?
has the same eigenvalues as that of M. In order to show that Ric = Ric?,
it then suffices to show that the kernels of Ric and Ric’ are the same. This
follows from Lemma 3.3 together with (16) and (17). O

LEMMA 4.3.

1. Let X, Y be sections of £ and F respectively and {e;, f;} an
adapted frame. Then
n—2

2
(18) > 9(VeY,e) =Y g(Vy X, fi) =0,
i=1 j=1

or equivalently Y V..e; € £ and ) Vy, f; € F for every adapted frame.
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2. If X,, X, are sections of £ and Y1,Y, are sections of F, then

(19) g(ley;nX2) = g(VX2Y17X1) ) g(vY1Xi1Yr2) = g(vaquY'l)

Proof.
1. Since S is constant, we have 0 = dS/2 = § Ric. Thus
0= (Ve Ric)(es) + Y _(Vy, Ric)(f;)
= —Ric(Ve,e:) + £V, f; — Ric(Vy, f;)
= —£prge(Vee:) + £pre(Vy, fi),
and the first assertion follows.
2. This is a direct consequence of the fact that £ and F are orthogonal

and integrable. ]

We use now Theorem 4.2 and Lemma 4.3 in order to compare the
Ricci tensor of M with the Ricci tensor of a maximal leaf, say N, of the
distribution F. The covariant derivative on N is of course obtained by
projection on N of the covariant derivative on M : V%Y =pry(VxY) for
X,Y tangent to N.

PROPOSITION 4.4. — Let X € TN. Then

(20) Ric(X, X) = Ric" (X, X) = Y " g(Ve. X, ¢;)°
i?j
and
@1) Y elg(VxX,e)) =D 9(VxX,ex)glex, Ve,es)
i ik
+2 Zg(veiX’ fJ) g(fj’ VXei) =0.
)
Proof. — We adopt henceforth the summation convention on re-

peated subscripts and compute (using Lemma 4.3 and an adapted frame)
R(f;, X, X, f;) = fi(9(VxX, f;)) —9(Vx X, Vy, f;) = X(9(V 5, X, [5))
+9(Vi X, Vx f;) — 9(Vis,,x1X, i)
= fi(9(VxX, f;)) — 9(VxX, f)9(fr, V5, f5)
- X(9(V5 X, £5)) +9(Vs, X, ei)g(ei, Vx f5)
+9(V5, X, fr)9(fe, Vx fi) — 9(Vig, x) X, f5)
= Ric" (X, X) +¢(Vy, X, ei)g(ei, Vx f),
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hence
(22) R(fj, X, X, f;) = Ric" (X, X) + g(Vy, X, €:)*.

Similarly,
R(ei, X, X, €;) = €i(9(Vx X, €:)) — g(Vx X, Ve,e;) — X(9(Ve, X, €:))
+9(Ve, X, Vxei) — 9(Vie, x1 X, €:)
= €;(9(Vx X, e;)) — 9(Vx X, ex)g(ek, Veei)

= X(9(Ve; X, €:)) +9(Ve, X, ex)g(ex, Vxes)
+9(Ve, X, f1)9(fj, Vxei) — g([ei, X], ex)9(Ve, X, €:)
—9([ei, X], £)9(V 5, X, ).

In the last equality, the third term vanishes by Lemma 4.3, and the

fourth term vanishes too, since it is of the form a;;b;; with a;; symmetric
and b;; skew-symmetric, so we are left with

Ric(X, X) = R(f;, X, X, ;) + R(ei, X, X, e;)
= Ric" (X, X) + 9(Vy, X, e:)? + ei(9(Vx X, €))
- 9(VxX,ex)g(er,Ve.ei) +9(Ve, X, f5)9(fs, Vxei)
—9(Ve, X, ex)9(Ve, X, €) — 9(Ve, X, £3)9(Vy, X, i)
+9(Vxes, £i)9(Vys, X, e:)
= RicV(X,X) — 9(Ve, X, ex)9(Ve, X, &) + €i(g(Vx X, e;))
—9(Vx X, ex)g(ex, Ve,:) +29(Ve, X, £3)9(fj, Vxei).

