ANNALES DE L’INSTITUT FOURIER

EDOARDO BALLICO

A splitting theorem for the Kupka component of a
foliation of CPP*, n > 6. Addendum to an addendum
to a paper by Calvo-Andrade and Soares

Annales de institut Fourier, tome 49, n°4 (1999), p. 1423-1425
<http://www.numdam.org/item?id=AlF_1999 49 4 1423 0>

© Annales de I’institut Fourier, 1999, tous droits réservés.

L’acces aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique 1’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1999__49_4_1423_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
49, 4 (1999), 1423-1425

A SPLITTING THEOREM
FOR THE KUPKA COMPONENT
OF A FOLIATION OF CP"?, n > 6.

Addendum to an addendum to a paper
by Calvo-Andrade and Soares

by Edoardo BALLICO

A codimension one singular holomorphic foliation F' of CP" is given
by w € H°(CP",Q(k)) (for some k) with w # 0, w not vanishing on
a hypersurface. The Kupka subset K(F) := {P € CP" : w(P) = 0,
dw(P) # 0} of the singular set S(F) := {P € CP" : w(P) = 0} of F
has remarkable properties (e.g. if not empty it is a smooth submanifold
of pure codimension 2 with strong stability properties with respect to
deformations of F'). For much more on this topic, see [GL] and [GS]. Let
K # 0 be a Kupka component of F, i.e. ([CS]) a connected component
of K(F). It was proved in [CL] that if K is a complete intersection, then
F has a meromorphic first integral. Motivated by this result in [CS] it
was conjectured and proved in some cases that every Kupka component,
K, is a complete intersection. This conjecture was proved in [B] under the
assumption that deg(K) is not a square. Here we will remove this restrictive
asssumption and prove the following result.

THEOREM. — Let F' be a codimension 1 singular holomorphic foli-
ation of CP", n > 6, induced by w € H°(CP",Q(k)) and such that the
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codimension 2 component of the singular set of F' contains a Kupka com-
ponent K. Then K is a complete intersection and F has a meromorphic
first integral.

Let Nk be the normal bundle of K in CP™. By [CS], Corollary 3.5,
Nk is the restriction E|K to K of a rank 2 vector bundle E on CP". K
is a complete intersection if and only if F is the direct sum of two line
bundles ([0OSS]). If n > 6 every line bundle on K is the restriction of a line
bundle on CP™ (see [FL]). Hence, by a very nice result of Faltings ([F])
if n > 6 and Nk is the direct sum of two line bundles, K is a complete
intersection. Now we use the notations of [GL], page 320. There are two
complex numbers (not both zero) such that the linear part of the foliation
near each point of K depends from these two complex numbers. Up to
a normalization we may assume that one of these numbers is 1; call p
the other one. Il u # +1, then Ng splits into the direct sum of two line
bundles ([GL]), Remark 2 at p. 320). If u = —1, then there is a two-to-one
unramified covering 7 : Z — K such that 7*(Ng) is the direct sum of two
isomorphic line bundles (see [GL], the two lines before eq. (2.6)). Since K
is simply connected ([FL]), Cor. 6.3), Nk splits into the direct sum of two
isomorphic line bundles. Now assume p = 1. This is the only difference with
respect to [B]. By [GL], eq. (2.12) and the two following lines, Nk is an
extension of a line bundle L; by itself. Since n > 6 we have H!(K,C) = C
by a theorem of Barth’s (see e.g. [FL], eq. (**) at p. 83). Hence by standard
Hodge theory ([GH], bottom of p. 105) we have H!(K,Ok) = 0. Thus any
such extension of L, by itself splits and hence N = L; & L1, concluding
the proof of the theorem.

The author was partially supported by MURST and GNSAGA of
CNR (Italy).
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