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A surface is a complex manifold of dimension 2. We denote by b;(S)
the i-th Betti number of S. All surfaces with a GSS are supposed to be
minimal.

0. Introduction.

A compact complex surface belongs to the class VII of Kodaira if it
is minimal and the first Betti number satisfies b = 1. The classification
of this class is incomplete when b, > 0. All known examples contain
global spherical shells (GSS), that is to say there exists in S an open set
V C S such that S\ V is connected and V is biholomorphic to an open
neighbourhood of the sphere S in C? \ {0}. The case b3(S) > 1 has been
investigated in several papers ([18], [5], [6], [7], [19], [24], [10], [25] and

Keywords: Compact complex surface — Class VIIg — Holomorphic vector field — Singular
holomorphic foliation.
Math. classification: 32J15 — 32L30 — 57R30.
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others). A surface with a GSS contains exactly n := by(S) rational curves
Dy, ..., Dy_1, each of them being regular or with a double point. We define

n—1
a(8) := — Y. D? + 2 Card{double points}. By [5], 2n < ¢(S) < 3n.

i=0

A surface S with GSS is a primary Hopf surface if and only if b3 = 0.

In the case b2(S) > 1 the construction is, like for Hopf surfaces, quite simple,
the description of the geometric properties is deeply related to the study of
normal forms for singular germs of mappings F = Ilo : (C2,0) — (CZ,0)
which factorize through a finite number of blowing-ups.

If 0(S) = 2n, then S is an “exceptional compactification ” of an affine
line bundle over an elliptic curve. These surfaces are well known (see [10],

[8])-

If 0(S) = 3n, then the surface S is called an Inoue-Hirzebruch surface
(see [7], [17] and [24]).

It is well known that primary Hopf surfaces admit holomorphic vector
fields and therefore singular holomorphic foliations.

In [8] the situation of generic and Inoue surfaces S has been investi-
gated: They all admit a unique global singular foliation. It is induced by a
global vector field (in fact by a holomorphic C*-action) if and only if S is
an Inoue surface. The crucial point is the construction of normal forms for
the associated germs F' = Ilo. These germs are exactly those for which the
trace tr(S) = tr DF'(0) of the tangent mapping satisfies 0 < |tr(S)| < 1.

This article is devoted to the more complicated situation of surfaces
with tr(S) = 0, i.e. 2n < o(S) < 3n, or to the case of germs F' = IIo where
the sequence of blowing-ups is not generic. Our main result is the following

THEOREM. — Let S be a minimal compact complex surface with a
GSS. Then there is always a global singular holomorphic foliation on S.
Furthermore we have:

1) If b(S) > 1, then S admits at most two foliations. There are two
foliations if and only if S is an Inoue-Hirzebruch surface.

2) If 2n < 0,(S) < 3n and there exists a numerically anticanonical
divisor (see Section 4), there exists a logarithmic deformation of S into a
surface admitting a global non-trivial vector field.

We remark that this result contributes to the problem of classifying
surfaces with non-trivial global holomorphic vector fields (see also [3], [11],
(15] and references in these papers).



VECTOR FIELDS AND FOLIATIONS ON COMPACT SURFACES 1505

In [16] J. Hubbard and W. Oberste-Vorth study the dynamical system
associated to a Henon automorphism H of C2. The attraction bassin U,
of H may be completed with an infinite family of rational curves to a
manifold M. The quotient of M by the infinite cyclic group generated by
H is a compact surface S with GSS, b2(S) = 3 and tr(S) = 0 (see [9]). This
article may be considered as a generalization of [16], since we obtain similar
results for every second Betti number b > 0 and every germ F = Ilo.

The paper is organized as follows:
Section 1 introduces the basic notions which will be repetedly used.

In Section 2 a precise description of the quadratic transformations
associated to singular and regular sequences of self-intersections allows us
to define an invariant k(S) € N having the following property: For curves
C such that O¢ € S’C is not the intersection of two rational curves (see
Section 1), there is a holomorphic function fe in a neighbourhood of Oc
which satisfies the functional equation

fo(Fo) = f&9.

This function yields readily:

e a global singular foliation F on S,

e a twisted closed logarithmic 1-form w € HO(S, Q(Log D) ® LF(9)),

e a plurisubharmonic function G (called Green function) on the univer-
sal covering space S of S, which is pluriharmonic outside the rational
curves and unique up to a multiplicative positive contant,

e a first step towards the classification of (super attractive) singular
germs of mappings F = Ilo : (C2,0) — (C2,0) with two zero
eigenvalues.

Finally we describe the leaves of the foliation in the complement of
the rational curves. They are isomorphic to C and dense in the level sets
of the Green function. Here a solenoid phenomenon similar to that in [16]
occurs.

Section 3 is intended to adapt the Baum-Bott, Camacho-Sad and
Brunella-Suwa formulas for singular foliations to the case of surfaces
containing GSS. These formulas provide in Section 4 two linear systems
with coefficients in Z. The first system gives an equivalent condition
for the existence of a (positive) numerically anticanonical divisor. The
second gives a necessary and sufficient condition for the existence of a
positive divisor Dy of zeros of a twisted holomorphic vector field 6 €
HO(S,0 ® O(—Dy) ® L), L € Pic(8).
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Hence we obtain numerical obstructions for the existence of sections
H°(S,0 ® O(—Dg) ® L) and H°(S,—K ® O(~D_k) ® L). The relation
D=, = Dy + D, where D is the sum of all rational curves shows that D9 K
is a divisor if and only if D? is a divisor. If there is no numerical obstruction,
an explicit parametrization of the flat line bundles Pic’(S) by C* allows
to find a unique complex number « such that H°(S,K~! ® L*) # 0.
Considering logarithmic deformations & — U, we obtain a holomorphic
function k on U.

In Section 5 we prove the existence of twisted vector fields if there is
no numerical obstruction. A twisted vector field § € H°(S,0 ® O(—Djp) ®
L(9)) is a vector field if and only if the flat line bundle L ) is trivial.
Given a surface S, we embed S in a logarithmic family S — C* such
that there is a non-constant holomorphic function A : C* — C* with
A(u) = A(Sy). This function being surjective, the flat line bundle is trivial
over the (non-empty) hypersurface {A = 1}. Consequently, for surfaces over
this hypersurface there are global holomorphic vector fields. We finish the

section by computing the fundamental groups. In fact m; (S\ D) =~ Z[

)

and 71 (S\ D) ~ Z[ x Z. We endow the universal covering space Y of

&l
k(S)
S\ D with a non vanishing vector field tangent to our foliation with leaves
isomorphic to C. Using the Green function we show that Y is a Riemann

domain over A x C.

1. Basic constructions.

1.1. Surfaces with global spherical shells.

In this section we recall notations and results from [5]. Details and
proofs may be found there.

Let F = Ilo = [p---I,_;0 : (C2,0) — (C?,0) be the contracting
germ given by the following data. The map II; is the quadratic transforma-
tion of the point O;_; where O; € C; = Hi‘l(Oi_l) for0<i<n-—1and
O_; =0 € C2. The map o is a germ of an isomorphism with ¢(0) = Op,_;.
We associate to the germ F' a compact complex surface in the following
way. We have a sequence of blowing-ups over the ball B

nn—l H.‘ II
Bp1 5. .- — B, =5 B4 — -+ — By —> B.
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One can suppose that o is defined in a neighbourhood of the closed
unit ball B C C? and that o(B) is relatively compact in B,_;. Let B’ CC B
be a slightely smaller ball. We remove the closed set o(B’) from B,,_;. Then
one identifies isomorphic neighbourhoods of ¥ = II"*(8B) and 0 (dB) by
oIl and obtains a minimal compact complex surface with a GSS, denoted
by S = S(II,o). The Betti numbers are b1(S) = 1 and b2(S) = n. The
exceptional curve of the first kind in B,,_; becomes a non-singular rational
curve with self-intersection < —2 or a singular rational curve in S(IL, o),
since 071(Op—1) = 0.

Let F and F’ be two germs like above. If there is a germ of an
isomorphism ¢ under which F' and F’ are conjugate, then ¢ induces an
isomorphism between S(IT, o) and S(IT', ¢’). Conversely, given a surface S
containing a GSS, Ma. Kato [18] has proved that S is obtained by the above
construction.

The universal covering space (5’,&)) of S is obtained by glueing a
sequence of copies (A;);cz of A; = A := B,_1 \ o(B). The pseudoconcave
boundary of A; is identified with the pseudoconvex boundary of A;41.
The covering automorphism g : S — § sends A; onto Aivi. In S there
is a countable family of rational curves with a canonical order induced by
“the order of creation”. In the case tr(S) = 0, this order is not obviously
understandable from the graph of the curves. Sometimes we shall denote
by C + 1 the curve created after C. Given a curve C in S we construct a
new surface S’C with a canonical morphism p¢ : S — Sc in the following

way: Suppose C C U A;. We fill in the hole of A, with a ball and obtain
i<p

a surface with an exceptional curve of the first kind. If this curve is C, we
have obtained S¢. If not, we blow down successively the exceptional curves
until we end up with C' . Finally the map p¢ is defined by blowing down
the “half-infinite” number of curves created after C and O¢ is the image
under pc of all curves C' > C. Now we have the following commutative
diagram for every curve C':

s <45 3
Pc+1l l PC+1
A Fot1
Ser1 —5 Scoy
C+1 C+1
ngt l ln

A F,
SC—C>SC

where O¢ is the fix point and Hg“ is the blow-up in Oc.
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The automorphism g induces for every C the diagram:
-9, S
C+n

S
pc l l PC+n
~ o ~

C
c — Scin

C+

where 05" is an isomorphism such that ag+”(Oc) = Oc¢c4n-

By diagram chasing one gets
_ 1qC+n_C+
Fo =IIg""0g™
and
C+ c
Foinogt™ = ot Fo,

i.e. the germs F¢ : (S¢,0¢) — (S¢,0¢) and Feyn : (8cin, Ocin) —
(8¢4n,Oc4n) are conjugated. In general Fg, <y Foq(n—1) are not conju-
gated and define the n conjugacy classes associated to the surface S. It is
easy to check that there are n homotopy classes of GSS.