This formula holds for any of the metrics gt, by Theorem 4.2. Using
(15) we then find
(23) Ric(X, X) = Rico(X, X) + t 2 Ricy (X, X),
where Rico(X, X) = Ric¥ (X, X)—g(Ve, X, ex)g(Ve, X, €;) and Ric (X, X)
is the sum of the remaining terms in the above relation. By Theorem 4.2
again, we then obtain Ric;(X,X) = 0 (which is equivalent to (21)), so
finally Ric(X, X) = Rico(X, X) = Ric™ (X, X) — g(Ve, X, ;)% O

COROLLARY 4.5. — The following relation holds:
(24) Z R(eiw Xa Xa e‘i) = - Z(g(vxei» fJ)2 + g(ve¢X7 ej)2)'

%7

Proof. — Immediate consequence of (20) and (22):
R(ei,X,X, e,‘) = RIC(X,X) — R(fj,X, X, fJ)
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= RicV(X, X) — 9(Ve, X, ;)% — (Ric" (X, X)
+g(vaX, ei)Z)
= —g(Vxei, fi)? — 9(Ve, X, €5)°. 0

5. Kahlerian Killing spinors on Spin® manifolds.

In this section we give a classification of Spin® Hodge manifolds of
odd complex dimension carrying Kahlerian Killing spinors lying in the
“middle” of the spectrum of the Kahler form. Such a classification has,
of course, some interest independently of other considerations, but its real
importance to our problem will only become clear in the next section.

DEFINITION 5.1. — A Kahlerian Killing spinor on a Spin® Kéahler
manifold (M*¢~2 g, J) is a spinor ¥ satisfying
(25) VAT 4+ aX - U +ia(-1)4JX - ¥ =0, VX,

for some real constant o # 0.

THEOREM 5.2. — Let (M™,g,J), n = 4¢ — 2 be a simply con-
nected compact Hodge manifold endowed with a Spin® structure carrying a
Kahlerian Killing spinor ¥ € T($¢"*M @ $¢M). Then this Spin® structure
on M is actually a spin structure, and M is a limiting manifold of odd
complex dimension.

Proof. — The proof is in two steps. We first show, as in [21] that the
Kshlerian Killing spinor on M induces a Killing spinor on some S' bundle
over M, and then use the classification of Spin® manifolds carrying Killing
spinors to conclude.

By rescaling the metric of M and taking the conjugate of ¥ if
necessary, we may suppose that the Killing constant satisfies o = (—1)¢/2,
so (25) becomes

—1)¢ i _
(26) v§w+(21)x-w+%JX-\p=o, VX.
The Hodge condition just means that 2%[9] € H?*(M,Z) for some

r € R*, and we will fix some r < 0 with this property. The isomorphism
H?(M,Z) ~ H'(M,S') guarantees the existence of some principal U(1)
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bundle 7 : S — M whose first Chern class satisfies ¢;(S) = ZL[Q]
i

Furthermore, the Thom-Gysin exact sequence shows that S is simply

connected if r is chosen in such a way that 2—:;[9] is not a multiple of

some integral class in H%(M,Z) (cf. [2], p. 85).

The condition above on the first Chern class of S shows that there
is a connection on S whose curvature form G satisfies G = —irn*Q. This
connection induces a 1-parameter family of metrics on S which turn the
bundle projection 7 : S — M into a Riemannian submersion with totally
geodesic fibers. These metrics are given by

95(X,Y) = g(m(X), m(Y)) = P w(X)w(Y) (t>0),

where w denotes the (imaginary valued) connection form on S. Let V*
denote the unit vertical vector field on S defined by w(V?) = i/t and for
X € TM, let X* denote its horizontal lift to T'S. We now compute the
O’Neill tensors [25] A and T of the submersion S — M. For every vector
fields X,Y on M,

GX", V™) = dw(X*,¥*) = — (X", Y*]) = 5g5(1X°, Y] V),
so

1 1
QX,Y) = QX" Y) = g5 (X", Y], V') = —gs(Vx- Y™, V)
L ¢ 1 t
= e — Y* * = - Y *V .
Tth( »Vx V) ’I"tg( 77r('AX ))
For the remaining of this section, we fix t = —1/r and denote V := V*

and gs := g&. We thus have obtained
(27) Ax-V = J(X)*.