Now fix a curve C = Cj in the universal covering space. We denote
by

a(S) = (a:)icz; ai = —C}

the family of opposite self-intersections of the curves in the universal
covering space. The sequence a(S) is periodic of period n = b(S5), i.e.
a; = Gi+n. It may be divided into regular sequences r,, = (2,...,2) of
length m and singular sequences s, = (p + 2,2,...,2) of length p. The

invariant a(S) determines completely the intersection matrix M (S) of the
i+n—1
curves in S. The integer 0,,(S) = Y. a; is independent of ¢ and satisfies
i

the condition 2n < 0,(S) < 3n.

The trace of a germ F = Ilo (resp. of a surface S(II,0)) is by
definition the trace tr DF(O) of the tangent mapping DF at the fixed point
of F. The trace is independent of the choice of the GSS and depends only
on the isomorphism class of S. So it is denoted by tr(S). The inequalities
0 < [tx(S)] < 1 always hold.

One has tr(S) # 0 if and only if one of the following equivalent
conditions are satisfied:

i) For every 0 <% < n — 1, the point O; is not in the intersection
of C; with the strict transform of Cy (k < ) or of 07(Cp—1);
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ii) S contains a cycle I' of rational curves such that I'? = 0;

ili) every rational curve of the universal covering space has self-
intersection —2;

iv) the sum o0,(S) = 2n.
On the other hand ¢r(S) = 0 if and only if

a) There exists an index ¢ such that O; is contained in the intersection
of C; with another curve, or ¢(0) is in the intersection of C,,_; with another
curve, or the strict transform of 0=1(C,,—1) by Ily contains Op;

b) on(S) > 2n;
c) a(S) contains at least a singular sequence;
d) M(S) is negative definite.

A germ of mapping (resp. a minimal surface) will be called generic
if its trace is non vanishing.

A germ of mapping (resp. a minimal surface) will be called an Inoue-
Hirzebruch germ (resp. Inoue-Hirzebruch surface), if 0,,(S) = 3n or
equivalently if a(S) contains only singular sequences.

In order to calculate explicitely sequences of quadratic transforma-
tions we use througout the paper the following local coordinates on

C2 = {((21, 22), [w1 : wo)]) € C? x P1(C) | zywy = 20wy },
i.e. the manifold obtained by blowing up at the origin of C2:
$:C* > C%  ¢(u,v) := ((uwv,v), [u:1])
and
P:C?—C?, ', v) = ((,u'),[1:4]).

The transition functions of these coordinates are

1.2. Flat line bundles.

We describe explicitely the subgroup of topologically trivial (flat)
line bundles for a surface S containing a GSS. First we have Pic(S) ~
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H1(S,C*) ~ H(S,0)/H'(S,Z) ~ C* for a surface of class VI with no
non-constant meromorphic funtions (see [20], formulas (14), (102) and the
commutative diagram which follows noticing that the argument works also
for b2 > 0). Following the notations of Subsection 1, let B’ C B C B” be
three balls of radius 1—¢, 1 and 1+¢ for small €. Let A = II"*(B)\ o(B) ,
A'=TI"YB)\o(B") and A” = TI"}(B")\ o¢(B’). The surface S is obtained
by gluing holomorphically the two connected components of the boundary
of A with oIl in A”. Let ¢ : A — S be the natural inclusion and V the
canonical image of B”\B’ in S. We denote by i = {A,V} the so obtained
open covering of S. It is clear that ANV has two connected components and
i"Y(ANV) = UUW where U = I"'(B\ B’) is taken to be the component
on the “pseudoconvex side” of A.

DEeFINITION 1.1. — For f € O*(U) we define L’ to be the holomorphic
line bundle given by the cocycle (f € O*(U),g = 1 € O*(W)) in
HY(U,0*). For f = const. = A € C* we call L* the flat line bundle with
parameter .

Remark 1.2.— Clearly the function f extends to a non-vanishing
holomorphic function on II71(B), which we still denote by f.

LemMA 1.3.— Let Lf € HY(U, ©*) defined by f € O*(U). Then L¥
is flat, LT = Lf(@(®) and we have isomorphisms

¢ —= H'(U,C*) —— HYS,C)

ip

HYU,0%)

Moreover, f(o(0)) is independent of the choice of the GSS and therefore,
the above identification between C* and H'(S,C*) is canonical.

Proof. — Since U is a Leray covering for the constant sheaf C*, it is
clear that the horizontal maps are isomorphisms.

First we prove that ¢ is injective. Suppose that L?* is trivial. Then
there exists a non-vanishing section s : § — L?, i.e. a holomorphic function
s : A’ — C which satisfies s(oII(z)) = As(z). The function s extends to
B™ := I-1(B) and since it is non-zero on A’, it does not vanish on B™.
Let O be the fixed point of ¢Il. We have s(0) = s(cIlI(0)) = As(0),
therefore A = 1. Now let Lf € H'(U,0*). We define a linear map
r: HY(U,0*) — H'(U,C*) by r(LF) := L(°(0), We shall prove that LS
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and L/(@(©) are equal. We write f(z) = Ao(1 + a(2)) with a € O(II~}(B))
and a(o(0)) = 0. Let

[eo}

9(2) = [J (1 + a((oT)'(2))).-

i=0
It is easy to check that the infinite product converges and that

9(2) ( )
g(oTl(2)) Ao

Now it follows that ¢ and r are the inverse to each other.

=(1+a(2) =

Now, let £ be a GSS in S and X be a connected component of &~1(X)
in S. We note by S+ the strictly pseudoconvex component of S \ 3. We
remark that f extends holomorphically to S, and that Lf = Lf(@(0),
Hence L7 is uniquely determined by the constant value of f on the compact
rational curves of S,.. This proves the last assertion of the theorem. O

1.3. Logarithmic deformations.

We recall that for an effective divisor E on a compact complex surface
S the locally free sheaf Q% (log F') defined by

Qs (log E)(U) := {w € Q(Brea) (U)|dw € Q% (Erea) (U)}

is called the sheaf of meromorphic forms with logarithmic polesin E. If z €
dz
E is a regular point and E = {z; = 0}, then 2} (log F) is generated by —

and dzy; if z € E is a singular point and E = {2122 = 0}, then Q}(log E)

is generated by %— nd fdzﬁ A logarithmic deformation [23] is defined
1 2
by cocycles in the dual sheaf Og(—1logE) := Home,(Q5(log E), Os).

Therefore the configuration of curves is maintained by such a deformation.

2. The Green function on the universal covering.

2.1. The case 2n < 0,(5) < 3n.

We recall that a surface S with 0, (S) = 2n is a compactification of an
affine line bundle over an elliptic curve by a cycle D of n rational curves with
D? = 0. These surfaces admit exactly one singular holomorphic foliation F
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which extends the affine fibration. This foliation is stable under deformation
(see [8]), and is defined by a logarithmic 1-form 7 € H°(S,Q(log D)). By
[8] we have the following normal form for a germ defining S:

n—1
F(2) = (zlzgt" + Z ait”lz;“,tzz) }
=0
dZQ
The leaves of F are the sets {2, = constant} and 7 = —=.
Furthermore there exists on the universal covering (S, &, S) a holomorphic

function f such that % =@*(7).

The aim of this section is devoted to the analog problem in the case
2n < 0,(S) < 3n. Given a defining germ for S, we shall prove that it is
conjugate to a germ of the form

F(z) = (Fi(2), 23)

and that there is a local foliation F induced by {22 = constant}. Contrarily
to the above case there is no holomorphic function on the universal
covering (S, %, S) which globalizes F. Nevertheless it is possible to define a
plurisubharmonic function G (Green function) on S which is pluriharmonic

on the complement of the union of the rational curves D := (J C; in S. In
1E€Z

order to globalize F, we shall observe that the fibers of the function G in

S\ D are foliated holomorphically and that all leaves are isomorphic to C.

We recall that in a(S) two successive singular sequences
sp=((P+22,...,2)
are separated by at most one regular sequence
Tm = (2,...,2).

The indices p and m indicate the lengths of the sequences. In this section
we use frequently the local coordinate notations for sequences of quadratic
transformations given in Section 1.1. The key result for the sequel is the
following

LEMMA 2.4.— Let S be a surface with 2n < 0,(S) < 3n. Let C be a
rational curve in the universal covering S and pc: S — Sc the canonical
collapsing morphism onto the point OceC (see Section 1). We suppose
that the curve C satisfies the following property:
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(¢) Oc is not an intersection point of two rational curves.

Then we have
1) There is a local coordinate system in a neighbourhood of Oc, say
z = (21,22), In which
Fo(z) = F(2) = (azé(l + A(2)),bek (1 + B(z))) where a,be C*.
Moreover

i) the integer k = k(S) is independant of the choice of the curve
C satisfying ({) and depends only on a(S). Furthermore, k(S) = 1 if
on(S) = 2n and k(S) > 2 if 0, (S) > 2n.

ii) A and B are convergent series of order at least one and 2z,
divides B.

iii) I > 1 and | > 2 if there are at least two singular sequences in a
period of a(S).

2) We denote by O; = Oc4; = (0;,0), 0 < i < n — 1 the sequence
of successively blown up points. Let iy be the smallest integer such that
a;, # 0. Let S — C* be the logarithmic deformation given by moving the
point O;, = (v, 0) along Cy, such that O;, does not meet an intersection
point of two curves. Then there is a holomorphic family of germs

Fo a4, (2) = F(oug, 2) = (a(aio)zé(l + A(2)), b(cio )25 (1 + B(z))),
where a,b : C* — C* are holomorphic functions, such that the associated
logarithmic deformation is isomorphic to & — C*. Moreover

i) A et B do not depend on o,.

ii) There exists integers U’ < U such that a = a%la’ and b=V,
where o’ and b’ do not depend on o, .

iii) Forallp >1
a”lP: C* — C*
ai, o alg,) T b(es, )P
are non-constant holomorphic functions.
Proof. — Suppose that 2n < 0,,(S5).