Now,
0=CGV,X*) =dw(V,X*) = —%w([V,X*]),

so [V, X*] is horizontal for every vector field X on M. On the other hand, V'
projects to 0 and X* to X, so [V, X*] projects to 0, i.e. it is vertical. We have
shown that [V, X*] = 0 for every vector field X on M. Or, gs(V,V) =1
implies that gs(V,Vx«V) = 0 and thus

0= gs(V, VvX*) = gs(VvV,X*), VX eTM,

so VvV = 0, which shows that the submersion 7 has totally geodesic fibers
(equivalently, 7 = 0).
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By pull-back from M, on S we obtain a Spin® structure whose spinor
bundle is just 7*XM (for M spin, this was shown in [21], Section 3; the
Spin® case is similar). Clifford multiplication is given by

(28) X' =1%(X-0),
(29) V.m0 = n*(i0).
We now relate covariant derivatives of spinors on S and M.

PrOPOSITION 5.3. — Let S — M be a Riemannian submersion
with totally geodesic one-dimensional fibers. Suppose that M is endowed
with a Spin® structure with covariant derivative V4 on the corresponding
spinor bundle, and let V54 denote the covariant derivative on the spinor
bundle of S corresponding to the Spin® structure on S obtained by pull-
back from M. Then for every spinor ¥ on M we have

(30) VA = n* (V4 - Sim(Ax-V) - B),
and
* 1 * &
(31) Vytnte = —om (Zlm(AX;V) X \1/)
]:

We will skip the proof, which is similar to that of [21], Prop. 2.

Applying this result, together with (4), (26) and (27), to our Kéhlerian
Killing spinor ¥ yields

VS,A N — 1 * £ _ (_l)e * *
X T —aﬂ((—l)X-\Il)— 3 X* v

and
_1\¢ _ -1 I
VAT = iw*(ZQ W) = —(———2-1—)—7r*('£\I—‘) - (—2—)V .

Here we have used the fact that ¥ € X¢1M & LM and thus
Q- U = (—1)%7 (recall that XM C £, M exactly when £ is even).

These two equations just mean that 7*¥ is a Killing spinor of the
pull-back Spin® structure on S.

Remark 5.4. — At this point, the reader might be slightly confused
by the fact that Kéhlerian Killing spinors on Spin® manifolds (inducing
Killing spinors on suitable S* bundles) also appear in [24]. But, in contrast
to our present situation, they do not live in the “middle” of the spectrum
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of Q, and the Spin® structures of the S! bundles considered there are not
the same as here (see [24], Prop. 3.2).

Now, a standard argument shows that 7*W¥ induces a parallel spinor
® on the cone S over S, endowed with the pull-back Spin® structure (see
[23]). Since S is compact, a theorem of Gallot ([9], Prop. 3.1) shows that
S is an irreducible Riemannian manifold. From ([23], Thm.3.1) we then
deduce that either the Spin® structure of S is actually a spin structure, or
there exists a Kéhler structure I on S such that

(32) X -®=4(X) ® VX €TS,

and the Spin® structure of S is the canonical Spin® structure induced by I
(these two cases do not exclude each other). In the first case we are done
since then the Spin® structure on M has to be a spin structure, and ¥ has
to be a usual Kéhlerian Killing spinor, so M is a limiting manifold.

In the second case, we first remark that S carries another Kéahler
structure, say J, which comes from that of M, and such that & lies in the
kernel of the Kéhler form Q; of J (see [21]).

Taking the Clifford product with Q; in (32) and using (5) yields
(33) JX -®=iJI(X) &, VX € TS,

so replacing X by JX in (32) and using (33) shows that IJ = JI. Now it
is clear that I # +J since Q; - ® = 0 and, by (32), Qy - ¥ = 2i4®, where
Q; denotes the Kahler form of I. On the other hand, IJ is a symmetric
parallel involution of T'S, so the decomposition T'S = T+ & T, where
T* = {X | IJX = £X} gives a holonomy reduction of S, which contradicts
the above mentioned result of Gallot. O

6. Restrictions of spinors to the leaves of F.

We are now ready to complete the proof of our main result:

THEOREM 6.1. — The Ricci tensor of a limiting manifold of even
complex dimension is parallel.

Proof. — Proposition 4.4 shows that the Ricci curvature of any
maximal leaf N of F is greater than k. Since N is complete, Myers’ Theorem
implies that N is compact. Moreover, N being Kéahler with positive defined
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Ricci tensor, a theorem of Kobayashi ([18], Thm. A) shows that N is simply

connected. We shall now consider the restriction ®V of ® := ¥ + — DV
N

to N. First of all, what kind of object is ®V? To answer this question, we
recall the classical representation of spinor bundles on Kéhler manifolds
(e.g. [15]): R

M ~ (KM)z @ A% M.

where, as usual, (KM )% denotes a square root of the canonical bundle of
M. Through this identification, the spin covariant derivative on the left
hand side corresponds to the Levi-Civita covariant derivative on the right
hand side. In our particular situation we have the following isomorphisms
of complex vector bundles:

KM ~ AT M) ~ A™ (0 @ FOU) ~ €01 @ AL (FOY),

SO
(34) KMy ~ 0y @ KN,
Similarly,
AO,*MlN ~ AO,*N ® (gl,OlN ® AO’*N),
and thus

(35) EMy = (KM)} |y @ A N) @ (KM)%|y ® (EM°]n ® A*N)).

Now formula (12) just means that the (X™)? |y ® A%* N-part of &V
vanishes, hence ®V is a section of

(KM% |y ® (EY°|y ® A%*N),

and by the above, this is just the spinor bundle of some Spin® structure on
N with associated line bundle £1°|y. In fact we may write locally

(KM |y ® (EM°)n ® A%*N) ~ ((EY0)|n)? ® (KN)? ® A%*N)
~ ((€"°)ln)? ® IN,
but, of course, neither ((£2:°)|x)% nor ©N need not exist globally on N.

We now want to compute the covariant derivative of ®V as Spin®
spinor on N. Note, first, that each of the above vector bundles inherit
a covariant derivative (that we shall call natural), coming from the Levi-
Civita covariant derivative on M. Indeed, all these bundles are exterior and
tensor products of sub-bundles of TMC. On each sub-bundle of TMC€ we
have a covariant derivative obtained from the usual covariant derivative on
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M, followed by the projection to the considered sub-bundle. But, in general,
the above isomorphisms do not preserve the covariant derivatives obtained
in this way (because £ and F are not parallel distributions — at least, we
do not know this yet!). Nevertheless, the next lemma shows that we may
compute the covariant derivative of ®V using the above isomorphisms.

Let us denote by A the natural connection induced on (£1:0)|y by
the Levi-Civita covariant derivative of M, and by V-4 the corresponding
Spin® covariant derivative on (KM)z|y ® (€1°|y ® A%*N). It should
be noted that the natural covariant derivatives on A™~}(F%!) ~ KN
and A*(F%!) ~ A®*N coincide with those coming from the Levi-Civita
connection on N. With these notations we have

LEMMA 6.2.

36 viAeN = (Vy®)|n, VY € TN.
Y

Proof. — By (8), (9) and (12) easily follows
(37) (X —iJX) Vy¥ = (X —iJX) -VyDU =0, V¥ € TM, X €E&.

This implies, as before, that the (XM)? |y ® A%* N-part of (Vy®)|n
vanishes for all Y, hence (Vy ®)|y is also a section of (KM)z |y ® (E10|y ®
A%* N'). We then remark that the natural covariant derivative on the bundle
B = (KM)i|y ® (EM°|y ® A%*N) is obtained from the spin covariant
derivative on B (identified via (35) to a sub-bundle of XM|y) followed
by the projection back to B. But, as the isomorphism (34) preserves the
covariant derivatives, we deduce that the natural covariant derivative on B
is just the Spin® covariant derivative V¥4, We have thus obtained

VIASN = prp((Vy®)|n) = (Vy®)|n, VY € TN. O

For later use, we compute the curvature form ¢F of the complex line
bundle L = (£19)|n. Let e € € be a local unit vector field defining a local
section o := e —tJe of L. Then

V40 = preio(Vxo) = prg(Vxo)
= g(Vxe,Je)Je —ig(VxJe,e)e = ig(Vxe, Je)(e — iJe)
= ig(Vxe, Je)o,
which yields
iF(X,Y)o = i(Xg(Vye,Je) — Yg(Vxe, Je) — g(Vix yie, Je))o
= i(9(VxVye, Je) — g(Vye,VxJe) — g(VyVxe, Je)
+9(Vxe,VyJe) — g(Vix yie, Je))o
= i(R(X,Y,e, Je) + 29(Vxe,VyJe))o,
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thus showing that
(38) F(X,Y)=R(e,Je,X,Y) +29(Vxe, VyJe).