Let a(S) = (ai);ez be the sequence of opposite self-intersections of
the curves in the universal covering of S. We choose the numbering of the
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curves in S such that C = C_;. The condition 0,,(S) > 2n implies that
a(S) contains at least one singular sequence. On the other hand we have
that 0, (S) < 3n which assures the existence of at least one regular sequence
in a(9). The hypothesis (¢) on C = C_; shows that a_s and hence also
an—2 belong to a regular sequence. Therefore there exists integers p > 1
and m > 1 such that

(‘ ceyn—p—m—1y-+-,0n—m—-2,0n—m—-15---,0n-2,0n—1,- . ')

= (o) 8pyTmy One1,-..).

We first consider the case m > 2. For a ball B centered at 0 = Oc
the sequence of blowing-ups of B may be written in the following way (we

denote by the same symbol a curve and its strict transform):

Hn—l Hn—’.’ nn—m+2 I-In—m,+1
Bp—1 — Bp—2 - i Bp—m+1 i Bp—m
(wv) = (WwHap_2,v) — -+ (u,v) = (w+op_m,v)

1% Op—m-1 Hn—p—m+2 Hn—p—m+1
Bn—m L Bp—m-1 - t — Bn—p-m+1 - Bn—p-m
(u,v) — (uv,v) — cee — (u,v) — (uv,v)
I Iy p—m—
—p—m n—p—m-—1
Bn—p—m - Bn—p—m—l I T
(', v") and ' + an—p—m—l»ulv,) and
In fact

e Wehave C2_,_,. | = —(p+2) in By,_;. Hence the curve Cp_p_m—1
with self-intersection —1 in By _p_m—1 has to be blown-up p+1 times.
Therefore Op—p—m = Cpnepem—1 N Cpnp_m = {v' =0} N {u/ = 0}
is the point at infinity of Cp—p—m in Bp—p_m with II,_p_m(u/,v") =
(Ul + an—p—m—17ulvl)7

e In By_p_my1 the point Op—p_mi1 = Crnp-m41NCrp-m-1 = {v =
0} N {u = 0} is the origin of the chart in which II,,_,_p41(u,v) =
(w,v) and C2_,_,,_; = =3,

e Analogously IT;(u,v) = (uv,v) forn—p—-m+1<i<n—m,

e Since C2_,_,,_1 =—(P+2) and Op_m # Crn-mNCpp-m-1 = {v =
0}n{u = 0} in B,,_,, and since there is a regular sequence after s,, we
have Op—m # Cnem N Cp—m—1 = {v/ =0} N {v/ = 0}. Thus Op—p, =
(n—m,0) with ap_pm # 0 and II,,_ 41 (u, v) = (W + Ap—m,v),

e For n —m+1<1i<n—1, we have IT;(u,v) = (uwv + a;—1,v).
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Finally we may suppose that 0~}(C,,—1) = {22 = 0} and thus

0(2) = (01(2) + an_1, 22(1 + 62(2))).

We remark that the above conditions give no information about the self-
intersection of C,,_;.

We stress the importance of the condition a;,—,, # 0 in the proof. We
now calculate directly the compositions of quadratic transformations:
1) s
Mypom M1 (U, 0) =1 pom (woPT™ 1 4 Y ot HmHP g)

i=n—m
n—2 .
— (’U + an_p_m_l,u,vzﬁm + 2 aivz—n+m+p+1>
i=n—m

= (v + n—p-m—1, Cn—mv? (1 + B(u, v)))

and
(2)
Mpepom - Tp_10(z) = (z2(1 +02) + Gn—pm—1,
n—1
o1(2)2(1+6)™ P+ 3 oylza(1+ oz)]z'—n+m+p+1)
i=n—m

- (22(1 +02) + an_pm-1, an-mET 1+ 5()).

The orders of 8 and B are at least one, 29 divides S and p+ 1 > 2.
Now let m = 1. The sequence of blowing-ups is now

I, — I,
Bp—1 =t Bp—g = - — Bp—p =P Bn—p—l - Bn—p—2
(u,v) +— (uv,v) (w,v) = (uwv,v) =W ,v) ~ (V' +ap_p_2,u'v).
We get

Hn—p—l ) Hn_l(u, ’U) = ('U + Qp—p—2, ’U/Up+1).
With o(2) = (01(2) + an—1, 22(1 + 62(2))) this yields
Mp—po1- - Hpo10(2) = (22(1 + 62(2)) + n—p-2, o125 (1 + B(2)))
where a,—-1#0
and we obtain the same formula as before.
We now calculate F' = ITo. We shall distinguish the following cases:

First Case: Suppose a(S) = (3p5,7m). Here n = p+m and

F(2) = (z22(1 4 02(2)), an_m 22T (1 + B(2))).
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Second Case:

a) There is exactly one singular sequence before r,,. We write
a(S) = (-, 8p",Tms, 8ps Tm, Gn—1,...) With m’ > 1. Thus C2_,_,, 5 = —2
and therefore O¢, _,_,._, # Cn—p-m-1NCpn_p_m_2 and

Hn—p—m—l(ua v) = (uv + An—p—m—2, v).

The composition of the mappings corresponding to sy, 7 is of type (1)
with op—p—m—m’ # 0 and we obtain

Hn-—-p—m—p’—m’ e Hn—la(z) = (an—ng+1(1 + /6(2)) + Op—p—m—p/'—m’—1,

’

an—p—m—m'afz:}zzépﬂ)(plﬂ)(1 + BI))'
b) There are several singular sequences before 7, i.e.
a(S) = (..., Sprs-++r8p1sTm,Gn-1,.--)-
Each singular sequence s,,, corresponds to
(3) (u,v) — (v, uvP?).

We define by induction sequences of polynomials Ty, = Tx(p1,-..,DPk) €

Z[pl,...,pk] and Uy = Uk(pz,...,pk) € Z[pg,...,pk] byTo=1,Ty =p1+1
and for k£ > 2,

()= n) (0 ) i)

and Uy =0, U; =1, U; = pg and for k > 3,

(%)= 0~ )G

Uk 1 pk 1 ps)\p2/)’

For fixed values of pi,...,pk, one has that the sequences (T;), (U;) are
increasing. It is easy to show by induction on k£ > 1 that the sequence

Spy * * * Sp,T'm corresponds to the composition of mappings of type (1) (with
Qn—p-m-1 = 0) or (3) and hence

Op—mepy—o—py =+ o1 (0, v)

@) = (ansav™ = (L4 A) + Anomepy—oompy-1, 00 0™ (1 + B) ),

-m
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where v divides B and A, B are independent of a,_,. So

(5) Hﬂ—m—Pl—'“—Pk e Hn_la(zl, 22)

= (e (L A'(2) + e moprompim1, 055,28 (14 B(2)),

where z; divides B(z), and A’, B’ are independent of ay,_p,.

In the first case the mapping F has the desired properties and we
are done. In general a(S) may be written as a(S) = (6n,---,01), where
Oi = Spi **SpiTm,. The cases 2a and 2b describe the compositions of
quadraticl transformations corresponding to o; for all ¢ = 1,---, N. Now
one proves by induction on N > 1 that F' is a composition of a mapping of
type (5) and mappings of type (4), with a—; = 0.

N
One shows again by induction on N > 1 that k(S) = [[ T*. This

i=1
integer is independent of the choice of the curve C: If we choose another
one, the factors of k(.S) are changed by a circular permutation.

The terms a and b are products of powers of coordinates of all base
points of blow-ups which are not intersections of two curves. The number
a;, € C* and the integers U,U’ appear when composing the mappings
corresponding to the last sequence oy. One gets a = a%'a’ = aiUo "¢’ and
b= a% b= a%kb' , where a’ and b’ are independent of «;,. Finally

U\ _ (U _ (0 1)\ [U"
U) \U )] \1 p v )’
with U’ > 0,U" > 0.

Hence a(a;,)”tb(a;, )P = ai_OU,erUa’—lb’p, with pU — U’ > 0. This
achieves the proof of 2) and hence of 1) which is a particular case of 2).

The case 2n = 0,(S) is easy and left to the reader. a

Example 2.5. — If a(S) = (Sp;;Tm1s5p3,Tmar---SpysTmy;), 1.€. every
couple of singular sequences is separated by a regular sequence, then

l
k(S) = [ + 1)
=1
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LEMMA 2.6. — For every p > 1,
FP(2) = (F{(2), F3(2))

— p— p—2
— (abl(1+k+-~~+k" z)zék 1(1+B(z))lk

(14 B(FP2(2)))' (1 + A(FP71(2))),
b1+k+~~~+k”_1z§” (1+ B(z))’“p_l
o (14 BOFP2(2)) (1 + B(FP1(2))) ).
Moreover, with the notation of Lemma 2.4, FP depends holomorphically
on a = a;, € C*.
Proof. — By induction. O
LEMMA 2.7.— For every curve C such that Oc € S’c is not an inter-

section point of C' with another rational curve, there exists a holomorphic
function f = fco defined on a neighbourhood U¢ of O¢, such that

df(0c) #0 and  fo(Fo(2) = bfe™ (2).
Let f := fc := vfc with b= +*"! and k = k(S). We have fc(Fc) = f&
and for any domain Vi on which fc extends, one gets fo(Ve) C A.

Moreover f depends holomorphically on o = o;, € C* but its domain
of existence is independent of a.

Proof. — 1) We show the existence of the function fe by proving the
convergence of an infinite product.

Let 0 < € < 1 such that A and B are defined on a neighbourhood of
{llz]| < €}. By Lemma 2.4, there exists a constant K > 0 independant of
a € C* satisfying the conditions

1

AR < Kllzll, 1B(2)| < Klzal, e(1+Ke)< ¢, Ke<
with k = k(S). We show by induction on ¢ > 0 that for ||2|| < e,
K|z|

ki

If ¢ = 0 the inequality is trivial. The induction hypothesis gives

|B(F'(2))| <

. K|F(2)| K

B () < KO K e 4 kel

KIZQ' _

< Te’“ 1(1+ Ke)
K|22|

< i+l -’
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For ||z|| < € we obtain

i Ke m
IBE () < 27 < 1

For every i > 0 the k*+1-th root
. 1
(1+ B(F'(z))) ¥
may be defined. Then the infinite product

p(2) = [](1+ B () ™

is clearly convergent.
2) We now define fo(z) = f(z) = 22p(z) and get
1+ B(2) % (1+ B( F(z)))f’
(1+B(2) *
(1+BE)* (1+B(F ) * - (1+ B(FP(2))) #F
(1+B@)F - (14 BE @)™

£(2) = lim z(1+ B(2)* (

S T LA 1CO) L A ) i
p—o00 b% 22 b*% (Fy(2))® brorT (sz(z))gp
S N € 169) L () L €2 i ©0) il
p— 22 (Fa(2))* (FP(2))%r

It follows that f(F(z)) = bf(2)* and f(F*) = f*". Let Vi be a connected
neighbourhood of Oc such that fc extends holomorphically to a neigh-
bourhood of V. There exists p > 1 such that FP(Vg) CC Ve, since Fg is
contractant. This gives

. —_—_— = w =\ ¥
sup || = (sup |71*") ™" = (sup |F(F?)I) ™ < (sup|f1)
Ve Ve Ve Ve
and the lemma is proved. O

THEOREM 2.8. — Let F' = Ilo : (C?,0) — (C?,0) be a contracting
germ composed of n blowing-ups I1; and a germ of an isomorphism o such
that the singular set of F' contains only one component. Let S be the surface
such that 2n < 0,(S) < 3n, associated to F'. Then for every o € C*, F is
conjugate to

F'(z) = po Fop™!(2) = (azp(1+ A'(2)), bz3)
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where ¢(z) = ¢(a,2) = (21, f(a,2)) is an isomorphism which depends
holomorphically on o defined on a fixed neighbourhood, k = k(S) with

i
k>2,1>1, A(0) =0 and %(O) does not depend on .
1

Proof.— By Lemma 2.4, we can suppose that F(z) = (az%(l +

A(z)),bzk(1 + B(z))) Since f(2z) = z9p(z) with p(0) = 1, one has
¢~ 1(2) = (21, 224(2)) with ¢(0) =1 and

P (2) = (azba(2)! (L + Ale™ (). (P (™))
= (%047 (2))) = (. b2f).

Vge set 1 +8A'(z) = q(2)"(1 + A(¢p~1(2))). Since z, divides B, we have

q /4

o2 0)= £ (0) = 0. Therefore

(0 = 10(2) ™ L 2.1+ Al e amo + 4(2)' o (A 2o
= (Al l(z»).z_

= 22 (570N + g (07 (N2 e (Do

0A
= o (0)

does not depend on a. O

Remark 2.9. — It is easy to see that F(z) = (azé(l + A(z)),bz5 (1 +

B(z))) is conjugate by a diagonal linear map to a similar germ with
a = b = 1. Combining this with the preceding theorem we get that
F is conjugate to F'(z) = (25(1 + A'(2)), 2%). However we maintain the
constants, since a and b depend holomorphically on the “generic” points
in the sequence of blow-ups. This dependence will be important for the
construction of surfaces with global vector fields.

ProposiTion 2.10.— Let C be a curve in the universal covering S
such that Oc € S¢ is not an intersection point of two compact curves.
Then there exists a plurisubharmonic function G¢ : So — [—00,0[, which
satisfies the following properties:

i) The polar set of G¢ is the union D¢ of the rational curves on
Sc and G¢ is pluriharmonic in the complement of D¢;
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ii) G¢ satisfies the functional equation G¢ o Fo = k(S)Gc;

iii) the function G¢ : Sc \ D¢ —] — 00, 0[ is surjective and submer-
sive;
iv) for every z < 0, the level set Sc(x) := {z € Sc|Gc(z) =z} is a

real 3-fold homeomorphic to the complement S3 \ £ of a closed set with
empty interior ¥y in the unit sphere S°.

Remark 2.11. — The closed set ¥ is an analogue of the solenoid in
[16].

Proof. — i) and ii) For a connected neighbourhood Vi on which f¢
is defined, we consider G¢ := log|fc|. One has Go(Fco(z)) = log|fE| =
kGc(z). For an arbitrary point z in Sc there exists p such that F%(z) € Vg.
We define

Ge(F*(2)
kP ’

This definition is independent of the choice of p. The function G¢ satisfies
condition i) and the functional equation ii), since fc o Fo = f&.

Ge(z) =

iii) G¢(Se \ D¢) is an intervall | — 0o, o where a < 0. Since Fy is
an automorphism of S¢ \ D¢, by ii) we see that | — 0o, o is invariant under
multiplication by k£ and 1/k. Hence a = 0 and the surjectivity follows. There
is a neighbourhood U of O¢ such that dfc(z) # 0 for z € U by Lemma
2.7. For z € U \ D¢, we have dG¢(2) = 8fc/ fc(z) +0fc/fo(z) # 0. The
functional equation of G¢ implies that G¢ is submersive.

iv) We choose a neighbourhood of Oc isomorphic to the unit ball
B on which f¢ is defined. We write Fo = Hg+"ag+" (see Section 1.1).
The manifold S¢ is isomorphic to a union of annuli and of the ball B:
Sc = |J A;UB. For every i < 0, one has Fo(A;) = Aiy1 and Fo(Ag) = B.
i<0
In view of Theorem 2.8, there is a system of coordinates (z1, 22) on B such
that fo(z) = 22. Therefore Go(z) = log |22|. Let z €] — 00, 0[. By replacing
if necessary the level set So(z) := Go~'(z) by an image F&(Sc(z)),
we suppose that Sc(z) meets B. For i < 0, we set A, = |J A; UB,
i<5<0
T = Sc(z) N B and T; = Sc(z) N A,. With these notations (T})i<o is an
increasing sequence and

Sc(x) =TU UT,

<0
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For z := log|\|, we have that T = {z € B |log|22| =z} = {2 € B | |22| =
|Al} is a solid torus. For every i < 0, A} is isomorphic to the n(i + 1)-times
blown-up ball. Since F¢(Aj) = Aj,,, we have the following commutative
diagram:

Io Iy I (p-2) I_(p-1) I_p

rt r, o0 o7, =L A p

Fclg Fcle Féle Fc”.la Fg“le

1 F F, F, F, F,
Fo(T)= T(AF) =S TARY) =S, ZS m(akF) =% Ak =<,
Here I and I_, are inclusions and T(r) := {z € B | |z| = r} for

r > 0. Therefore S¢(z) is an increasing union of solid tori. The embedding
I: Fo(T) — T(|A%) has degree 1. For p > 1, Fc : T(]A¥") — T(AF™)
has degree k. This means that the image F¢ (T(|/\|" }) is winding around k
times in the interior of T(|)\|kp+1). For every r > 0, the continuous mapping

h: B\{z=0} — S8\ {2, =0}

(21, 22) — (317 % \/1T|Z_1l_2)

|22
induces by restriction the homeomorphism
h: T(r):={2€B||z|=r} — U@r):={2€8%||zn|>r}

z
(21,22) — (21, 2 vV 1- |Z1|2).

[z

This shows that T, is homeomorphic to U(|A¥**") and that the comple-
ment
p+1)

SEAU(AF

of the image of T_,, in S is a solid torus without boundary . Similarly, let

T(r)={z€B|lal=Vv1-12}, U)={z€8||al>V1-r

R: T(r) - U’(r)
(z17z2) = (% Vv 1- |22|2)22)-

In order to simplify the notations we set

—j+1 j+1
T; =T(AN*"™), T =T(N""),
U; =UAF™, Uy =0 (AT,

1)—> T_p —_— ...
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Of course % = Uy U U’y. We want to prove that Sc is homeomorphic to
U U U'(\Zk (the set Ty will be defined below). For r > 0, let

R: T(r) - T/(r*)

(21,2) — (\/l—r% rE )

r 22, \/l_j z1).
Finally we define for j < 0,

-1
Ry hjgaoo sy B Fg Hj_2 ooy
Hj:Tj—>Tj+1 g Uj+1, and TjZU]‘ - Tj...l —->Tj_2 - Uj_l,

where R; and H; are induced by R and H.

This allows to complete the previous commutative diagram:

s T N S N N A O
Fg“le Fg’lee Fg?'“le Fgf“lg

e, v, Lo, L o Lp, Lo,
H-,,l&‘ H_,,_lle Hjla_t Hj_lle

B v, 28 ou., L S vy, 2 ouy

in which 7} is also an embedding of degree k. Let 71 := hyo Ry 0 Foohy .
U’y := Ug — U’. We notice that (U’;,7/,j < 1) defines a direct limit
system in the category of topological spaces and that

Sc(z) = lim (U',75,i <1).

This means that S¢ is obtained in the following way: We start with the
solid torus Uy and we add U’ minus 7{ Uy winding around & times in U’,.
We fill the hole 7{Ug by U’_; \ 75U’¢. The new hole is therefore a torus
winding around k? times in U}. Repeating this procedure we finally get

%y :=lim (U'}, 75,5 < 1)
i.e. Xk is the intersection of the removed tori. 0O

DEFINITION 2.12. — The psh function G¢ on 5’0 is called the Green
function associated to the curve C.