On the other hand, (12) implies that e- Je- ¥ =¥ and e- Je- DY =
1DV for all unit vectors e in £. We fix such a vector e for a moment, and
remark that, as elements of the Clifford bundle, the Kéahler form of M, €,
and that of N, QN are related by Q@ = Q" + e - Je. Recall now (Section
2) that ¥ € 2¢*'M and DU € £'M, ie. Q- ¥ = i(2({ + 1) — m)¥ and
Q- DV = i(2¢ — m)DV. This shows that QN - ¥|y = i(2¢ — (m — 1))¥|y
and QY - D¥|y = i(2(¢ — 1) — (m — 1))D¥|y, ie Y|y € TN and
D¥|y € £71N. Using (36), (8), (9) and (7) we then obtain

39 VNASN 4 a(X @V +ieJX-F) =0, ¥X € TN,
X

where € = (—1)¢ and a = /£. Thus ®" is a Kéhlerian Killing Spin®
spinor on N (with Killing constant «). Moreover, N is a Hodge manifold:
if we denote by ¢ the inclusion N — M and by p the Ricci form of M, then
k QN = i*p, which implies x[QV] = i*(2mc;(M)), and thus [QV] is a real
multiple of i*(c;(M)) € H3(N,Z).

We then apply Theorem 5.2 and deduce that the Spin® structure on
N has actually to be a spin structure (i.e. £°|y is a flat bundle on N, or,
equivalently, F' = 0). We shall now see that the vanishing of F' implies that
€ and F are parallel, and this will complete the proof.

For an arbitrary vector field X on N we compute, using the first
Bianchi identity, Lemma 4.3, (38) and (24)

0=F(X,JX)=R(e,Je,X,JX)+29(Vxe,VixJe)
=—R(Je,X,e,JX)— R(X,e,Je, JX) + 29(Vxe, fi)9(fi, VixJe)
=—-R(Je,X,X,Je) — R(e, X, X,e) +29(Vxe, fi)g(JX,Vy,Je)
= —R(e;, X, X, e;) +29(Vxe, f;)g(X,Vy,e)
= 9(Vxei, fi)* + 9(Ve. X, €))* +29(Vxe, fi)
=29(Vxei, f;)? + 9(Ve, X, €)%

This clearly shows that £ and F are parallel distributions at each
point of N, so they are parallel on M because the N’s foliate M. a

As an immediate corollary of Theorem 6.1 we obtain

THEOREM 6.3. —  The universal cover M of a limiting manifold M
of even complex dimension is isometric to the Riemannian product N x R?,
where N is a limiting manifold of odd complex dimension.
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Proof. — Denote by 7 the covering projection M — M and take an
arbitrary point z € M. It is clear from the above proof that the maximal
leaf N of F containing z is a limiting manifold of odd complex dimension.
We have seen moreover that N is simply connected, so each connected
component of 77 (N) is isometric to N. Take y € 7~!(z) and let N be the
maximal leaf of the pull-back of F to M containing y. The decomposition
theorem of de Rham implies that M ~ N x R2. Finally, it is easy to see
that N is just the connected component of 7~1(N) containing y, and thus
Nisa limiting manifold of odd complex dimension. O

By taking into account the classification of limiting manifolds of odd
complex dimension [21] we can refine this result as follows

COROLLARY 6.4. — Let M*™ be a limiting manifold of even com-
plex dimension m = 2¢, £ > 2 and M its universal cover. Then

— if £ is odd, M is isometric to the Riemannian product CP?¢~1 x R?,
where CP?~! is the complex projective space endowed with the
Fubini-Study metric.