COROLLARY 2.13.— On the universal covering S of S there exists a
plurisubharmonic function G¢ := Gg opg : S — [—00,0[ with connected
fibers, the polar set of which is the union of all rational curves D. On
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S \ D the function G¢ is pluriharmonic, submersive and is surjective onto
] — 00, O[

THEOREM 2.14. — Let S be a compact surface with GSS such that
n = bg(S) > 0 and 2n < 0,(S) < 3n. Then there exists a singular foliation
F on S with the following properties:

i) The singular set Sing(F) is the union of the n intersection points
of the rational curves;

ii) the complement of Sing(F) in each rational curve is a leaf;

ili) all other leaves are isomorphic to C and dense in the real
threefolds

@({G¢ = constant})

which are homeomorphic to the complement S3\ £y C S\ D. Moreover
the closure in S of a such a leaf contains the maximal divisor D of S.

Proof.— Let C be a curve such that OC is not the intersection
point of two curves and G¢ the associated Green function on Se. By
Theorem 2.8 and Remark 2.9, there exists a ball B centered at OC on
which F(z) = Fo(z) = (24(1 + A(2)), 25). In B the curves {z» = A\} N B
are plaques of leaves of a foliation F on Sc which induces a foliation F on
S. The properties i) and ii) are already known (see [19]).

Let fJO C Sc be a leaf in the complement of the rational curves and
Lo its image in S. We shall _prove that Lo and Ly are both isomorphic
to C. Since Fo : So — SC is an 1somorphlsm outside the rational
curves of S, we have that Lp = Fg(LO) and Lo are isomorphic. We
consider S¢ as the union iL<JO A; U B of annuli and the ball B. We have

f)o = U;(Lo N A;) U (Lo N B). Let —q be the greatest value for 7 such that
LO N A; # @. Replacing, if necessary Lo by Lq+1, we may suppose that
LO N B # . Notice that each connected component of Lo N B is a disc.
Let Ag = {22 = A} be one of them and A, ; = {22 = e )\} For every

>0 and every 0 < ¢ < kP — 1, FP(A,,) C {22 = A*"} C L,. Therefore
I:,, contains the disc {zz = M} and Ly = F~P(L,) contains all the discs
A, 4. Since the kP-th roots of unity are dense in S*, it follows that LynB
is dense in the solid torus Ty = {|22| = |A|} = {Gc = log|\|} N B.

For every ¢ > 0 define now the disc §; = {z € B | zp = )\ki}. So
8o = Ao and FE(Ag) C 6. For every i > 0, we have that A o' (6:)
is a disc contained in Ly and Y; = A; \ A i—1 is a 1- d1mens1onal annulus.
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Since Y; = F ¢ (6,~ \Fec (6,~_1)), the sequence of moduli of (Y;) is increasing.

This shows that UA; is isomorphic to C. Furthermore Lo is clearly simply

connected and contains an open set isomorphic to C, hence Lo = UOA
2

C. As a consequence one has that LoN B = U A, 4 and that Lo is dense in

{Gc = log |A|}. Finally, since Fi5 (Lo N 4; ) C {zeB ||zl ="} C

Lz+17 Lo is mapped 1somorphlcally by @wo pC to Lo in S. Hence Ly is also
isomorphic to C. All the leaves L; have the same image Lg in S. Therefore
the closure of Ly in S contains D. (]

PropPoSITION 2.15.— Let C and C’ be two curves such that (jc and
OC/ are are not intersection points of two compact curves in S‘C and S'c/
respectively. Then the two psh funtions Gc and Ge. differ by a positive
multiplicative constant.

Proof.— By Theorem 2.14 the fibers of G¢ and Gg¢r in S \ D
are densely foliated by copies of C. Furthermore these functions are
pluriharmonic on S \ D and bounded from above by 0. Let L be a complex
leaf of a fiber of G. Then the restriction of G¢ to L is constant. Since the
fibers of G¢ are 3-dimensinal, L is a complex leaf of a fiber of Ger. This
shows that the two functions have the same level sets and differ therefore
by a multiplicative positive real-analytic function a. The fact that both are
pluriharmonic implies that a is constant. 0

2.2. The case of Inoue-Hirzebruch surfaces: o, = 3n.

We recall (cf. [6] and [7]) that any Inoue-Hirzebruch surface (first
constructed in [17]) can be defined by mappings

F=Fc: (C%40o) — (C2,0)
(Zlvz2) = (z{’zg,z{zg)

where A = (f Z) is the product of n = bo(S) matrices ((1) 1) or

11
distinct eigenvalues )\;, i = 1,2, which are real quadratic and det A = 1.

Let (a;,b;)! be the eigenvectors, i.e. (a;, b;)A? = X\;(a;, b;), i = 1,2.
We do not have the analogue of the functions fc because f(z) = 27 zg' is

not defined in a neighbourhood of 0.

(0 1 ) , with at least one matrix of the second type. The matrix A has two
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Nevertheless, for every curve C in the universal covering space S of
S, we have two Green functions G¢,; on Sc, defined by

Gc,i(2) = a;jlog|z1| + b log|z2|, i=1,2,

in a neighbourhood of 0 and extended on S¢ in the same way as for
the case 2n < o, < 3n, since G¢i(Fo(2)) = AiGc,i(2). The function
Gc,; is plurisubharmonic and pluriharmonic outside the rational curves.
We recover two foliations by holomorphic curves in the level sets of G¢,
i=1,2.

The two foliations which exist on S by [19] are given by twisted
vector fields. In fact, since a twisted vector field on S becomes a vector
field on S, a twisted vector field has to be tangent to the rational curves.
Choosing any curve C, F¢ can be written in a neighbourhood of O¢ as
Fc(z) = F(2) = (2723,2725) (see [6], [7]), where the invertible matrix
A= f Z has two distinct quadratic eigenvalues, A; and Aq. Since the
two rational curves passing through O¢ have local equations {z; = 0},
i =1,2, the local defining vector fields of the two foliations are of the
0 0

form 0(z) = z1a(2) . + 22b(2) e So we have to find A € C* such that
1 2

DF(2)6(z) = A(F(z)). The holomorphic functions a and b have to satisfy

the equations

pa(z) + gb(z)
(©) { ra(z) + sb(z)

Aa(F(z))
Ab(F(z)).

If a(0) = 0 or b(0) = 0, then a(0) = b(0) = 0. By induction on the
degree of the homogeneous parts of a and b, it is easy to check that
a = b = 0. The only values of X\ for which (<) has a non-trivial solution
are precisely the two eigenvalues A\; and Ay of A. This gives the solutions

HZ(Z) = 210;—— + Zzbi—

0z Oz
We furthermore define twisted meromorphic 1-forms with logarithmic
poles

! Y
(%) wi(z) = %dzl + —z-‘-dzz € H°(S,Q(Log D) ® L*),
1 2

where (al,b)t, i = 1,2 are the eigenvectors of A’ corresponding to ;,
i=1,2.

The results of the following theorem are partially proved in [17]:
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THEOREM 2.16. — Let S be an Inoue-Hirzebruch surface. Then

1) There are exactly two holomorphic foliations on S. In the com-
plement of the rational curves, the leaves are all isomorphic to C or all
isomorphic to the disc A.

2) The universal covering of S\ D is isomorphic to A x C and
m1(S\ D) =Z2.

3) We have the following exact sequence:
0—-2>—>m(S\D)—>Z—0
and, more precisely, 71(S\ D) = Z? x Z.

Proof. — The characteristic polynomial of A is P4(X) = X2 — (p +
$)X + det A. The eigenvalues are

(p+s)£y/(p+s)2—4detA
A17>\2= D) )

where \; is chosen as being the greatest eigenvalue. We have A\; > 1 and

since AjAg = det A = £1, 0 < |A2] < 1. We denote by z; = (Z) (resp.
To = (2)) an eigenvector associated to A; (resp. Az).

The equality pa + gb = Ai1a shows that a and b have the same sign,
say a > 0 and b > 0. From pc + gd = Azc, we deduce similarly that ¢ and
d have opposite signs, say ¢ > 0, d < 0 (see [6], lemme 2.5).

The following diagram:

CxC -4, cCxcC

exp l l exp

crxc* I crxcr
where exp((1,{2) = (exp(1,exp(z2), is commutative. The real plane
(Re(1,Re() is divided into two parts by the line Rzy. Set HT = Rjz; X
Rz; and H~ = R* z; x Rxy. We have A™(az1 + Bz2) = aAl'z1 + SISz,
lim BAT* =0 and lim aA]* = +oo for az; + Bz2 € H#*. Therefore the
m—o0

m—0o0
attraction basin of 0 for F' is

{2122 = 0} Uexp({¢ € C* | (Re¢1,ReC2) €H™}).
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Obviously {¢ € C? | (Re(;,Re(z) € H™} ~ A x C. One can check that
this attraction basin of 0 for F' is isomorphic to

Se\ | .
Ocgc’

Hence, the universal covering of S\ D is isomorphic to A x C. Furthermore
exp({¢ € C? | (Re(1,Rez) € H™}) ~ §\ D. Therefore m; (S \ D) = Z2.
The two complex directions x; and z, induce two linear foliations on
H~ @ iR?%: The leaves of the first one are isomorphic to A and the leaves
of the second one are isomorphic to C. These foliations induce via exp
and F two foliations on S having leaves isomorphic to A (resp. C) in the
complement of the rational curves. These foliations on S are furthermore
transversal in S\ D.

3) is a straightforward consequence of the exact homotopy sequence
for a fibration. O

3. Baum-Bott formulas for foliations
on surfaces with a GSS.

In this section we apply known formulas for foliations of compact
complex surfaces to surfaces containing a GSS.

First we recall basic properties of these surfaces.

Let p be a singularity of F. Then the foliation is locally defined by a
holomorphic vector field

0(z,w) = A(z,w) % + B(z,w) %

with p = (0, 0). We call order of the singularity at p the order of the first non
trivial jet of 6. Let J(z,w) be the Jacobian matrix of the mapping (A, B)
and let A\, u be the eigenvalues of J(p). We shall say that the singularity is
simple, if Ay # 0 and % e Q*.

THEOREM 3.1 [19]. — Let S be a minimal surface with a GSS and
b2(S) > 0 with a (reduced) foliation F. The following statements hold:
1) The rational curves are invariant.

2) The singularities of F are exactly the n intersection points of the
curves and their order is one.
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3) If S is not an Inoue-Hirzebruch surface, the singularities are simple.

Proof. — We use the notations of [5] and [19].

Case A: All points O¢ are singular points for the foliation F¢: this
is the case studied by F. Kohler [19], p.171.

Case B: There is a point Oc¢ which is not a singularity for F¢, then

we apply Remarks 1 and 2, A of [19], p.164. O
Following [1] and [2], we define the two indices
det J(z,w)
Det = _—_
et(p, F) = Res(,9) AC.0)B(z.0) dz A dw
2
Tr(p, ) = Res(o 0 (br J(2,w)) dz A dw

A(z,w)B(z,w)
where Res(g o) is the residue at (0,0) (see [13]). If J(0,0) has two eigenvalues
A and p different from 0, then

Det(p, ) =1, and Tr(p,F) =2+ % 3
Furthermore we set
Det(F) = Z Det(p, F) and Tr(F)= Z Tr(p, F).
pESing(F) pESing(F)

Let );, u; be the eigenvalues of the singularity p;, ¢ =0, ...,n — 1. Then we
have

COROLLARY 3.2. — If S is a minimal surface containing a GSS such
that n = b2(S) > 0 and F is a foliation on S, then

n—1
Det(F) =n and Tr(f)=2n+zg+%.
i=0 I ¢

Baum-Bott formulas [1], [2]: Given a foliation F with isolated
singularities on a compact complex surface S, one can associate a tangent
line bundle T+ C T'S on S\ Sing(F) which extends to S (see [12]). However,
on S the bundle T is not a subbundle of T'S. In the same way the conormal
bundle Ni extends to S. The line bundles 77 and Nz are defined by
duality. We have the following formulas:

(1) Det(F) = c2(S) — c1(T).c1(S) + 2 (TF)
(2) ’I\f(j'-) = C:{(S) - 20 (T]:)Cl(S) + C%(T}')
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Camacho-Sad formula [4]: Let F be a foliation on a minimal
surface with GSS and C be a regular invariant curve of F. Let \; and
ui be the eigenvalues of the foliation at the singular points p; € C, where
A; is the eigenvalue corresponding to the eigenvector tangent to C. Then

My
z;/\—i_c?

Suppose that all rational curves on the surface are regular. It follows

that
n—1
Tr(F) =2n+ Y D} =2n—0,(S).
=0
The equation
3) Tr(F) = 2n — o,(S)

still holds if there are singular rational curves on S. This can be checked
case by case, using a k-to-one covering of S (k = 2, 3) in order to reduce
to the regular situation (see also [27]).

For minimal surfaces with b;(S) = 1 and n = b2(S) > 0 we have
c2(8) = —c2(8S) = n. Therefore (1), (2) and (3) yield

(4) —n < Cf(T]—') = Cl(T}')C1(S) = O'n(S) —3n <0.

By [2], one has Kg = TF ® N3. Thus ¢,(S) = ¢1(TF) 4+ c1(Nx). Using
equation (2), we obtain

(5) cE(Nx) = Te(F) = 2n — 0,(95)
(6) a(Tr)er(Ng) = 0.

Brunella-Khanedani-Suwa formulas [2], [22]: Let C be an invari-
ant curve of the foliation F, p € C a singularity of F and 0 a local defining
vector field of F with isolated singularity p € C. In [2], Brunella defines an
index Z(p,C,F). If C is regular, this index coincides with the vanishing
order at p € C of the restriction Oic-

Let Z(C,F) = > Z(p,C,F) and x(C) := —KC — C? =

pESing(F)NC
2 — 2g(C) the virtual Euler characteristic. Then, by [2], we have

ci(Ng)-C=C?*+Z(C,F) and ¢ (Tx)-C = x(C) - Z(C,F).
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For a regular rational curve C a local defining vector field for F in a
. neighbourhood of the singularity p = 0 is of the form 6(z, y) = x£+)\ya£,
Y

or
with A # 0. For o,, = 3n, this is a consequence of Theorem 3.1 in [19]; for

2n < 0, < 3m, it follows from PARTIE A, p. 171-p. 177 (in particular étape
4, p. 174) and Remarques 1 & 2 p. 164 in [19].

Therefore Z(p, C, F) = 1, and

(7 c1(Nx) - C = C? + Card{Sing(F) N C}
(8) ca1(TF) - C =2 — Card{Sing(F) N C}.

If C is a rational curve with an ordinary double point x, we have
a(S) = (3a=1m1) = (n+1,2,...,2,2),
or a(S) = (3a-151) = (n+1,2,...,2,3).
(See [5], Thm. 11.2.25.) (The index “0”, which appears for n = 1 indicates
the empty sequence.)

Let IT : 8’ — S be the blowing-up of S at the point x, and F’ be
the induced foliation on S’. The multiplicity of C at z is u = 2 and the
vanishing order of a defining vector field of F is m = 1, therefore if C’ is
the strict transform of C, and F is the exceptional curve, then

[C'] = I*[C] — p[E], which implies C'* = C? — 42,
and
Z(C', F') = ¢1(N5)).C' —C"* = (II* ¢y (N5) —m[E)).(I1*[C] - u[ E]) — C* + 2
=Z(C,F) — p(m — p).
Here, it yields Z(C, F) = Z(C', F')+u(m—u) = Z(C', F')—2. Furthermore
we have Z(C’, F') = Card{Sing(F") N C'}.

Case 1: n > 1 and a(S) = (5,-171) , then Card{Sing(F')NC’'} =3
and Z(C,F) =1.

Case 22 n = 1 or a(S) = (5p-181) = (n+1,2,...,2,3), then
Card{Sing(F')NC’} =2 and Z(C,F) =0.

Finally, the Brunella formulas yield

C?+1 in Casel
9 Ng).C =
©) (V) {02 in Case 2
—1 in Case 1
10 T£).C =
(10) a(TF)-C {0 in Case 2.



1532 G. DLOUSSKY, K. OELJEKLAUS

4. Numerically anti-canonical
and numerically tangent divisors.

Let S be a surface with a GSS and tr(S) = 0. Under this assumption

the only curves on S are the n rational curves given by the construction and
n—1

these curves generate H(S,Q). We denote by D = Y. D; the maximal
=0

divisor.

Let L € H'(S,C*) be a flat line bundle and let § € H°(S,© ® L) be
a global twisted vector field. By [19] Theorem 2.1.1. p. 169, § may vanish
only on the rational curves.

DEeFiNITION 4.1. — Let S be a minimal surface with a global spherical
shell satisfying ba(S) =n > 1 and tr(S) = 0.

1) A divisor D_g = z—: k;D;, k; € Z, is called numerically anticanon-
=0
ical if there exists a flat line bundle L such that —K ® L = [D_k|. (Here

[D] denotes the line bundle associated to a divisor D.)

2) A divisor Dy = Z t;D;, t; € Z, is called a numerically tangent

divisor if there exists a ﬂat line bundle L such that © ® L admits a
global meromorphic section 6 which satisfies () = Dy, in particular
h%(S,© ® L ® O(—Dy)) > 1. We denote by F the foliation given by 6.

By [7], p. 671, D_k > D is a strictly positive divisor. More precisely,
we have

LEMMA 4.2. — For a minimal surface S with GSS and tr(S) = 0 let
M(S) = (D D; ) ~ be the intersection matrix of the curves on S. Then
n—1
1) If it exists, a numerically anticanonical divisor D_x = Y k;D;

=0
satisfies the linear system

ko D2 + 2 —2g(Dy)

) M) | D? 42 2(Dy)

kn—1 D} _y +2—29(Dn-1)



VECTOR FIELDS AND FOLIATIONS ON COMPACT SURFACES 1533

where g(D;) is the genus of the curve D;. Converse]y, if the Cramer system

(1) admits a solution (ko, ..., kn—1) in Z™, then E k;D; is a numerically
=0

anticanonical divisor. In both cases the divisor D__ K Is unique.

2) If it exists, a numerically tangent divisor Dy is unique and satisfies
the linear system

to 2 —-2g(Do) — Z(Do, F)
(2) M) t | = 2-29(Di) - Z(Di, F)
tn—l 2 — QQ(Dn_l) - Z(Dn_l,]‘-)

where

2 — Card{Sing(F) N D;} if D, isregular

-1 if D, issingular
2—-29(D;)—-Z(D;, F) = and meets another curve

0 if D,; is singular

and meets no other curve
3) The Q-divisors DQK and D?, which are defined by the linear
systems (1) and (2) respectively, satisfy the relation
D%, = D2+ D.
In particular D@K is a divisor if and only if D? is a divisor. In this case
Dg > 0.

Proof.— 1) is a consequence of the adjunction formula and the fact
that the curves Dy, ..., D,_1 are a Q-basis of H2(S,Q). 2) a consequence
of the formulas (8) and (10) in Section 2, noticing that T = L~ ® [Dpg).

3) The intersection matrix is negative definite and
D? + Z(D;,F)=D-D,.

The Cramer systems yield for all ¢ =0,---,n—1

D¢ ... Dg-D DoDn1
Dy D, D,-D ... DD,
det M (S)(k; —t;) = det . . .
DoDp—y ... Dp_y-D ... D2,

ith column
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We see that the i-th column is precisely the sum of all the columns of
M(S). Therefore det M(S)(k; — t;) = det M(S). O

Remark 4.3. — We shall prove the converse of 2) in Theorem 5.2.

Example 4.4.— Let S be an Inoue-Hirzebruch surface. By [5], we
have 0,(S) = 3n, and D is the sum of one or two cycles. Therefore we
get Dg = 0 and D_g = D. Conversely, if Dg = 0, then S is an Inoue-
Hirzebruch surface. ]

Suppose that there exists a global twisted vector field § € H°(S,0 ®
L), where L is flat. Since Tr = [Dy] ® L™, we have by formula (4),
Section 3,

(3) -n < D = —3n+ 0,(S) <0.