— if £ is even, M is isometric to the Riemannian product N x R?,
where N is the twistor space of some quaternionic Kihler manifold
of positive scalar curvature.

7. The classification of limiting manifolds.

Let M* be a limiting manifold of complex dimension 2¢, 7 : MM
its universal cover and I' the fundamental group of M. Obviously, I" can
be seen as a discrete group of isometries acting freely on M ,and M is
isomorphic to M /T. Theorem 6.3 says that M is isometric to a Riemannian
product N x R%, where N is a limiting manifold of odd complex dimension.
We first recall the following (probably well-known) general result

LEMMA 7.1. — Let M’, M" be Riemannian manifolds. Then the
group Zo(M' x M") of isometries of M' x M" preserving the horizontal
and vertical distributions is canonically isomorphic to the product T(M')®
ZI(M") of the isometry groups of M’ and M".

Proof. — Let v € Zo(M' x M"). It is clear that v maps each sub-
manifold M’ x {m"} isometrically onto M’ x {m"} for some m" (depending
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only on m”), and thus y(m/,m") = (v,..(m'),~"(m")), where ~,,. are
isometries of M’ depending (a priori) on m” and 4" is a transformation of
M" not depending on m'. As the situation is symmetric with respect to
M’ and M", we deduce that y(m/,m"”) = (v'(m'),v"”(m")), where v, v"
are isometries of M', M" respectively. O

__ In our case, Z(N x R?) = Zy(N x R?) because every isometry of
M preserves the kernel of the Ricci tensor and its orthogonal complement.
Moreover, as M is Kahler, I' consists of holomorphic isometries of M. Hence
' ¢ IMN) x T"(R?), where Z"(X) denotes the group of holomorphic
isometries of the Kahler manifold X. Let us denote by I, resp. I' the
projections of I on Z"(N), resp. Z"(R?).

LEMMA 7.2. — The group I'" consists of translations only.

Proof. — We use again the theorem of Kobayashi, which implies
that there is no group of holomorphic isometries acting freely on N. Let
v = (7,7") € T and suppose that 4" is not a translation. Since v" is
holomorphic, it is of the form v — av + 3, a,8 € C, a # 1, so it has a
fixed point, say vg. This implies that for every n, either 4'™ has no fixed
point, or v® = 1yxgz. Consider the subgroup (vy) of I" generated by ~. If
(v) is finite (of order n > 1), then by the above v'™ has no fixed point
for m < n, hence {v') acts freely on N, which is impossible. Hence () has
infinite order, and thus ¥'" has no fixed point for all n > 1. Again by the
theorem of Kobayashi, it follows that (7') does not act freely on N. As N
is compact, we can then find x € N and a sequence n; — oo such that
4™ (z) — z. This implies that v™(x,v) — (z,vp), so the action of {y) on
N x R? is not free, a contradiction. This shows that 7" is a translation. O

The above argument actually proves slightly more, namely that if
some v = (7/,v") € T satisfies ¥’ = 1gz, then 7 = 1. In particular, this
implies, firstly, that I" has no element of finite order, and secondly, that T’
is Abelian, because the I'’-part of any commutator is the identity, by the
above lemma. Hence I' ~ Z* and the compactness of M easily implies that
k = 2. Let v, = (7,7!), i = 1,2 be two elements generating I', where ~;
are commuting holomorphic isometries of N and /' are translations of R2.

We now show that every isometry v’ of N such that v € IV lifts to
an isomorphism of the spin bundle of N preserving a Kéhlerian Killing
spinor & on N (not depending on +'). For this we first need the following
well-known classical result.
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LEMMAT7.3.

a) The universal cover M of a spin manifold M = M /T carries a
unique spin structure.

b) The spin structures on M are in one-to-one correspondence with
lifts to Pspin,, M of the tangent action I', of I" on PsonM

Proof.

a) Uniqueness is obvious. To prove existence, we denote the covering
projection by 7 and remark that m*Pso, M is isomorphic to PSO,,M LIt
follows that the pull-back by 7 of the spin structure on M defines a spin
structure on M.

b) Using a), for every spin structure on M we may view the spin
structure on M as a pull-back. We then define J[m, un] = [¥(M), um],
where m € M m = w(m) and Unm, | is an element of Pspin, M. It is easy tc to
check that this is a lift to Pgpin,, M of the tangent action of v on Pso, M.
Conversely, if T is a lift to Pspin,, M of the tangent action I'y on Pgp, M
then we simply define Pspin, M =(Pspin, M ) /I‘, and it is clear that the two
constructions are inverse to each other. O

Let ® be the eigenspinor of the Dirac operator on M defined in
Section 5 and ® the spinor induced on M by pull-back. From (13) follows
that V X<I> = 0 for all vectors X € £ so obviously V X<I> 0 for all vectors
X on M = N x R2 tangent to R2. This shows that the restriction of ® to
N x {v} is a Kihlerian Killing spinor ®" on N which does not depend on
v € R2. Now, by Lemma 7.3, b) the spln structure of M corresponds to a
lift of I" to Pspin, M which preserves ®. Take an element vy=(,v")inT.
The fact that 7,® = ® shows that 7.®N = ®N, where . is the lift of the
action of 4’ to Pspin, N given by the restriction of +,. Thus every isometry
4" € I lifts to an isomorphism of Pspin, N preserving ®V.

Conversely, let N be an odd dimensional limiting manifold, ], ¥4
be two commuting holomorphic isometries of N with the above property
and v}, 74 two (linearly independent) translations of R?. Then M :
(N xR?%)/T is an even dimensional limiting manifold, where I' = ((v%, v} ))
To see this, remark first that the spin structure of N x R? is obtained from
that of N by pull-back on N x R? and enlargement of the structure group.
Hence the Kahlerian Killing spinor ®" preserved by f; induces a spinor
® on N x R? satisfying (8)—(11), and the action of 7; on Pspin, N induces
an action of I' on Pspin (N x R?) preserving 3. Consequently, we obtain
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a spinor ® on M := (N x R?)/T satisfying (8)-(11), so M is a limiting
manifold. We have obtained

THEOREM 7.4. — A Kahler manifold M of even complex dimension
m > 4 is a limiting manifold if and only if it is isometric to (N x R?)/T,
where N is a limiting manifold of odd complex dimension m — 1, and
' = ((v1,7Y), (¥%,7%)), where «,' are independent translations of R? and
~i are commuting holomorphic isometries of N which lift to commuting
isomorphisms v;, of Pspin, N preserving a Kéhlerian Killing spinor of N.

Remark 7.5. — Let P be the parallelogram in R? with vertices
0, v/(0), v4(0), v(0) + 4 (0). Then the quotient (N x R%)/T' can be
seen as N x P/ ~, where ~ is the equivalence relation

(n,t71(0)) ~ (71(n), 77 (0) + 712 (0))
and

(n,573(0)) ~ (72(n), ' (0) + 573 (0)),

for all n € N and s,t € [0, 1]. This is just the suspension of the commuting
pair of isometries v{, 74 of N over the parallelogram P.

In order to complete the classification, we have to decide when two
limiting manifolds obtained in this way are isomorphic (i.e. holomorphically
isometric). This is achieved by the following

LEMMA 7.6. — Let M, = (Nl X Rz)/l—‘l and M, = (N2 X Rz)/rz
be two limiting manifolds, where N1, Ns, 'y, 'y are as in Theorem 7.4.
Then M, is holomorphically isometric to M, if and only if there exist a
holomorphic isometry ¢ : Ny — Ny and a € S, such that T} = p~tolh0p
and T = aoI'yj. In particular, a limiting manifold M = (N x R?)/T is
decomposable (i.e. isometric to a product N x T?) if and only ifT' = {1y}

Proof. — Any holomorphic isometry M; — M, obviously lifts to
a holomorphic isometry @ : M; = N; x R?2 — Ny x R2 = M, of the
universal covers, which, by Lemma 7.1, can be written ® = (¢, A), where
¢ is a holomorphic isometry N; — N and A : R? — R? is of the form
Av=av+B3,a€ S, B € ( C. Now, such a holomorphic isometry ® descends
to the quotients of Ml, M, through T'y, Ty ifand only if I'y = ® 1ol30®,
which is equivalent to our statement. O
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