Moreover by [5], p. 107, D? = 2n — 0,,(S). Using (3) and Lemma 4.2, 3)
we obtain

—n=¢,(8)? = D%y = (Dy + D)* = D2 + 2D¢D + D? = —n + 2Dy D,
and finally

(4) Dy¢D = 0.

THEOREM 4.5. — Let S be a compact surface with a GSS such that
n = by(S) and 2n < o, (S) < 3n.

1) We suppose that for the intersection matrix M = M(S) of S the
linear system (1) of Lemma 3.2 has a solution in Z™. Then there exists
a numerically anticanonical divisor D_g, i.e. there is a unique complex
number k = k(S) such that K~! ® L* = [D_g]. In particular

H°(S,K~'® L") #0.

2) Let S — U be a logarithmic family of surfaces with fixed in-
tersection matrix M(S). Then there exists a holomorphic function x on
U such that k(S,) = k(u). Surfaces in this deformation which admit a
global 2-vector field are exactly those over the (possibly empty) hypersur-
face {k = 1}.

Proof. — 1) This is a direct consequence of Lemma 3.2.

2) We consider the family X — U x C* of line bundles —Kg, ® L*. By
Grauert’s semi-continuity theorem, there is an analytic subset I' ¢ U x C*



VECTOR FIELDS AND FOLIATIONS ON COMPACT SURFACES 1535

over which —Kg, ® L® has a non-zero section. Let p : I' — U be the
projection. The map p is bijective by 1) and therefore there is a point
z € T for which exists a neighbourhood U(z) C T such that D|U(z) 18
biholomorphic on its image. The closure of T' in U x P!(C) cannot contain
U(z) x {0} or U(z) x {oo}. Hence by the Remmert-Stein theorem, I is an
analytic subset of U x P}(C). Now p: I' — U is proper and finite and thus
a ramified covering. Since there is only one sheet, it is a graph and T' = T.
This gives the function x : U — C*. O

Remark 4.6.— If S is a surface with ¢(S) = 3n, i.e. S is an Inoue-
Hirzebruch surface, then D_g = D, h%(—K ® O(—D)) = 1 and every
logarithmic deformation of S is trivial.

LEmMMA 4.7.— Let S be a surface with GSS and 2n < o,(S) < 3n.
We suppose that there is A € C* and a non-trivial twisted holomorphic

n—1
vector field § € H°(S,0 ® L*). For the zero-divisor Dg = Y t;D; the
0

following statement holds: If there is an index i € {0,---,n — 1} for which
t; = 0, then the curve D; is the top of a tree.

Proof. — Under the hypothesis (¢; = 0), one has

n—1

D;.Dg = thDi.Dj >0
0

and, since 0,(S) < 3n, D; necessarily meets another curve (see [5]). By
Lemma 4.2 it follows that D; is regular and therefore

(%) 0< ) t;D;.D; =2 — Card{Sing(F) N D;}.

We have to show that the right hand side of () is equal to 1. Suppose
that it is zero. Then there are the following two cases:

e The curve D; intersects two other curves D;, and Dj, in one point
respectively. By (x) it follows that the coefficents t;, and ¢;, vanish. Using
the explicit form of the divisor D (see [5]) and repeating if necessary this
procedure, we find a curve Dy which is the root of a tree in D with ¢, = 0.
But D; has three intersection points with other curves. A contradiction.

e The curve D; intersects another curve D; in two points. By (%),
t; = 0. On the other hand D; + D; is a cycle, hence at least one of these
curves is the root of a tree. Contradiction. O
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Example 4.8. — 1) If a(S) = (32---2) , then det M(S) = 1. It follows

n—1
that numerically anticanonical and numerically tangent divisors exist, since
the Cramer systems admit integer-valued solutions.

2) Suppose that for S with tr(S) = 0 there are regular sequences in
a(S) and each of these is of the form r,, = r;. Furthermore suppose that
all curves in S are regular and that there is at least one curve Dy, which is
not the top of a tree with D2 < —4. Then numerically anticanonical and
numerically tangent divisors do not exist.

Proof.— 1) is evident.

2) Suppose that a numerically tangent divisor exists. By (4) of Section
4,0 = DDy = > t;(D? + (D — D;)D;). If D; is not the root of a
i

tree, (D — D;)D; < 2. Thus D? + (D — D;)D; < 0. If D; is a root,
then by [5], pp.113-114, D? < -3, hence D? + (D — D;)D; < 0 and
for every i, t;(D? + (D — D;)D;) < 0. The hypotheses on Dj imply
D? + (D — Dy)Dy, < —1. This yields a contradiction. |

Example 4.9. — The case of surfaces with a(S) = (3,2). We show that
there are surfaces S with a(S) = (3,2) which admit a global meromorphic
non-vanishing differential 2-form or equivalently, a holomorphic section of
the anticanonical bundle. In Section 5 we shall give examples of surfaces
with global vector fields.

Let S be the surface defined by the germ F' = Ilo = Il 0, where

(v, v') = (V+a,v'v) witha # 0, Ho(u,v) = (uv,v), and o(z) = 2.

One gets F(z) = (z122(a + 22), 2122). Remark that o(0) = Oy is the
intersection of the two exceptional curves Dy and D; (we denote by the
same symbols the curves in the blown-up ball and the corresponding curves
in the surface S). The surface S contains a singular rational curve Dy and

a regular rational curve D;. Their intersection numbers are D = —1,
D? = —2, DyD; = 1. The Cramer systems have integer solutions. More
precisely

D_g =2Dg+ D; and Dy = Dy.

The existence of D_ g implies that there is 6 € C* and a non-vanishing
meromorphic 2-form 7 satisfying the functional equation

(F™n)(2) = n(F(2)) det DF(z) = 6n(z)
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where § € C*. Since 0~!(Dg) = {21 = 0} and 0~}(D;) = {22 = 0}, it
follows that
a(z)
= —o—=d .
T](Z) Z%Zz 21 N dzo
The holomorphic function a satisfies a(0) # 0. The invariance condition
becomes

(©) —a(F(2)) = §(a+ 22)%a(z), with a#0.

For z = 0 we get —a(0) = 6aa(0). Hence §a® = —1. On the other hand, if
6a? = —1 and the j-th iteration of F is denoted by F’(2) = (F}(2), Fi(2)),
then

a(0)

N2
J
H;?__O (1 + an(z))
is an infinite convergent product which is the solution of (¢). Since
1
k(S) = 3 (see Theorem 4.5), it follows that

a(z) =

k(S) = —a?.

The equivalent condition for the existence of a non-twisted meromorphic
2-forms is 6 = 1. Hence o = +i and in these cases K = [-2Dg — D;]. We
want to stress that « is the parameter of the logarithmic versal deformation
(we shall not prove this point here). In this deformation the surfaces with
a non-zero anticanonical section are those over the hypersurface {a = +i}.

5. Flat line bundles and global vector fields.

THEOREM 5.1. — Let S be a compact surface with a GSS and 2n <
0r(S) < 3n. Then

w=% ¢ H°(S,Q'(Log D) ® LF)

f
where k is the integer defined in Lemma 2.4, f is the holomorphic function
of Lemma 2.7. Furthermore w is closed and defines the foliation F of
Theorem 2.14.

Proof. — In a neighbourhood of 0, f(F) = f*, therefore

2z o k
P () = SEED ppy _ W oB) A AE

7 )@= FFe) = joF A= F o8
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The foliation F, given originally by the function f, is evidently also defined
by ker w. O

THEOREM 5.2. — 1) Let S be a compact surface with a GSS such that
n = by(S), 2n < 0,(S) < 3n. We suppose that for the intersection matrix
M = M(S) of S the linear system (2) of Lemma 4.2 has solutions in Z.
Then there exists a unique numerically tangent divisor Dy and a unique
complex number A\(S) = k(S)k(S) € C* (See Theorem 4.5 for the definition
of k) such that

HO(S,0(—Dy) @ LX) #£ 0.

2) Let S — U be a logarithmic versal family of surfaces with fixed
intersection matrix M. Then there exists a holomorphic function A on U
such that A\(S,) = A(u) and surfaces which admit a global vector field are
those over the hypersurface {u | A(u) = 1}.

3) Every surface Sy with intersection matrix M(Sy) = M may be
deformed by a logarithmic deformation S — U into a surface S; admitting
a global vector field. In this case H,f := {u € U | A(u) = 1} is a non-empty
hypersurface.

4) Every surface Sp with intersection matrix M(Sp) = M may be
deformed by a logarithmic deformation S — U into a surface So admitting
a global anticanonical section. In this case H,. := {u € U | k(u) = 1} is a
non-empty hypersurface. Moreover H,y N Hye = @.

Proof.— By Lemma 4.2 and Theorem 4.5, there exists a unique
anticanonical divisor D_g = Dy + D and a unique flat line bundle L*(5)
such that —K ® L*(5) = [D_g] has a non-trivial holomorphic section
s. By Theorem 5.1, § = (w,s) € H°(S,0(—Dy) ® L¥*(5)) is a non-
trivial holomorphic section. Therefore A = kx(S) satisfies the condition
of 1). Remark that (w,6) = 0. It remains to prove the unicity of A. For
this, let a € C* and suppose the existence of a non-trivial section #' €
HY(S,0®L%). Since (#') is a numerically tangent divisor, we have that 6’ €
H%(S,0(—Dg) ® L*) and therefore 7 = 6 A0’ € H°(S, —K(—2Dp) ® L*).
If 7 # 0, then 0 # &' := (w,0') € H°(S,0(D — Dy) ® L%). Hence s’
is a meromorphic section of the flat line bundle L. Since 0,(S) > 2n
and M(S) is negative-definite, there is no flat divisor. Therefore L is
holomorphically trivial and D = Dg. This implies D? = D.Dg = 0, which
gives a contradiction.
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So 8 and @' are colinear twisted vector fields. But then g is again a

non-trivi
is therefore trivial and a = kk(S) =

2) is clear, since by Theorem 4.5, x(u) is holomorphic and A(u) =
kk(u).

3) and 4) Let S — C* be the logarithmic deformation defined in
Lemma 2.4, 2). We have

F(2) = Fo,ai, (2) = (o) 23 (1 + A(2)), b(evio)23)

azl 24 *
DF(z) = ( 206”1 bkzg-l) .

We are looking for a vector field § which is necessarily tangent to the
foliation F, by Theorem 3.1. Hence 6(z) = ng(z)b—;, with p > 1 by
1

Lemma 4.7, because the curve C is not the top of a tree. Moreover H(0) # 0,
since the foliation F¢ is non-singular at O¢. The invariance condition for
a global section of © ® L) s

(Fu0)(F(2)) = AT'0(F(2)).

We obtain

(az2+lH(z)azl ) ( % 85 bkz* )(zglg(z))_—_DF(z)ﬂ(z)
Al( FHEE))

i.e.
(D) azg“H(z) () AP 2P H(F(2)).

We know by 1) and 2) that the holomorphic function A : C* — C* exists
0A
and that (A) admits a solution. By Theorem 2.8, —8—2—(0) is independent
1
of a;,, therefore considering the terms of lowest degree, we see that there
exists a constant C' € C* such that

’\(aio) = Ca_l(aio)bp(aio)'

By Lemma, 2.4 this function is not constant. Hence it is surjective and the
hypersurface H,s is not empty. Since A = kx and k > 2, Hsc # @ and
H, fn H,. = 2. |
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Example 5.3.— Surfaces with a(S) = (3,2): We give examples of
surfaces with non-trivial global vector fields:

We have k(S) = 2 and k(S) = —a? by (4.9). Hence \(S) =
k(S)k(S) = —2a%. We have a non-trivial holomorphic vector field if and
only if A(S) =1, ie. a= :I:%.

The following lemma recovers results of I. Nakamura ([24], §3).

LeEmMA 54.— Let S be a surface containing a GSS with 2n <
0n(S) < 3n. Then

| := Card{) € C* | h°(S,Q(Log D) ® L*) > 0} < 2
and equality holds if and only if S is an Inoue-Hirzebruch surface.

Proof.— If A\y # Az, then w; A wy # 0, because otherwise “1 is a

non-trivial meromorphic section of a non-trivial flat line bundle:ﬁ%vhich
is impossible. Therefore | > 3 contradicts Theorem 4.5. For an Inoue-
Hirzebruch surface S, we see with () that | = 2. On the other hand,
suppose that there are \; € C*, ¢ = 1,2 with A\; # A2 and 0 # w; €
HO(S,Q!(Log D) ® L*¢). Then 0 # 7 = wy Awp € H(S, K(D) ® L**2).
Hence D = D_g and Dy = 0, i.e. S is an Inoue-Hirzebruch surface (see
Example 4.4). O

THEOREM 5.5. — Let G be a foliation on a surface S containing a GSS
with n = bg(S) > 0. Then

i) If 0,(S) < 3n there exists a non-trivial d-closed section w €
HO(S,Q'(Log D) ® L*9)) which defines G. Moreover h°(S,Q!(Log D) ®
L¥(9)) =1 and the foliation is unique i.e. G = F, where F is the foliation
given by Theorem 2.14.

il) If 0,(S) = 3n, i.e. if S is an Inoue-Hirzebruch surface, G is one
of the two foliations defined by

w; € H°(S,QY(Log D) ® L), i=1,2,
where \; are quadratic real numbers (see Section 2.2).

Proof. — The case of Inoue-Hirzebruch surfaces has been studied in
(19], §3, therefore we shall suppose that o, (S) < 3n. By [19] Partie A, there
exists a curve C of the universal covering, such that O¢ is a regular point
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of the foliation G¢ induced by G on Sc. By [19], Proposition 2.2.1, G is
defined by a reduced 1-form @w¢ such that

(%) F&oc = Aewe,

where A¢ is a holomorphic function which vanishes only on C. We set
Ac(z) = u(z)z5 with p > 0 and «(0) # 0. Since C is invariant under the
foliation, &c(z) = a(z)z2dz; + b(2)dza, where b(0) # 0.

We suppose that 0,(S) > 2n. By virtue of Theorem 2.8, there is a
coordinate system in a neighbourhood of O¢, in which C = {22 = 0} and
Fo(z) = (Fi(2), 25), where k = k(S). So

DFc(z) = ( 821 822 > .
0 kzE1

We have to prove that G is equal to the foliation F. Using (x), one gets

W(PAS ) = w@Btai) (A)
APHGEE) +RETNE) = u@dN:)  (B)

Considering the order, equation (B) implies that p = k — 1. Cancelling the
extra factors we obtain

o(F)G(2) = wax) (O
(F)zzal;l( )+ Ekb(F) = u(2)b(2) (D)

By (D), one has u(0) = k and since Fi(z) is a multiple of 2 with
I > 1, condition (C) implies that a(0) = 0. By induction we prove that the
homogeneous part of degree i > 0 of a vanishes, i.e. a = 0. Hence

we(z) =b(2)dze , with b(Fe(2)) = ZEO; b(z).
d
The expression of ¢ shows that G is the foliation defined by % or by
c
the Green function G¢o. We shall describe @ with more accuracy: The last
u(z)
condition on b implies that it is a section of the flat line bundle L=® . By

virtue of Lemma 1.3, L%(%% is the trivial bundle. Hence b is constant and
Ac(z) = kz¥71. Finally u(z) := b%, with b € C*, fulfills the condition
2
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F¢p = kp. Therefore p € HO(S,Q!(Log D) ® L*). Now apply Lemma 5.4
to finish the proof.

In the case 0,(S) = 2n, we know by [8] Prop. 1.8 that F is conjugate

to F(z) = (Fi(2),tz2) with 0 < |t| < 1. A similar computation yields the
result with k(S) = 1. O

THEOREM 5.6. — Let S be a surface with GSS and 2n < 0,(5) < 3n.
Let D be the maximal divisor, (S,&,S) the universal covering and D =
@*(D). Then

1) The fundamental group 1(S \ D) is isomorphic to Z[ %), i.e. the
rational number having powers of k as denominators.

2) We have the following exact sequence:
1
OHZ[E] - m(S\D)—>Z-0.

More precisely, 71(S \ D) = Z[ 1] x Z.

3) The universal covering space (Y,p, S \ D) of S\ D (and therefore
also of (S \ D)) is a Riemann domain spread over A x C.

Proof. — 1) The complement S\ D of D in the universal covering
space is isomorphic to the complement of the union of rational curves
C= U C'in

C’'<C

Se=BUlJ A
1<0
For every i > 0, we have m1(4; \ C) = m (B \ {22 = 0}) = Z. Let 7
be a positive generator of m(4; \ C), i.e. 7; is winding around one time
positively in the plane of variable z;. By Theorem 2.8, the patching of A;
with A;y; sends 7; onto kvy;4+1. Since A; N A;4+; is simply connected, the
group (5S¢ \ €) is isomorphic to the quotient of the free abelian group
generated by the {v; | ¢ < 0} by the subgroup generated by the relations
i = kv;+1. Therefore

- = 1
m(S\ D) ~ Z[E]
2) Since the fibre F' is isomorphic to Z, the homotopy exact sequence

of a fibration (see [26], p. 377) applied to the covering (S \ D,&,S \ D)
yields

1 = m(S\ D,2) = m(S\D,z) — m(F,z) — 1.
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This gives immediately the desired exact sequence. Consider the subgroup
of m (S \ D) generated by a loop obtained from a path joining two
identified points, one on the pseudoconvex boundary and the other on the
pseudoconcave boundary of Ay. This group is sent onto my(F, Z). Therefore
m1(S\ D, z) is a semi-direct product.

3) There exists an integer m > 1, such that the linear system

M(8)(ks), =m(D?+2-¢(Dy)) ,

has solutions in Z. Therefore there exists a positive divisor D,, and a
flat line bundle L such that —-mK ® O(— Dm) ® L is trivial. For the
universal covering (S,&,S) of S, we set D,, = @*D,, and K = &*K,
which is the canonical bundle of S. Then we have -mK ® O(-Dy,) =
@*(-mK ® O(=Dy,) ® L) and ~mK is trivial on S\ D. By [21] Thm
33, p. 698, there exists a m-to-one covering (X,q,S \ D) of S\ D such
that ¢* (K 18\ p) is trivial. Hence, there exists on Y a holomorphic 2-field 7
which does not vanish. Besides, w € H(S, Q! (Log D) ® L*) induces on Y a
non-vanishing holomorphic form . Therefore § = (7, @) is a non-vanishing
vector field on Y, tangent to the foliation induced by «, since (8, a) = 0.

On S \ D, the Green function G : S \ D — R<° is pluriharmonic,
surjective and submersive with connected fibers (see Corollary 2.13). It is
locally the real part of a holomorphic function. On the universal covering
Y, this yields a holomorphic function f 1Y — HY, where HY := {2z €
C | Rez < 0}. The image of f is connected, invariant under the group
of translations 2miZ and under the group of homotheties {kP | p € Z}.
Obviously, this shows that f is submersive and surjective onto HY with
connected fibers isomorphic to C by Theorem 2.14.

Denote by 3 the section of T*F dual to § € H(Y,TF). Then 3 is

a vertical non-vanishing 1-form. Let {U;} be a covering of HY, such that
on each U; there is a section s; : U; — Y of the fiber space f Y — HY.
Then integration of 8 along curves with starting point s;(z) in the fiber
f~Y(z), x € U; yields a holomorphic function g; on FY(U;) with 6(g;) = 1.
The difference of two such funtions g; — g; =: gs; is in fact a holomorphic
function constant on the fibers of f and therefore a function on U;NU;. The
collection {g;;} defines a (trivial) cocycle of H'(HY, ), trivalized by, say,
h; € O(U;). Now g := g; — h; is a global holomorphic function on Y with
6(g) = 1. Finally the map ( £ g) 1Y — H9 x C realizes Y as a Riemann
domain spread over HY x C. O
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